Merge branch 'master' into cpu-cmdline-opt
This commit is contained in:
commit
e9e2a7ec9a
8 changed files with 109 additions and 80 deletions
|
@ -69,10 +69,14 @@ def setup_model(dirname):
|
||||||
|
|
||||||
self.net = net
|
self.net = net
|
||||||
self.face_helper = face_helper
|
self.face_helper = face_helper
|
||||||
self.net.to(devices.device_codeformer)
|
|
||||||
|
|
||||||
return net, face_helper
|
return net, face_helper
|
||||||
|
|
||||||
|
def send_model_to(self, device):
|
||||||
|
self.net.to(device)
|
||||||
|
self.face_helper.face_det.to(device)
|
||||||
|
self.face_helper.face_parse.to(device)
|
||||||
|
|
||||||
def restore(self, np_image, w=None):
|
def restore(self, np_image, w=None):
|
||||||
np_image = np_image[:, :, ::-1]
|
np_image = np_image[:, :, ::-1]
|
||||||
|
|
||||||
|
@ -82,6 +86,8 @@ def setup_model(dirname):
|
||||||
if self.net is None or self.face_helper is None:
|
if self.net is None or self.face_helper is None:
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
|
self.send_model_to(devices.device_codeformer)
|
||||||
|
|
||||||
self.face_helper.clean_all()
|
self.face_helper.clean_all()
|
||||||
self.face_helper.read_image(np_image)
|
self.face_helper.read_image(np_image)
|
||||||
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
||||||
|
@ -113,8 +119,10 @@ def setup_model(dirname):
|
||||||
if original_resolution != restored_img.shape[0:2]:
|
if original_resolution != restored_img.shape[0:2]:
|
||||||
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
|
self.face_helper.clean_all()
|
||||||
|
|
||||||
if shared.opts.face_restoration_unload:
|
if shared.opts.face_restoration_unload:
|
||||||
self.net.to(devices.cpu)
|
self.send_model_to(devices.cpu)
|
||||||
|
|
||||||
return restored_img
|
return restored_img
|
||||||
|
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
import contextlib
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from modules import errors
|
from modules import errors
|
||||||
|
@ -56,3 +58,11 @@ def randn_without_seed(shape):
|
||||||
|
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
|
def autocast():
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
|
||||||
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
|
return torch.autocast("cuda")
|
||||||
|
|
|
@ -36,23 +36,33 @@ def gfpgann():
|
||||||
else:
|
else:
|
||||||
print("Unable to load gfpgan model!")
|
print("Unable to load gfpgan model!")
|
||||||
return None
|
return None
|
||||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
|
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||||
model.gfpgan.to(devices.device_gfpgan)
|
|
||||||
loaded_gfpgan_model = model
|
loaded_gfpgan_model = model
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def send_model_to(model, device):
|
||||||
|
model.gfpgan.to(device)
|
||||||
|
model.face_helper.face_det.to(device)
|
||||||
|
model.face_helper.face_parse.to(device)
|
||||||
|
|
||||||
|
|
||||||
def gfpgan_fix_faces(np_image):
|
def gfpgan_fix_faces(np_image):
|
||||||
model = gfpgann()
|
model = gfpgann()
|
||||||
if model is None:
|
if model is None:
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
|
send_model_to(model, devices.device_gfpgan)
|
||||||
|
|
||||||
np_image_bgr = np_image[:, :, ::-1]
|
np_image_bgr = np_image[:, :, ::-1]
|
||||||
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
||||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
np_image = gfpgan_output_bgr[:, :, ::-1]
|
||||||
|
|
||||||
|
model.face_helper.clean_all()
|
||||||
|
|
||||||
if shared.opts.face_restoration_unload:
|
if shared.opts.face_restoration_unload:
|
||||||
model.gfpgan.to(devices.cpu)
|
send_model_to(model, devices.cpu)
|
||||||
|
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,3 @@
|
||||||
import contextlib
|
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
|
@ -330,9 +329,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
|
||||||
infotexts = []
|
infotexts = []
|
||||||
output_images = []
|
output_images = []
|
||||||
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
||||||
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
|
with torch.no_grad():
|
||||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
|
||||||
p.init(all_prompts, all_seeds, all_subseeds)
|
p.init(all_prompts, all_seeds, all_subseeds)
|
||||||
|
|
||||||
if state.job_count == -1:
|
if state.job_count == -1:
|
||||||
|
@ -351,6 +349,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
|
||||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||||
|
with devices.autocast():
|
||||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
||||||
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
||||||
|
|
||||||
|
@ -361,13 +360,17 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
if p.n_iter > 1:
|
if p.n_iter > 1:
|
||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
|
||||||
|
with devices.autocast():
|
||||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
||||||
|
|
||||||
if state.interrupted:
|
if state.interrupted:
|
||||||
|
|
||||||
# if we are interruped, sample returns just noise
|
# if we are interruped, sample returns just noise
|
||||||
# use the image collected previously in sampler loop
|
# use the image collected previously in sampler loop
|
||||||
samples_ddim = shared.state.current_latent
|
samples_ddim = shared.state.current_latent
|
||||||
|
|
||||||
|
samples_ddim = samples_ddim.to(devices.dtype)
|
||||||
|
|
||||||
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
|
@ -386,6 +389,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
x_sample = modules.face_restoration.restore_faces(x_sample)
|
x_sample = modules.face_restoration.restore_faces(x_sample)
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
image = Image.fromarray(x_sample)
|
image = Image.fromarray(x_sample)
|
||||||
|
|
||||||
|
|
|
@ -1,20 +1,11 @@
|
||||||
import re
|
import re
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
import torch
|
||||||
|
from lark import Lark, Transformer, Visitor
|
||||||
|
import functools
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
|
||||||
re_prompt = re.compile(r'''
|
|
||||||
(.*?)
|
|
||||||
\[
|
|
||||||
([^]:]+):
|
|
||||||
(?:([^]:]*):)?
|
|
||||||
([0-9]*\.?[0-9]+)
|
|
||||||
]
|
|
||||||
|
|
|
||||||
(.+)
|
|
||||||
''', re.X)
|
|
||||||
|
|
||||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||||
# will be represented with prompt_schedule like this (assuming steps=100):
|
# will be represented with prompt_schedule like this (assuming steps=100):
|
||||||
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
||||||
|
@ -25,61 +16,57 @@ re_prompt = re.compile(r'''
|
||||||
|
|
||||||
|
|
||||||
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||||
res = []
|
grammar = r"""
|
||||||
cache = {}
|
start: prompt
|
||||||
|
prompt: (emphasized | scheduled | weighted | plain)*
|
||||||
for prompt in prompts:
|
!emphasized: "(" prompt ")"
|
||||||
prompt_schedule: list[list[str | int]] = [[steps, ""]]
|
| "(" prompt ":" prompt ")"
|
||||||
|
| "[" prompt "]"
|
||||||
cached = cache.get(prompt, None)
|
scheduled: "[" (prompt ":")? prompt ":" NUMBER "]"
|
||||||
if cached is not None:
|
!weighted: "{" weighted_item ("|" weighted_item)* "}"
|
||||||
res.append(cached)
|
!weighted_item: prompt (":" prompt)?
|
||||||
continue
|
plain: /([^\\\[\](){}:|]|\\.)+/
|
||||||
|
%import common.SIGNED_NUMBER -> NUMBER
|
||||||
for m in re_prompt.finditer(prompt):
|
"""
|
||||||
plaintext = m.group(1) if m.group(5) is None else m.group(5)
|
parser = Lark(grammar, parser='lalr')
|
||||||
concept_from = m.group(2)
|
def collect_steps(steps, tree):
|
||||||
concept_to = m.group(3)
|
l = [steps]
|
||||||
if concept_to is None:
|
class CollectSteps(Visitor):
|
||||||
concept_to = concept_from
|
def scheduled(self, tree):
|
||||||
concept_from = ""
|
tree.children[-1] = float(tree.children[-1])
|
||||||
swap_position = float(m.group(4)) if m.group(4) is not None else None
|
if tree.children[-1] < 1:
|
||||||
|
tree.children[-1] *= steps
|
||||||
if swap_position is not None:
|
tree.children[-1] = min(steps, int(tree.children[-1]))
|
||||||
if swap_position < 1:
|
l.append(tree.children[-1])
|
||||||
swap_position = swap_position * steps
|
CollectSteps().visit(tree)
|
||||||
swap_position = int(min(swap_position, steps))
|
return sorted(set(l))
|
||||||
|
def at_step(step, tree):
|
||||||
swap_index = None
|
class AtStep(Transformer):
|
||||||
found_exact_index = False
|
def scheduled(self, args):
|
||||||
for i in range(len(prompt_schedule)):
|
if len(args) == 2:
|
||||||
end_step = prompt_schedule[i][0]
|
before, after, when = (), *args
|
||||||
prompt_schedule[i][1] += plaintext
|
else:
|
||||||
|
before, after, when = args
|
||||||
if swap_position is not None and swap_index is None:
|
yield before if step <= when else after
|
||||||
if swap_position == end_step:
|
def start(self, args):
|
||||||
swap_index = i
|
def flatten(x):
|
||||||
found_exact_index = True
|
if type(x) == str:
|
||||||
|
yield x
|
||||||
if swap_position < end_step:
|
else:
|
||||||
swap_index = i
|
for gen in x:
|
||||||
|
yield from flatten(gen)
|
||||||
if swap_index is not None:
|
return ''.join(flatten(args[0]))
|
||||||
if not found_exact_index:
|
def plain(self, args):
|
||||||
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
|
yield args[0].value
|
||||||
|
def __default__(self, data, children, meta):
|
||||||
for i in range(len(prompt_schedule)):
|
for child in children:
|
||||||
end_step = prompt_schedule[i][0]
|
yield from child
|
||||||
must_replace = swap_position < end_step
|
return AtStep().transform(tree)
|
||||||
|
@functools.cache
|
||||||
prompt_schedule[i][1] += concept_to if must_replace else concept_from
|
def get_schedule(prompt):
|
||||||
|
tree = parser.parse(prompt)
|
||||||
res.append(prompt_schedule)
|
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
||||||
cache[prompt] = prompt_schedule
|
return [get_schedule(prompt) for prompt in prompts]
|
||||||
#for t in prompt_schedule:
|
|
||||||
# print(t)
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
||||||
|
|
|
@ -386,14 +386,22 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
|
||||||
outputs=[seed, dummy_component]
|
outputs=[seed, dummy_component]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def update_token_counter(text, steps):
|
def update_token_counter(text, steps):
|
||||||
|
try:
|
||||||
prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps)
|
prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps)
|
||||||
|
except Exception:
|
||||||
|
# a parsing error can happen here during typing, and we don't want to bother the user with
|
||||||
|
# messages related to it in console
|
||||||
|
prompt_schedules = [[[steps, text]]]
|
||||||
|
|
||||||
flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules)
|
flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules)
|
||||||
prompts = [prompt_text for step,prompt_text in flat_prompts]
|
prompts = [prompt_text for step, prompt_text in flat_prompts]
|
||||||
tokens, token_count, max_length = max([model_hijack.tokenize(prompt) for prompt in prompts], key=lambda args: args[1])
|
tokens, token_count, max_length = max([model_hijack.tokenize(prompt) for prompt in prompts], key=lambda args: args[1])
|
||||||
style_class = ' class="red"' if (token_count > max_length) else ""
|
style_class = ' class="red"' if (token_count > max_length) else ""
|
||||||
return f"<span {style_class}>{token_count}/{max_length}</span>"
|
return f"<span {style_class}>{token_count}/{max_length}</span>"
|
||||||
|
|
||||||
|
|
||||||
def create_toprow(is_img2img):
|
def create_toprow(is_img2img):
|
||||||
id_part = "img2img" if is_img2img else "txt2img"
|
id_part = "img2img" if is_img2img else "txt2img"
|
||||||
|
|
||||||
|
|
|
@ -22,3 +22,4 @@ clean-fid
|
||||||
resize-right
|
resize-right
|
||||||
torchdiffeq
|
torchdiffeq
|
||||||
kornia
|
kornia
|
||||||
|
lark
|
||||||
|
|
|
@ -21,3 +21,4 @@ clean-fid==0.1.29
|
||||||
resize-right==0.0.2
|
resize-right==0.0.2
|
||||||
torchdiffeq==0.2.3
|
torchdiffeq==0.2.3
|
||||||
kornia==0.6.7
|
kornia==0.6.7
|
||||||
|
lark==1.1.2
|
||||||
|
|
Loading…
Reference in a new issue