CLIP interrogator

This commit is contained in:
AUTOMATIC 2022-09-11 18:48:36 +03:00
parent 13008bab90
commit f194457229
13 changed files with 204 additions and 13 deletions

1
.gitignore vendored
View file

@ -13,3 +13,4 @@ __pycache__
/embeddings
/styles.csv
/webui-user.bat
/interrogate

View file

@ -40,6 +40,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- Styles
- Variations
- Seed resizing
- CLIP interrogator
## Installing and running
@ -289,5 +290,6 @@ After that follow the instructions in the `Manual instructions` section starting
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)

View file

@ -1,12 +1,16 @@
import torch
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu")
def get_optimal_device():
if torch.cuda.is_available():
return torch.device("cuda")
if has_mps:
return torch.device("mps")
return torch.device("cpu")
if torch.cuda.is_available():
return torch.device("cuda")
if has_mps:
return torch.device("mps")
return cpu

142
modules/interrogate.py Normal file
View file

@ -0,0 +1,142 @@
import os
import sys
import traceback
from collections import namedtuple
import re
import torch
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
from modules import devices, paths
blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
class InterrogateModels:
blip_model = None
clip_model = None
clip_preprocess = None
categories = None
def __init__(self, content_dir):
self.categories = []
if os.path.exists(content_dir):
for filename in os.listdir(content_dir):
m = re_topn.search(filename)
topn = 1 if m is None else int(m.group(1))
with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
lines = [x.strip() for x in file.readlines()]
self.categories.append(Category(name=filename, topn=topn, items=lines))
def load_blip_model(self):
import models.blip
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval()
return blip_model
def load_clip_model(self):
import clip
model, preprocess = clip.load(clip_model_name)
model.eval()
model = model.to(shared.device)
return model, preprocess
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
self.blip_model = self.blip_model.to(shared.device)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
self.clip_model = self.clip_model.to(shared.device)
def unload(self):
if not shared.opts.interrogate_keep_models_in_memory:
if self.clip_model is not None:
self.clip_model = self.clip_model.to(devices.cpu)
if self.blip_model is not None:
self.blip_model = self.blip_model.to(devices.cpu)
def rank(self, image_features, text_array, top_count=1):
import clip
top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array]).cuda()
with torch.no_grad():
text_features = self.clip_model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(shared.device)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
def generate_caption(self, pil_image):
gpu_image = transforms.Compose([
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).to(shared.device)
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
return caption[0]
def interrogate(self, pil_image):
res = None
try:
self.load()
caption = self.generate_caption(pil_image)
res = caption
images = self.clip_preprocess(pil_image).unsqueeze(0).to(shared.device)
with torch.no_grad():
image_features = self.clip_model.encode_image(images).float()
image_features /= image_features.norm(dim=-1, keepdim=True)
if shared.opts.interrogate_use_builtin_artists:
artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]
res += ", " + artist[0]
for name, topn, items in self.categories:
matches = self.rank(image_features, items, top_count=topn)
for match, score in matches:
res += ", " + match
except Exception:
print(f"Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
self.unload()
return res

View file

@ -18,6 +18,7 @@ path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion'),
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers'),
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer'),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP'),
]
paths = {}

View file

@ -11,6 +11,7 @@ import modules.artists
from modules.paths import script_path, sd_path
from modules.devices import get_optimal_device
import modules.styles
import modules.interrogate
config_filename = "config.json"
@ -77,6 +78,8 @@ artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.c
styles_filename = os.path.join(script_path, 'styles.csv')
prompt_styles = modules.styles.load_styles(styles_filename)
interrogator = modules.interrogate.InterrogateModels("interrogate")
face_restorers = []
class Options:
@ -123,6 +126,11 @@ class Options:
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."),
"face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"interrogate_keep_models_in_memory": OptionInfo(True, "Interrogate: keep models in VRAM"),
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum descripton length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum descripton length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
}
def __init__(self):

View file

@ -242,9 +242,14 @@ def add_style(style_name, text):
return [update, update]
def interrogate(image):
prompt = shared.interrogator.interrogate(image)
return gr_show(True) if prompt is None else prompt
def create_ui(txt2img, img2img, run_extras, run_pnginfo):
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
with gr.Row():
with gr.Row(elem_id="toprow"):
txt2img_prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1)
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="txt2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1)
txt2img_prompt_style = gr.Dropdown(label="Style", show_label=False, elem_id="style_index", choices=[k for k, v in shared.prompt_styles.items()], value=next(iter(shared.prompt_styles.keys())), visible=len(shared.prompt_styles) > 1)
@ -365,10 +370,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
with gr.Row():
with gr.Row(elem_id="toprow"):
img2img_prompt = gr.Textbox(label="Prompt", elem_id="img2img_prompt", show_label=False, placeholder="Prompt", lines=1)
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="img2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1)
img2img_prompt_style = gr.Dropdown(label="Style", show_label=False, elem_id="style_index", choices=[k for k, v in shared.prompt_styles.items()], value=next(iter(shared.prompt_styles.keys())), visible=len(shared.prompt_styles) > 1)
img2img_interrogate = gr.Button('Interrogate', elem_id="img2img_interrogate", variant='primary')
submit = gr.Button('Generate', elem_id="img2img_generate", variant='primary')
check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False)
@ -461,6 +467,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
inpaint_full_res: gr_show(is_inpaint),
inpainting_mask_invert: gr_show(is_inpaint),
denoising_strength_change_factor: gr_show(is_loopback),
img2img_interrogate: gr_show(not is_inpaint),
}
switch_mode.change(
@ -480,6 +487,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
inpaint_full_res,
inpainting_mask_invert,
denoising_strength_change_factor,
img2img_interrogate,
]
)
@ -540,6 +548,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
img2img_prompt.submit(**img2img_args)
submit.click(**img2img_args)
img2img_interrogate.click(
fn=interrogate,
inputs=[init_img],
outputs=[img2img_prompt],
)
check_progress.click(
fn=check_progress_call,
show_progress=False,

View file

@ -15,3 +15,5 @@ fonts
font-roboto
git+https://github.com/crowsonkb/k-diffusion.git
git+https://github.com/TencentARC/GFPGAN.git
timm==0.4.12
fairscale==0.4.4

View file

@ -11,3 +11,5 @@ pytorch_lightning==1.7.2
scikit-image==0.19.2
fonts
font-roboto
timm==0.4.12
fairscale==0.4.4

View file

@ -51,6 +51,8 @@ titles = {
"Variation strength": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).",
"Resize seed from height": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution",
"Resize seed from width": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution",
"Interrogate": "Reconstruct frompt from existing image and put it into the prompt field.",
}
function gradioApp(){

View file

@ -5,6 +5,10 @@
max-width: 13em;
}
#img2img_interrogate{
max-width: 10em;
}
#subseed_show{
min-width: 6em;
max-width: 6em;
@ -26,7 +30,7 @@
padding-right: 0;
}
#component-1 div{
#toprow div{
border: none;
gap: 0;
}

View file

@ -85,7 +85,7 @@ if %ERRORLEVEL% == 0 goto :install_reqs
goto :show_stdout_stderr
:install_reqs
%PYTHON% -c "import omegaconf; import fonts" >tmp/stdout.txt 2>tmp/stderr.txt
%PYTHON% -c "import omegaconf; import fonts; import timm" >tmp/stdout.txt 2>tmp/stderr.txt
if %ERRORLEVEL% == 0 goto :make_dirs
echo Installing requirements...
%PYTHON% -m pip install -r %REQS_FILE% --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt
@ -117,12 +117,19 @@ goto :show_stdout_stderr
:install_codeformer_reqs
%PYTHON% -c "import lpips" >tmp/stdout.txt 2>tmp/stderr.txt
if %ERRORLEVEL% == 0 goto :check_model
if %ERRORLEVEL% == 0 goto :clone_blip
echo Installing requirements for CodeFormer...
%PYTHON% -m pip install -r repositories\CodeFormer\requirements.txt --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt
if %ERRORLEVEL% == 0 goto :check_model
if %ERRORLEVEL% == 0 goto :clone_blip
goto :show_stdout_stderr
:clone_blip
if exist repositories\BLIP goto :check_model
echo Cloning BLIP repository...
%GIT% clone https://github.com/salesforce/BLIP.git repositories\BLIP >tmp/stdout.txt 2>tmp/stderr.txt
if %ERRORLEVEL% NEQ 0 goto :show_stdout_stderr
%GIT% -C repositories/BLIP checkout 48211a1594f1321b00f14c9f7a5b4813144b2fb9 >tmp/stdout.txt 2>tmp/stderr.txt
if %ERRORLEVEL% NEQ 0 goto :show_stdout_stderr
:check_model
dir model.ckpt >tmp/stdout.txt 2>tmp/stderr.txt

View file

@ -20,7 +20,7 @@ import modules.gfpgan_model
import modules.face_restoration
import modules.realesrgan_model as realesrgan
import modules.esrgan_model as esrgan
import modules.extras
import modules.extras
import modules.lowvram
import modules.txt2img
import modules.img2img
@ -33,6 +33,7 @@ shared.face_restorers.append(modules.face_restoration.FaceRestoration())
esrgan.load_models(cmd_opts.esrgan_models_path)
realesrgan.setup_realesrgan()
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
@ -116,5 +117,6 @@ def webui():
demo.launch(share=cmd_opts.share, server_name="0.0.0.0" if cmd_opts.listen else None, server_port=cmd_opts.port)
if __name__ == "__main__":
webui()