Split history extras.py to postprocessing.py

This commit is contained in:
Andrey 2023-01-22 15:26:40 +03:00
commit d63340a485

466
modules/postprocessing.py Normal file
View file

@ -0,0 +1,466 @@
from __future__ import annotations
import math
import os
import re
import sys
import traceback
import shutil
import numpy as np
from PIL import Image
import torch
import tqdm
from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass
from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
import gradio as gr
import safetensors.torch
class LruCache(OrderedDict):
@dataclass(frozen=True)
class Key:
image_hash: int
info_hash: int
args_hash: int
@dataclass
class Value:
image: Image.Image
info: str
def __init__(self, max_size: int = 5, *args, **kwargs):
super().__init__(*args, **kwargs)
self._max_size = max_size
def get(self, key: LruCache.Key) -> LruCache.Value:
ret = super().get(key)
if ret is not None:
self.move_to_end(key) # Move to end of eviction list
return ret
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
self[key] = value
while len(self) > self._max_size:
self.popitem(last=False)
cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
imageArr = []
# Also keep track of original file names
imageNameArr = []
outputs = []
if extras_mode == 1:
#convert file to pillow image
for img in image_folder:
image = Image.open(img)
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = shared.listfiles(input_dir)
for img in image_list:
try:
image = Image.open(img)
except Exception:
continue
imageArr.append(image)
imageNameArr.append(img)
else:
imageArr.append(image)
imageNameArr.append(None)
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
res = cropped
return res
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
if cached_entry is None:
res = upscale(image, *upscale_args)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
else:
res, info = cached_entry.image, cached_entry.info
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
upscale_ops: List[Callable] = []
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
upscale_ops.append(partial(run_upscalers_blend, step_params))
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
if opts.use_original_name_batch and image_name is not None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
basename = ''
if opts.enable_pnginfo: # append info before save
image.info = existing_pnginfo
image.info["extras"] = info
if save_output:
# Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
# Add second upscaler if applicable.
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
if extras_mode != 2 or show_extras_results :
outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), ''
def clear_cache():
cached_images.clear()
def run_pnginfo(image):
if image is None:
return '', '', ''
geninfo, items = images.read_info_from_image(image)
items = {**{'parameters': geninfo}, **items}
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return '', geninfo, info
def create_config(ckpt_result, config_source, a, b, c):
def config(x):
res = sd_models.find_checkpoint_config(x) if x else None
return res if res != shared.sd_default_config else None
if config_source == 0:
cfg = config(a) or config(b) or config(c)
elif config_source == 1:
cfg = config(b)
elif config_source == 2:
cfg = config(c)
else:
cfg = None
if cfg is None:
return
filename, _ = os.path.splitext(ckpt_result)
checkpoint_filename = filename + ".yaml"
print("Copying config:")
print(" from:", cfg)
print(" to:", checkpoint_filename)
shutil.copyfile(cfg, checkpoint_filename)
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
def to_half(tensor, enable):
if enable and tensor.dtype == torch.float:
return tensor.half()
return tensor
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
shared.state.begin()
shared.state.job = 'model-merge'
def fail(message):
shared.state.textinfo = message
shared.state.end()
return [*[gr.update() for _ in range(4)], message]
def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
def get_difference(theta1, theta2):
return theta1 - theta2
def add_difference(theta0, theta1_2_diff, alpha):
return theta0 + (alpha * theta1_2_diff)
def filename_weighted_sum():
a = primary_model_info.model_name
b = secondary_model_info.model_name
Ma = round(1 - multiplier, 2)
Mb = round(multiplier, 2)
return f"{Ma}({a}) + {Mb}({b})"
def filename_add_difference():
a = primary_model_info.model_name
b = secondary_model_info.model_name
c = tertiary_model_info.model_name
M = round(multiplier, 2)
return f"{a} + {M}({b} - {c})"
def filename_nothing():
return primary_model_info.model_name
theta_funcs = {
"Weighted sum": (filename_weighted_sum, None, weighted_sum),
"Add difference": (filename_add_difference, get_difference, add_difference),
"No interpolation": (filename_nothing, None, None),
}
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
if not primary_model_name:
return fail("Failed: Merging requires a primary model.")
primary_model_info = sd_models.checkpoints_list[primary_model_name]
if theta_func2 and not secondary_model_name:
return fail("Failed: Merging requires a secondary model.")
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
if theta_func1 and not tertiary_model_name:
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
result_is_inpainting_model = False
if theta_func2:
shared.state.textinfo = f"Loading B"
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
else:
theta_1 = None
if theta_func1:
shared.state.textinfo = f"Loading C"
print(f"Loading {tertiary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
shared.state.textinfo = 'Merging B and C'
shared.state.sampling_steps = len(theta_1.keys())
for key in tqdm.tqdm(theta_1.keys()):
if key in checkpoint_dict_skip_on_merge:
continue
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_func1(theta_1[key], t2)
else:
theta_1[key] = torch.zeros_like(theta_1[key])
shared.state.sampling_step += 1
del theta_2
shared.state.nextjob()
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
print("Merging...")
shared.state.textinfo = 'Merging A and B'
shared.state.sampling_steps = len(theta_0.keys())
for key in tqdm.tqdm(theta_0.keys()):
if theta_1 and 'model' in key and key in theta_1:
if key in checkpoint_dict_skip_on_merge:
continue
a = theta_0[key]
b = theta_1[key]
# this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
theta_0[key] = to_half(theta_0[key], save_as_half)
shared.state.sampling_step += 1
del theta_1
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
if bake_in_vae_filename is not None:
print(f"Baking in VAE from {bake_in_vae_filename}")
shared.state.textinfo = 'Baking in VAE'
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
for key in vae_dict.keys():
theta_0_key = 'first_stage_model.' + key
if theta_0_key in theta_0:
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
del vae_dict
if save_as_half and not theta_func2:
for key in theta_0.keys():
theta_0[key] = to_half(theta_0[key], save_as_half)
if discard_weights:
regex = re.compile(discard_weights)
for key in list(theta_0):
if re.search(regex, key):
theta_0.pop(key, None)
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = filename_generator() if custom_name == '' else custom_name
filename += ".inpainting" if result_is_inpainting_model else ""
filename += "." + checkpoint_format
output_modelname = os.path.join(ckpt_dir, filename)
shared.state.nextjob()
shared.state.textinfo = "Saving"
print(f"Saving to {output_modelname}...")
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
else:
torch.save(theta_0, output_modelname)
sd_models.list_models()
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
print(f"Checkpoint saved to {output_modelname}.")
shared.state.textinfo = "Checkpoint saved"
shared.state.end()
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]