diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 9b5f2e79..3aebefa8 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm from einops import rearrange, repeat from ldm.util import default -from modules import devices, processing, sd_models, shared, sd_samplers +from modules import devices, processing, sd_models, shared, sd_samplers, hashes from modules.textual_inversion import textual_inversion, logging from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum @@ -225,7 +225,7 @@ class Hypernetwork: torch.save(state_dict, filename) if shared.opts.save_optimizer_state and self.optimizer_state_dict: - optimizer_saved_dict['hash'] = sd_models.model_hash(filename) + optimizer_saved_dict['hash'] = self.shorthash() optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict torch.save(optimizer_saved_dict, filename + '.optim') @@ -237,32 +237,33 @@ class Hypernetwork: state_dict = torch.load(filename, map_location='cpu') self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) - print(self.layer_structure) - optional_info = state_dict.get('optional_info', None) - if optional_info is not None: - print(f"INFO:\n {optional_info}\n") - self.optional_info = optional_info + self.optional_info = state_dict.get('optional_info', None) self.activation_func = state_dict.get('activation_func', None) - print(f"Activation function is {self.activation_func}") self.weight_init = state_dict.get('weight_initialization', 'Normal') - print(f"Weight initialization is {self.weight_init}") self.add_layer_norm = state_dict.get('is_layer_norm', False) - print(f"Layer norm is set to {self.add_layer_norm}") self.dropout_structure = state_dict.get('dropout_structure', None) self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) - print(f"Dropout usage is set to {self.use_dropout}" ) self.activate_output = state_dict.get('activate_output', True) - print(f"Activate last layer is set to {self.activate_output}") self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. if self.dropout_structure is None: - print("Using previous dropout structure") self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) - print(f"Dropout structure is set to {self.dropout_structure}") - optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {} + if shared.opts.print_hypernet_extra: + if self.optional_info is not None: + print(f" INFO:\n {self.optional_info}\n") - if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None): + print(f" Layer structure: {self.layer_structure}") + print(f" Activation function: {self.activation_func}") + print(f" Weight initialization: {self.weight_init}") + print(f" Layer norm: {self.add_layer_norm}") + print(f" Dropout usage: {self.use_dropout}" ) + print(f" Activate last layer: {self.activate_output}") + print(f" Dropout structure: {self.dropout_structure}") + + optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} + + if self.shorthash() == optimizer_saved_dict.get('hash', None): self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) else: self.optimizer_state_dict = None @@ -289,6 +290,11 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.eval() + def shorthash(self): + sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') + + return sha256[0:10] + def list_hypernetworks(path): res = {} @@ -296,7 +302,7 @@ def list_hypernetworks(path): name = os.path.splitext(os.path.basename(filename))[0] # Prevent a hypothetical "None.pt" from being listed. if name != "None": - res[name + f"({sd_models.model_hash(filename)})"] = filename + res[name] = filename return res diff --git a/modules/processing.py b/modules/processing.py index ae04cab7..849f6b19 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -437,7 +437,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name), - "Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)), + "Hypernet hash": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.shorthash()), "Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), diff --git a/modules/sd_models.py b/modules/sd_models.py index 7babb9ae..8f00191c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -125,7 +125,7 @@ def list_models(): def get_closet_checkpoint_match(search_string): checkpoint_info = checkpoint_alisases.get(search_string, None) if checkpoint_info is not None: - return + return checkpoint_info found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) if found: diff --git a/modules/shared.py b/modules/shared.py index d74c069d..a6c61db3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -361,6 +361,7 @@ options_templates.update(options_section(('system', "System"), { "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), + "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), })) options_templates.update(options_section(('training', "Training"), {