stable-diffusion-webui/scripts/create_inspiration_images.py
2022-10-22 01:30:12 +08:00

57 lines
2.5 KiB
Python

import csv, os, shutil
import modules.scripts as scripts
from modules import processing, shared, sd_samplers, images
from modules.processing import Processed
from modules.shared import opts
import gradio
class Script(scripts.Script):
def title(self):
return "Create inspiration images"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
file = gradio.Files(label="Artist or styles name list. '.txt' files with one name per line",)
with gradio.Row():
prefix = gradio.Textbox("a painting in", label="Prompt words before artist or style name", file_count="multiple")
suffix= gradio.Textbox("style", label="Prompt words after artist or style name")
negative_prompt = gradio.Textbox("picture frame, portrait photo", label="Negative Prompt")
with gradio.Row():
batch_size = gradio.Number(1, label="Batch size")
batch_count = gradio.Number(2, label="Batch count")
return [batch_size, batch_count, prefix, suffix, negative_prompt, file]
def run(self, p, batch_size, batch_count, prefix, suffix, negative_prompt, files):
p.batch_size = int(batch_size)
p.n_iterint = int(batch_count)
p.negative_prompt = negative_prompt
p.do_not_save_samples = True
p.do_not_save_grid = True
for file in files:
tp = file.orig_name.split(".")[0]
print(tp)
path = os.path.join(opts.inspiration_dir, tp)
if not os.path.exists(path):
os.makedirs(path)
f = open(file.name, "r")
line = f.readline()
while len(line) > 0:
name = line.rstrip("\n").split(",")[0]
line = f.readline()
artist_path = os.path.join(path, name)
if not os.path.exists(artist_path):
os.mkdir(artist_path)
if len(os.listdir(artist_path)) >= opts.inspiration_max_samples:
continue
p.prompt = f"{prefix} {name} {suffix}"
print(p.prompt)
processed = processing.process_images(p)
for img in processed.images:
i = 0
filename = os.path.join(artist_path, format(0, "03d") + ".jpg")
while os.path.exists(filename):
i += 1
filename = os.path.join(artist_path, format(i, "03d") + ".jpg")
img.save(filename, quality=80)
return processed