stable-diffusion-webui/modules/images.py

679 lines
26 KiB
Python

import datetime
import sys
import traceback
import pytz
import io
import math
import os
from collections import namedtuple
import re
import numpy as np
import piexif
import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto
import string
import json
import hashlib
from modules import sd_samplers, shared, script_callbacks, errors
from modules.shared import opts, cmd_opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
def image_grid(imgs, batch_size=1, rows=None):
if rows is None:
if opts.n_rows > 0:
rows = opts.n_rows
elif opts.n_rows == 0:
rows = batch_size
elif opts.grid_prevent_empty_spots:
rows = math.floor(math.sqrt(len(imgs)))
while len(imgs) % rows != 0:
rows -= 1
else:
rows = math.sqrt(len(imgs))
rows = round(rows)
if rows > len(imgs):
rows = len(imgs)
cols = math.ceil(len(imgs) / rows)
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
script_callbacks.image_grid_callback(params)
w, h = imgs[0].size
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
for i, img in enumerate(params.imgs):
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
return grid
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = math.ceil((w - overlap) / non_overlap_width)
rows = math.ceil((h - overlap) / non_overlap_height)
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images = []
y = int(row * dy)
if y + tile_h >= h:
y = h - tile_h
for col in range(cols):
x = int(col * dx)
if x + tile_w >= w:
x = w - tile_w
tile = image.crop((x, y, x + tile_w, y + tile_h))
row_images.append([x, tile_w, tile])
grid.tiles.append([y, tile_h, row_images])
return grid
def combine_grid(grid):
def make_mask_image(r):
r = r * 255 / grid.overlap
r = r.astype(np.uint8)
return Image.fromarray(r, 'L')
mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0))
mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1))
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h)
combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap))
return combined_image
class GridAnnotation:
def __init__(self, text='', is_active=True):
self.text = text
self.is_active = is_active
self.size = None
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
def wrap(drawing, text, font, line_length):
lines = ['']
for word in text.split():
line = f'{lines[-1]} {word}'.strip()
if drawing.textlength(line, font=font) <= line_length:
lines[-1] = line
else:
lines.append(word)
return lines
def get_font(fontsize):
try:
return ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
return ImageFont.truetype(Roboto, fontsize)
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
for i, line in enumerate(lines):
fnt = initial_fnt
fontsize = initial_fontsize
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
fontsize -= 1
fnt = get_font(fontsize)
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
if not line.is_active:
drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2, draw_y + line.size[1] // 2), fill=color_inactive, width=4)
draw_y += line.size[1] + line_spacing
fontsize = (width + height) // 25
line_spacing = fontsize // 2
fnt = get_font(fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4
cols = im.width // width
rows = im.height // height
assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}'
assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}'
calc_img = Image.new("RGB", (1, 1), "white")
calc_d = ImageDraw.Draw(calc_img)
for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)):
items = [] + texts
texts.clear()
for line in items:
wrapped = wrap(calc_d, line.text, fnt, allowed_width)
texts += [GridAnnotation(x, line.is_active) for x in wrapped]
for line in texts:
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
line.allowed_width = allowed_width
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts]
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white")
for row in range(rows):
for col in range(cols):
cell = im.crop((width * col, height * row, width * (col+1), height * (row+1)))
result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row))
d = ImageDraw.Draw(result)
for col in range(cols):
x = pad_left + (width + margin) * col + width / 2
y = pad_top / 2 - hor_text_heights[col] / 2
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
for row in range(rows):
x = pad_left / 2
y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
return result
def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
prompts = all_prompts[1:]
boundary = math.ceil(len(prompts) / 2)
prompts_horiz = prompts[:boundary]
prompts_vert = prompts[boundary:]
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))]
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))]
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin)
def resize_image(resize_mode, im, width, height, upscaler_name=None):
"""
Resizes an image with the specified resize_mode, width, and height.
Args:
resize_mode: The mode to use when resizing the image.
0: Resize the image to the specified width and height.
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
im: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
"""
upscaler_name = upscaler_name or opts.upscaler_for_img2img
def resize(im, w, h):
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
return im.resize((w, h), resample=LANCZOS)
scale = max(w / im.width, h / im.height)
if scale > 1.0:
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
if len(upscalers) == 0:
upscaler = shared.sd_upscalers[0]
print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback")
else:
upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
if im.width != w or im.height != h:
im = im.resize((w, h), resample=LANCZOS)
return im
if resize_mode == 0:
res = resize(im, width, height)
elif resize_mode == 1:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio > src_ratio else im.width * height // im.height
src_h = height if ratio <= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio < src_ratio else im.width * height // im.height
src_h = height if ratio >= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
return res
invalid_filename_chars = '<>:"/\\|?*\n'
invalid_filename_prefix = ' '
invalid_filename_postfix = ' .'
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128
def sanitize_filename_part(text, replace_spaces=True):
if text is None:
return None
if replace_spaces:
text = text.replace(' ', '_')
text = text.translate({ord(x): '_' for x in invalid_filename_chars})
text = text.lstrip(invalid_filename_prefix)[:max_filename_part_length]
text = text.rstrip(invalid_filename_postfix)
return text
class FilenameGenerator:
replacements = {
'seed': lambda self: self.seed if self.seed is not None else '',
'steps': lambda self: self.p and self.p.steps,
'cfg': lambda self: self.p and self.p.cfg_scale,
'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
'prompt_hash': lambda self: hashlib.sha256(self.prompt.encode()).hexdigest()[0:8],
'prompt': lambda self: sanitize_filename_part(self.prompt),
'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(),
}
default_time_format = '%Y%m%d%H%M%S'
def __init__(self, p, seed, prompt, image):
self.p = p
self.seed = seed
self.prompt = prompt
self.image = image
def prompt_no_style(self):
if self.p is None or self.prompt is None:
return None
prompt_no_style = self.prompt
for style in shared.prompt_styles.get_style_prompts(self.p.styles):
if len(style) > 0:
for part in style.split("{prompt}"):
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
return sanitize_filename_part(prompt_no_style, replace_spaces=False)
def prompt_words(self):
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
if len(words) == 0:
words = ["empty"]
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
def datetime(self, *args):
time_datetime = datetime.datetime.now()
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
try:
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
except pytz.exceptions.UnknownTimeZoneError as _:
time_zone = None
time_zone_time = time_datetime.astimezone(time_zone)
try:
formatted_time = time_zone_time.strftime(time_format)
except (ValueError, TypeError) as _:
formatted_time = time_zone_time.strftime(self.default_time_format)
return sanitize_filename_part(formatted_time, replace_spaces=False)
def apply(self, x):
res = ''
for m in re_pattern.finditer(x):
text, pattern = m.groups()
res += text
if pattern is None:
continue
pattern_args = []
while True:
m = re_pattern_arg.match(pattern)
if m is None:
break
pattern, arg = m.groups()
pattern_args.insert(0, arg)
fun = self.replacements.get(pattern.lower())
if fun is not None:
try:
replacement = fun(self, *pattern_args)
except Exception:
replacement = None
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if replacement is not None:
res += str(replacement)
continue
res += f'[{pattern}]'
return res
def get_next_sequence_number(path, basename):
"""
Determines and returns the next sequence number to use when saving an image in the specified directory.
The sequence starts at 0.
"""
result = -1
if basename != '':
basename = basename + "-"
prefix_length = len(basename)
for p in os.listdir(path):
if p.startswith(basename):
l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
try:
result = max(int(l[0]), result)
except ValueError:
pass
return result + 1
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
"""Save an image.
Args:
image (`PIL.Image`):
The image to be saved.
path (`str`):
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
basename (`str`):
The base filename which will be applied to `filename pattern`.
seed, prompt, short_filename,
extension (`str`):
Image file extension, default is `png`.
pngsectionname (`str`):
Specify the name of the section which `info` will be saved in.
info (`str` or `PngImagePlugin.iTXt`):
PNG info chunks.
existing_info (`dict`):
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
no_prompt:
TODO I don't know its meaning.
p (`StableDiffusionProcessing`)
forced_filename (`str`):
If specified, `basename` and filename pattern will be ignored.
save_to_dirs (bool):
If true, the image will be saved into a subdirectory of `path`.
Returns: (fullfn, txt_fullfn)
fullfn (`str`):
The full path of the saved imaged.
txt_fullfn (`str` or None):
If a text file is saved for this image, this will be its full path. Otherwise None.
"""
namegen = FilenameGenerator(p, seed, prompt, image)
if save_to_dirs is None:
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
if save_to_dirs:
dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
path = os.path.join(path, dirname)
os.makedirs(path, exist_ok=True)
if forced_filename is None:
if short_filename or seed is None:
file_decoration = ""
elif opts.save_to_dirs:
file_decoration = opts.samples_filename_pattern or "[seed]"
else:
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
add_number = opts.save_images_add_number or file_decoration == ''
if file_decoration != "" and add_number:
file_decoration = "-" + file_decoration
file_decoration = namegen.apply(file_decoration) + suffix
if add_number:
basecount = get_next_sequence_number(path, basename)
fullfn = None
for i in range(500):
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
if not os.path.exists(fullfn):
break
else:
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
else:
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
pnginfo = existing_info or {}
if info is not None:
pnginfo[pnginfo_section_name] = info
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
script_callbacks.before_image_saved_callback(params)
image = params.image
fullfn = params.filename
info = params.pnginfo.get(pnginfo_section_name, None)
def _atomically_save_image(image_to_save, filename_without_extension, extension):
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
temp_file_path = filename_without_extension + ".tmp"
image_format = Image.registered_extensions()[extension]
if extension.lower() == '.png':
pnginfo_data = PngImagePlugin.PngInfo()
if opts.enable_pnginfo:
for k, v in params.pnginfo.items():
pnginfo_data.add_text(k, str(v))
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
if image_to_save.mode == 'RGBA':
image_to_save = image_to_save.convert("RGB")
elif image_to_save.mode == 'I;16':
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
if opts.enable_pnginfo and info is not None:
exif_bytes = piexif.dump({
"Exif": {
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
},
})
piexif.insert(exif_bytes, temp_file_path)
else:
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
# atomically rename the file with correct extension
os.replace(temp_file_path, filename_without_extension + extension)
fullfn_without_extension, extension = os.path.splitext(params.filename)
if hasattr(os, 'statvfs'):
max_name_len = os.statvfs(path).f_namemax
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
params.filename = fullfn_without_extension + extension
fullfn = params.filename
_atomically_save_image(image, fullfn_without_extension, extension)
image.already_saved_as = fullfn
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
ratio = image.width / image.height
if oversize and ratio > 1:
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS)
elif oversize:
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS)
try:
_atomically_save_image(image, fullfn_without_extension, ".jpg")
except Exception as e:
errors.display(e, "saving image as downscaled JPG")
if opts.save_txt and info is not None:
txt_fullfn = f"{fullfn_without_extension}.txt"
with open(txt_fullfn, "w", encoding="utf8") as file:
file.write(info + "\n")
else:
txt_fullfn = None
script_callbacks.image_saved_callback(params)
return fullfn, txt_fullfn
def read_info_from_image(image):
items = image.info or {}
geninfo = items.pop('parameters', None)
if "exif" in items:
exif = piexif.load(items["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode('utf8', errors="ignore")
if exif_comment:
items['exif comment'] = exif_comment
geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
if items.get("Software", None) == "NovelAI":
try:
json_info = json.loads(items["Comment"])
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
geninfo = f"""{items["Description"]}
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return geninfo, items
def image_data(data):
import gradio as gr
try:
image = Image.open(io.BytesIO(data))
textinfo, _ = read_info_from_image(image)
return textinfo, None
except Exception:
pass
try:
text = data.decode('utf8')
assert len(text) < 10000
return text, None
except Exception:
pass
return gr.update(), None
def flatten(img, bgcolor):
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
if img.mode == "RGBA":
background = Image.new('RGBA', img.size, bgcolor)
background.paste(img, mask=img)
img = background
return img.convert('RGB')