import os import numpy as np import PIL import torch from PIL import Image from torch.utils.data import Dataset from torchvision import transforms import random import tqdm from modules import devices, shared import re re_numbers_at_start = re.compile(r"^[-\d]+\s*") class DatasetEntry: def __init__(self, filename=None, latent=None, filename_text=None): self.filename = filename self.latent = latent self.filename_text = filename_text self.cond = None self.cond_text = None class PersonalizedBase(Dataset): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token self.batch_size = batch_size self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] with open(template_file, "r") as file: lines = [x.strip() for x in file.readlines()] self.lines = lines assert data_root, 'dataset directory not specified' assert os.path.isdir(data_root), "Dataset directory doesn't exist" assert os.listdir(data_root), "Dataset directory is empty" cond_model = shared.sd_model.cond_stage_model self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): try: image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC) except Exception: continue text_filename = os.path.splitext(path)[0] + ".txt" filename = os.path.basename(path) if os.path.exists(text_filename): with open(text_filename, "r", encoding="utf8") as file: filename_text = file.read() else: filename_text = os.path.splitext(filename)[0] filename_text = re.sub(re_numbers_at_start, '', filename_text) if re_word: tokens = re_word.findall(filename_text) filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens) npimage = np.array(image).astype(np.uint8) npimage = (npimage / 127.5 - 1.0).astype(np.float32) torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32) torchdata = torch.moveaxis(torchdata, 2, 0) init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = init_latent.to(devices.cpu) entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent) if include_cond: entry.cond_text = self.create_text(filename_text) entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0) self.dataset.append(entry) assert len(self.dataset) > 0, "No images have been found in the dataset." self.length = len(self.dataset) * repeats // batch_size self.dataset_length = len(self.dataset) self.indexes = None self.shuffle() def shuffle(self): self.indexes = np.random.permutation(self.dataset_length) def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) if shared.opts.shuffle_tags: tags = filename_text.split(',') random.shuffle(tags) text = text.replace("[filewords]", ','.join(tags)) else: text = text.replace("[filewords]", filename_text) return text def __len__(self): return self.length def __getitem__(self, i): res = [] for j in range(self.batch_size): position = i * self.batch_size + j if position % len(self.indexes) == 0: self.shuffle() index = self.indexes[position % len(self.indexes)] entry = self.dataset[index] if entry.cond is None: entry.cond_text = self.create_text(entry.filename_text) res.append(entry) return res