stable-diffusion-webui/scripts/batch.py
2022-09-17 18:18:30 -04:00

60 lines
1.9 KiB
Python

import math
import os
import sys
import traceback
import modules.scripts as scripts
import gradio as gr
from modules.processing import Processed, process_images
from PIL import Image
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def title(self):
return "Batch processing"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
input_dir = gr.Textbox(label="Input directory", lines=1)
output_dir = gr.Textbox(label="Output directory", lines=1)
return [input_dir, output_dir]
def run(self, p, input_dir, output_dir):
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
batch_count = math.ceil(len(images) / p.batch_size)
print(f"Will process {len(images)} images in {batch_count} batches.")
p.batch_count = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
state.job_count = batch_count
for batch_no in range(batch_count):
batch_images = []
for path in images[batch_no*p.batch_size:(batch_no+1)*p.batch_size]:
try:
img = Image.open(path)
batch_images.append((img, path))
except:
print(f"Error processing {path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if len(batch_images) == 0:
continue
state.job = f"{batch_no} out of {batch_count}: {batch_images[0][1]}"
p.init_images = [x[0] for x in batch_images]
proc = process_images(p)
for image, (_, path) in zip(proc.images, batch_images):
filename = os.path.basename(path)
image.save(os.path.join(output_dir, filename))
return Processed(p, [], p.seed, "")