stable-diffusion-webui/extensions-builtin/Lora/lora.py
2023-01-21 18:52:45 +03:00

200 lines
6.1 KiB
Python

import glob
import os
import re
import torch
from modules import shared, devices, sd_models
re_digits = re.compile(r"\d+")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key):
def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
class LoraOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
class LoraModule:
def __init__(self, name):
self.name = name
self.multiplier = 1.0
self.modules = {}
self.mtime = None
class LoraUpDownModule:
def __init__(self):
self.up = None
self.down = None
def assign_lora_names_to_compvis_modules(sd_model):
lora_layer_mapping = {}
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
for name, module in shared.sd_model.model.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
sd_model.lora_layer_mapping = lora_layer_mapping
def load_lora(name, filename):
lora = LoraModule(name)
lora.mtime = os.path.getmtime(filename)
sd = sd_models.read_state_dict(filename)
keys_failed_to_match = []
for key_diffusers, weight in sd.items():
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
key, lora_key = fullkey.split(".", 1)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match.append(key_diffusers)
continue
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.device, dtype=devices.dtype)
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "lora_up.weight":
lora_module.up = module
elif lora_key == "lora_down.weight":
lora_module.down = module
else:
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight or lora_down.weight'
if len(keys_failed_to_match) > 0:
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
return lora
def load_loras(names, multipliers=None):
already_loaded = {}
for lora in loaded_loras:
if lora.name in names:
already_loaded[lora.name] = lora
loaded_loras.clear()
loras_on_disk = [available_loras.get(name, None) for name in names]
if any([x is None for x in loras_on_disk]):
list_available_loras()
loras_on_disk = [available_loras.get(name, None) for name in names]
for i, name in enumerate(names):
lora = already_loaded.get(name, None)
lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
lora = load_lora(name, lora_on_disk.filename)
if lora is None:
print(f"Couldn't find Lora with name {name}")
continue
lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora)
def lora_forward(module, input, res):
if len(loaded_loras) == 0:
return res
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None:
res = res + module.up(module.down(input)) * lora.multiplier
return res
def lora_Linear_forward(self, input):
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
def lora_Conv2d_forward(self, input):
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
def list_available_loras():
available_loras.clear()
os.makedirs(lora_dir, exist_ok=True)
candidates = \
glob.glob(os.path.join(lora_dir, '**/*.pt'), recursive=True) + \
glob.glob(os.path.join(lora_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(lora_dir, '**/*.ckpt'), recursive=True)
for filename in sorted(candidates):
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
available_loras[name] = LoraOnDisk(name, filename)
lora_dir = os.path.join(shared.models_path, "Lora")
available_loras = {}
loaded_loras = []
list_available_loras()