Merge pull request #6469 from noodleanon/scripts-from-api
Run scripts from API
This commit is contained in:
commit
e7f2f1e1b6
4 changed files with 48 additions and 9 deletions
|
@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
|||
from secrets import compare_digest
|
||||
|
||||
import modules.shared as shared
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.extras import run_extras
|
||||
|
@ -28,8 +28,13 @@ def upscaler_to_index(name: str):
|
|||
try:
|
||||
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||
except:
|
||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
|
||||
def script_name_to_index(name, scripts):
|
||||
try:
|
||||
return [script.title().lower() for script in scripts].index(name.lower())
|
||||
except:
|
||||
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
|
||||
|
||||
def validate_sampler_name(name):
|
||||
config = sd_samplers.all_samplers_map.get(name, None)
|
||||
|
@ -144,6 +149,14 @@ class Api:
|
|||
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
if txt2imgreq.script_name is not None:
|
||||
if scripts.scripts_txt2img.scripts == []:
|
||||
scripts.scripts_txt2img.initialize_scripts(False)
|
||||
ui.create_ui()
|
||||
|
||||
script_idx = script_name_to_index(txt2imgreq.script_name, scripts.scripts_txt2img.selectable_scripts)
|
||||
script = scripts.scripts_txt2img.selectable_scripts[script_idx]
|
||||
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
|
@ -153,11 +166,20 @@ class Api:
|
|||
if populate.sampler_name:
|
||||
populate.sampler_index = None # prevent a warning later on
|
||||
|
||||
args = vars(populate)
|
||||
args.pop('script_name', None)
|
||||
|
||||
with self.queue_lock:
|
||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
|
||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
||||
|
||||
shared.state.begin()
|
||||
processed = process_images(p)
|
||||
if 'script' in locals():
|
||||
p.outpath_grids = opts.outdir_txt2img_grids
|
||||
p.outpath_samples = opts.outdir_txt2img_samples
|
||||
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||
processed = scripts.scripts_txt2img.run(p, *p.script_args)
|
||||
else:
|
||||
processed = process_images(p)
|
||||
shared.state.end()
|
||||
|
||||
|
||||
|
@ -170,6 +192,14 @@ class Api:
|
|||
if init_images is None:
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
|
||||
if img2imgreq.script_name is not None:
|
||||
if scripts.scripts_img2img.scripts == []:
|
||||
scripts.scripts_img2img.initialize_scripts(True)
|
||||
ui.create_ui()
|
||||
|
||||
script_idx = script_name_to_index(img2imgreq.script_name, scripts.scripts_img2img.selectable_scripts)
|
||||
script = scripts.scripts_img2img.selectable_scripts[script_idx]
|
||||
|
||||
mask = img2imgreq.mask
|
||||
if mask:
|
||||
mask = decode_base64_to_image(mask)
|
||||
|
@ -186,13 +216,20 @@ class Api:
|
|||
|
||||
args = vars(populate)
|
||||
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||
args.pop('script_name', None)
|
||||
|
||||
with self.queue_lock:
|
||||
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||
|
||||
shared.state.begin()
|
||||
processed = process_images(p)
|
||||
if 'script' in locals():
|
||||
p.outpath_grids = opts.outdir_img2img_grids
|
||||
p.outpath_samples = opts.outdir_img2img_samples
|
||||
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||
processed = scripts.scripts_img2img.run(p, *p.script_args)
|
||||
else:
|
||||
processed = process_images(p)
|
||||
shared.state.end()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
|
|
|
@ -100,13 +100,13 @@ class PydanticModelGenerator:
|
|||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||
).generate_model()
|
||||
|
||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
StableDiffusionProcessingImg2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||
).generate_model()
|
||||
|
||||
class TextToImageResponse(BaseModel):
|
||||
|
|
|
@ -98,7 +98,7 @@ class StableDiffusionProcessing():
|
|||
"""
|
||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||
"""
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
||||
if sampler_index is not None:
|
||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||
|
||||
|
@ -149,7 +149,7 @@ class StableDiffusionProcessing():
|
|||
self.seed_resize_from_w = 0
|
||||
|
||||
self.scripts = None
|
||||
self.script_args = None
|
||||
self.script_args = script_args
|
||||
self.all_prompts = None
|
||||
self.all_negative_prompts = None
|
||||
self.all_seeds = None
|
||||
|
|
|
@ -25,6 +25,8 @@ class Script(scripts.Script):
|
|||
return [info, overlap, upscaler_index, scale_factor]
|
||||
|
||||
def run(self, p, _, overlap, upscaler_index, scale_factor):
|
||||
if isinstance(upscaler_index, str):
|
||||
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
|
||||
processing.fix_seed(p)
|
||||
upscaler = shared.sd_upscalers[upscaler_index]
|
||||
|
||||
|
|
Loading…
Reference in a new issue