diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 5608e799..470659df 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -14,6 +14,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class HypernetworkModule(torch.nn.Module): @@ -202,8 +203,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, for weight in weights: weight.requires_grad = True - optimizer = torch.optim.AdamW(weights, lr=learn_rate) - losses = torch.zeros((32,)) last_saved_file = "" @@ -213,12 +212,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) + print(f'Training at rate of {learn_rate} until step {end_step}') + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, (x, text, cond) in pbar: hypernetwork.step = i + ititial_step - if hypernetwork.step > steps: - break + if hypernetwork.step > end_step: + try: + (learn_rate, end_step) = next(schedules) + except Exception: + break + tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') + for pg in optimizer.param_groups: + pg['lr'] = learn_rate if shared.state.interrupted: break diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py new file mode 100644 index 00000000..db720271 --- /dev/null +++ b/modules/textual_inversion/learn_schedule.py @@ -0,0 +1,34 @@ + +class LearnSchedule: + def __init__(self, learn_rate, max_steps, cur_step=0): + pairs = learn_rate.split(',') + self.rates = [] + self.it = 0 + self.maxit = 0 + for i, pair in enumerate(pairs): + tmp = pair.split(':') + if len(tmp) == 2: + step = int(tmp[1]) + if step > cur_step: + self.rates.append((float(tmp[0]), min(step, max_steps))) + self.maxit += 1 + if step > max_steps: + return + elif step == -1: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + else: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + + def __iter__(self): + return self + + def __next__(self): + if self.it < self.maxit: + self.it += 1 + return self.rates[self.it - 1] + else: + raise StopIteration diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 47a27faf..7717837d 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -10,6 +10,7 @@ import datetime from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class Embedding: @@ -198,11 +199,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) - epoch_len = (tr_img_len * num_repeats) + tr_img_len - - scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(scheduleIter) + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) print(f'Training at rate of {learn_rate} until step {end_step}') optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) @@ -213,7 +211,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > end_step: try: - (learn_rate, end_step) = next(scheduleIter) + (learn_rate, end_step) = next(schedules) except: break tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') @@ -288,37 +286,3 @@ Last saved image: {html.escape(last_saved_image)}
embedding.save(filename) return embedding, filename - -class LearnSchedule: - def __init__(self, learn_rate, max_steps, cur_step=0): - pairs = learn_rate.split(',') - self.rates = [] - self.it = 0 - self.maxit = 0 - for i, pair in enumerate(pairs): - tmp = pair.split(':') - if len(tmp) == 2: - step = int(tmp[1]) - if step > cur_step: - self.rates.append((float(tmp[0]), min(step, max_steps))) - self.maxit += 1 - if step > max_steps: - return - elif step == -1: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - else: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - - def __iter__(self): - return self - - def __next__(self): - if self.it < self.maxit: - self.it += 1 - return self.rates[self.it - 1] - else: - raise StopIteration diff --git a/modules/ui.py b/modules/ui.py index 2b688e32..1204eef7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1070,7 +1070,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) - learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03") + learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))