142 lines
5.3 KiB
Python
142 lines
5.3 KiB
Python
# this scripts installs necessary requirements and launches main program in webui.py
|
|
|
|
import subprocess
|
|
import os
|
|
import sys
|
|
import importlib.util
|
|
import shlex
|
|
|
|
dir_repos = "repositories"
|
|
dir_tmp = "tmp"
|
|
|
|
python = sys.executable
|
|
git = os.environ.get('GIT', "git")
|
|
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
|
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
|
|
|
k_diffusion_package = os.environ.get('K_DIFFUSION_PACKAGE', "git+https://github.com/crowsonkb/k-diffusion.git@9e3002b7cd64df7870e08527b7664eb2f2f5f3f5")
|
|
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
|
|
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
|
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
|
ldsr_commit_hash = os.environ.get('LDSR_COMMIT_HASH', "abf33e7002d59d9085081bce93ec798dcabd49af")
|
|
|
|
args = shlex.split(commandline_args)
|
|
|
|
|
|
def extract_arg(args, name):
|
|
return [x for x in args if x != name], name in args
|
|
|
|
|
|
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
|
|
|
|
|
def repo_dir(name):
|
|
return os.path.join(dir_repos, name)
|
|
|
|
|
|
def run(command, desc=None, errdesc=None):
|
|
if desc is not None:
|
|
print(desc)
|
|
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
|
|
|
if result.returncode != 0:
|
|
|
|
message = f"""{errdesc or 'Error running command'}.
|
|
Command: {command}
|
|
Error code: {result.returncode}
|
|
stdout: {result.stdout.decode(encoding="utf8", errors="ignore") if len(result.stdout)>0 else '<empty>'}
|
|
stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.stderr)>0 else '<empty>'}
|
|
"""
|
|
raise RuntimeError(message)
|
|
|
|
return result.stdout.decode(encoding="utf8", errors="ignore")
|
|
|
|
|
|
def run_python(code, desc=None, errdesc=None):
|
|
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
|
|
|
|
|
def run_pip(args, desc=None):
|
|
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
|
|
|
|
|
def check_run(command):
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
|
return result.returncode == 0
|
|
|
|
|
|
def check_run_python(code):
|
|
return check_run(f'"{python}" -c "{code}"')
|
|
|
|
|
|
def is_installed(package):
|
|
try:
|
|
spec = importlib.util.find_spec(package)
|
|
except ModuleNotFoundError:
|
|
return False
|
|
|
|
return spec is not None
|
|
|
|
|
|
def git_clone(url, dir, name, commithash=None):
|
|
# TODO clone into temporary dir and move if successful
|
|
|
|
if os.path.exists(dir):
|
|
return
|
|
|
|
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
|
|
|
if commithash is not None:
|
|
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
|
|
|
|
|
try:
|
|
commit = run(f"{git} rev-parse HEAD").strip()
|
|
except Exception:
|
|
commit = "<none>"
|
|
|
|
print(f"Python {sys.version}")
|
|
print(f"Commit hash: {commit}")
|
|
|
|
|
|
if not is_installed("torch") or not is_installed("torchvision"):
|
|
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
|
|
|
if not skip_torch_cuda_test:
|
|
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
|
|
|
if not is_installed("k_diffusion.sampling"):
|
|
run_pip(f"install {k_diffusion_package}", "k-diffusion")
|
|
|
|
if not is_installed("gfpgan"):
|
|
run_pip(f"install {gfpgan_package}", "gfpgan")
|
|
|
|
os.makedirs(dir_repos, exist_ok=True)
|
|
|
|
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
|
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
|
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
|
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
|
# Using my repo until my changes are merged, as this makes interfacing with our version of SD-web a lot easier
|
|
git_clone("https://github.com/Hafiidz/latent-diffusion", repo_dir('latent-diffusion'), "LDSR", ldsr_commit_hash)
|
|
|
|
if not is_installed("lpips"):
|
|
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
|
|
|
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
|
|
|
sys.argv += args
|
|
|
|
|
|
def start_webui():
|
|
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
|
import webui
|
|
webui.webui()
|
|
|
|
if __name__ == "__main__":
|
|
start_webui()
|