From ef75c980536471c0729a2319440e3083cd57a4f0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 10 Jan 2023 12:29:45 +0300 Subject: [PATCH] Split history ui.py to ui_progress.py --- modules/ui.py | 94 +- modules/ui_progress.py | 1839 +--------------------------------------- 2 files changed, 9 insertions(+), 1924 deletions(-) diff --git a/modules/ui.py b/modules/ui.py index 9b9081b5..3c458ce8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -162,79 +162,6 @@ def save_files(js_data, images, do_make_zip, index): return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}") -def calc_time_left(progress, threshold, label, force_display, show_eta): - if progress == 0: - return "" - else: - time_since_start = time.time() - shared.state.time_start - eta = (time_since_start/progress) - eta_relative = eta-time_since_start - if (eta_relative > threshold and show_eta) or force_display: - if eta_relative > 3600: - return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative)) - elif eta_relative > 60: - return label + time.strftime('%M:%S', time.gmtime(eta_relative)) - else: - return label + time.strftime('%Ss', time.gmtime(eta_relative)) - else: - return "" - - -def check_progress_call(id_part): - if shared.state.job_count == 0: - return "", gr_show(False), gr_show(False), gr_show(False) - - progress = 0 - - if shared.state.job_count > 0: - progress += shared.state.job_no / shared.state.job_count - if shared.state.sampling_steps > 0: - progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps - - # Show progress percentage and time left at the same moment, and base it also on steps done - show_eta = progress >= 0.01 or shared.state.sampling_step >= 10 - - time_left = calc_time_left(progress, 1, " ETA: ", shared.state.time_left_force_display, show_eta) - if time_left != "": - shared.state.time_left_force_display = True - - progress = min(progress, 1) - - progressbar = "" - if opts.show_progressbar: - progressbar = f"""
{" " * 2 + str(int(progress*100))+"%" + time_left if show_eta else ""}
""" - - image = gr_show(False) - preview_visibility = gr_show(False) - - if opts.show_progress_every_n_steps != 0: - shared.state.set_current_image() - image = shared.state.current_image - - if image is None: - image = gr.update(value=None) - else: - preview_visibility = gr_show(True) - - if shared.state.textinfo is not None: - textinfo_result = gr.HTML.update(value=shared.state.textinfo, visible=True) - else: - textinfo_result = gr_show(False) - - return f"

{progressbar}

", preview_visibility, image, textinfo_result - - -def check_progress_call_initial(id_part): - shared.state.job_count = -1 - shared.state.current_latent = None - shared.state.current_image = None - shared.state.textinfo = None - shared.state.time_start = time.time() - shared.state.time_left_force_display = False - - return check_progress_call(id_part) - - def visit(x, func, path=""): if hasattr(x, 'children'): for c in x.children: @@ -456,25 +383,10 @@ def create_toprow(is_img2img): return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button -def setup_progressbar(progressbar, preview, id_part, textinfo=None): - if textinfo is None: - textinfo = gr.HTML(visible=False) +def setup_progressbar(*args, **kwargs): + import modules.ui_progress - check_progress = gr.Button('Check progress', elem_id=f"{id_part}_check_progress", visible=False) - check_progress.click( - fn=lambda: check_progress_call(id_part), - show_progress=False, - inputs=[], - outputs=[progressbar, preview, preview, textinfo], - ) - - check_progress_initial = gr.Button('Check progress (first)', elem_id=f"{id_part}_check_progress_initial", visible=False) - check_progress_initial.click( - fn=lambda: check_progress_call_initial(id_part), - show_progress=False, - inputs=[], - outputs=[progressbar, preview, preview, textinfo], - ) + modules.ui_progress.setup_progressbar(*args, **kwargs) def apply_setting(key, value): diff --git a/modules/ui_progress.py b/modules/ui_progress.py index 9b9081b5..592fda55 100644 --- a/modules/ui_progress.py +++ b/modules/ui_progress.py @@ -1,165 +1,10 @@ -import html -import json -import math -import mimetypes -import os -import platform -import random -import subprocess as sp -import sys -import tempfile import time -import traceback -from functools import partial, reduce import gradio as gr -import gradio.routes -import gradio.utils -import numpy as np -from PIL import Image, PngImagePlugin -from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call -from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru -from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML -from modules.paths import script_path +from modules.shared import opts -from modules.shared import opts, cmd_opts, restricted_opts - -import modules.codeformer_model -import modules.generation_parameters_copypaste as parameters_copypaste -import modules.gfpgan_model -import modules.hypernetworks.ui -import modules.scripts import modules.shared as shared -import modules.styles -import modules.textual_inversion.ui -from modules import prompt_parser -from modules.images import save_image -from modules.sd_hijack import model_hijack -from modules.sd_samplers import samplers, samplers_for_img2img -from modules.textual_inversion import textual_inversion -import modules.hypernetworks.ui -from modules.generation_parameters_copypaste import image_from_url_text - -# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI -mimetypes.init() -mimetypes.add_type('application/javascript', '.js') - -if not cmd_opts.share and not cmd_opts.listen: - # fix gradio phoning home - gradio.utils.version_check = lambda: None - gradio.utils.get_local_ip_address = lambda: '127.0.0.1' - -if cmd_opts.ngrok is not None: - import modules.ngrok as ngrok - print('ngrok authtoken detected, trying to connect...') - ngrok.connect( - cmd_opts.ngrok, - cmd_opts.port if cmd_opts.port is not None else 7860, - cmd_opts.ngrok_region - ) - - -def gr_show(visible=True): - return {"visible": visible, "__type__": "update"} - - -sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" -sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None - -css_hide_progressbar = """ -.wrap .m-12 svg { display:none!important; } -.wrap .m-12::before { content:"Loading..." } -.wrap .z-20 svg { display:none!important; } -.wrap .z-20::before { content:"Loading..." } -.progress-bar { display:none!important; } -.meta-text { display:none!important; } -.meta-text-center { display:none!important; } -""" - -# Using constants for these since the variation selector isn't visible. -# Important that they exactly match script.js for tooltip to work. -random_symbol = '\U0001f3b2\ufe0f' # 🎲️ -reuse_symbol = '\u267b\ufe0f' # ♻️ -paste_symbol = '\u2199\ufe0f' # ↙ -folder_symbol = '\U0001f4c2' # 📂 -refresh_symbol = '\U0001f504' # 🔄 -save_style_symbol = '\U0001f4be' # 💾 -apply_style_symbol = '\U0001f4cb' # 📋 -clear_prompt_symbol = '\U0001F5D1' # 🗑️ - - -def plaintext_to_html(text): - text = "

" + "
\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "

" - return text - -def send_gradio_gallery_to_image(x): - if len(x) == 0: - return None - return image_from_url_text(x[0]) - -def save_files(js_data, images, do_make_zip, index): - import csv - filenames = [] - fullfns = [] - - #quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it - class MyObject: - def __init__(self, d=None): - if d is not None: - for key, value in d.items(): - setattr(self, key, value) - - data = json.loads(js_data) - - p = MyObject(data) - path = opts.outdir_save - save_to_dirs = opts.use_save_to_dirs_for_ui - extension: str = opts.samples_format - start_index = 0 - - if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only - - images = [images[index]] - start_index = index - - os.makedirs(opts.outdir_save, exist_ok=True) - - with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file: - at_start = file.tell() == 0 - writer = csv.writer(file) - if at_start: - writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) - - for image_index, filedata in enumerate(images, start_index): - image = image_from_url_text(filedata) - - is_grid = image_index < p.index_of_first_image - i = 0 if is_grid else (image_index - p.index_of_first_image) - - fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs) - - filename = os.path.relpath(fullfn, path) - filenames.append(filename) - fullfns.append(fullfn) - if txt_fullfn: - filenames.append(os.path.basename(txt_fullfn)) - fullfns.append(txt_fullfn) - - writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]]) - - # Make Zip - if do_make_zip: - zip_filepath = os.path.join(path, "images.zip") - - from zipfile import ZipFile - with ZipFile(zip_filepath, "w") as zip_file: - for i in range(len(fullfns)): - with open(fullfns[i], mode="rb") as f: - zip_file.writestr(filenames[i], f.read()) - fullfns.insert(0, zip_filepath) - - return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}") def calc_time_left(progress, threshold, label, force_display, show_eta): @@ -182,7 +27,7 @@ def calc_time_left(progress, threshold, label, force_display, show_eta): def check_progress_call(id_part): if shared.state.job_count == 0: - return "", gr_show(False), gr_show(False), gr_show(False) + return "", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) progress = 0 @@ -204,8 +49,8 @@ def check_progress_call(id_part): if opts.show_progressbar: progressbar = f"""
{" " * 2 + str(int(progress*100))+"%" + time_left if show_eta else ""}
""" - image = gr_show(False) - preview_visibility = gr_show(False) + image = gr.update(visible=False) + preview_visibility = gr.update(visible=False) if opts.show_progress_every_n_steps != 0: shared.state.set_current_image() @@ -214,12 +59,12 @@ def check_progress_call(id_part): if image is None: image = gr.update(value=None) else: - preview_visibility = gr_show(True) + preview_visibility = gr.update(visible=True) if shared.state.textinfo is not None: textinfo_result = gr.HTML.update(value=shared.state.textinfo, visible=True) else: - textinfo_result = gr_show(False) + textinfo_result = gr.update(visible=False) return f"

{progressbar}

", preview_visibility, image, textinfo_result @@ -235,227 +80,6 @@ def check_progress_call_initial(id_part): return check_progress_call(id_part) -def visit(x, func, path=""): - if hasattr(x, 'children'): - for c in x.children: - visit(c, func, path) - elif x.label is not None: - func(path + "/" + str(x.label), x) - - -def add_style(name: str, prompt: str, negative_prompt: str): - if name is None: - return [gr_show() for x in range(4)] - - style = modules.styles.PromptStyle(name, prompt, negative_prompt) - shared.prompt_styles.styles[style.name] = style - # Save all loaded prompt styles: this allows us to update the storage format in the future more easily, because we - # reserialize all styles every time we save them - shared.prompt_styles.save_styles(shared.styles_filename) - - return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(4)] - - -def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y): - from modules import processing, devices - - if not enable: - return "" - - p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y) - - with devices.autocast(): - p.init([""], [0], [0]) - - return f"resize: from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}" - - -def apply_styles(prompt, prompt_neg, style1_name, style2_name): - prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, [style1_name, style2_name]) - prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, [style1_name, style2_name]) - - return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value="None"), gr.Dropdown.update(value="None")] - - -def interrogate(image): - prompt = shared.interrogator.interrogate(image.convert("RGB")) - - return gr_show(True) if prompt is None else prompt - - -def interrogate_deepbooru(image): - prompt = deepbooru.model.tag(image) - return gr_show(True) if prompt is None else prompt - - -def create_seed_inputs(target_interface): - with FormRow(elem_id=target_interface + '_seed_row'): - seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed') - seed.style(container=False) - random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed') - reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed') - - with gr.Group(elem_id=target_interface + '_subseed_show_box'): - seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False) - - # Components to show/hide based on the 'Extra' checkbox - seed_extras = [] - - with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1: - seed_extras.append(seed_extra_row_1) - subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed') - subseed.style(container=False) - random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed') - reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed') - subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength') - - with FormRow(visible=False) as seed_extra_row_2: - seed_extras.append(seed_extra_row_2) - seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w') - seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h') - - random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed]) - random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed]) - - def change_visibility(show): - return {comp: gr_show(show) for comp in seed_extras} - - seed_checkbox.change(change_visibility, show_progress=False, inputs=[seed_checkbox], outputs=seed_extras) - - return seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox - - - -def connect_clear_prompt(button): - """Given clear button, prompt, and token_counter objects, setup clear prompt button click event""" - button.click( - _js="clear_prompt", - fn=None, - inputs=[], - outputs=[], - ) - - -def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: gr.Textbox, dummy_component, is_subseed): - """ Connects a 'reuse (sub)seed' button's click event so that it copies last used - (sub)seed value from generation info the to the seed field. If copying subseed and subseed strength - was 0, i.e. no variation seed was used, it copies the normal seed value instead.""" - def copy_seed(gen_info_string: str, index): - res = -1 - - try: - gen_info = json.loads(gen_info_string) - index -= gen_info.get('index_of_first_image', 0) - - if is_subseed and gen_info.get('subseed_strength', 0) > 0: - all_subseeds = gen_info.get('all_subseeds', [-1]) - res = all_subseeds[index if 0 <= index < len(all_subseeds) else 0] - else: - all_seeds = gen_info.get('all_seeds', [-1]) - res = all_seeds[index if 0 <= index < len(all_seeds) else 0] - - except json.decoder.JSONDecodeError as e: - if gen_info_string != '': - print("Error parsing JSON generation info:", file=sys.stderr) - print(gen_info_string, file=sys.stderr) - - return [res, gr_show(False)] - - reuse_seed.click( - fn=copy_seed, - _js="(x, y) => [x, selected_gallery_index()]", - show_progress=False, - inputs=[generation_info, dummy_component], - outputs=[seed, dummy_component] - ) - - -def update_token_counter(text, steps): - try: - _, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text]) - prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps) - - except Exception: - # a parsing error can happen here during typing, and we don't want to bother the user with - # messages related to it in console - prompt_schedules = [[[steps, text]]] - - flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules) - prompts = [prompt_text for step, prompt_text in flat_prompts] - token_count, max_length = max([model_hijack.get_prompt_lengths(prompt) for prompt in prompts], key=lambda args: args[0]) - style_class = ' class="red"' if (token_count > max_length) else "" - return f"{token_count}/{max_length}" - - -def create_toprow(is_img2img): - id_part = "img2img" if is_img2img else "txt2img" - - with gr.Row(elem_id="toprow"): - with gr.Column(scale=6): - with gr.Row(): - with gr.Column(scale=80): - with gr.Row(): - prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2, - placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)" - ) - - with gr.Row(): - with gr.Column(scale=80): - with gr.Row(): - negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, - placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)" - ) - - with gr.Column(scale=1, elem_id="roll_col"): - paste = gr.Button(value=paste_symbol, elem_id="paste") - save_style = gr.Button(value=save_style_symbol, elem_id="style_create") - prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply") - clear_prompt_button = gr.Button(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt") - token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") - token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") - - clear_prompt_button.click( - fn=lambda *x: x, - _js="confirm_clear_prompt", - inputs=[prompt, negative_prompt], - outputs=[prompt, negative_prompt], - ) - - button_interrogate = None - button_deepbooru = None - if is_img2img: - with gr.Column(scale=1, elem_id="interrogate_col"): - button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") - button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") - - with gr.Column(scale=1): - with gr.Row(): - skip = gr.Button('Skip', elem_id=f"{id_part}_skip") - interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt") - submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary') - - skip.click( - fn=lambda: shared.state.skip(), - inputs=[], - outputs=[], - ) - - interrupt.click( - fn=lambda: shared.state.interrupt(), - inputs=[], - outputs=[], - ) - - with gr.Row(): - with gr.Column(scale=1, elem_id="style_pos_col"): - prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) - - with gr.Column(scale=1, elem_id="style_neg_col"): - prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) - - return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button - - def setup_progressbar(progressbar, preview, id_part, textinfo=None): if textinfo is None: textinfo = gr.HTML(visible=False) @@ -475,1454 +99,3 @@ def setup_progressbar(progressbar, preview, id_part, textinfo=None): inputs=[], outputs=[progressbar, preview, preview, textinfo], ) - - -def apply_setting(key, value): - if value is None: - return gr.update() - - if shared.cmd_opts.freeze_settings: - return gr.update() - - # dont allow model to be swapped when model hash exists in prompt - if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: - return gr.update() - - if key == "sd_model_checkpoint": - ckpt_info = sd_models.get_closet_checkpoint_match(value) - - if ckpt_info is not None: - value = ckpt_info.title - else: - return gr.update() - - comp_args = opts.data_labels[key].component_args - if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: - return - - valtype = type(opts.data_labels[key].default) - oldval = opts.data.get(key, None) - opts.data[key] = valtype(value) if valtype != type(None) else value - if oldval != value and opts.data_labels[key].onchange is not None: - opts.data_labels[key].onchange() - - opts.save(shared.config_filename) - return value - - -def update_generation_info(args): - generation_info, html_info, img_index = args - try: - generation_info = json.loads(generation_info) - if img_index < 0 or img_index >= len(generation_info["infotexts"]): - return html_info - return plaintext_to_html(generation_info["infotexts"][img_index]) - except Exception: - pass - # if the json parse or anything else fails, just return the old html_info - return html_info - - -def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): - def refresh(): - refresh_method() - args = refreshed_args() if callable(refreshed_args) else refreshed_args - - for k, v in args.items(): - setattr(refresh_component, k, v) - - return gr.update(**(args or {})) - - refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id) - refresh_button.click( - fn=refresh, - inputs=[], - outputs=[refresh_component] - ) - return refresh_button - - -def create_output_panel(tabname, outdir): - def open_folder(f): - if not os.path.exists(f): - print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.') - return - elif not os.path.isdir(f): - print(f""" -WARNING -An open_folder request was made with an argument that is not a folder. -This could be an error or a malicious attempt to run code on your computer. -Requested path was: {f} -""", file=sys.stderr) - return - - if not shared.cmd_opts.hide_ui_dir_config: - path = os.path.normpath(f) - if platform.system() == "Windows": - os.startfile(path) - elif platform.system() == "Darwin": - sp.Popen(["open", path]) - elif "microsoft-standard-WSL2" in platform.uname().release: - sp.Popen(["wsl-open", path]) - else: - sp.Popen(["xdg-open", path]) - - with gr.Column(variant='panel'): - with gr.Group(): - result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4) - - generation_info = None - with gr.Column(): - with gr.Row(elem_id=f"image_buttons_{tabname}"): - open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}') - - if tabname != "extras": - save = gr.Button('Save', elem_id=f'save_{tabname}') - save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}') - - buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"]) - - open_folder_button.click( - fn=lambda: open_folder(opts.outdir_samples or outdir), - inputs=[], - outputs=[], - ) - - if tabname != "extras": - with gr.Row(): - download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}') - - with gr.Group(): - html_info = gr.HTML(elem_id=f'html_info_{tabname}') - html_log = gr.HTML(elem_id=f'html_log_{tabname}') - - generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}') - if tabname == 'txt2img' or tabname == 'img2img': - generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button") - generation_info_button.click( - fn=update_generation_info, - _js="(x, y) => [x, y, selected_gallery_index()]", - inputs=[generation_info, html_info], - outputs=[html_info], - preprocess=False - ) - - save.click( - fn=wrap_gradio_call(save_files), - _js="(x, y, z, w) => [x, y, false, selected_gallery_index()]", - inputs=[ - generation_info, - result_gallery, - html_info, - html_info, - ], - outputs=[ - download_files, - html_log, - ] - ) - - save_zip.click( - fn=wrap_gradio_call(save_files), - _js="(x, y, z, w) => [x, y, true, selected_gallery_index()]", - inputs=[ - generation_info, - result_gallery, - html_info, - html_info, - ], - outputs=[ - download_files, - html_log, - ] - ) - - else: - html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}') - html_info = gr.HTML(elem_id=f'html_info_{tabname}') - html_log = gr.HTML(elem_id=f'html_log_{tabname}') - - parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None) - return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log - - -def create_sampler_and_steps_selection(choices, tabname): - if opts.samplers_in_dropdown: - with FormRow(elem_id=f"sampler_selection_{tabname}"): - sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") - steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) - else: - with FormGroup(elem_id=f"sampler_selection_{tabname}"): - steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) - sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") - - return steps, sampler_index - - -def ordered_ui_categories(): - user_order = {x.strip(): i for i, x in enumerate(shared.opts.ui_reorder.split(","))} - - for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] + 1000)): - yield category - - -def create_ui(): - import modules.img2img - import modules.txt2img - - reload_javascript() - - parameters_copypaste.reset() - - modules.scripts.scripts_current = modules.scripts.scripts_txt2img - modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False) - - with gr.Blocks(analytics_enabled=False) as txt2img_interface: - txt2img_prompt, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False) - - dummy_component = gr.Label(visible=False) - txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False) - - with gr.Row(elem_id='txt2img_progress_row'): - with gr.Column(scale=1): - pass - - with gr.Column(scale=1): - progressbar = gr.HTML(elem_id="txt2img_progressbar") - txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) - setup_progressbar(progressbar, txt2img_preview, 'txt2img') - - with gr.Row().style(equal_height=False): - with gr.Column(variant='panel', elem_id="txt2img_settings"): - for category in ordered_ui_categories(): - if category == "sampler": - steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img") - - elif category == "dimensions": - with FormRow(): - with gr.Column(elem_id="txt2img_column_size", scale=4): - width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") - height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") - - if opts.dimensions_and_batch_together: - with gr.Column(elem_id="txt2img_column_batch"): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") - - elif category == "cfg": - cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale") - - elif category == "seed": - seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img') - - elif category == "checkboxes": - with FormRow(elem_id="txt2img_checkboxes"): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") - tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") - enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") - hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) - - elif category == "hires_fix": - with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: - with FormRow(elem_id="txt2img_hires_fix_row1"): - hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) - hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") - - with FormRow(elem_id="txt2img_hires_fix_row2"): - hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") - hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") - hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") - - elif category == "batch": - if not opts.dimensions_and_batch_together: - with FormRow(elem_id="txt2img_column_batch"): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") - - elif category == "scripts": - with FormGroup(elem_id="txt2img_script_container"): - custom_inputs = modules.scripts.scripts_txt2img.setup_ui() - - hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] - for input in hr_resolution_preview_inputs: - input.change( - fn=calc_resolution_hires, - inputs=hr_resolution_preview_inputs, - outputs=[hr_final_resolution], - show_progress=False, - ) - input.change( - None, - _js="onCalcResolutionHires", - inputs=hr_resolution_preview_inputs, - outputs=[], - show_progress=False, - ) - - txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) - parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) - - connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) - connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) - - txt2img_args = dict( - fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']), - _js="submit", - inputs=[ - txt2img_prompt, - txt2img_negative_prompt, - txt2img_prompt_style, - txt2img_prompt_style2, - steps, - sampler_index, - restore_faces, - tiling, - batch_count, - batch_size, - cfg_scale, - seed, - subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, - height, - width, - enable_hr, - denoising_strength, - hr_scale, - hr_upscaler, - hr_second_pass_steps, - hr_resize_x, - hr_resize_y, - ] + custom_inputs, - - outputs=[ - txt2img_gallery, - generation_info, - html_info, - html_log, - ], - show_progress=False, - ) - - txt2img_prompt.submit(**txt2img_args) - submit.click(**txt2img_args) - - txt_prompt_img.change( - fn=modules.images.image_data, - inputs=[ - txt_prompt_img - ], - outputs=[ - txt2img_prompt, - txt_prompt_img - ] - ) - - enable_hr.change( - fn=lambda x: gr_show(x), - inputs=[enable_hr], - outputs=[hr_options], - show_progress = False, - ) - - txt2img_paste_fields = [ - (txt2img_prompt, "Prompt"), - (txt2img_negative_prompt, "Negative prompt"), - (steps, "Steps"), - (sampler_index, "Sampler"), - (restore_faces, "Face restoration"), - (cfg_scale, "CFG scale"), - (seed, "Seed"), - (width, "Size-1"), - (height, "Size-2"), - (batch_size, "Batch size"), - (subseed, "Variation seed"), - (subseed_strength, "Variation seed strength"), - (seed_resize_from_w, "Seed resize from-1"), - (seed_resize_from_h, "Seed resize from-2"), - (denoising_strength, "Denoising strength"), - (enable_hr, lambda d: "Denoising strength" in d), - (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), - (hr_scale, "Hires upscale"), - (hr_upscaler, "Hires upscaler"), - (hr_second_pass_steps, "Hires steps"), - (hr_resize_x, "Hires resize-1"), - (hr_resize_y, "Hires resize-2"), - *modules.scripts.scripts_txt2img.infotext_fields - ] - parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) - - txt2img_preview_params = [ - txt2img_prompt, - txt2img_negative_prompt, - steps, - sampler_index, - cfg_scale, - seed, - width, - height, - ] - - token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter]) - - modules.scripts.scripts_current = modules.scripts.scripts_img2img - modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True) - - with gr.Blocks(analytics_enabled=False) as img2img_interface: - img2img_prompt, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True) - - with gr.Row(elem_id='img2img_progress_row'): - img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False) - - with gr.Column(scale=1): - pass - - with gr.Column(scale=1): - progressbar = gr.HTML(elem_id="img2img_progressbar") - img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) - setup_progressbar(progressbar, img2img_preview, 'img2img') - - with FormRow().style(equal_height=False): - with gr.Column(variant='panel', elem_id="img2img_settings"): - - with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode: - with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"): - init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480) - - with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"): - init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480) - init_img_with_mask_orig = gr.State(None) - - use_color_sketch = cmd_opts.gradio_inpaint_tool == "color-sketch" - if use_color_sketch: - def update_orig(image, state): - if image is not None: - same_size = state is not None and state.size == image.size - has_exact_match = np.any(np.all(np.array(image) == np.array(state), axis=-1)) - edited = same_size and has_exact_match - return image if not edited or state is None else state - - init_img_with_mask.change(update_orig, [init_img_with_mask, init_img_with_mask_orig], init_img_with_mask_orig) - - init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base") - init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") - - with FormRow(): - mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur") - mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha") - - with FormRow(): - mask_mode = gr.Radio(label="Mask source", choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode") - inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode") - - with FormRow(): - inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill") - - with FormRow(): - with gr.Column(): - inpaint_full_res = gr.Radio(label="Inpaint area", choices=["Whole picture", "Only masked"], type="index", value="Whole picture", elem_id="img2img_inpaint_full_res") - - with gr.Column(scale=4): - inpaint_full_res_padding = gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding") - - with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"): - hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else '' - gr.HTML(f"

Process images in a directory on the same machine where the server is running.
Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}

") - img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") - img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") - - with FormRow(): - resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") - - for category in ordered_ui_categories(): - if category == "sampler": - steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img") - - elif category == "dimensions": - with FormRow(): - with gr.Column(elem_id="img2img_column_size", scale=4): - width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") - height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") - - if opts.dimensions_and_batch_together: - with gr.Column(elem_id="img2img_column_batch"): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") - - elif category == "cfg": - with FormGroup(): - cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") - - elif category == "seed": - seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') - - elif category == "checkboxes": - with FormRow(elem_id="img2img_checkboxes"): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") - tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") - - elif category == "batch": - if not opts.dimensions_and_batch_together: - with FormRow(elem_id="img2img_column_batch"): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") - - elif category == "scripts": - with FormGroup(elem_id="img2img_script_container"): - custom_inputs = modules.scripts.scripts_img2img.setup_ui() - - img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) - parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt) - - connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) - connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) - - img2img_prompt_img.change( - fn=modules.images.image_data, - inputs=[ - img2img_prompt_img - ], - outputs=[ - img2img_prompt, - img2img_prompt_img - ] - ) - - mask_mode.change( - lambda mode, img: { - init_img_with_mask: gr_show(mode == 0), - init_img_inpaint: gr_show(mode == 1), - init_mask_inpaint: gr_show(mode == 1), - }, - inputs=[mask_mode, init_img_with_mask], - outputs=[ - init_img_with_mask, - init_img_inpaint, - init_mask_inpaint, - ], - ) - - img2img_args = dict( - fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']), - _js="submit_img2img", - inputs=[ - dummy_component, - img2img_prompt, - img2img_negative_prompt, - img2img_prompt_style, - img2img_prompt_style2, - init_img, - init_img_with_mask, - init_img_with_mask_orig, - init_img_inpaint, - init_mask_inpaint, - mask_mode, - steps, - sampler_index, - mask_blur, - mask_alpha, - inpainting_fill, - restore_faces, - tiling, - batch_count, - batch_size, - cfg_scale, - denoising_strength, - seed, - subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, - height, - width, - resize_mode, - inpaint_full_res, - inpaint_full_res_padding, - inpainting_mask_invert, - img2img_batch_input_dir, - img2img_batch_output_dir, - ] + custom_inputs, - outputs=[ - img2img_gallery, - generation_info, - html_info, - html_log, - ], - show_progress=False, - ) - - img2img_prompt.submit(**img2img_args) - submit.click(**img2img_args) - - img2img_interrogate.click( - fn=interrogate, - inputs=[init_img], - outputs=[img2img_prompt], - ) - - img2img_deepbooru.click( - fn=interrogate_deepbooru, - inputs=[init_img], - outputs=[img2img_prompt], - ) - - prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)] - style_dropdowns = [(txt2img_prompt_style, txt2img_prompt_style2), (img2img_prompt_style, img2img_prompt_style2)] - style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"] - - for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts): - button.click( - fn=add_style, - _js="ask_for_style_name", - # Have to pass empty dummy component here, because the JavaScript and Python function have to accept - # the same number of parameters, but we only know the style-name after the JavaScript prompt - inputs=[dummy_component, prompt, negative_prompt], - outputs=[txt2img_prompt_style, img2img_prompt_style, txt2img_prompt_style2, img2img_prompt_style2], - ) - - for button, (prompt, negative_prompt), (style1, style2), js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs): - button.click( - fn=apply_styles, - _js=js_func, - inputs=[prompt, negative_prompt, style1, style2], - outputs=[prompt, negative_prompt, style1, style2], - ) - - token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) - - img2img_paste_fields = [ - (img2img_prompt, "Prompt"), - (img2img_negative_prompt, "Negative prompt"), - (steps, "Steps"), - (sampler_index, "Sampler"), - (restore_faces, "Face restoration"), - (cfg_scale, "CFG scale"), - (seed, "Seed"), - (width, "Size-1"), - (height, "Size-2"), - (batch_size, "Batch size"), - (subseed, "Variation seed"), - (subseed_strength, "Variation seed strength"), - (seed_resize_from_w, "Seed resize from-1"), - (seed_resize_from_h, "Seed resize from-2"), - (denoising_strength, "Denoising strength"), - (mask_blur, "Mask blur"), - *modules.scripts.scripts_img2img.infotext_fields - ] - parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields) - parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields) - - modules.scripts.scripts_current = None - - with gr.Blocks(analytics_enabled=False) as extras_interface: - with gr.Row().style(equal_height=False): - with gr.Column(variant='panel'): - with gr.Tabs(elem_id="mode_extras"): - with gr.TabItem('Single Image', elem_id="extras_single_tab"): - extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image") - - with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"): - image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch") - - with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"): - extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir") - extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir") - show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results") - - submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') - - with gr.Tabs(elem_id="extras_resize_mode"): - with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"): - upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize") - with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"): - with gr.Group(): - with gr.Row(): - upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w") - upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h") - upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop") - - with gr.Group(): - extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") - - with gr.Group(): - extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") - extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility") - - with gr.Group(): - gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility") - - with gr.Group(): - codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility") - codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight") - - with gr.Group(): - upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix") - - result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples) - - submit.click( - fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']), - _js="get_extras_tab_index", - inputs=[ - dummy_component, - dummy_component, - extras_image, - image_batch, - extras_batch_input_dir, - extras_batch_output_dir, - show_extras_results, - gfpgan_visibility, - codeformer_visibility, - codeformer_weight, - upscaling_resize, - upscaling_resize_w, - upscaling_resize_h, - upscaling_crop, - extras_upscaler_1, - extras_upscaler_2, - extras_upscaler_2_visibility, - upscale_before_face_fix, - ], - outputs=[ - result_images, - html_info_x, - html_info, - ] - ) - parameters_copypaste.add_paste_fields("extras", extras_image, None) - - extras_image.change( - fn=modules.extras.clear_cache, - inputs=[], outputs=[] - ) - - with gr.Blocks(analytics_enabled=False) as pnginfo_interface: - with gr.Row().style(equal_height=False): - with gr.Column(variant='panel'): - image = gr.Image(elem_id="pnginfo_image", label="Source", source="upload", interactive=True, type="pil") - - with gr.Column(variant='panel'): - html = gr.HTML() - generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info") - html2 = gr.HTML() - with gr.Row(): - buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) - parameters_copypaste.bind_buttons(buttons, image, generation_info) - - image.change( - fn=wrap_gradio_call(modules.extras.run_pnginfo), - inputs=[image], - outputs=[html, generation_info, html2], - ) - - with gr.Blocks(analytics_enabled=False) as modelmerger_interface: - with gr.Row().style(equal_height=False): - with gr.Column(variant='panel'): - gr.HTML(value="

A merger of the two checkpoints will be generated in your checkpoint directory.

") - - with gr.Row(): - primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)") - create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A") - - secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)") - create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B") - - tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)") - create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C") - - custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name") - interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount") - interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method") - - with gr.Row(): - checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format") - save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half") - - modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') - - with gr.Column(variant='panel'): - submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) - - with gr.Blocks(analytics_enabled=False) as train_interface: - with gr.Row().style(equal_height=False): - gr.HTML(value="

See wiki for detailed explanation.

") - - with gr.Row().style(equal_height=False): - with gr.Tabs(elem_id="train_tabs"): - - with gr.Tab(label="Create embedding"): - new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name") - initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text") - nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt") - overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding") - - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding") - - with gr.Tab(label="Create hypernetwork"): - new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name") - new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes") - new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure") - new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func") - new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") - new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") - new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") - new_hypernetwork_dropout_structure = gr.Textbox("0, 0, 0", label="Enter hypernetwork Dropout structure (or empty). Recommended : 0~0.35 incrementing sequence: 0, 0.05, 0.15", placeholder="1st and last digit must be 0 and values should be between 0 and 1. ex:'0, 0.01, 0'") - overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") - - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork") - - with gr.Tab(label="Preprocess images"): - process_src = gr.Textbox(label='Source directory', elem_id="train_process_src") - process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst") - process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width") - process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height") - preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action") - - with gr.Row(): - process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip") - process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split") - process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop") - process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption") - process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru") - - with gr.Row(visible=False) as process_split_extra_row: - process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold") - process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio") - - with gr.Row(visible=False) as process_focal_crop_row: - process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight") - process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") - process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") - process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") - - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - with gr.Row(): - interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing") - run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess") - - process_split.change( - fn=lambda show: gr_show(show), - inputs=[process_split], - outputs=[process_split_extra_row], - ) - - process_focal_crop.change( - fn=lambda show: gr_show(show), - inputs=[process_focal_crop], - outputs=[process_focal_crop_row], - ) - - def get_textual_inversion_template_names(): - return sorted([x for x in textual_inversion.textual_inversion_templates]) - - with gr.Tab(label="Train"): - gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") - with FormRow(): - train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) - create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) - create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") - - with FormRow(): - embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") - hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - - with FormRow(): - clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) - clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) - - with FormRow(): - batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") - gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") - - dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") - log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") - - with FormRow(): - template_file = gr.Dropdown(label='Prompt template', value="style_filewords.txt", elem_id="train_template_file", choices=get_textual_inversion_template_names()) - create_refresh_button(template_file, textual_inversion.list_textual_inversion_templates, lambda: {"choices": get_textual_inversion_template_names()}, "refrsh_train_template_file") - - training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") - training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") - varsize = gr.Checkbox(label="Do not resize images", value=False, elem_id="train_varsize") - steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") - - with FormRow(): - create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") - save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") - - save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") - preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") - - shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") - tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") - - latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") - - with gr.Row(): - train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") - interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") - train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") - - params = script_callbacks.UiTrainTabParams(txt2img_preview_params) - - script_callbacks.ui_train_tabs_callback(params) - - with gr.Column(): - progressbar = gr.HTML(elem_id="ti_progressbar") - ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) - - ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4) - ti_preview = gr.Image(elem_id='ti_preview', visible=False) - ti_progress = gr.HTML(elem_id="ti_progress", value="") - ti_outcome = gr.HTML(elem_id="ti_error", value="") - setup_progressbar(progressbar, ti_preview, 'ti', textinfo=ti_progress) - - create_embedding.click( - fn=modules.textual_inversion.ui.create_embedding, - inputs=[ - new_embedding_name, - initialization_text, - nvpt, - overwrite_old_embedding, - ], - outputs=[ - train_embedding_name, - ti_output, - ti_outcome, - ] - ) - - create_hypernetwork.click( - fn=modules.hypernetworks.ui.create_hypernetwork, - inputs=[ - new_hypernetwork_name, - new_hypernetwork_sizes, - overwrite_old_hypernetwork, - new_hypernetwork_layer_structure, - new_hypernetwork_activation_func, - new_hypernetwork_initialization_option, - new_hypernetwork_add_layer_norm, - new_hypernetwork_use_dropout, - new_hypernetwork_dropout_structure - ], - outputs=[ - train_hypernetwork_name, - ti_output, - ti_outcome, - ] - ) - - run_preprocess.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - process_src, - process_dst, - process_width, - process_height, - preprocess_txt_action, - process_flip, - process_split, - process_caption, - process_caption_deepbooru, - process_split_threshold, - process_overlap_ratio, - process_focal_crop, - process_focal_crop_face_weight, - process_focal_crop_entropy_weight, - process_focal_crop_edges_weight, - process_focal_crop_debug, - ], - outputs=[ - ti_output, - ti_outcome, - ], - ) - - train_embedding.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - train_embedding_name, - embedding_learn_rate, - batch_size, - gradient_step, - dataset_directory, - log_directory, - training_width, - training_height, - varsize, - steps, - clip_grad_mode, - clip_grad_value, - shuffle_tags, - tag_drop_out, - latent_sampling_method, - create_image_every, - save_embedding_every, - template_file, - save_image_with_stored_embedding, - preview_from_txt2img, - *txt2img_preview_params, - ], - outputs=[ - ti_output, - ti_outcome, - ] - ) - - train_hypernetwork.click( - fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - train_hypernetwork_name, - hypernetwork_learn_rate, - batch_size, - gradient_step, - dataset_directory, - log_directory, - training_width, - training_height, - varsize, - steps, - clip_grad_mode, - clip_grad_value, - shuffle_tags, - tag_drop_out, - latent_sampling_method, - create_image_every, - save_embedding_every, - template_file, - preview_from_txt2img, - *txt2img_preview_params, - ], - outputs=[ - ti_output, - ti_outcome, - ] - ) - - interrupt_training.click( - fn=lambda: shared.state.interrupt(), - inputs=[], - outputs=[], - ) - - interrupt_preprocessing.click( - fn=lambda: shared.state.interrupt(), - inputs=[], - outputs=[], - ) - - def create_setting_component(key, is_quicksettings=False): - def fun(): - return opts.data[key] if key in opts.data else opts.data_labels[key].default - - info = opts.data_labels[key] - t = type(info.default) - - args = info.component_args() if callable(info.component_args) else info.component_args - - if info.component is not None: - comp = info.component - elif t == str: - comp = gr.Textbox - elif t == int: - comp = gr.Number - elif t == bool: - comp = gr.Checkbox - else: - raise Exception(f'bad options item type: {str(t)} for key {key}') - - elem_id = "setting_"+key - - if info.refresh is not None: - if is_quicksettings: - res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) - create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) - else: - with FormRow(): - res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) - create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) - else: - res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) - - return res - - components = [] - component_dict = {} - - script_callbacks.ui_settings_callback() - opts.reorder() - - def run_settings(*args): - changed = [] - - for key, value, comp in zip(opts.data_labels.keys(), args, components): - assert comp == dummy_component or opts.same_type(value, opts.data_labels[key].default), f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}" - - for key, value, comp in zip(opts.data_labels.keys(), args, components): - if comp == dummy_component: - continue - - if opts.set(key, value): - changed.append(key) - - try: - opts.save(shared.config_filename) - except RuntimeError: - return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.' - return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.' - - def run_settings_single(value, key): - if not opts.same_type(value, opts.data_labels[key].default): - return gr.update(visible=True), opts.dumpjson() - - if not opts.set(key, value): - return gr.update(value=getattr(opts, key)), opts.dumpjson() - - opts.save(shared.config_filename) - - return gr.update(value=value), opts.dumpjson() - - with gr.Blocks(analytics_enabled=False) as settings_interface: - with gr.Row(): - with gr.Column(scale=6): - settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit") - with gr.Column(): - restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio") - - result = gr.HTML(elem_id="settings_result") - - quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")] - quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'} - - quicksettings_list = [] - - previous_section = None - current_tab = None - with gr.Tabs(elem_id="settings"): - for i, (k, item) in enumerate(opts.data_labels.items()): - section_must_be_skipped = item.section[0] is None - - if previous_section != item.section and not section_must_be_skipped: - elem_id, text = item.section - - if current_tab is not None: - current_tab.__exit__() - - current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text) - current_tab.__enter__() - - previous_section = item.section - - if k in quicksettings_names and not shared.cmd_opts.freeze_settings: - quicksettings_list.append((i, k, item)) - components.append(dummy_component) - elif section_must_be_skipped: - components.append(dummy_component) - else: - component = create_setting_component(k) - component_dict[k] = component - components.append(component) - - if current_tab is not None: - current_tab.__exit__() - - with gr.TabItem("Actions"): - request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications") - download_localization = gr.Button(value='Download localization template', elem_id="download_localization") - reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") - - if os.path.exists("html/licenses.html"): - with open("html/licenses.html", encoding="utf8") as file: - with gr.TabItem("Licenses"): - gr.HTML(file.read(), elem_id="licenses") - - gr.Button(value="Show all pages", elem_id="settings_show_all_pages") - - request_notifications.click( - fn=lambda: None, - inputs=[], - outputs=[], - _js='function(){}' - ) - - download_localization.click( - fn=lambda: None, - inputs=[], - outputs=[], - _js='download_localization' - ) - - def reload_scripts(): - modules.scripts.reload_script_body_only() - reload_javascript() # need to refresh the html page - - reload_script_bodies.click( - fn=reload_scripts, - inputs=[], - outputs=[] - ) - - def request_restart(): - shared.state.interrupt() - shared.state.need_restart = True - - restart_gradio.click( - fn=request_restart, - _js='restart_reload', - inputs=[], - outputs=[], - ) - - interfaces = [ - (txt2img_interface, "txt2img", "txt2img"), - (img2img_interface, "img2img", "img2img"), - (extras_interface, "Extras", "extras"), - (pnginfo_interface, "PNG Info", "pnginfo"), - (modelmerger_interface, "Checkpoint Merger", "modelmerger"), - (train_interface, "Train", "ti"), - ] - - css = "" - - for cssfile in modules.scripts.list_files_with_name("style.css"): - if not os.path.isfile(cssfile): - continue - - with open(cssfile, "r", encoding="utf8") as file: - css += file.read() + "\n" - - if os.path.exists(os.path.join(script_path, "user.css")): - with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: - css += file.read() + "\n" - - if not cmd_opts.no_progressbar_hiding: - css += css_hide_progressbar - - interfaces += script_callbacks.ui_tabs_callback() - interfaces += [(settings_interface, "Settings", "settings")] - - extensions_interface = ui_extensions.create_ui() - interfaces += [(extensions_interface, "Extensions", "extensions")] - - with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo: - with gr.Row(elem_id="quicksettings"): - for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): - component = create_setting_component(k, is_quicksettings=True) - component_dict[k] = component - - parameters_copypaste.integrate_settings_paste_fields(component_dict) - parameters_copypaste.run_bind() - - with gr.Tabs(elem_id="tabs") as tabs: - for interface, label, ifid in interfaces: - with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid): - interface.render() - - if os.path.exists(os.path.join(script_path, "notification.mp3")): - audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) - - if os.path.exists("html/footer.html"): - with open("html/footer.html", encoding="utf8") as file: - footer = file.read() - footer = footer.format(versions=versions_html()) - gr.HTML(footer, elem_id="footer") - - text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False) - settings_submit.click( - fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]), - inputs=components, - outputs=[text_settings, result], - ) - - for i, k, item in quicksettings_list: - component = component_dict[k] - - component.change( - fn=lambda value, k=k: run_settings_single(value, key=k), - inputs=[component], - outputs=[component, text_settings], - ) - - component_keys = [k for k in opts.data_labels.keys() if k in component_dict] - - def get_settings_values(): - return [getattr(opts, key) for key in component_keys] - - demo.load( - fn=get_settings_values, - inputs=[], - outputs=[component_dict[k] for k in component_keys], - ) - - def modelmerger(*args): - try: - results = modules.extras.run_modelmerger(*args) - except Exception as e: - print("Error loading/saving model file:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - modules.sd_models.list_models() # to remove the potentially missing models from the list - return [f"Error merging checkpoints: {e}"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)] - return results - - modelmerger_merge.click( - fn=modelmerger, - inputs=[ - primary_model_name, - secondary_model_name, - tertiary_model_name, - interp_method, - interp_amount, - save_as_half, - custom_name, - checkpoint_format, - ], - outputs=[ - submit_result, - primary_model_name, - secondary_model_name, - tertiary_model_name, - component_dict['sd_model_checkpoint'], - ] - ) - - ui_config_file = cmd_opts.ui_config_file - ui_settings = {} - settings_count = len(ui_settings) - error_loading = False - - try: - if os.path.exists(ui_config_file): - with open(ui_config_file, "r", encoding="utf8") as file: - ui_settings = json.load(file) - except Exception: - error_loading = True - print("Error loading settings:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - - def loadsave(path, x): - def apply_field(obj, field, condition=None, init_field=None): - key = path + "/" + field - - if getattr(obj, 'custom_script_source', None) is not None: - key = 'customscript/' + obj.custom_script_source + '/' + key - - if getattr(obj, 'do_not_save_to_config', False): - return - - saved_value = ui_settings.get(key, None) - if saved_value is None: - ui_settings[key] = getattr(obj, field) - elif condition and not condition(saved_value): - print(f'Warning: Bad ui setting value: {key}: {saved_value}; Default value "{getattr(obj, field)}" will be used instead.') - else: - setattr(obj, field, saved_value) - if init_field is not None: - init_field(saved_value) - - if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown] and x.visible: - apply_field(x, 'visible') - - if type(x) == gr.Slider: - apply_field(x, 'value') - apply_field(x, 'minimum') - apply_field(x, 'maximum') - apply_field(x, 'step') - - if type(x) == gr.Radio: - apply_field(x, 'value', lambda val: val in x.choices) - - if type(x) == gr.Checkbox: - apply_field(x, 'value') - - if type(x) == gr.Textbox: - apply_field(x, 'value') - - if type(x) == gr.Number: - apply_field(x, 'value') - - if type(x) == gr.Dropdown: - apply_field(x, 'value', lambda val: val in x.choices, getattr(x, 'init_field', None)) - - visit(txt2img_interface, loadsave, "txt2img") - visit(img2img_interface, loadsave, "img2img") - visit(extras_interface, loadsave, "extras") - visit(modelmerger_interface, loadsave, "modelmerger") - visit(train_interface, loadsave, "train") - - if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)): - with open(ui_config_file, "w", encoding="utf8") as file: - json.dump(ui_settings, file, indent=4) - - return demo - - -def reload_javascript(): - with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: - javascript = f'' - - scripts_list = modules.scripts.list_scripts("javascript", ".js") - - for basedir, filename, path in scripts_list: - with open(path, "r", encoding="utf8") as jsfile: - javascript += f"\n" - - if cmd_opts.theme is not None: - javascript += f"\n\n" - - javascript += f"\n" - - def template_response(*args, **kwargs): - res = shared.GradioTemplateResponseOriginal(*args, **kwargs) - res.body = res.body.replace( - b'', f'{javascript}'.encode("utf8")) - res.init_headers() - return res - - gradio.routes.templates.TemplateResponse = template_response - - -if not hasattr(shared, 'GradioTemplateResponseOriginal'): - shared.GradioTemplateResponseOriginal = gradio.routes.templates.TemplateResponse - - -def versions_html(): - import torch - import launch - - python_version = ".".join([str(x) for x in sys.version_info[0:3]]) - commit = launch.commit_hash() - short_commit = commit[0:8] - - if shared.xformers_available: - import xformers - xformers_version = xformers.__version__ - else: - xformers_version = "N/A" - - return f""" -python: {python_version} - •  -torch: {torch.__version__} - •  -xformers: {xformers_version} - •  -gradio: {gr.__version__} - •  -commit: {short_commit} -"""