From f674c488d9701e577e2aaf25e331fb44ada4f1ef Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 4 Nov 2022 10:45:34 +0300 Subject: [PATCH] bugfix: save image for hires fix BEFORE upscaling latent space --- modules/processing.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index a46e592d..7a2fc218 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -665,17 +665,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") if opts.use_scale_latent_for_hires_fix: + for i in range(samples.shape[0]): + save_intermediate(samples, i) + samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") - + # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0: image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples) else: image_conditioning = self.txt2img_image_conditioning(samples) - - for i in range(samples.shape[0]): - save_intermediate(samples, i) else: decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)