ee015a1af6
remake train interface to use tabs
316 lines
10 KiB
Python
316 lines
10 KiB
Python
import datetime
|
|
import glob
|
|
import html
|
|
import os
|
|
import sys
|
|
import traceback
|
|
import tqdm
|
|
|
|
import torch
|
|
|
|
from ldm.util import default
|
|
from modules import devices, shared, processing, sd_models
|
|
import torch
|
|
from torch import einsum
|
|
from einops import rearrange, repeat
|
|
import modules.textual_inversion.dataset
|
|
from modules.textual_inversion.learn_schedule import LearnSchedule
|
|
|
|
|
|
class HypernetworkModule(torch.nn.Module):
|
|
def __init__(self, dim, state_dict=None):
|
|
super().__init__()
|
|
|
|
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
|
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
|
|
|
if state_dict is not None:
|
|
self.load_state_dict(state_dict, strict=True)
|
|
else:
|
|
|
|
self.linear1.weight.data.normal_(mean=0.0, std=0.01)
|
|
self.linear1.bias.data.zero_()
|
|
self.linear2.weight.data.normal_(mean=0.0, std=0.01)
|
|
self.linear2.bias.data.zero_()
|
|
|
|
self.to(devices.device)
|
|
|
|
def forward(self, x):
|
|
return x + (self.linear2(self.linear1(x)))
|
|
|
|
|
|
class Hypernetwork:
|
|
filename = None
|
|
name = None
|
|
|
|
def __init__(self, name=None, enable_sizes=None):
|
|
self.filename = None
|
|
self.name = name
|
|
self.layers = {}
|
|
self.step = 0
|
|
self.sd_checkpoint = None
|
|
self.sd_checkpoint_name = None
|
|
|
|
for size in enable_sizes or []:
|
|
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
|
|
|
|
def weights(self):
|
|
res = []
|
|
|
|
for k, layers in self.layers.items():
|
|
for layer in layers:
|
|
layer.train()
|
|
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
|
|
|
|
return res
|
|
|
|
def save(self, filename):
|
|
state_dict = {}
|
|
|
|
for k, v in self.layers.items():
|
|
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
|
|
|
state_dict['step'] = self.step
|
|
state_dict['name'] = self.name
|
|
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
|
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
|
|
|
torch.save(state_dict, filename)
|
|
|
|
def load(self, filename):
|
|
self.filename = filename
|
|
if self.name is None:
|
|
self.name = os.path.splitext(os.path.basename(filename))[0]
|
|
|
|
state_dict = torch.load(filename, map_location='cpu')
|
|
|
|
for size, sd in state_dict.items():
|
|
if type(size) == int:
|
|
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
|
|
|
self.name = state_dict.get('name', self.name)
|
|
self.step = state_dict.get('step', 0)
|
|
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
|
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
|
|
|
|
|
def list_hypernetworks(path):
|
|
res = {}
|
|
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
|
name = os.path.splitext(os.path.basename(filename))[0]
|
|
res[name] = filename
|
|
return res
|
|
|
|
|
|
def load_hypernetwork(filename):
|
|
path = shared.hypernetworks.get(filename, None)
|
|
if path is not None:
|
|
print(f"Loading hypernetwork {filename}")
|
|
try:
|
|
shared.loaded_hypernetwork = Hypernetwork()
|
|
shared.loaded_hypernetwork.load(path)
|
|
|
|
except Exception:
|
|
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
else:
|
|
if shared.loaded_hypernetwork is not None:
|
|
print(f"Unloading hypernetwork")
|
|
|
|
shared.loaded_hypernetwork = None
|
|
|
|
|
|
def find_closest_hypernetwork_name(search: str):
|
|
if not search:
|
|
return None
|
|
search = search.lower()
|
|
applicable = [name for name in shared.hypernetworks if search in name.lower()]
|
|
if not applicable:
|
|
return None
|
|
applicable = sorted(applicable, key=lambda name: len(name))
|
|
return applicable[0]
|
|
|
|
|
|
def apply_hypernetwork(hypernetwork, context, layer=None):
|
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
|
|
|
if hypernetwork_layers is None:
|
|
return context, context
|
|
|
|
if layer is not None:
|
|
layer.hyper_k = hypernetwork_layers[0]
|
|
layer.hyper_v = hypernetwork_layers[1]
|
|
|
|
context_k = hypernetwork_layers[0](context)
|
|
context_v = hypernetwork_layers[1](context)
|
|
return context_k, context_v
|
|
|
|
|
|
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
|
h = self.heads
|
|
|
|
q = self.to_q(x)
|
|
context = default(context, x)
|
|
|
|
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
|
|
k = self.to_k(context_k)
|
|
v = self.to_v(context_v)
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
|
|
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
|
|
|
if mask is not None:
|
|
mask = rearrange(mask, 'b ... -> b (...)')
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
|
sim.masked_fill_(~mask, max_neg_value)
|
|
|
|
# attention, what we cannot get enough of
|
|
attn = sim.softmax(dim=-1)
|
|
|
|
out = einsum('b i j, b j d -> b i d', attn, v)
|
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
|
return self.to_out(out)
|
|
|
|
|
|
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
|
|
assert hypernetwork_name, 'hypernetwork not selected'
|
|
|
|
path = shared.hypernetworks.get(hypernetwork_name, None)
|
|
shared.loaded_hypernetwork = Hypernetwork()
|
|
shared.loaded_hypernetwork.load(path)
|
|
|
|
shared.state.textinfo = "Initializing hypernetwork training..."
|
|
shared.state.job_count = steps
|
|
|
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
|
|
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
|
unload = shared.opts.unload_models_when_training
|
|
|
|
if save_hypernetwork_every > 0:
|
|
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
|
os.makedirs(hypernetwork_dir, exist_ok=True)
|
|
else:
|
|
hypernetwork_dir = None
|
|
|
|
if create_image_every > 0:
|
|
images_dir = os.path.join(log_directory, "images")
|
|
os.makedirs(images_dir, exist_ok=True)
|
|
else:
|
|
images_dir = None
|
|
|
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
|
with torch.autocast("cuda"):
|
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
|
|
|
|
if unload:
|
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
|
|
|
hypernetwork = shared.loaded_hypernetwork
|
|
weights = hypernetwork.weights()
|
|
for weight in weights:
|
|
weight.requires_grad = True
|
|
|
|
losses = torch.zeros((32,))
|
|
|
|
last_saved_file = "<none>"
|
|
last_saved_image = "<none>"
|
|
|
|
ititial_step = hypernetwork.step or 0
|
|
if ititial_step > steps:
|
|
return hypernetwork, filename
|
|
|
|
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
|
(learn_rate, end_step) = next(schedules)
|
|
print(f'Training at rate of {learn_rate} until step {end_step}')
|
|
|
|
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
|
|
|
|
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
|
for i, (x, text, cond) in pbar:
|
|
hypernetwork.step = i + ititial_step
|
|
|
|
if hypernetwork.step > end_step:
|
|
try:
|
|
(learn_rate, end_step) = next(schedules)
|
|
except Exception:
|
|
break
|
|
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
|
for pg in optimizer.param_groups:
|
|
pg['lr'] = learn_rate
|
|
|
|
if shared.state.interrupted:
|
|
break
|
|
|
|
with torch.autocast("cuda"):
|
|
cond = cond.to(devices.device)
|
|
x = x.to(devices.device)
|
|
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
|
|
del x
|
|
del cond
|
|
|
|
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
pbar.set_description(f"loss: {losses.mean():.7f}")
|
|
|
|
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
|
|
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
|
|
hypernetwork.save(last_saved_file)
|
|
|
|
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
|
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
|
|
|
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
|
|
|
optimizer.zero_grad()
|
|
shared.sd_model.cond_stage_model.to(devices.device)
|
|
shared.sd_model.first_stage_model.to(devices.device)
|
|
|
|
p = processing.StableDiffusionProcessingTxt2Img(
|
|
sd_model=shared.sd_model,
|
|
prompt=preview_text,
|
|
steps=20,
|
|
do_not_save_grid=True,
|
|
do_not_save_samples=True,
|
|
)
|
|
|
|
processed = processing.process_images(p)
|
|
image = processed.images[0]
|
|
|
|
if unload:
|
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
|
|
|
shared.state.current_image = image
|
|
image.save(last_saved_image)
|
|
|
|
last_saved_image += f", prompt: {preview_text}"
|
|
|
|
shared.state.job_no = hypernetwork.step
|
|
|
|
shared.state.textinfo = f"""
|
|
<p>
|
|
Loss: {losses.mean():.7f}<br/>
|
|
Step: {hypernetwork.step}<br/>
|
|
Last prompt: {html.escape(text)}<br/>
|
|
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
|
Last saved image: {html.escape(last_saved_image)}<br/>
|
|
</p>
|
|
"""
|
|
|
|
checkpoint = sd_models.select_checkpoint()
|
|
|
|
hypernetwork.sd_checkpoint = checkpoint.hash
|
|
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
|
hypernetwork.save(filename)
|
|
|
|
return hypernetwork, filename
|
|
|
|
|