16006 lines
636 KiB
C
16006 lines
636 KiB
C
/*****************************************************************************/
|
|
/* */
|
|
/* 888888888 ,o, / 888 */
|
|
/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
|
|
/* 888 888 888 88b 888 888 888 888 888 d888 88b */
|
|
/* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */
|
|
/* 888 888 888 C888 888 888 888 / 888 q888 */
|
|
/* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */
|
|
/* "8oo8D */
|
|
/* */
|
|
/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
|
|
/* (triangle.c) */
|
|
/* */
|
|
/* Version 1.6 */
|
|
/* July 28, 2005 */
|
|
/* */
|
|
/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */
|
|
/* Jonathan Richard Shewchuk */
|
|
/* 2360 Woolsey #H */
|
|
/* Berkeley, California 94705-1927 */
|
|
/* jrs@cs.berkeley.edu */
|
|
/* */
|
|
/* This program may be freely redistributed under the condition that the */
|
|
/* copyright notices (including this entire header and the copyright */
|
|
/* notice printed when the `-h' switch is selected) are not removed, and */
|
|
/* no compensation is received. Private, research, and institutional */
|
|
/* use is free. You may distribute modified versions of this code UNDER */
|
|
/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
|
|
/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
|
|
/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
|
|
/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
|
|
/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
|
|
/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
|
|
/* customer, and you are instead telling them how they can obtain it for */
|
|
/* free, then you are not required to make any arrangement with me.) */
|
|
/* */
|
|
/* Hypertext instructions for Triangle are available on the Web at */
|
|
/* */
|
|
/* http://www.cs.cmu.edu/~quake/triangle.html */
|
|
/* */
|
|
/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */
|
|
/* whatsoever. This code is provided "as-is". Use at your own risk. */
|
|
/* */
|
|
/* Some of the references listed below are marked with an asterisk. [*] */
|
|
/* These references are available for downloading from the Web page */
|
|
/* */
|
|
/* http://www.cs.cmu.edu/~quake/triangle.research.html */
|
|
/* */
|
|
/* Three papers discussing aspects of Triangle are available. A short */
|
|
/* overview appears in "Triangle: Engineering a 2D Quality Mesh */
|
|
/* Generator and Delaunay Triangulator," in Applied Computational */
|
|
/* Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh */
|
|
/* Manocha, editors, Lecture Notes in Computer Science volume 1148, */
|
|
/* pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM */
|
|
/* Workshop on Applied Computational Geometry). [*] */
|
|
/* */
|
|
/* The algorithms are discussed in the greatest detail in "Delaunay */
|
|
/* Refinement Algorithms for Triangular Mesh Generation," Computational */
|
|
/* Geometry: Theory and Applications 22(1-3):21-74, May 2002. [*] */
|
|
/* */
|
|
/* More detail about the data structures may be found in my dissertation: */
|
|
/* "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report */
|
|
/* CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
|
|
/* Pittsburgh, Pennsylvania, 18 May 1997. [*] */
|
|
/* */
|
|
/* Triangle was created as part of the Quake Project in the School of */
|
|
/* Computer Science at Carnegie Mellon University. For further */
|
|
/* information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F. */
|
|
/* Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu, */
|
|
/* "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous */
|
|
/* Media on Parallel Computers," Computer Methods in Applied Mechanics */
|
|
/* and Engineering 152(1-2):85-102, 22 January 1998. */
|
|
/* */
|
|
/* Triangle's Delaunay refinement algorithm for quality mesh generation is */
|
|
/* a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm */
|
|
/* for Quality 2-Dimensional Mesh Generation," Journal of Algorithms */
|
|
/* 18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
|
|
/* Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
|
|
/* Annual Symposium on Computational Geometry (San Diego, California), */
|
|
/* pages 274-280, Association for Computing Machinery, May 1993, */
|
|
/* http://portal.acm.org/citation.cfm?id=161150 . */
|
|
/* */
|
|
/* The Delaunay refinement algorithm has been modified so that it meshes */
|
|
/* domains with small input angles well, as described in Gary L. Miller, */
|
|
/* Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's */
|
|
/* Algorithm Works," Twelfth International Meshing Roundtable, pages */
|
|
/* 91-102, Sandia National Laboratories, September 2003. [*] */
|
|
/* */
|
|
/* My implementation of the divide-and-conquer and incremental Delaunay */
|
|
/* triangulation algorithms follows closely the presentation of Guibas */
|
|
/* and Stolfi, even though I use a triangle-based data structure instead */
|
|
/* of their quad-edge data structure. (In fact, I originally implemented */
|
|
/* Triangle using the quad-edge data structure, but the switch to a */
|
|
/* triangle-based data structure sped Triangle by a factor of two.) The */
|
|
/* mesh manipulation primitives and the two aforementioned Delaunay */
|
|
/* triangulation algorithms are described by Leonidas J. Guibas and Jorge */
|
|
/* Stolfi, "Primitives for the Manipulation of General Subdivisions and */
|
|
/* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */
|
|
/* 4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
|
|
/* */
|
|
/* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */
|
|
/* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */
|
|
/* Delaunay Triangulation," International Journal of Computer and */
|
|
/* Information Science 9(3):219-242, 1980. Triangle's improvement of the */
|
|
/* divide-and-conquer algorithm by alternating between vertical and */
|
|
/* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */
|
|
/* Conquer Algorithm for Constructing Delaunay Triangulations," */
|
|
/* Algorithmica 2(2):137-151, 1987. */
|
|
/* */
|
|
/* The incremental insertion algorithm was first proposed by C. L. Lawson, */
|
|
/* "Software for C1 Surface Interpolation," in Mathematical Software III, */
|
|
/* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */
|
|
/* For point location, I use the algorithm of Ernst P. Mucke, Isaac */
|
|
/* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */
|
|
/* Preprocessing in Two- and Three-Dimensional Delaunay Triangulations," */
|
|
/* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
|
|
/* ACM, May 1996. [*] If I were to randomize the order of vertex */
|
|
/* insertion (I currently don't bother), their result combined with the */
|
|
/* result of Kenneth L. Clarkson and Peter W. Shor, "Applications of */
|
|
/* Random Sampling in Computational Geometry II," Discrete & */
|
|
/* Computational Geometry 4(1):387-421, 1989, would yield an expected */
|
|
/* O(n^{4/3}) bound on running time. */
|
|
/* */
|
|
/* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */
|
|
/* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */
|
|
/* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */
|
|
/* boundary of the triangulation are maintained in a splay tree for the */
|
|
/* purpose of point location. Splay trees are described by Daniel */
|
|
/* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
|
|
/* Trees," Journal of the ACM 32(3):652-686, July 1985, */
|
|
/* http://portal.acm.org/citation.cfm?id=3835 . */
|
|
/* */
|
|
/* The algorithms for exact computation of the signs of determinants are */
|
|
/* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */
|
|
/* Point Arithmetic and Fast Robust Geometric Predicates," Discrete & */
|
|
/* Computational Geometry 18(3):305-363, October 1997. (Also available */
|
|
/* as Technical Report CMU-CS-96-140, School of Computer Science, */
|
|
/* Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.) [*] */
|
|
/* An abbreviated version appears as Jonathan Richard Shewchuk, "Robust */
|
|
/* Adaptive Floating-Point Geometric Predicates," Proceedings of the */
|
|
/* Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
|
|
/* Many of the ideas for my exact arithmetic routines originate with */
|
|
/* Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point */
|
|
/* Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
|
|
/* Computer Society Press, 1991. [*] Many of the ideas for the correct */
|
|
/* evaluation of the signs of determinants are taken from Steven Fortune */
|
|
/* and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa- */
|
|
/* tional Geometry," Proceedings of the Ninth Annual Symposium on */
|
|
/* Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven */
|
|
/* Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu- */
|
|
/* lations," International Journal of Computational Geometry & Applica- */
|
|
/* tions 5(1-2):193-213, March-June 1995. */
|
|
/* */
|
|
/* The method of inserting new vertices off-center (not precisely at the */
|
|
/* circumcenter of every poor-quality triangle) is from Alper Ungor, */
|
|
/* "Off-centers: A New Type of Steiner Points for Computing Size-Optimal */
|
|
/* Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN */
|
|
/* 2004 (Buenos Aires, Argentina), April 2004. */
|
|
/* */
|
|
/* For definitions of and results involving Delaunay triangulations, */
|
|
/* constrained and conforming versions thereof, and other aspects of */
|
|
/* triangular mesh generation, see the excellent survey by Marshall Bern */
|
|
/* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */
|
|
/* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */
|
|
/* editors, World Scientific, Singapore, pp. 23-90, 1992. [*] */
|
|
/* */
|
|
/* The time for incrementally adding PSLG (planar straight line graph) */
|
|
/* segments to create a constrained Delaunay triangulation is probably */
|
|
/* O(t^2) per segment in the worst case and O(t) per segment in the */
|
|
/* common case, where t is the number of triangles that intersect the */
|
|
/* segment before it is inserted. This doesn't count point location, */
|
|
/* which can be much more expensive. I could improve this to O(d log d) */
|
|
/* time, but d is usually quite small, so it's not worth the bother. */
|
|
/* (This note does not apply when the -s switch is used, invoking a */
|
|
/* different method is used to insert segments.) */
|
|
/* */
|
|
/* The time for deleting a vertex from a Delaunay triangulation is O(d^2) */
|
|
/* in the worst case and O(d) in the common case, where d is the degree */
|
|
/* of the vertex being deleted. I could improve this to O(d log d) time, */
|
|
/* but d is usually quite small, so it's not worth the bother. */
|
|
/* */
|
|
/* Ruppert's Delaunay refinement algorithm typically generates triangles */
|
|
/* at a linear rate (constant time per triangle) after the initial */
|
|
/* triangulation is formed. There may be pathological cases where */
|
|
/* quadratic time is required, but these never arise in practice. */
|
|
/* */
|
|
/* The geometric predicates (circumcenter calculations, segment */
|
|
/* intersection formulae, etc.) appear in my "Lecture Notes on Geometric */
|
|
/* Robustness" at http://www.cs.berkeley.edu/~jrs/mesh . */
|
|
/* */
|
|
/* If you make any improvements to this code, please please please let me */
|
|
/* know, so that I may obtain the improvements. Even if you don't change */
|
|
/* the code, I'd still love to hear what it's being used for. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/* For single precision (which will save some memory and reduce paging), */
|
|
/* define the symbol SINGLE by using the -DSINGLE compiler switch or by */
|
|
/* writing "#define SINGLE" below. */
|
|
/* */
|
|
/* For double precision (which will allow you to refine meshes to a smaller */
|
|
/* edge length), leave SINGLE undefined. */
|
|
/* */
|
|
/* Double precision uses more memory, but improves the resolution of the */
|
|
/* meshes you can generate with Triangle. It also reduces the likelihood */
|
|
/* of a floating exception due to overflow. Finally, it is much faster */
|
|
/* than single precision on 64-bit architectures like the DEC Alpha. I */
|
|
/* recommend double precision unless you want to generate a mesh for which */
|
|
/* you do not have enough memory. */
|
|
|
|
/* #define SINGLE */
|
|
|
|
#ifdef SINGLE
|
|
#define REAL float
|
|
#else /* not SINGLE */
|
|
#define REAL double
|
|
#endif /* not SINGLE */
|
|
|
|
/* If yours is not a Unix system, define the NO_TIMER compiler switch to */
|
|
/* remove the Unix-specific timing code. */
|
|
|
|
/* #define NO_TIMER */
|
|
|
|
/* To insert lots of self-checks for internal errors, define the SELF_CHECK */
|
|
/* symbol. This will slow down the program significantly. It is best to */
|
|
/* define the symbol using the -DSELF_CHECK compiler switch, but you could */
|
|
/* write "#define SELF_CHECK" below. If you are modifying this code, I */
|
|
/* recommend you turn self-checks on until your work is debugged. */
|
|
|
|
/* #define SELF_CHECK */
|
|
|
|
/* To compile Triangle as a callable object library (triangle.o), define the */
|
|
/* TRILIBRARY symbol. Read the file triangle.h for details on how to call */
|
|
/* the procedure triangulate() that results. */
|
|
|
|
/* #define TRILIBRARY */
|
|
|
|
/* It is possible to generate a smaller version of Triangle using one or */
|
|
/* both of the following symbols. Define the REDUCED symbol to eliminate */
|
|
/* all features that are primarily of research interest; specifically, the */
|
|
/* -i, -F, -s, and -C switches. Define the CDT_ONLY symbol to eliminate */
|
|
/* all meshing algorithms above and beyond constrained Delaunay */
|
|
/* triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s */
|
|
/* switches. These reductions are most likely to be useful when */
|
|
/* generating an object library (triangle.o) by defining the TRILIBRARY */
|
|
/* symbol. */
|
|
|
|
/* #define REDUCED */
|
|
/* #define CDT_ONLY */
|
|
|
|
/* On some machines, my exact arithmetic routines might be defeated by the */
|
|
/* use of internal extended precision floating-point registers. The best */
|
|
/* way to solve this problem is to set the floating-point registers to use */
|
|
/* single or double precision internally. On 80x86 processors, this may */
|
|
/* be accomplished by setting the CPU86 symbol for the Microsoft C */
|
|
/* compiler, or the LINUX symbol for the gcc compiler running on Linux. */
|
|
/* */
|
|
/* An inferior solution is to declare certain values as `volatile', thus */
|
|
/* forcing them to be stored to memory and rounded off. Unfortunately, */
|
|
/* this solution might slow Triangle down quite a bit. To use volatile */
|
|
/* values, write "#define INEXACT volatile" below. Normally, however, */
|
|
/* INEXACT should be defined to be nothing. ("#define INEXACT".) */
|
|
/* */
|
|
/* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html . */
|
|
/* For yet more discussion, see Section 5 of my paper, "Adaptive Precision */
|
|
/* Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also */
|
|
/* available as Section 6.6 of my dissertation). */
|
|
|
|
/* #define CPU86 */
|
|
/* #define LINUX */
|
|
|
|
#define INEXACT /* Nothing */
|
|
/* #define INEXACT volatile */
|
|
|
|
/* Maximum number of characters in a file name (including the null). */
|
|
|
|
#define FILENAMESIZE 2048
|
|
|
|
/* Maximum number of characters in a line read from a file (including the */
|
|
/* null). */
|
|
|
|
#define INPUTLINESIZE 1024
|
|
|
|
/* For efficiency, a variety of data structures are allocated in bulk. The */
|
|
/* following constants determine how many of each structure is allocated */
|
|
/* at once. */
|
|
|
|
#define TRIPERBLOCK 4092 /* Number of triangles allocated at once. */
|
|
#define SUBSEGPERBLOCK 508 /* Number of subsegments allocated at once. */
|
|
#define VERTEXPERBLOCK 4092 /* Number of vertices allocated at once. */
|
|
#define VIRUSPERBLOCK 1020 /* Number of virus triangles allocated at once. */
|
|
/* Number of encroached subsegments allocated at once. */
|
|
#define BADSUBSEGPERBLOCK 252
|
|
/* Number of skinny triangles allocated at once. */
|
|
#define BADTRIPERBLOCK 4092
|
|
/* Number of flipped triangles allocated at once. */
|
|
#define FLIPSTACKERPERBLOCK 252
|
|
/* Number of splay tree nodes allocated at once. */
|
|
#define SPLAYNODEPERBLOCK 508
|
|
|
|
/* The vertex types. A DEADVERTEX has been deleted entirely. An */
|
|
/* UNDEADVERTEX is not part of the mesh, but is written to the output */
|
|
/* .node file and affects the node indexing in the other output files. */
|
|
|
|
#define INPUTVERTEX 0
|
|
#define SEGMENTVERTEX 1
|
|
#define FREEVERTEX 2
|
|
#define DEADVERTEX -32768
|
|
#define UNDEADVERTEX -32767
|
|
|
|
/* The next line is used to outsmart some very stupid compilers. If your */
|
|
/* compiler is smarter, feel free to replace the "int" with "void". */
|
|
/* Not that it matters. */
|
|
|
|
#define VOID int
|
|
|
|
/* Two constants for algorithms based on random sampling. Both constants */
|
|
/* have been chosen empirically to optimize their respective algorithms. */
|
|
|
|
/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide */
|
|
/* how large a random sample of triangles to inspect. */
|
|
|
|
#define SAMPLEFACTOR 11
|
|
|
|
/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
|
|
/* of boundary edges should be maintained in the splay tree for point */
|
|
/* location on the front. */
|
|
|
|
#define SAMPLERATE 10
|
|
|
|
/* A number that speaks for itself, every kissable digit. */
|
|
|
|
#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
|
|
|
|
/* Another fave. */
|
|
|
|
#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
|
|
|
|
/* And here's one for those of you who are intimidated by math. */
|
|
|
|
#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#ifndef NO_TIMER
|
|
#include <sys/time.h>
|
|
#endif /* not NO_TIMER */
|
|
#ifdef CPU86
|
|
#include <float.h>
|
|
#endif /* CPU86 */
|
|
#ifdef LINUX
|
|
#include <fpu_control.h>
|
|
#endif /* LINUX */
|
|
#ifdef TRILIBRARY
|
|
#include "triangle.h"
|
|
#endif /* TRILIBRARY */
|
|
|
|
/* A few forward declarations. */
|
|
|
|
#ifndef TRILIBRARY
|
|
char *readline();
|
|
char *findfield();
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/* Labels that signify the result of point location. The result of a */
|
|
/* search indicates that the point falls in the interior of a triangle, on */
|
|
/* an edge, on a vertex, or outside the mesh. */
|
|
|
|
enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
|
|
|
|
/* Labels that signify the result of vertex insertion. The result indicates */
|
|
/* that the vertex was inserted with complete success, was inserted but */
|
|
/* encroaches upon a subsegment, was not inserted because it lies on a */
|
|
/* segment, or was not inserted because another vertex occupies the same */
|
|
/* location. */
|
|
|
|
enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
|
|
DUPLICATEVERTEX};
|
|
|
|
/* Labels that signify the result of direction finding. The result */
|
|
/* indicates that a segment connecting the two query points falls within */
|
|
/* the direction triangle, along the left edge of the direction triangle, */
|
|
/* or along the right edge of the direction triangle. */
|
|
|
|
enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* The basic mesh data structures */
|
|
/* */
|
|
/* There are three: vertices, triangles, and subsegments (abbreviated */
|
|
/* `subseg'). These three data structures, linked by pointers, comprise */
|
|
/* the mesh. A vertex simply represents a mesh vertex and its properties. */
|
|
/* A triangle is a triangle. A subsegment is a special data structure used */
|
|
/* to represent an impenetrable edge of the mesh (perhaps on the outer */
|
|
/* boundary, on the boundary of a hole, or part of an internal boundary */
|
|
/* separating two triangulated regions). Subsegments represent boundaries, */
|
|
/* defined by the user, that triangles may not lie across. */
|
|
/* */
|
|
/* A triangle consists of a list of three vertices, a list of three */
|
|
/* adjoining triangles, a list of three adjoining subsegments (when */
|
|
/* segments exist), an arbitrary number of optional user-defined */
|
|
/* floating-point attributes, and an optional area constraint. The latter */
|
|
/* is an upper bound on the permissible area of each triangle in a region, */
|
|
/* used for mesh refinement. */
|
|
/* */
|
|
/* For a triangle on a boundary of the mesh, some or all of the neighboring */
|
|
/* triangles may not be present. For a triangle in the interior of the */
|
|
/* mesh, often no neighboring subsegments are present. Such absent */
|
|
/* triangles and subsegments are never represented by NULL pointers; they */
|
|
/* are represented by two special records: `dummytri', the triangle that */
|
|
/* fills "outer space", and `dummysub', the omnipresent subsegment. */
|
|
/* `dummytri' and `dummysub' are used for several reasons; for instance, */
|
|
/* they can be dereferenced and their contents examined without violating */
|
|
/* protected memory. */
|
|
/* */
|
|
/* However, it is important to understand that a triangle includes other */
|
|
/* information as well. The pointers to adjoining vertices, triangles, and */
|
|
/* subsegments are ordered in a way that indicates their geometric relation */
|
|
/* to each other. Furthermore, each of these pointers contains orientation */
|
|
/* information. Each pointer to an adjoining triangle indicates which face */
|
|
/* of that triangle is contacted. Similarly, each pointer to an adjoining */
|
|
/* subsegment indicates which side of that subsegment is contacted, and how */
|
|
/* the subsegment is oriented relative to the triangle. */
|
|
/* */
|
|
/* The data structure representing a subsegment may be thought to be */
|
|
/* abutting the edge of one or two triangle data structures: either */
|
|
/* sandwiched between two triangles, or resting against one triangle on an */
|
|
/* exterior boundary or hole boundary. */
|
|
/* */
|
|
/* A subsegment consists of a list of four vertices--the vertices of the */
|
|
/* subsegment, and the vertices of the segment it is a part of--a list of */
|
|
/* two adjoining subsegments, and a list of two adjoining triangles. One */
|
|
/* of the two adjoining triangles may not be present (though there should */
|
|
/* always be one), and neighboring subsegments might not be present. */
|
|
/* Subsegments also store a user-defined integer "boundary marker". */
|
|
/* Typically, this integer is used to indicate what boundary conditions are */
|
|
/* to be applied at that location in a finite element simulation. */
|
|
/* */
|
|
/* Like triangles, subsegments maintain information about the relative */
|
|
/* orientation of neighboring objects. */
|
|
/* */
|
|
/* Vertices are relatively simple. A vertex is a list of floating-point */
|
|
/* numbers, starting with the x, and y coordinates, followed by an */
|
|
/* arbitrary number of optional user-defined floating-point attributes, */
|
|
/* followed by an integer boundary marker. During the segment insertion */
|
|
/* phase, there is also a pointer from each vertex to a triangle that may */
|
|
/* contain it. Each pointer is not always correct, but when one is, it */
|
|
/* speeds up segment insertion. These pointers are assigned values once */
|
|
/* at the beginning of the segment insertion phase, and are not used or */
|
|
/* updated except during this phase. Edge flipping during segment */
|
|
/* insertion will render some of them incorrect. Hence, don't rely upon */
|
|
/* them for anything. */
|
|
/* */
|
|
/* Other than the exception mentioned above, vertices have no information */
|
|
/* about what triangles, subfacets, or subsegments they are linked to. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* Handles */
|
|
/* */
|
|
/* The oriented triangle (`otri') and oriented subsegment (`osub') data */
|
|
/* structures defined below do not themselves store any part of the mesh. */
|
|
/* The mesh itself is made of `triangle's, `subseg's, and `vertex's. */
|
|
/* */
|
|
/* Oriented triangles and oriented subsegments will usually be referred to */
|
|
/* as "handles." A handle is essentially a pointer into the mesh; it */
|
|
/* allows you to "hold" one particular part of the mesh. Handles are used */
|
|
/* to specify the regions in which one is traversing and modifying the mesh.*/
|
|
/* A single `triangle' may be held by many handles, or none at all. (The */
|
|
/* latter case is not a memory leak, because the triangle is still */
|
|
/* connected to other triangles in the mesh.) */
|
|
/* */
|
|
/* An `otri' is a handle that holds a triangle. It holds a specific edge */
|
|
/* of the triangle. An `osub' is a handle that holds a subsegment. It */
|
|
/* holds either the left or right side of the subsegment. */
|
|
/* */
|
|
/* Navigation about the mesh is accomplished through a set of mesh */
|
|
/* manipulation primitives, further below. Many of these primitives take */
|
|
/* a handle and produce a new handle that holds the mesh near the first */
|
|
/* handle. Other primitives take two handles and glue the corresponding */
|
|
/* parts of the mesh together. The orientation of the handles is */
|
|
/* important. For instance, when two triangles are glued together by the */
|
|
/* bond() primitive, they are glued at the edges on which the handles lie. */
|
|
/* */
|
|
/* Because vertices have no information about which triangles they are */
|
|
/* attached to, I commonly represent a vertex by use of a handle whose */
|
|
/* origin is the vertex. A single handle can simultaneously represent a */
|
|
/* triangle, an edge, and a vertex. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/* The triangle data structure. Each triangle contains three pointers to */
|
|
/* adjoining triangles, plus three pointers to vertices, plus three */
|
|
/* pointers to subsegments (declared below; these pointers are usually */
|
|
/* `dummysub'). It may or may not also contain user-defined attributes */
|
|
/* and/or a floating-point "area constraint." It may also contain extra */
|
|
/* pointers for nodes, when the user asks for high-order elements. */
|
|
/* Because the size and structure of a `triangle' is not decided until */
|
|
/* runtime, I haven't simply declared the type `triangle' as a struct. */
|
|
|
|
typedef REAL **triangle; /* Really: typedef triangle *triangle */
|
|
|
|
/* An oriented triangle: includes a pointer to a triangle and orientation. */
|
|
/* The orientation denotes an edge of the triangle. Hence, there are */
|
|
/* three possible orientations. By convention, each edge always points */
|
|
/* counterclockwise about the corresponding triangle. */
|
|
|
|
struct otri {
|
|
triangle *tri;
|
|
int orient; /* Ranges from 0 to 2. */
|
|
};
|
|
|
|
/* The subsegment data structure. Each subsegment contains two pointers to */
|
|
/* adjoining subsegments, plus four pointers to vertices, plus two */
|
|
/* pointers to adjoining triangles, plus one boundary marker, plus one */
|
|
/* segment number. */
|
|
|
|
typedef REAL **subseg; /* Really: typedef subseg *subseg */
|
|
|
|
/* An oriented subsegment: includes a pointer to a subsegment and an */
|
|
/* orientation. The orientation denotes a side of the edge. Hence, there */
|
|
/* are two possible orientations. By convention, the edge is always */
|
|
/* directed so that the "side" denoted is the right side of the edge. */
|
|
|
|
struct osub {
|
|
subseg *ss;
|
|
int ssorient; /* Ranges from 0 to 1. */
|
|
};
|
|
|
|
/* The vertex data structure. Each vertex is actually an array of REALs. */
|
|
/* The number of REALs is unknown until runtime. An integer boundary */
|
|
/* marker, and sometimes a pointer to a triangle, is appended after the */
|
|
/* REALs. */
|
|
|
|
typedef REAL *vertex;
|
|
|
|
/* A queue used to store encroached subsegments. Each subsegment's vertices */
|
|
/* are stored so that we can check whether a subsegment is still the same. */
|
|
|
|
struct badsubseg {
|
|
subseg encsubseg; /* An encroached subsegment. */
|
|
vertex subsegorg, subsegdest; /* Its two vertices. */
|
|
};
|
|
|
|
/* A queue used to store bad triangles. The key is the square of the cosine */
|
|
/* of the smallest angle of the triangle. Each triangle's vertices are */
|
|
/* stored so that one can check whether a triangle is still the same. */
|
|
|
|
struct badtriang {
|
|
triangle poortri; /* A skinny or too-large triangle. */
|
|
REAL key; /* cos^2 of smallest (apical) angle. */
|
|
vertex triangorg, triangdest, triangapex; /* Its three vertices. */
|
|
struct badtriang *nexttriang; /* Pointer to next bad triangle. */
|
|
};
|
|
|
|
/* A stack of triangles flipped during the most recent vertex insertion. */
|
|
/* The stack is used to undo the vertex insertion if the vertex encroaches */
|
|
/* upon a subsegment. */
|
|
|
|
struct flipstacker {
|
|
triangle flippedtri; /* A recently flipped triangle. */
|
|
struct flipstacker *prevflip; /* Previous flip in the stack. */
|
|
};
|
|
|
|
/* A node in a heap used to store events for the sweepline Delaunay */
|
|
/* algorithm. Nodes do not point directly to their parents or children in */
|
|
/* the heap. Instead, each node knows its position in the heap, and can */
|
|
/* look up its parent and children in a separate array. The `eventptr' */
|
|
/* points either to a `vertex' or to a triangle (in encoded format, so */
|
|
/* that an orientation is included). In the latter case, the origin of */
|
|
/* the oriented triangle is the apex of a "circle event" of the sweepline */
|
|
/* algorithm. To distinguish site events from circle events, all circle */
|
|
/* events are given an invalid (smaller than `xmin') x-coordinate `xkey'. */
|
|
|
|
struct event {
|
|
REAL xkey, ykey; /* Coordinates of the event. */
|
|
VOID *eventptr; /* Can be a vertex or the location of a circle event. */
|
|
int heapposition; /* Marks this event's position in the heap. */
|
|
};
|
|
|
|
/* A node in the splay tree. Each node holds an oriented ghost triangle */
|
|
/* that represents a boundary edge of the growing triangulation. When a */
|
|
/* circle event covers two boundary edges with a triangle, so that they */
|
|
/* are no longer boundary edges, those edges are not immediately deleted */
|
|
/* from the tree; rather, they are lazily deleted when they are next */
|
|
/* encountered. (Since only a random sample of boundary edges are kept */
|
|
/* in the tree, lazy deletion is faster.) `keydest' is used to verify */
|
|
/* that a triangle is still the same as when it entered the splay tree; if */
|
|
/* it has been rotated (due to a circle event), it no longer represents a */
|
|
/* boundary edge and should be deleted. */
|
|
|
|
struct splaynode {
|
|
struct otri keyedge; /* Lprev of an edge on the front. */
|
|
vertex keydest; /* Used to verify that splay node is still live. */
|
|
struct splaynode *lchild, *rchild; /* Children in splay tree. */
|
|
};
|
|
|
|
/* A type used to allocate memory. firstblock is the first block of items. */
|
|
/* nowblock is the block from which items are currently being allocated. */
|
|
/* nextitem points to the next slab of free memory for an item. */
|
|
/* deaditemstack is the head of a linked list (stack) of deallocated items */
|
|
/* that can be recycled. unallocateditems is the number of items that */
|
|
/* remain to be allocated from nowblock. */
|
|
/* */
|
|
/* Traversal is the process of walking through the entire list of items, and */
|
|
/* is separate from allocation. Note that a traversal will visit items on */
|
|
/* the "deaditemstack" stack as well as live items. pathblock points to */
|
|
/* the block currently being traversed. pathitem points to the next item */
|
|
/* to be traversed. pathitemsleft is the number of items that remain to */
|
|
/* be traversed in pathblock. */
|
|
/* */
|
|
/* alignbytes determines how new records should be aligned in memory. */
|
|
/* itembytes is the length of a record in bytes (after rounding up). */
|
|
/* itemsperblock is the number of items allocated at once in a single */
|
|
/* block. itemsfirstblock is the number of items in the first block, */
|
|
/* which can vary from the others. items is the number of currently */
|
|
/* allocated items. maxitems is the maximum number of items that have */
|
|
/* been allocated at once; it is the current number of items plus the */
|
|
/* number of records kept on deaditemstack. */
|
|
|
|
struct memorypool {
|
|
VOID **firstblock, **nowblock;
|
|
VOID *nextitem;
|
|
VOID *deaditemstack;
|
|
VOID **pathblock;
|
|
VOID *pathitem;
|
|
int alignbytes;
|
|
int itembytes;
|
|
int itemsperblock;
|
|
int itemsfirstblock;
|
|
long items, maxitems;
|
|
int unallocateditems;
|
|
int pathitemsleft;
|
|
};
|
|
|
|
|
|
/* Global constants. */
|
|
|
|
REAL splitter; /* Used to split REAL factors for exact multiplication. */
|
|
REAL epsilon; /* Floating-point machine epsilon. */
|
|
REAL resulterrbound;
|
|
REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
|
|
REAL iccerrboundA, iccerrboundB, iccerrboundC;
|
|
REAL o3derrboundA, o3derrboundB, o3derrboundC;
|
|
|
|
/* Random number seed is not constant, but I've made it global anyway. */
|
|
|
|
unsigned long randomseed; /* Current random number seed. */
|
|
|
|
|
|
/* Mesh data structure. Triangle operates on only one mesh, but the mesh */
|
|
/* structure is used (instead of global variables) to allow reentrancy. */
|
|
|
|
struct mesh {
|
|
|
|
/* Variables used to allocate memory for triangles, subsegments, vertices, */
|
|
/* viri (triangles being eaten), encroached segments, bad (skinny or too */
|
|
/* large) triangles, and splay tree nodes. */
|
|
|
|
struct memorypool triangles;
|
|
struct memorypool subsegs;
|
|
struct memorypool vertices;
|
|
struct memorypool viri;
|
|
struct memorypool badsubsegs;
|
|
struct memorypool badtriangles;
|
|
struct memorypool flipstackers;
|
|
struct memorypool splaynodes;
|
|
|
|
/* Variables that maintain the bad triangle queues. The queues are */
|
|
/* ordered from 4095 (highest priority) to 0 (lowest priority). */
|
|
|
|
struct badtriang *queuefront[4096];
|
|
struct badtriang *queuetail[4096];
|
|
int nextnonemptyq[4096];
|
|
int firstnonemptyq;
|
|
|
|
/* Variable that maintains the stack of recently flipped triangles. */
|
|
|
|
struct flipstacker *lastflip;
|
|
|
|
/* Other variables. */
|
|
|
|
REAL xmin, xmax, ymin, ymax; /* x and y bounds. */
|
|
REAL xminextreme; /* Nonexistent x value used as a flag in sweepline. */
|
|
int invertices; /* Number of input vertices. */
|
|
int inelements; /* Number of input triangles. */
|
|
int insegments; /* Number of input segments. */
|
|
int holes; /* Number of input holes. */
|
|
int regions; /* Number of input regions. */
|
|
int undeads; /* Number of input vertices that don't appear in the mesh. */
|
|
long edges; /* Number of output edges. */
|
|
int mesh_dim; /* Dimension (ought to be 2). */
|
|
int nextras; /* Number of attributes per vertex. */
|
|
int eextras; /* Number of attributes per triangle. */
|
|
long hullsize; /* Number of edges in convex hull. */
|
|
int steinerleft; /* Number of Steiner points not yet used. */
|
|
int vertexmarkindex; /* Index to find boundary marker of a vertex. */
|
|
int vertex2triindex; /* Index to find a triangle adjacent to a vertex. */
|
|
int highorderindex; /* Index to find extra nodes for high-order elements. */
|
|
int elemattribindex; /* Index to find attributes of a triangle. */
|
|
int areaboundindex; /* Index to find area bound of a triangle. */
|
|
int checksegments; /* Are there segments in the triangulation yet? */
|
|
int checkquality; /* Has quality triangulation begun yet? */
|
|
int readnodefile; /* Has a .node file been read? */
|
|
long samples; /* Number of random samples for point location. */
|
|
|
|
long incirclecount; /* Number of incircle tests performed. */
|
|
long counterclockcount; /* Number of counterclockwise tests performed. */
|
|
long orient3dcount; /* Number of 3D orientation tests performed. */
|
|
long hyperbolacount; /* Number of right-of-hyperbola tests performed. */
|
|
long circumcentercount; /* Number of circumcenter calculations performed. */
|
|
long circletopcount; /* Number of circle top calculations performed. */
|
|
|
|
/* Triangular bounding box vertices. */
|
|
|
|
vertex infvertex1, infvertex2, infvertex3;
|
|
|
|
/* Pointer to the `triangle' that occupies all of "outer space." */
|
|
|
|
triangle *dummytri;
|
|
triangle *dummytribase; /* Keep base address so we can free() it later. */
|
|
|
|
/* Pointer to the omnipresent subsegment. Referenced by any triangle or */
|
|
/* subsegment that isn't really connected to a subsegment at that */
|
|
/* location. */
|
|
|
|
subseg *dummysub;
|
|
subseg *dummysubbase; /* Keep base address so we can free() it later. */
|
|
|
|
/* Pointer to a recently visited triangle. Improves point location if */
|
|
/* proximate vertices are inserted sequentially. */
|
|
|
|
struct otri recenttri;
|
|
|
|
}; /* End of `struct mesh'. */
|
|
|
|
|
|
/* Data structure for command line switches and file names. This structure */
|
|
/* is used (instead of global variables) to allow reentrancy. */
|
|
|
|
struct behavior {
|
|
|
|
/* Switches for the triangulator. */
|
|
/* poly: -p switch. refine: -r switch. */
|
|
/* quality: -q switch. */
|
|
/* minangle: minimum angle bound, specified after -q switch. */
|
|
/* goodangle: cosine squared of minangle. */
|
|
/* offconstant: constant used to place off-center Steiner points. */
|
|
/* vararea: -a switch without number. */
|
|
/* fixedarea: -a switch with number. */
|
|
/* maxarea: maximum area bound, specified after -a switch. */
|
|
/* usertest: -u switch. */
|
|
/* regionattrib: -A switch. convex: -c switch. */
|
|
/* weighted: 1 for -w switch, 2 for -W switch. jettison: -j switch */
|
|
/* firstnumber: inverse of -z switch. All items are numbered starting */
|
|
/* from `firstnumber'. */
|
|
/* edgesout: -e switch. voronoi: -v switch. */
|
|
/* neighbors: -n switch. geomview: -g switch. */
|
|
/* nobound: -B switch. nopolywritten: -P switch. */
|
|
/* nonodewritten: -N switch. noelewritten: -E switch. */
|
|
/* noiterationnum: -I switch. noholes: -O switch. */
|
|
/* noexact: -X switch. */
|
|
/* order: element order, specified after -o switch. */
|
|
/* nobisect: count of how often -Y switch is selected. */
|
|
/* steiner: maximum number of Steiner points, specified after -S switch. */
|
|
/* incremental: -i switch. sweepline: -F switch. */
|
|
/* dwyer: inverse of -l switch. */
|
|
/* splitseg: -s switch. */
|
|
/* conformdel: -D switch. docheck: -C switch. */
|
|
/* quiet: -Q switch. verbose: count of how often -V switch is selected. */
|
|
/* usesegments: -p, -r, -q, or -c switch; determines whether segments are */
|
|
/* used at all. */
|
|
/* */
|
|
/* Read the instructions to find out the meaning of these switches. */
|
|
|
|
int poly, refine, quality, vararea, fixedarea, usertest;
|
|
int regionattrib, convex, weighted, jettison;
|
|
int firstnumber;
|
|
int edgesout, voronoi, neighbors, geomview;
|
|
int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
|
|
int noholes, noexact, conformdel;
|
|
int incremental, sweepline, dwyer;
|
|
int splitseg;
|
|
int docheck;
|
|
int quiet, verbose;
|
|
int usesegments;
|
|
int order;
|
|
int nobisect;
|
|
int steiner;
|
|
REAL minangle, goodangle, offconstant;
|
|
REAL maxarea;
|
|
|
|
/* Variables for file names. */
|
|
|
|
#ifndef TRILIBRARY
|
|
char innodefilename[FILENAMESIZE];
|
|
char inelefilename[FILENAMESIZE];
|
|
char inpolyfilename[FILENAMESIZE];
|
|
char areafilename[FILENAMESIZE];
|
|
char outnodefilename[FILENAMESIZE];
|
|
char outelefilename[FILENAMESIZE];
|
|
char outpolyfilename[FILENAMESIZE];
|
|
char edgefilename[FILENAMESIZE];
|
|
char vnodefilename[FILENAMESIZE];
|
|
char vedgefilename[FILENAMESIZE];
|
|
char neighborfilename[FILENAMESIZE];
|
|
char offfilename[FILENAMESIZE];
|
|
#endif /* not TRILIBRARY */
|
|
|
|
}; /* End of `struct behavior'. */
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* Mesh manipulation primitives. Each triangle contains three pointers to */
|
|
/* other triangles, with orientations. Each pointer points not to the */
|
|
/* first byte of a triangle, but to one of the first three bytes of a */
|
|
/* triangle. It is necessary to extract both the triangle itself and the */
|
|
/* orientation. To save memory, I keep both pieces of information in one */
|
|
/* pointer. To make this possible, I assume that all triangles are aligned */
|
|
/* to four-byte boundaries. The decode() routine below decodes a pointer, */
|
|
/* extracting an orientation (in the range 0 to 2) and a pointer to the */
|
|
/* beginning of a triangle. The encode() routine compresses a pointer to a */
|
|
/* triangle and an orientation into a single pointer. My assumptions that */
|
|
/* triangles are four-byte-aligned and that the `unsigned long' type is */
|
|
/* long enough to hold a pointer are two of the few kludges in this program.*/
|
|
/* */
|
|
/* Subsegments are manipulated similarly. A pointer to a subsegment */
|
|
/* carries both an address and an orientation in the range 0 to 1. */
|
|
/* */
|
|
/* The other primitives take an oriented triangle or oriented subsegment, */
|
|
/* and return an oriented triangle or oriented subsegment or vertex; or */
|
|
/* they change the connections in the data structure. */
|
|
/* */
|
|
/* Below, triangles and subsegments are denoted by their vertices. The */
|
|
/* triangle abc has origin (org) a, destination (dest) b, and apex (apex) */
|
|
/* c. These vertices occur in counterclockwise order about the triangle. */
|
|
/* The handle abc may simultaneously denote vertex a, edge ab, and triangle */
|
|
/* abc. */
|
|
/* */
|
|
/* Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
|
|
/* b. If ab is thought to be directed upward (with b directly above a), */
|
|
/* then the handle ab is thought to grasp the right side of ab, and may */
|
|
/* simultaneously denote vertex a and edge ab. */
|
|
/* */
|
|
/* An asterisk (*) denotes a vertex whose identity is unknown. */
|
|
/* */
|
|
/* Given this notation, a partial list of mesh manipulation primitives */
|
|
/* follows. */
|
|
/* */
|
|
/* */
|
|
/* For triangles: */
|
|
/* */
|
|
/* sym: Find the abutting triangle; same edge. */
|
|
/* sym(abc) -> ba* */
|
|
/* */
|
|
/* lnext: Find the next edge (counterclockwise) of a triangle. */
|
|
/* lnext(abc) -> bca */
|
|
/* */
|
|
/* lprev: Find the previous edge (clockwise) of a triangle. */
|
|
/* lprev(abc) -> cab */
|
|
/* */
|
|
/* onext: Find the next edge counterclockwise with the same origin. */
|
|
/* onext(abc) -> ac* */
|
|
/* */
|
|
/* oprev: Find the next edge clockwise with the same origin. */
|
|
/* oprev(abc) -> a*b */
|
|
/* */
|
|
/* dnext: Find the next edge counterclockwise with the same destination. */
|
|
/* dnext(abc) -> *ba */
|
|
/* */
|
|
/* dprev: Find the next edge clockwise with the same destination. */
|
|
/* dprev(abc) -> cb* */
|
|
/* */
|
|
/* rnext: Find the next edge (counterclockwise) of the adjacent triangle. */
|
|
/* rnext(abc) -> *a* */
|
|
/* */
|
|
/* rprev: Find the previous edge (clockwise) of the adjacent triangle. */
|
|
/* rprev(abc) -> b** */
|
|
/* */
|
|
/* org: Origin dest: Destination apex: Apex */
|
|
/* org(abc) -> a dest(abc) -> b apex(abc) -> c */
|
|
/* */
|
|
/* bond: Bond two triangles together at the resepective handles. */
|
|
/* bond(abc, bad) */
|
|
/* */
|
|
/* */
|
|
/* For subsegments: */
|
|
/* */
|
|
/* ssym: Reverse the orientation of a subsegment. */
|
|
/* ssym(ab) -> ba */
|
|
/* */
|
|
/* spivot: Find adjoining subsegment with the same origin. */
|
|
/* spivot(ab) -> a* */
|
|
/* */
|
|
/* snext: Find next subsegment in sequence. */
|
|
/* snext(ab) -> b* */
|
|
/* */
|
|
/* sorg: Origin sdest: Destination */
|
|
/* sorg(ab) -> a sdest(ab) -> b */
|
|
/* */
|
|
/* sbond: Bond two subsegments together at the respective origins. */
|
|
/* sbond(ab, ac) */
|
|
/* */
|
|
/* */
|
|
/* For interacting tetrahedra and subfacets: */
|
|
/* */
|
|
/* tspivot: Find a subsegment abutting a triangle. */
|
|
/* tspivot(abc) -> ba */
|
|
/* */
|
|
/* stpivot: Find a triangle abutting a subsegment. */
|
|
/* stpivot(ab) -> ba* */
|
|
/* */
|
|
/* tsbond: Bond a triangle to a subsegment. */
|
|
/* tsbond(abc, ba) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/********* Mesh manipulation primitives begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/* Fast lookup arrays to speed some of the mesh manipulation primitives. */
|
|
|
|
int plus1mod3[3] = {1, 2, 0};
|
|
int minus1mod3[3] = {2, 0, 1};
|
|
|
|
/********* Primitives for triangles *********/
|
|
/* */
|
|
/* */
|
|
|
|
/* decode() converts a pointer to an oriented triangle. The orientation is */
|
|
/* extracted from the two least significant bits of the pointer. */
|
|
|
|
#define decode(ptr, otri) \
|
|
(otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l); \
|
|
(otri).tri = (triangle *) \
|
|
((unsigned long) (ptr) ^ (unsigned long) (otri).orient)
|
|
|
|
/* encode() compresses an oriented triangle into a single pointer. It */
|
|
/* relies on the assumption that all triangles are aligned to four-byte */
|
|
/* boundaries, so the two least significant bits of (otri).tri are zero. */
|
|
|
|
#define encode(otri) \
|
|
(triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient)
|
|
|
|
/* The following handle manipulation primitives are all described by Guibas */
|
|
/* and Stolfi. However, Guibas and Stolfi use an edge-based data */
|
|
/* structure, whereas I use a triangle-based data structure. */
|
|
|
|
/* sym() finds the abutting triangle, on the same edge. Note that the edge */
|
|
/* direction is necessarily reversed, because the handle specified by an */
|
|
/* oriented triangle is directed counterclockwise around the triangle. */
|
|
|
|
#define sym(otri1, otri2) \
|
|
ptr = (otri1).tri[(otri1).orient]; \
|
|
decode(ptr, otri2);
|
|
|
|
#define symself(otri) \
|
|
ptr = (otri).tri[(otri).orient]; \
|
|
decode(ptr, otri);
|
|
|
|
/* lnext() finds the next edge (counterclockwise) of a triangle. */
|
|
|
|
#define lnext(otri1, otri2) \
|
|
(otri2).tri = (otri1).tri; \
|
|
(otri2).orient = plus1mod3[(otri1).orient]
|
|
|
|
#define lnextself(otri) \
|
|
(otri).orient = plus1mod3[(otri).orient]
|
|
|
|
/* lprev() finds the previous edge (clockwise) of a triangle. */
|
|
|
|
#define lprev(otri1, otri2) \
|
|
(otri2).tri = (otri1).tri; \
|
|
(otri2).orient = minus1mod3[(otri1).orient]
|
|
|
|
#define lprevself(otri) \
|
|
(otri).orient = minus1mod3[(otri).orient]
|
|
|
|
/* onext() spins counterclockwise around a vertex; that is, it finds the */
|
|
/* next edge with the same origin in the counterclockwise direction. This */
|
|
/* edge is part of a different triangle. */
|
|
|
|
#define onext(otri1, otri2) \
|
|
lprev(otri1, otri2); \
|
|
symself(otri2);
|
|
|
|
#define onextself(otri) \
|
|
lprevself(otri); \
|
|
symself(otri);
|
|
|
|
/* oprev() spins clockwise around a vertex; that is, it finds the next edge */
|
|
/* with the same origin in the clockwise direction. This edge is part of */
|
|
/* a different triangle. */
|
|
|
|
#define oprev(otri1, otri2) \
|
|
sym(otri1, otri2); \
|
|
lnextself(otri2);
|
|
|
|
#define oprevself(otri) \
|
|
symself(otri); \
|
|
lnextself(otri);
|
|
|
|
/* dnext() spins counterclockwise around a vertex; that is, it finds the */
|
|
/* next edge with the same destination in the counterclockwise direction. */
|
|
/* This edge is part of a different triangle. */
|
|
|
|
#define dnext(otri1, otri2) \
|
|
sym(otri1, otri2); \
|
|
lprevself(otri2);
|
|
|
|
#define dnextself(otri) \
|
|
symself(otri); \
|
|
lprevself(otri);
|
|
|
|
/* dprev() spins clockwise around a vertex; that is, it finds the next edge */
|
|
/* with the same destination in the clockwise direction. This edge is */
|
|
/* part of a different triangle. */
|
|
|
|
#define dprev(otri1, otri2) \
|
|
lnext(otri1, otri2); \
|
|
symself(otri2);
|
|
|
|
#define dprevself(otri) \
|
|
lnextself(otri); \
|
|
symself(otri);
|
|
|
|
/* rnext() moves one edge counterclockwise about the adjacent triangle. */
|
|
/* (It's best understood by reading Guibas and Stolfi. It involves */
|
|
/* changing triangles twice.) */
|
|
|
|
#define rnext(otri1, otri2) \
|
|
sym(otri1, otri2); \
|
|
lnextself(otri2); \
|
|
symself(otri2);
|
|
|
|
#define rnextself(otri) \
|
|
symself(otri); \
|
|
lnextself(otri); \
|
|
symself(otri);
|
|
|
|
/* rprev() moves one edge clockwise about the adjacent triangle. */
|
|
/* (It's best understood by reading Guibas and Stolfi. It involves */
|
|
/* changing triangles twice.) */
|
|
|
|
#define rprev(otri1, otri2) \
|
|
sym(otri1, otri2); \
|
|
lprevself(otri2); \
|
|
symself(otri2);
|
|
|
|
#define rprevself(otri) \
|
|
symself(otri); \
|
|
lprevself(otri); \
|
|
symself(otri);
|
|
|
|
/* These primitives determine or set the origin, destination, or apex of a */
|
|
/* triangle. */
|
|
|
|
#define org(otri, vertexptr) \
|
|
vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
|
|
|
|
#define dest(otri, vertexptr) \
|
|
vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
|
|
|
|
#define apex(otri, vertexptr) \
|
|
vertexptr = (vertex) (otri).tri[(otri).orient + 3]
|
|
|
|
#define setorg(otri, vertexptr) \
|
|
(otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
|
|
|
|
#define setdest(otri, vertexptr) \
|
|
(otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
|
|
|
|
#define setapex(otri, vertexptr) \
|
|
(otri).tri[(otri).orient + 3] = (triangle) vertexptr
|
|
|
|
/* Bond two triangles together. */
|
|
|
|
#define bond(otri1, otri2) \
|
|
(otri1).tri[(otri1).orient] = encode(otri2); \
|
|
(otri2).tri[(otri2).orient] = encode(otri1)
|
|
|
|
/* Dissolve a bond (from one side). Note that the other triangle will still */
|
|
/* think it's connected to this triangle. Usually, however, the other */
|
|
/* triangle is being deleted entirely, or bonded to another triangle, so */
|
|
/* it doesn't matter. */
|
|
|
|
#define dissolve(otri) \
|
|
(otri).tri[(otri).orient] = (triangle) m->dummytri
|
|
|
|
/* Copy an oriented triangle. */
|
|
|
|
#define otricopy(otri1, otri2) \
|
|
(otri2).tri = (otri1).tri; \
|
|
(otri2).orient = (otri1).orient
|
|
|
|
/* Test for equality of oriented triangles. */
|
|
|
|
#define otriequal(otri1, otri2) \
|
|
(((otri1).tri == (otri2).tri) && \
|
|
((otri1).orient == (otri2).orient))
|
|
|
|
/* Primitives to infect or cure a triangle with the virus. These rely on */
|
|
/* the assumption that all subsegments are aligned to four-byte boundaries.*/
|
|
|
|
#define infect(otri) \
|
|
(otri).tri[6] = (triangle) \
|
|
((unsigned long) (otri).tri[6] | (unsigned long) 2l)
|
|
|
|
#define uninfect(otri) \
|
|
(otri).tri[6] = (triangle) \
|
|
((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)
|
|
|
|
/* Test a triangle for viral infection. */
|
|
|
|
#define infected(otri) \
|
|
(((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)
|
|
|
|
/* Check or set a triangle's attributes. */
|
|
|
|
#define elemattribute(otri, attnum) \
|
|
((REAL *) (otri).tri)[m->elemattribindex + (attnum)]
|
|
|
|
#define setelemattribute(otri, attnum, value) \
|
|
((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value
|
|
|
|
/* Check or set a triangle's maximum area bound. */
|
|
|
|
#define areabound(otri) ((REAL *) (otri).tri)[m->areaboundindex]
|
|
|
|
#define setareabound(otri, value) \
|
|
((REAL *) (otri).tri)[m->areaboundindex] = value
|
|
|
|
/* Check or set a triangle's deallocation. Its second pointer is set to */
|
|
/* NULL to indicate that it is not allocated. (Its first pointer is used */
|
|
/* for the stack of dead items.) Its fourth pointer (its first vertex) */
|
|
/* is set to NULL in case a `badtriang' structure points to it. */
|
|
|
|
#define deadtri(tria) ((tria)[1] == (triangle) NULL)
|
|
|
|
#define killtri(tria) \
|
|
(tria)[1] = (triangle) NULL; \
|
|
(tria)[3] = (triangle) NULL
|
|
|
|
/********* Primitives for subsegments *********/
|
|
/* */
|
|
/* */
|
|
|
|
/* sdecode() converts a pointer to an oriented subsegment. The orientation */
|
|
/* is extracted from the least significant bit of the pointer. The two */
|
|
/* least significant bits (one for orientation, one for viral infection) */
|
|
/* are masked out to produce the real pointer. */
|
|
|
|
#define sdecode(sptr, osub) \
|
|
(osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l); \
|
|
(osub).ss = (subseg *) \
|
|
((unsigned long) (sptr) & ~ (unsigned long) 3l)
|
|
|
|
/* sencode() compresses an oriented subsegment into a single pointer. It */
|
|
/* relies on the assumption that all subsegments are aligned to two-byte */
|
|
/* boundaries, so the least significant bit of (osub).ss is zero. */
|
|
|
|
#define sencode(osub) \
|
|
(subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)
|
|
|
|
/* ssym() toggles the orientation of a subsegment. */
|
|
|
|
#define ssym(osub1, osub2) \
|
|
(osub2).ss = (osub1).ss; \
|
|
(osub2).ssorient = 1 - (osub1).ssorient
|
|
|
|
#define ssymself(osub) \
|
|
(osub).ssorient = 1 - (osub).ssorient
|
|
|
|
/* spivot() finds the other subsegment (from the same segment) that shares */
|
|
/* the same origin. */
|
|
|
|
#define spivot(osub1, osub2) \
|
|
sptr = (osub1).ss[(osub1).ssorient]; \
|
|
sdecode(sptr, osub2)
|
|
|
|
#define spivotself(osub) \
|
|
sptr = (osub).ss[(osub).ssorient]; \
|
|
sdecode(sptr, osub)
|
|
|
|
/* snext() finds the next subsegment (from the same segment) in sequence; */
|
|
/* one whose origin is the input subsegment's destination. */
|
|
|
|
#define snext(osub1, osub2) \
|
|
sptr = (osub1).ss[1 - (osub1).ssorient]; \
|
|
sdecode(sptr, osub2)
|
|
|
|
#define snextself(osub) \
|
|
sptr = (osub).ss[1 - (osub).ssorient]; \
|
|
sdecode(sptr, osub)
|
|
|
|
/* These primitives determine or set the origin or destination of a */
|
|
/* subsegment or the segment that includes it. */
|
|
|
|
#define sorg(osub, vertexptr) \
|
|
vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
|
|
|
|
#define sdest(osub, vertexptr) \
|
|
vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
|
|
|
|
#define setsorg(osub, vertexptr) \
|
|
(osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
|
|
|
|
#define setsdest(osub, vertexptr) \
|
|
(osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
|
|
|
|
#define segorg(osub, vertexptr) \
|
|
vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
|
|
|
|
#define segdest(osub, vertexptr) \
|
|
vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
|
|
|
|
#define setsegorg(osub, vertexptr) \
|
|
(osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
|
|
|
|
#define setsegdest(osub, vertexptr) \
|
|
(osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
|
|
|
|
/* These primitives read or set a boundary marker. Boundary markers are */
|
|
/* used to hold user-defined tags for setting boundary conditions in */
|
|
/* finite element solvers. */
|
|
|
|
#define mark(osub) (* (int *) ((osub).ss + 8))
|
|
|
|
#define setmark(osub, value) \
|
|
* (int *) ((osub).ss + 8) = value
|
|
|
|
/* Bond two subsegments together. */
|
|
|
|
#define sbond(osub1, osub2) \
|
|
(osub1).ss[(osub1).ssorient] = sencode(osub2); \
|
|
(osub2).ss[(osub2).ssorient] = sencode(osub1)
|
|
|
|
/* Dissolve a subsegment bond (from one side). Note that the other */
|
|
/* subsegment will still think it's connected to this subsegment. */
|
|
|
|
#define sdissolve(osub) \
|
|
(osub).ss[(osub).ssorient] = (subseg) m->dummysub
|
|
|
|
/* Copy a subsegment. */
|
|
|
|
#define subsegcopy(osub1, osub2) \
|
|
(osub2).ss = (osub1).ss; \
|
|
(osub2).ssorient = (osub1).ssorient
|
|
|
|
/* Test for equality of subsegments. */
|
|
|
|
#define subsegequal(osub1, osub2) \
|
|
(((osub1).ss == (osub2).ss) && \
|
|
((osub1).ssorient == (osub2).ssorient))
|
|
|
|
/* Check or set a subsegment's deallocation. Its second pointer is set to */
|
|
/* NULL to indicate that it is not allocated. (Its first pointer is used */
|
|
/* for the stack of dead items.) Its third pointer (its first vertex) */
|
|
/* is set to NULL in case a `badsubseg' structure points to it. */
|
|
|
|
#define deadsubseg(sub) ((sub)[1] == (subseg) NULL)
|
|
|
|
#define killsubseg(sub) \
|
|
(sub)[1] = (subseg) NULL; \
|
|
(sub)[2] = (subseg) NULL
|
|
|
|
/********* Primitives for interacting triangles and subsegments *********/
|
|
/* */
|
|
/* */
|
|
|
|
/* tspivot() finds a subsegment abutting a triangle. */
|
|
|
|
#define tspivot(otri, osub) \
|
|
sptr = (subseg) (otri).tri[6 + (otri).orient]; \
|
|
sdecode(sptr, osub)
|
|
|
|
/* stpivot() finds a triangle abutting a subsegment. It requires that the */
|
|
/* variable `ptr' of type `triangle' be defined. */
|
|
|
|
#define stpivot(osub, otri) \
|
|
ptr = (triangle) (osub).ss[6 + (osub).ssorient]; \
|
|
decode(ptr, otri)
|
|
|
|
/* Bond a triangle to a subsegment. */
|
|
|
|
#define tsbond(otri, osub) \
|
|
(otri).tri[6 + (otri).orient] = (triangle) sencode(osub); \
|
|
(osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
|
|
|
|
/* Dissolve a bond (from the triangle side). */
|
|
|
|
#define tsdissolve(otri) \
|
|
(otri).tri[6 + (otri).orient] = (triangle) m->dummysub
|
|
|
|
/* Dissolve a bond (from the subsegment side). */
|
|
|
|
#define stdissolve(osub) \
|
|
(osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
|
|
|
|
/********* Primitives for vertices *********/
|
|
/* */
|
|
/* */
|
|
|
|
#define vertexmark(vx) ((int *) (vx))[m->vertexmarkindex]
|
|
|
|
#define setvertexmark(vx, value) \
|
|
((int *) (vx))[m->vertexmarkindex] = value
|
|
|
|
#define vertextype(vx) ((int *) (vx))[m->vertexmarkindex + 1]
|
|
|
|
#define setvertextype(vx, value) \
|
|
((int *) (vx))[m->vertexmarkindex + 1] = value
|
|
|
|
#define vertex2tri(vx) ((triangle *) (vx))[m->vertex2triindex]
|
|
|
|
#define setvertex2tri(vx, value) \
|
|
((triangle *) (vx))[m->vertex2triindex] = value
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Mesh manipulation primitives end here *********/
|
|
|
|
/********* User-defined triangle evaluation routine begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triunsuitable() Determine if a triangle is unsuitable, and thus must */
|
|
/* be further refined. */
|
|
/* */
|
|
/* You may write your own procedure that decides whether or not a selected */
|
|
/* triangle is too big (and needs to be refined). There are two ways to do */
|
|
/* this. */
|
|
/* */
|
|
/* (1) Modify the procedure `triunsuitable' below, then recompile */
|
|
/* Triangle. */
|
|
/* */
|
|
/* (2) Define the symbol EXTERNAL_TEST (either by adding the definition */
|
|
/* to this file, or by using the appropriate compiler switch). This way, */
|
|
/* you can compile triangle.c separately from your test. Write your own */
|
|
/* `triunsuitable' procedure in a separate C file (using the same prototype */
|
|
/* as below). Compile it and link the object code with triangle.o. */
|
|
/* */
|
|
/* This procedure returns 1 if the triangle is too large and should be */
|
|
/* refined; 0 otherwise. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef EXTERNAL_TEST
|
|
|
|
int triunsuitable();
|
|
|
|
#else /* not EXTERNAL_TEST */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int triunsuitable(triorg, tridest, triapex, area)
|
|
vertex triorg; /* The triangle's origin vertex. */
|
|
vertex tridest; /* The triangle's destination vertex. */
|
|
vertex triapex; /* The triangle's apex vertex. */
|
|
REAL area; /* The area of the triangle. */
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL dxoa, dxda, dxod;
|
|
REAL dyoa, dyda, dyod;
|
|
REAL oalen, dalen, odlen;
|
|
REAL maxlen;
|
|
|
|
dxoa = triorg[0] - triapex[0];
|
|
dyoa = triorg[1] - triapex[1];
|
|
dxda = tridest[0] - triapex[0];
|
|
dyda = tridest[1] - triapex[1];
|
|
dxod = triorg[0] - tridest[0];
|
|
dyod = triorg[1] - tridest[1];
|
|
/* Find the squares of the lengths of the triangle's three edges. */
|
|
oalen = dxoa * dxoa + dyoa * dyoa;
|
|
dalen = dxda * dxda + dyda * dyda;
|
|
odlen = dxod * dxod + dyod * dyod;
|
|
/* Find the square of the length of the longest edge. */
|
|
maxlen = (dalen > oalen) ? dalen : oalen;
|
|
maxlen = (odlen > maxlen) ? odlen : maxlen;
|
|
|
|
if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#endif /* not EXTERNAL_TEST */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* User-defined triangle evaluation routine ends here *********/
|
|
|
|
/********* Memory allocation and program exit wrappers begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triexit(int status)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triexit(status)
|
|
int status;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
exit(status);
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
VOID *trimalloc(int size)
|
|
#else /* not ANSI_DECLARATORS */
|
|
VOID *trimalloc(size)
|
|
int size;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
VOID *memptr;
|
|
|
|
memptr = (VOID *) malloc((unsigned int) size);
|
|
if (memptr == (VOID *) NULL) {
|
|
printf("Error: Out of memory.\n");
|
|
triexit(1);
|
|
}
|
|
return(memptr);
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void trifree(VOID *memptr)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void trifree(memptr)
|
|
VOID *memptr;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
free(memptr);
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Memory allocation and program exit wrappers end here *********/
|
|
|
|
/********* User interaction routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* syntax() Print list of command line switches. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
void syntax()
|
|
{
|
|
#ifdef CDT_ONLY
|
|
#ifdef REDUCED
|
|
printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n");
|
|
#else /* not REDUCED */
|
|
printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n");
|
|
#endif /* not REDUCED */
|
|
#else /* not CDT_ONLY */
|
|
#ifdef REDUCED
|
|
printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__lQVh] input_file\n");
|
|
#else /* not REDUCED */
|
|
printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
|
|
#endif /* not REDUCED */
|
|
#endif /* not CDT_ONLY */
|
|
|
|
printf(" -p Triangulates a Planar Straight Line Graph (.poly file).\n");
|
|
#ifndef CDT_ONLY
|
|
printf(" -r Refines a previously generated mesh.\n");
|
|
printf(
|
|
" -q Quality mesh generation. A minimum angle may be specified.\n");
|
|
printf(" -a Applies a maximum triangle area constraint.\n");
|
|
printf(" -u Applies a user-defined triangle constraint.\n");
|
|
#endif /* not CDT_ONLY */
|
|
printf(
|
|
" -A Applies attributes to identify triangles in certain regions.\n");
|
|
printf(" -c Encloses the convex hull with segments.\n");
|
|
#ifndef CDT_ONLY
|
|
printf(" -D Conforming Delaunay: all triangles are truly Delaunay.\n");
|
|
#endif /* not CDT_ONLY */
|
|
/*
|
|
printf(" -w Weighted Delaunay triangulation.\n");
|
|
printf(" -W Regular triangulation (lower hull of a height field).\n");
|
|
*/
|
|
printf(" -j Jettison unused vertices from output .node file.\n");
|
|
printf(" -e Generates an edge list.\n");
|
|
printf(" -v Generates a Voronoi diagram.\n");
|
|
printf(" -n Generates a list of triangle neighbors.\n");
|
|
printf(" -g Generates an .off file for Geomview.\n");
|
|
printf(" -B Suppresses output of boundary information.\n");
|
|
printf(" -P Suppresses output of .poly file.\n");
|
|
printf(" -N Suppresses output of .node file.\n");
|
|
printf(" -E Suppresses output of .ele file.\n");
|
|
printf(" -I Suppresses mesh iteration numbers.\n");
|
|
printf(" -O Ignores holes in .poly file.\n");
|
|
printf(" -X Suppresses use of exact arithmetic.\n");
|
|
printf(" -z Numbers all items starting from zero (rather than one).\n");
|
|
printf(" -o2 Generates second-order subparametric elements.\n");
|
|
#ifndef CDT_ONLY
|
|
printf(" -Y Suppresses boundary segment splitting.\n");
|
|
printf(" -S Specifies maximum number of added Steiner points.\n");
|
|
#endif /* not CDT_ONLY */
|
|
#ifndef REDUCED
|
|
printf(" -i Uses incremental method, rather than divide-and-conquer.\n");
|
|
printf(" -F Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
|
|
#endif /* not REDUCED */
|
|
printf(" -l Uses vertical cuts only, rather than alternating cuts.\n");
|
|
#ifndef REDUCED
|
|
#ifndef CDT_ONLY
|
|
printf(
|
|
" -s Force segments into mesh by splitting (instead of using CDT).\n");
|
|
#endif /* not CDT_ONLY */
|
|
printf(" -C Check consistency of final mesh.\n");
|
|
#endif /* not REDUCED */
|
|
printf(" -Q Quiet: No terminal output except errors.\n");
|
|
printf(" -V Verbose: Detailed information on what I'm doing.\n");
|
|
printf(" -h Help: Detailed instructions for Triangle.\n");
|
|
triexit(0);
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* info() Print out complete instructions. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
void info()
|
|
{
|
|
printf("Triangle\n");
|
|
printf(
|
|
"A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
|
|
printf("Version 1.6\n\n");
|
|
printf(
|
|
"Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk\n");
|
|
printf("2360 Woolsey #H / Berkeley, California 94705-1927\n");
|
|
printf("Bugs/comments to jrs@cs.berkeley.edu\n");
|
|
printf(
|
|
"Created as part of the Quake project (tools for earthquake simulation).\n");
|
|
printf(
|
|
"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
|
|
printf("There is no warranty whatsoever. Use at your own risk.\n");
|
|
#ifdef SINGLE
|
|
printf("This executable is compiled for single precision arithmetic.\n\n\n");
|
|
#else /* not SINGLE */
|
|
printf("This executable is compiled for double precision arithmetic.\n\n\n");
|
|
#endif /* not SINGLE */
|
|
printf(
|
|
"Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
|
|
printf(
|
|
"triangulations, conforming Delaunay triangulations, Voronoi diagrams, and\n");
|
|
printf(
|
|
"high-quality triangular meshes. The latter can be generated with no small\n"
|
|
);
|
|
printf(
|
|
"or large angles, and are thus suitable for finite element analysis. If no\n"
|
|
);
|
|
printf(
|
|
"command line switch is specified, your .node input file is read, and the\n");
|
|
printf(
|
|
"Delaunay triangulation is returned in .node and .ele output files. The\n");
|
|
printf("command syntax is:\n\n");
|
|
printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
|
|
printf(
|
|
"Underscores indicate that numbers may optionally follow certain switches.\n");
|
|
printf(
|
|
"Do not leave any space between a switch and its numeric parameter.\n");
|
|
printf(
|
|
"input_file must be a file with extension .node, or extension .poly if the\n");
|
|
printf(
|
|
"-p switch is used. If -r is used, you must supply .node and .ele files,\n");
|
|
printf(
|
|
"and possibly a .poly file and an .area file as well. The formats of these\n"
|
|
);
|
|
printf("files are described below.\n\n");
|
|
printf("Command Line Switches:\n\n");
|
|
printf(
|
|
" -p Reads a Planar Straight Line Graph (.poly file), which can specify\n"
|
|
);
|
|
printf(
|
|
" vertices, segments, holes, regional attributes, and regional area\n");
|
|
printf(
|
|
" constraints. Generates a constrained Delaunay triangulation (CDT)\n"
|
|
);
|
|
printf(
|
|
" fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n");
|
|
printf(
|
|
" constrained Delaunay triangulation (CCDT). If you want a truly\n");
|
|
printf(
|
|
" Delaunay (not just constrained Delaunay) triangulation, use -D as\n");
|
|
printf(
|
|
" well. When -p is not used, Triangle reads a .node file by default.\n"
|
|
);
|
|
printf(
|
|
" -r Refines a previously generated mesh. The mesh is read from a .node\n"
|
|
);
|
|
printf(
|
|
" file and an .ele file. If -p is also used, a .poly file is read\n");
|
|
printf(
|
|
" and used to constrain segments in the mesh. If -a is also used\n");
|
|
printf(
|
|
" (with no number following), an .area file is read and used to\n");
|
|
printf(
|
|
" impose area constraints on the mesh. Further details on refinement\n"
|
|
);
|
|
printf(" appear below.\n");
|
|
printf(
|
|
" -q Quality mesh generation by Delaunay refinement (a hybrid of Paul\n");
|
|
printf(
|
|
" Chew's and Jim Ruppert's algorithms). Adds vertices to the mesh to\n"
|
|
);
|
|
printf(
|
|
" ensure that all angles are between 20 and 140 degrees. An\n");
|
|
printf(
|
|
" alternative bound on the minimum angle, replacing 20 degrees, may\n");
|
|
printf(
|
|
" be specified after the `q'. The specified angle may include a\n");
|
|
printf(
|
|
" decimal point, but not exponential notation. Note that a bound of\n"
|
|
);
|
|
printf(
|
|
" theta degrees on the smallest angle also implies a bound of\n");
|
|
printf(
|
|
" (180 - 2 theta) on the largest angle. If the minimum angle is 28.6\n"
|
|
);
|
|
printf(
|
|
" degrees or smaller, Triangle is mathematically guaranteed to\n");
|
|
printf(
|
|
" terminate (assuming infinite precision arithmetic--Triangle may\n");
|
|
printf(
|
|
" fail to terminate if you run out of precision). In practice,\n");
|
|
printf(
|
|
" Triangle often succeeds for minimum angles up to 34 degrees. For\n");
|
|
printf(
|
|
" some meshes, however, you might need to reduce the minimum angle to\n"
|
|
);
|
|
printf(
|
|
" avoid problems associated with insufficient floating-point\n");
|
|
printf(" precision.\n");
|
|
printf(
|
|
" -a Imposes a maximum triangle area. If a number follows the `a', no\n");
|
|
printf(
|
|
" triangle is generated whose area is larger than that number. If no\n"
|
|
);
|
|
printf(
|
|
" number is specified, an .area file (if -r is used) or .poly file\n");
|
|
printf(
|
|
" (if -r is not used) specifies a set of maximum area constraints.\n");
|
|
printf(
|
|
" An .area file contains a separate area constraint for each\n");
|
|
printf(
|
|
" triangle, and is useful for refining a finite element mesh based on\n"
|
|
);
|
|
printf(
|
|
" a posteriori error estimates. A .poly file can optionally contain\n"
|
|
);
|
|
printf(
|
|
" an area constraint for each segment-bounded region, thereby\n");
|
|
printf(
|
|
" controlling triangle densities in a first triangulation of a PSLG.\n"
|
|
);
|
|
printf(
|
|
" You can impose both a fixed area constraint and a varying area\n");
|
|
printf(
|
|
" constraint by invoking the -a switch twice, once with and once\n");
|
|
printf(
|
|
" without a number following. Each area specified may include a\n");
|
|
printf(" decimal point.\n");
|
|
printf(
|
|
" -u Imposes a user-defined constraint on triangle size. There are two\n"
|
|
);
|
|
printf(
|
|
" ways to use this feature. One is to edit the triunsuitable()\n");
|
|
printf(
|
|
" procedure in triangle.c to encode any constraint you like, then\n");
|
|
printf(
|
|
" recompile Triangle. The other is to compile triangle.c with the\n");
|
|
printf(
|
|
" EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n");
|
|
printf(
|
|
" link Triangle with a separate object file that implements\n");
|
|
printf(
|
|
" triunsuitable(). In either case, the -u switch causes the user-\n");
|
|
printf(" defined test to be applied to every triangle.\n");
|
|
printf(
|
|
" -A Assigns an additional floating-point attribute to each triangle\n");
|
|
printf(
|
|
" that identifies what segment-bounded region each triangle belongs\n");
|
|
printf(
|
|
" to. Attributes are assigned to regions by the .poly file. If a\n");
|
|
printf(
|
|
" region is not explicitly marked by the .poly file, triangles in\n");
|
|
printf(
|
|
" that region are assigned an attribute of zero. The -A switch has\n");
|
|
printf(
|
|
" an effect only when the -p switch is used and the -r switch is not.\n"
|
|
);
|
|
printf(
|
|
" -c Creates segments on the convex hull of the triangulation. If you\n");
|
|
printf(
|
|
" are triangulating a vertex set, this switch causes a .poly file to\n"
|
|
);
|
|
printf(
|
|
" be written, containing all edges of the convex hull. If you are\n");
|
|
printf(
|
|
" triangulating a PSLG, this switch specifies that the whole convex\n");
|
|
printf(
|
|
" hull of the PSLG should be triangulated, regardless of what\n");
|
|
printf(
|
|
" segments the PSLG has. If you do not use this switch when\n");
|
|
printf(
|
|
" triangulating a PSLG, Triangle assumes that you have identified the\n"
|
|
);
|
|
printf(
|
|
" region to be triangulated by surrounding it with segments of the\n");
|
|
printf(
|
|
" input PSLG. Beware: if you are not careful, this switch can cause\n"
|
|
);
|
|
printf(
|
|
" the introduction of an extremely thin angle between a PSLG segment\n"
|
|
);
|
|
printf(
|
|
" and a convex hull segment, which can cause overrefinement (and\n");
|
|
printf(
|
|
" possibly failure if Triangle runs out of precision). If you are\n");
|
|
printf(
|
|
" refining a mesh, the -c switch works differently: it causes a\n");
|
|
printf(
|
|
" .poly file to be written containing the boundary edges of the mesh\n"
|
|
);
|
|
printf(" (useful if no .poly file was read).\n");
|
|
printf(
|
|
" -D Conforming Delaunay triangulation: use this switch if you want to\n"
|
|
);
|
|
printf(
|
|
" ensure that all the triangles in the mesh are Delaunay, and not\n");
|
|
printf(
|
|
" merely constrained Delaunay; or if you want to ensure that all the\n"
|
|
);
|
|
printf(
|
|
" Voronoi vertices lie within the triangulation. (Some finite volume\n"
|
|
);
|
|
printf(
|
|
" methods have this requirement.) This switch invokes Ruppert's\n");
|
|
printf(
|
|
" original algorithm, which splits every subsegment whose diametral\n");
|
|
printf(
|
|
" circle is encroached. It usually increases the number of vertices\n"
|
|
);
|
|
printf(" and triangles.\n");
|
|
printf(
|
|
" -j Jettisons vertices that are not part of the final triangulation\n");
|
|
printf(
|
|
" from the output .node file. By default, Triangle copies all\n");
|
|
printf(
|
|
" vertices in the input .node file to the output .node file, in the\n");
|
|
printf(
|
|
" same order, so their indices do not change. The -j switch prevents\n"
|
|
);
|
|
printf(
|
|
" duplicated input vertices, or vertices `eaten' by holes, from\n");
|
|
printf(
|
|
" appearing in the output .node file. Thus, if two input vertices\n");
|
|
printf(
|
|
" have exactly the same coordinates, only the first appears in the\n");
|
|
printf(
|
|
" output. If any vertices are jettisoned, the vertex numbering in\n");
|
|
printf(
|
|
" the output .node file differs from that of the input .node file.\n");
|
|
printf(
|
|
" -e Outputs (to an .edge file) a list of edges of the triangulation.\n");
|
|
printf(
|
|
" -v Outputs the Voronoi diagram associated with the triangulation.\n");
|
|
printf(
|
|
" Does not attempt to detect degeneracies, so some Voronoi vertices\n");
|
|
printf(
|
|
" may be duplicated. See the discussion of Voronoi diagrams below.\n");
|
|
printf(
|
|
" -n Outputs (to a .neigh file) a list of triangles neighboring each\n");
|
|
printf(" triangle.\n");
|
|
printf(
|
|
" -g Outputs the mesh to an Object File Format (.off) file, suitable for\n"
|
|
);
|
|
printf(" viewing with the Geometry Center's Geomview package.\n");
|
|
printf(
|
|
" -B No boundary markers in the output .node, .poly, and .edge output\n");
|
|
printf(
|
|
" files. See the detailed discussion of boundary markers below.\n");
|
|
printf(
|
|
" -P No output .poly file. Saves disk space, but you lose the ability\n");
|
|
printf(
|
|
" to maintain constraining segments on later refinements of the mesh.\n"
|
|
);
|
|
printf(" -N No output .node file.\n");
|
|
printf(" -E No output .ele file.\n");
|
|
printf(
|
|
" -I No iteration numbers. Suppresses the output of .node and .poly\n");
|
|
printf(
|
|
" files, so your input files won't be overwritten. (If your input is\n"
|
|
);
|
|
printf(
|
|
" a .poly file only, a .node file is written.) Cannot be used with\n");
|
|
printf(
|
|
" the -r switch, because that would overwrite your input .ele file.\n");
|
|
printf(
|
|
" Shouldn't be used with the -q, -a, -u, or -s switch if you are\n");
|
|
printf(
|
|
" using a .node file for input, because no .node file is written, so\n"
|
|
);
|
|
printf(" there is no record of any added Steiner points.\n");
|
|
printf(" -O No holes. Ignores the holes in the .poly file.\n");
|
|
printf(
|
|
" -X No exact arithmetic. Normally, Triangle uses exact floating-point\n"
|
|
);
|
|
printf(
|
|
" arithmetic for certain tests if it thinks the inexact tests are not\n"
|
|
);
|
|
printf(
|
|
" accurate enough. Exact arithmetic ensures the robustness of the\n");
|
|
printf(
|
|
" triangulation algorithms, despite floating-point roundoff error.\n");
|
|
printf(
|
|
" Disabling exact arithmetic with the -X switch causes a small\n");
|
|
printf(
|
|
" improvement in speed and creates the possibility that Triangle will\n"
|
|
);
|
|
printf(" fail to produce a valid mesh. Not recommended.\n");
|
|
printf(
|
|
" -z Numbers all items starting from zero (rather than one). Note that\n"
|
|
);
|
|
printf(
|
|
" this switch is normally overridden by the value used to number the\n"
|
|
);
|
|
printf(
|
|
" first vertex of the input .node or .poly file. However, this\n");
|
|
printf(
|
|
" switch is useful when calling Triangle from another program.\n");
|
|
printf(
|
|
" -o2 Generates second-order subparametric elements with six nodes each.\n"
|
|
);
|
|
printf(
|
|
" -Y No new vertices on the boundary. This switch is useful when the\n");
|
|
printf(
|
|
" mesh boundary must be preserved so that it conforms to some\n");
|
|
printf(
|
|
" adjacent mesh. Be forewarned that you will probably sacrifice much\n"
|
|
);
|
|
printf(
|
|
" of the quality of the mesh; Triangle will try, but the resulting\n");
|
|
printf(
|
|
" mesh may contain poorly shaped triangles. Works well if all the\n");
|
|
printf(
|
|
" boundary vertices are closely spaced. Specify this switch twice\n");
|
|
printf(
|
|
" (`-YY') to prevent all segment splitting, including internal\n");
|
|
printf(" boundaries.\n");
|
|
printf(
|
|
" -S Specifies the maximum number of Steiner points (vertices that are\n");
|
|
printf(
|
|
" not in the input, but are added to meet the constraints on minimum\n"
|
|
);
|
|
printf(
|
|
" angle and maximum area). The default is to allow an unlimited\n");
|
|
printf(
|
|
" number. If you specify this switch with no number after it,\n");
|
|
printf(
|
|
" the limit is set to zero. Triangle always adds vertices at segment\n"
|
|
);
|
|
printf(
|
|
" intersections, even if it needs to use more vertices than the limit\n"
|
|
);
|
|
printf(
|
|
" you set. When Triangle inserts segments by splitting (-s), it\n");
|
|
printf(
|
|
" always adds enough vertices to ensure that all the segments of the\n"
|
|
);
|
|
printf(" PLSG are recovered, ignoring the limit if necessary.\n");
|
|
printf(
|
|
" -i Uses an incremental rather than a divide-and-conquer algorithm to\n");
|
|
printf(
|
|
" construct a Delaunay triangulation. Try it if the divide-and-\n");
|
|
printf(" conquer algorithm fails.\n");
|
|
printf(
|
|
" -F Uses Steven Fortune's sweepline algorithm to construct a Delaunay\n");
|
|
printf(
|
|
" triangulation. Warning: does not use exact arithmetic for all\n");
|
|
printf(" calculations. An exact result is not guaranteed.\n");
|
|
printf(
|
|
" -l Uses only vertical cuts in the divide-and-conquer algorithm. By\n");
|
|
printf(
|
|
" default, Triangle alternates between vertical and horizontal cuts,\n"
|
|
);
|
|
printf(
|
|
" which usually improve the speed except with vertex sets that are\n");
|
|
printf(
|
|
" small or short and wide. This switch is primarily of theoretical\n");
|
|
printf(" interest.\n");
|
|
printf(
|
|
" -s Specifies that segments should be forced into the triangulation by\n"
|
|
);
|
|
printf(
|
|
" recursively splitting them at their midpoints, rather than by\n");
|
|
printf(
|
|
" generating a constrained Delaunay triangulation. Segment splitting\n"
|
|
);
|
|
printf(
|
|
" is true to Ruppert's original algorithm, but can create needlessly\n"
|
|
);
|
|
printf(
|
|
" small triangles. This switch is primarily of theoretical interest.\n"
|
|
);
|
|
printf(
|
|
" -C Check the consistency of the final mesh. Uses exact arithmetic for\n"
|
|
);
|
|
printf(
|
|
" checking, even if the -X switch is used. Useful if you suspect\n");
|
|
printf(" Triangle is buggy.\n");
|
|
printf(
|
|
" -Q Quiet: Suppresses all explanation of what Triangle is doing,\n");
|
|
printf(" unless an error occurs.\n");
|
|
printf(
|
|
" -V Verbose: Gives detailed information about what Triangle is doing.\n"
|
|
);
|
|
printf(
|
|
" Add more `V's for increasing amount of detail. `-V' is most\n");
|
|
printf(
|
|
" useful; itgives information on algorithmic progress and much more\n");
|
|
printf(
|
|
" detailed statistics. `-VV' gives vertex-by-vertex details, and\n");
|
|
printf(
|
|
" prints so much that Triangle runs much more slowly. `-VVVV' gives\n"
|
|
);
|
|
printf(" information only a debugger could love.\n");
|
|
printf(" -h Help: Displays these instructions.\n");
|
|
printf("\n");
|
|
printf("Definitions:\n");
|
|
printf("\n");
|
|
printf(
|
|
" A Delaunay triangulation of a vertex set is a triangulation whose\n");
|
|
printf(
|
|
" vertices are the vertex set, that covers the convex hull of the vertex\n");
|
|
printf(
|
|
" set. A Delaunay triangulation has the property that no vertex lies\n");
|
|
printf(
|
|
" inside the circumscribing circle (circle that passes through all three\n");
|
|
printf(" vertices) of any triangle in the triangulation.\n\n");
|
|
printf(
|
|
" A Voronoi diagram of a vertex set is a subdivision of the plane into\n");
|
|
printf(
|
|
" polygonal cells (some of which may be unbounded, meaning infinitely\n");
|
|
printf(
|
|
" large), where each cell is the set of points in the plane that are closer\n"
|
|
);
|
|
printf(
|
|
" to some input vertex than to any other input vertex. The Voronoi diagram\n"
|
|
);
|
|
printf(" is a geometric dual of the Delaunay triangulation.\n\n");
|
|
printf(
|
|
" A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n");
|
|
printf(
|
|
" Segments are simply edges, whose endpoints are all vertices in the PSLG.\n"
|
|
);
|
|
printf(
|
|
" Segments may intersect each other only at their endpoints. The file\n");
|
|
printf(" format for PSLGs (.poly files) is described below.\n\n");
|
|
printf(
|
|
" A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n");
|
|
printf(
|
|
" Delaunay triangulation, but each PSLG segment is present as a single edge\n"
|
|
);
|
|
printf(
|
|
" of the CDT. (A constrained Delaunay triangulation is not truly a\n");
|
|
printf(
|
|
" Delaunay triangulation, because some of its triangles might not be\n");
|
|
printf(
|
|
" Delaunay.) By definition, a CDT does not have any vertices other than\n");
|
|
printf(
|
|
" those specified in the input PSLG. Depending on context, a CDT might\n");
|
|
printf(
|
|
" cover the convex hull of the PSLG, or it might cover only a segment-\n");
|
|
printf(" bounded region (e.g. a polygon).\n\n");
|
|
printf(
|
|
" A conforming Delaunay triangulation of a PSLG is a triangulation in which\n"
|
|
);
|
|
printf(
|
|
" each triangle is truly Delaunay, and each PSLG segment is represented by\n"
|
|
);
|
|
printf(
|
|
" a linear contiguous sequence of edges of the triangulation. New vertices\n"
|
|
);
|
|
printf(
|
|
" (not part of the PSLG) may appear, and each input segment may have been\n");
|
|
printf(
|
|
" subdivided into shorter edges (subsegments) by these additional vertices.\n"
|
|
);
|
|
printf(
|
|
" The new vertices are frequently necessary to maintain the Delaunay\n");
|
|
printf(" property while ensuring that every segment is represented.\n\n");
|
|
printf(
|
|
" A conforming constrained Delaunay triangulation (CCDT) of a PSLG is a\n");
|
|
printf(
|
|
" triangulation of a PSLG whose triangles are constrained Delaunay. New\n");
|
|
printf(" vertices may appear, and input segments may be subdivided into\n");
|
|
printf(
|
|
" subsegments, but not to guarantee that segments are respected; rather, to\n"
|
|
);
|
|
printf(
|
|
" improve the quality of the triangles. The high-quality meshes produced\n");
|
|
printf(
|
|
" by the -q switch are usually CCDTs, but can be made conforming Delaunay\n");
|
|
printf(" with the -D switch.\n\n");
|
|
printf("File Formats:\n\n");
|
|
printf(
|
|
" All files may contain comments prefixed by the character '#'. Vertices,\n"
|
|
);
|
|
printf(
|
|
" triangles, edges, holes, and maximum area constraints must be numbered\n");
|
|
printf(
|
|
" consecutively, starting from either 1 or 0. Whichever you choose, all\n");
|
|
printf(
|
|
" input files must be consistent; if the vertices are numbered from 1, so\n");
|
|
printf(
|
|
" must be all other objects. Triangle automatically detects your choice\n");
|
|
printf(
|
|
" while reading the .node (or .poly) file. (When calling Triangle from\n");
|
|
printf(
|
|
" another program, use the -z switch if you wish to number objects from\n");
|
|
printf(" zero.) Examples of these file formats are given below.\n\n");
|
|
printf(" .node files:\n");
|
|
printf(
|
|
" First line: <# of vertices> <dimension (must be 2)> <# of attributes>\n"
|
|
);
|
|
printf(
|
|
" <# of boundary markers (0 or 1)>\n"
|
|
);
|
|
printf(
|
|
" Remaining lines: <vertex #> <x> <y> [attributes] [boundary marker]\n");
|
|
printf("\n");
|
|
printf(
|
|
" The attributes, which are typically floating-point values of physical\n");
|
|
printf(
|
|
" quantities (such as mass or conductivity) associated with the nodes of\n"
|
|
);
|
|
printf(
|
|
" a finite element mesh, are copied unchanged to the output mesh. If -q,\n"
|
|
);
|
|
printf(
|
|
" -a, -u, -D, or -s is selected, each new Steiner point added to the mesh\n"
|
|
);
|
|
printf(" has attributes assigned to it by linear interpolation.\n\n");
|
|
printf(
|
|
" If the fourth entry of the first line is `1', the last column of the\n");
|
|
printf(
|
|
" remainder of the file is assumed to contain boundary markers. Boundary\n"
|
|
);
|
|
printf(
|
|
" markers are used to identify boundary vertices and vertices resting on\n"
|
|
);
|
|
printf(
|
|
" PSLG segments; a complete description appears in a section below. The\n"
|
|
);
|
|
printf(
|
|
" .node file produced by Triangle contains boundary markers in the last\n");
|
|
printf(" column unless they are suppressed by the -B switch.\n\n");
|
|
printf(" .ele files:\n");
|
|
printf(
|
|
" First line: <# of triangles> <nodes per triangle> <# of attributes>\n");
|
|
printf(
|
|
" Remaining lines: <triangle #> <node> <node> <node> ... [attributes]\n");
|
|
printf("\n");
|
|
printf(
|
|
" Nodes are indices into the corresponding .node file. The first three\n");
|
|
printf(
|
|
" nodes are the corner vertices, and are listed in counterclockwise order\n"
|
|
);
|
|
printf(
|
|
" around each triangle. (The remaining nodes, if any, depend on the type\n"
|
|
);
|
|
printf(" of finite element used.)\n\n");
|
|
printf(
|
|
" The attributes are just like those of .node files. Because there is no\n"
|
|
);
|
|
printf(
|
|
" simple mapping from input to output triangles, Triangle attempts to\n");
|
|
printf(
|
|
" interpolate attributes, and may cause a lot of diffusion of attributes\n"
|
|
);
|
|
printf(
|
|
" among nearby triangles as the triangulation is refined. Attributes do\n"
|
|
);
|
|
printf(" not diffuse across segments, so attributes used to identify\n");
|
|
printf(" segment-bounded regions remain intact.\n\n");
|
|
printf(
|
|
" In .ele files produced by Triangle, each triangular element has three\n");
|
|
printf(
|
|
" nodes (vertices) unless the -o2 switch is used, in which case\n");
|
|
printf(
|
|
" subparametric quadratic elements with six nodes each are generated.\n");
|
|
printf(
|
|
" The first three nodes are the corners in counterclockwise order, and\n");
|
|
printf(
|
|
" the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n");
|
|
printf(
|
|
" opposite the first, second, and third vertices, respectively.\n");
|
|
printf("\n");
|
|
printf(" .poly files:\n");
|
|
printf(
|
|
" First line: <# of vertices> <dimension (must be 2)> <# of attributes>\n"
|
|
);
|
|
printf(
|
|
" <# of boundary markers (0 or 1)>\n"
|
|
);
|
|
printf(
|
|
" Following lines: <vertex #> <x> <y> [attributes] [boundary marker]\n");
|
|
printf(" One line: <# of segments> <# of boundary markers (0 or 1)>\n");
|
|
printf(
|
|
" Following lines: <segment #> <endpoint> <endpoint> [boundary marker]\n");
|
|
printf(" One line: <# of holes>\n");
|
|
printf(" Following lines: <hole #> <x> <y>\n");
|
|
printf(
|
|
" Optional line: <# of regional attributes and/or area constraints>\n");
|
|
printf(
|
|
" Optional following lines: <region #> <x> <y> <attribute> <max area>\n");
|
|
printf("\n");
|
|
printf(
|
|
" A .poly file represents a PSLG, as well as some additional information.\n"
|
|
);
|
|
printf(
|
|
" The first section lists all the vertices, and is identical to the\n");
|
|
printf(
|
|
" format of .node files. <# of vertices> may be set to zero to indicate\n"
|
|
);
|
|
printf(
|
|
" that the vertices are listed in a separate .node file; .poly files\n");
|
|
printf(
|
|
" produced by Triangle always have this format. A vertex set represented\n"
|
|
);
|
|
printf(
|
|
" this way has the advantage that it may easily be triangulated with or\n");
|
|
printf(
|
|
" without segments (depending on whether the -p switch is invoked).\n");
|
|
printf("\n");
|
|
printf(
|
|
" The second section lists the segments. Segments are edges whose\n");
|
|
printf(
|
|
" presence in the triangulation is enforced. (Depending on the choice of\n"
|
|
);
|
|
printf(
|
|
" switches, segment might be subdivided into smaller edges). Each\n");
|
|
printf(
|
|
" segment is specified by listing the indices of its two endpoints. This\n"
|
|
);
|
|
printf(
|
|
" means that you must include its endpoints in the vertex list. Each\n");
|
|
printf(" segment, like each point, may have a boundary marker.\n\n");
|
|
printf(
|
|
" If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n"
|
|
);
|
|
printf(
|
|
" Delaunay triangulation (CDT), in which each segment appears as a single\n"
|
|
);
|
|
printf(
|
|
" edge in the triangulation. If -q, -a, -u, or -s is selected, Triangle\n"
|
|
);
|
|
printf(
|
|
" produces a conforming constrained Delaunay triangulation (CCDT), in\n");
|
|
printf(
|
|
" which segments may be subdivided into smaller edges. If -D is\n");
|
|
printf(
|
|
" selected, Triangle produces a conforming Delaunay triangulation, so\n");
|
|
printf(
|
|
" that every triangle is Delaunay, and not just constrained Delaunay.\n");
|
|
printf("\n");
|
|
printf(
|
|
" The third section lists holes (and concavities, if -c is selected) in\n");
|
|
printf(
|
|
" the triangulation. Holes are specified by identifying a point inside\n");
|
|
printf(
|
|
" each hole. After the triangulation is formed, Triangle creates holes\n");
|
|
printf(
|
|
" by eating triangles, spreading out from each hole point until its\n");
|
|
printf(
|
|
" progress is blocked by segments in the PSLG. You must be careful to\n");
|
|
printf(
|
|
" enclose each hole in segments, or your whole triangulation might be\n");
|
|
printf(
|
|
" eaten away. If the two triangles abutting a segment are eaten, the\n");
|
|
printf(
|
|
" segment itself is also eaten. Do not place a hole directly on a\n");
|
|
printf(" segment; if you do, Triangle chooses one side of the segment\n");
|
|
printf(" arbitrarily.\n\n");
|
|
printf(
|
|
" The optional fourth section lists regional attributes (to be assigned\n");
|
|
printf(
|
|
" to all triangles in a region) and regional constraints on the maximum\n");
|
|
printf(
|
|
" triangle area. Triangle reads this section only if the -A switch is\n");
|
|
printf(
|
|
" used or the -a switch is used without a number following it, and the -r\n"
|
|
);
|
|
printf(
|
|
" switch is not used. Regional attributes and area constraints are\n");
|
|
printf(
|
|
" propagated in the same manner as holes: you specify a point for each\n");
|
|
printf(
|
|
" attribute and/or constraint, and the attribute and/or constraint\n");
|
|
printf(
|
|
" affects the whole region (bounded by segments) containing the point.\n");
|
|
printf(
|
|
" If two values are written on a line after the x and y coordinate, the\n");
|
|
printf(
|
|
" first such value is assumed to be a regional attribute (but is only\n");
|
|
printf(
|
|
" applied if the -A switch is selected), and the second value is assumed\n"
|
|
);
|
|
printf(
|
|
" to be a regional area constraint (but is only applied if the -a switch\n"
|
|
);
|
|
printf(
|
|
" is selected). You may specify just one value after the coordinates,\n");
|
|
printf(
|
|
" which can serve as both an attribute and an area constraint, depending\n"
|
|
);
|
|
printf(
|
|
" on the choice of switches. If you are using the -A and -a switches\n");
|
|
printf(
|
|
" simultaneously and wish to assign an attribute to some region without\n");
|
|
printf(" imposing an area constraint, use a negative maximum area.\n\n");
|
|
printf(
|
|
" When a triangulation is created from a .poly file, you must either\n");
|
|
printf(
|
|
" enclose the entire region to be triangulated in PSLG segments, or\n");
|
|
printf(
|
|
" use the -c switch, which automatically creates extra segments that\n");
|
|
printf(
|
|
" enclose the convex hull of the PSLG. If you do not use the -c switch,\n"
|
|
);
|
|
printf(
|
|
" Triangle eats all triangles that are not enclosed by segments; if you\n");
|
|
printf(
|
|
" are not careful, your whole triangulation may be eaten away. If you do\n"
|
|
);
|
|
printf(
|
|
" use the -c switch, you can still produce concavities by the appropriate\n"
|
|
);
|
|
printf(
|
|
" placement of holes just inside the boundary of the convex hull.\n");
|
|
printf("\n");
|
|
printf(
|
|
" An ideal PSLG has no intersecting segments, nor any vertices that lie\n");
|
|
printf(
|
|
" upon segments (except, of course, the endpoints of each segment). You\n"
|
|
);
|
|
printf(
|
|
" aren't required to make your .poly files ideal, but you should be aware\n"
|
|
);
|
|
printf(
|
|
" of what can go wrong. Segment intersections are relatively safe--\n");
|
|
printf(
|
|
" Triangle calculates the intersection points for you and adds them to\n");
|
|
printf(
|
|
" the triangulation--as long as your machine's floating-point precision\n");
|
|
printf(
|
|
" doesn't become a problem. You are tempting the fates if you have three\n"
|
|
);
|
|
printf(
|
|
" segments that cross at the same location, and expect Triangle to figure\n"
|
|
);
|
|
printf(
|
|
" out where the intersection point is. Thanks to floating-point roundoff\n"
|
|
);
|
|
printf(
|
|
" error, Triangle will probably decide that the three segments intersect\n"
|
|
);
|
|
printf(
|
|
" at three different points, and you will find a minuscule triangle in\n");
|
|
printf(
|
|
" your output--unless Triangle tries to refine the tiny triangle, uses\n");
|
|
printf(
|
|
" up the last bit of machine precision, and fails to terminate at all.\n");
|
|
printf(
|
|
" You're better off putting the intersection point in the input files,\n");
|
|
printf(
|
|
" and manually breaking up each segment into two. Similarly, if you\n");
|
|
printf(
|
|
" place a vertex at the middle of a segment, and hope that Triangle will\n"
|
|
);
|
|
printf(
|
|
" break up the segment at that vertex, you might get lucky. On the other\n"
|
|
);
|
|
printf(
|
|
" hand, Triangle might decide that the vertex doesn't lie precisely on\n");
|
|
printf(
|
|
" the segment, and you'll have a needle-sharp triangle in your output--or\n"
|
|
);
|
|
printf(" a lot of tiny triangles if you're generating a quality mesh.\n");
|
|
printf("\n");
|
|
printf(
|
|
" When Triangle reads a .poly file, it also writes a .poly file, which\n");
|
|
printf(
|
|
" includes all the subsegments--the edges that are parts of input\n");
|
|
printf(
|
|
" segments. If the -c switch is used, the output .poly file also\n");
|
|
printf(
|
|
" includes all of the edges on the convex hull. Hence, the output .poly\n"
|
|
);
|
|
printf(
|
|
" file is useful for finding edges associated with input segments and for\n"
|
|
);
|
|
printf(
|
|
" setting boundary conditions in finite element simulations. Moreover,\n");
|
|
printf(
|
|
" you will need the output .poly file if you plan to refine the output\n");
|
|
printf(
|
|
" mesh, and don't want segments to be missing in later triangulations.\n");
|
|
printf("\n");
|
|
printf(" .area files:\n");
|
|
printf(" First line: <# of triangles>\n");
|
|
printf(" Following lines: <triangle #> <maximum area>\n");
|
|
printf("\n");
|
|
printf(
|
|
" An .area file associates with each triangle a maximum area that is used\n"
|
|
);
|
|
printf(
|
|
" for mesh refinement. As with other file formats, every triangle must\n");
|
|
printf(
|
|
" be represented, and the triangles must be numbered consecutively. A\n");
|
|
printf(
|
|
" triangle may be left unconstrained by assigning it a negative maximum\n");
|
|
printf(" area.\n\n");
|
|
printf(" .edge files:\n");
|
|
printf(" First line: <# of edges> <# of boundary markers (0 or 1)>\n");
|
|
printf(
|
|
" Following lines: <edge #> <endpoint> <endpoint> [boundary marker]\n");
|
|
printf("\n");
|
|
printf(
|
|
" Endpoints are indices into the corresponding .node file. Triangle can\n"
|
|
);
|
|
printf(
|
|
" produce .edge files (use the -e switch), but cannot read them. The\n");
|
|
printf(
|
|
" optional column of boundary markers is suppressed by the -B switch.\n");
|
|
printf("\n");
|
|
printf(
|
|
" In Voronoi diagrams, one also finds a special kind of edge that is an\n");
|
|
printf(
|
|
" infinite ray with only one endpoint. For these edges, a different\n");
|
|
printf(" format is used:\n\n");
|
|
printf(" <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
|
|
printf(
|
|
" The `direction' is a floating-point vector that indicates the direction\n"
|
|
);
|
|
printf(" of the infinite ray.\n\n");
|
|
printf(" .neigh files:\n");
|
|
printf(
|
|
" First line: <# of triangles> <# of neighbors per triangle (always 3)>\n"
|
|
);
|
|
printf(
|
|
" Following lines: <triangle #> <neighbor> <neighbor> <neighbor>\n");
|
|
printf("\n");
|
|
printf(
|
|
" Neighbors are indices into the corresponding .ele file. An index of -1\n"
|
|
);
|
|
printf(
|
|
" indicates no neighbor (because the triangle is on an exterior\n");
|
|
printf(
|
|
" boundary). The first neighbor of triangle i is opposite the first\n");
|
|
printf(" corner of triangle i, and so on.\n\n");
|
|
printf(
|
|
" Triangle can produce .neigh files (use the -n switch), but cannot read\n"
|
|
);
|
|
printf(" them.\n\n");
|
|
printf("Boundary Markers:\n\n");
|
|
printf(
|
|
" Boundary markers are tags used mainly to identify which output vertices\n");
|
|
printf(
|
|
" and edges are associated with which PSLG segment, and to identify which\n");
|
|
printf(
|
|
" vertices and edges occur on a boundary of the triangulation. A common\n");
|
|
printf(
|
|
" use is to determine where boundary conditions should be applied to a\n");
|
|
printf(
|
|
" finite element mesh. You can prevent boundary markers from being written\n"
|
|
);
|
|
printf(" into files produced by Triangle by using the -B switch.\n\n");
|
|
printf(
|
|
" The boundary marker associated with each segment in an output .poly file\n"
|
|
);
|
|
printf(" and each edge in an output .edge file is chosen as follows:\n");
|
|
printf(
|
|
" - If an output edge is part or all of a PSLG segment with a nonzero\n");
|
|
printf(
|
|
" boundary marker, then the edge is assigned the same marker.\n");
|
|
printf(
|
|
" - Otherwise, if the edge lies on a boundary of the triangulation\n");
|
|
printf(
|
|
" (even the boundary of a hole), then the edge is assigned the marker\n");
|
|
printf(" one (1).\n");
|
|
printf(" - Otherwise, the edge is assigned the marker zero (0).\n");
|
|
printf(
|
|
" The boundary marker associated with each vertex in an output .node file\n");
|
|
printf(" is chosen as follows:\n");
|
|
printf(
|
|
" - If a vertex is assigned a nonzero boundary marker in the input file,\n"
|
|
);
|
|
printf(
|
|
" then it is assigned the same marker in the output .node file.\n");
|
|
printf(
|
|
" - Otherwise, if the vertex lies on a PSLG segment (even if it is an\n");
|
|
printf(
|
|
" endpoint of the segment) with a nonzero boundary marker, then the\n");
|
|
printf(
|
|
" vertex is assigned the same marker. If the vertex lies on several\n");
|
|
printf(" such segments, one of the markers is chosen arbitrarily.\n");
|
|
printf(
|
|
" - Otherwise, if the vertex occurs on a boundary of the triangulation,\n");
|
|
printf(" then the vertex is assigned the marker one (1).\n");
|
|
printf(" - Otherwise, the vertex is assigned the marker zero (0).\n");
|
|
printf("\n");
|
|
printf(
|
|
" If you want Triangle to determine for you which vertices and edges are on\n"
|
|
);
|
|
printf(
|
|
" the boundary, assign them the boundary marker zero (or use no markers at\n"
|
|
);
|
|
printf(
|
|
" all) in your input files. In the output files, all boundary vertices,\n");
|
|
printf(" edges, and segments will be assigned the value one.\n\n");
|
|
printf("Triangulation Iteration Numbers:\n\n");
|
|
printf(
|
|
" Because Triangle can read and refine its own triangulations, input\n");
|
|
printf(
|
|
" and output files have iteration numbers. For instance, Triangle might\n");
|
|
printf(
|
|
" read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
|
|
printf(
|
|
" triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
|
|
printf(" mesh.4.poly. Files with no iteration number are treated as if\n");
|
|
printf(
|
|
" their iteration number is zero; hence, Triangle might read the file\n");
|
|
printf(
|
|
" points.node, triangulate it, and produce the files points.1.node and\n");
|
|
printf(" points.1.ele.\n\n");
|
|
printf(
|
|
" Iteration numbers allow you to create a sequence of successively finer\n");
|
|
printf(
|
|
" meshes suitable for multigrid methods. They also allow you to produce a\n"
|
|
);
|
|
printf(
|
|
" sequence of meshes using error estimate-driven mesh refinement.\n");
|
|
printf("\n");
|
|
printf(
|
|
" If you're not using refinement or quality meshing, and you don't like\n");
|
|
printf(
|
|
" iteration numbers, use the -I switch to disable them. This switch also\n");
|
|
printf(
|
|
" disables output of .node and .poly files to prevent your input files from\n"
|
|
);
|
|
printf(
|
|
" being overwritten. (If the input is a .poly file that contains its own\n");
|
|
printf(
|
|
" points, a .node file is written. This can be quite convenient for\n");
|
|
printf(" computing CDTs or quality meshes.)\n\n");
|
|
printf("Examples of How to Use Triangle:\n\n");
|
|
printf(
|
|
" `triangle dots' reads vertices from dots.node, and writes their Delaunay\n"
|
|
);
|
|
printf(
|
|
" triangulation to dots.1.node and dots.1.ele. (dots.1.node is identical\n");
|
|
printf(
|
|
" to dots.node.) `triangle -I dots' writes the triangulation to dots.ele\n");
|
|
printf(
|
|
" instead. (No additional .node file is needed, so none is written.)\n");
|
|
printf("\n");
|
|
printf(
|
|
" `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n");
|
|
printf(
|
|
" object.1.node, if the vertices are omitted from object.1.poly) and writes\n"
|
|
);
|
|
printf(
|
|
" its constrained Delaunay triangulation to object.2.node and object.2.ele.\n"
|
|
);
|
|
printf(
|
|
" The segments are copied to object.2.poly, and all edges are written to\n");
|
|
printf(" object.2.edge.\n\n");
|
|
printf(
|
|
" `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n"
|
|
);
|
|
printf(
|
|
" object.node), generates a mesh whose angles are all between 31.5 and 117\n"
|
|
);
|
|
printf(
|
|
" degrees and whose triangles all have areas of 0.1 or less, and writes the\n"
|
|
);
|
|
printf(
|
|
" mesh to object.1.node and object.1.ele. Each segment may be broken up\n");
|
|
printf(" into multiple subsegments; these are written to object.1.poly.\n");
|
|
printf("\n");
|
|
printf(
|
|
" Here is a sample file `box.poly' describing a square with a square hole:\n"
|
|
);
|
|
printf("\n");
|
|
printf(
|
|
" # A box with eight vertices in 2D, no attributes, one boundary marker.\n"
|
|
);
|
|
printf(" 8 2 0 1\n");
|
|
printf(" # Outer box has these vertices:\n");
|
|
printf(" 1 0 0 0\n");
|
|
printf(" 2 0 3 0\n");
|
|
printf(" 3 3 0 0\n");
|
|
printf(" 4 3 3 33 # A special marker for this vertex.\n");
|
|
printf(" # Inner square has these vertices:\n");
|
|
printf(" 5 1 1 0\n");
|
|
printf(" 6 1 2 0\n");
|
|
printf(" 7 2 1 0\n");
|
|
printf(" 8 2 2 0\n");
|
|
printf(" # Five segments with boundary markers.\n");
|
|
printf(" 5 1\n");
|
|
printf(" 1 1 2 5 # Left side of outer box.\n");
|
|
printf(" # Square hole has these segments:\n");
|
|
printf(" 2 5 7 0\n");
|
|
printf(" 3 7 8 0\n");
|
|
printf(" 4 8 6 10\n");
|
|
printf(" 5 6 5 0\n");
|
|
printf(" # One hole in the middle of the inner square.\n");
|
|
printf(" 1\n");
|
|
printf(" 1 1.5 1.5\n");
|
|
printf("\n");
|
|
printf(
|
|
" Note that some segments are missing from the outer square, so you must\n");
|
|
printf(
|
|
" use the `-c' switch. After `triangle -pqc box.poly', here is the output\n"
|
|
);
|
|
printf(
|
|
" file `box.1.node', with twelve vertices. The last four vertices were\n");
|
|
printf(
|
|
" added to meet the angle constraint. Vertices 1, 2, and 9 have markers\n");
|
|
printf(
|
|
" from segment 1. Vertices 6 and 8 have markers from segment 4. All the\n");
|
|
printf(
|
|
" other vertices but 4 have been marked to indicate that they lie on a\n");
|
|
printf(" boundary.\n\n");
|
|
printf(" 12 2 0 1\n");
|
|
printf(" 1 0 0 5\n");
|
|
printf(" 2 0 3 5\n");
|
|
printf(" 3 3 0 1\n");
|
|
printf(" 4 3 3 33\n");
|
|
printf(" 5 1 1 1\n");
|
|
printf(" 6 1 2 10\n");
|
|
printf(" 7 2 1 1\n");
|
|
printf(" 8 2 2 10\n");
|
|
printf(" 9 0 1.5 5\n");
|
|
printf(" 10 1.5 0 1\n");
|
|
printf(" 11 3 1.5 1\n");
|
|
printf(" 12 1.5 3 1\n");
|
|
printf(" # Generated by triangle -pqc box.poly\n");
|
|
printf("\n");
|
|
printf(" Here is the output file `box.1.ele', with twelve triangles.\n");
|
|
printf("\n");
|
|
printf(" 12 3 0\n");
|
|
printf(" 1 5 6 9\n");
|
|
printf(" 2 10 3 7\n");
|
|
printf(" 3 6 8 12\n");
|
|
printf(" 4 9 1 5\n");
|
|
printf(" 5 6 2 9\n");
|
|
printf(" 6 7 3 11\n");
|
|
printf(" 7 11 4 8\n");
|
|
printf(" 8 7 5 10\n");
|
|
printf(" 9 12 2 6\n");
|
|
printf(" 10 8 7 11\n");
|
|
printf(" 11 5 1 10\n");
|
|
printf(" 12 8 4 12\n");
|
|
printf(" # Generated by triangle -pqc box.poly\n\n");
|
|
printf(
|
|
" Here is the output file `box.1.poly'. Note that segments have been added\n"
|
|
);
|
|
printf(
|
|
" to represent the convex hull, and some segments have been subdivided by\n");
|
|
printf(
|
|
" newly added vertices. Note also that <# of vertices> is set to zero to\n");
|
|
printf(" indicate that the vertices should be read from the .node file.\n");
|
|
printf("\n");
|
|
printf(" 0 2 0 1\n");
|
|
printf(" 12 1\n");
|
|
printf(" 1 1 9 5\n");
|
|
printf(" 2 5 7 1\n");
|
|
printf(" 3 8 7 1\n");
|
|
printf(" 4 6 8 10\n");
|
|
printf(" 5 5 6 1\n");
|
|
printf(" 6 3 10 1\n");
|
|
printf(" 7 4 11 1\n");
|
|
printf(" 8 2 12 1\n");
|
|
printf(" 9 9 2 5\n");
|
|
printf(" 10 10 1 1\n");
|
|
printf(" 11 11 3 1\n");
|
|
printf(" 12 12 4 1\n");
|
|
printf(" 1\n");
|
|
printf(" 1 1.5 1.5\n");
|
|
printf(" # Generated by triangle -pqc box.poly\n");
|
|
printf("\n");
|
|
printf("Refinement and Area Constraints:\n");
|
|
printf("\n");
|
|
printf(
|
|
" The -r switch causes a mesh (.node and .ele files) to be read and\n");
|
|
printf(
|
|
" refined. If the -p switch is also used, a .poly file is read and used to\n"
|
|
);
|
|
printf(
|
|
" specify edges that are constrained and cannot be eliminated (although\n");
|
|
printf(
|
|
" they can be subdivided into smaller edges) by the refinement process.\n");
|
|
printf("\n");
|
|
printf(
|
|
" When you refine a mesh, you generally want to impose tighter constraints.\n"
|
|
);
|
|
printf(
|
|
" One way to accomplish this is to use -q with a larger angle, or -a\n");
|
|
printf(
|
|
" followed by a smaller area than you used to generate the mesh you are\n");
|
|
printf(
|
|
" refining. Another way to do this is to create an .area file, which\n");
|
|
printf(
|
|
" specifies a maximum area for each triangle, and use the -a switch\n");
|
|
printf(
|
|
" (without a number following). Each triangle's area constraint is applied\n"
|
|
);
|
|
printf(
|
|
" to that triangle. Area constraints tend to diffuse as the mesh is\n");
|
|
printf(
|
|
" refined, so if there are large variations in area constraint between\n");
|
|
printf(
|
|
" adjacent triangles, you may not get the results you want. In that case,\n"
|
|
);
|
|
printf(
|
|
" consider instead using the -u switch and writing a C procedure that\n");
|
|
printf(" determines which triangles are too large.\n\n");
|
|
printf(
|
|
" If you are refining a mesh composed of linear (three-node) elements, the\n"
|
|
);
|
|
printf(
|
|
" output mesh contains all the nodes present in the input mesh, in the same\n"
|
|
);
|
|
printf(
|
|
" order, with new nodes added at the end of the .node file. However, the\n");
|
|
printf(
|
|
" refinement is not hierarchical: there is no guarantee that each output\n");
|
|
printf(
|
|
" element is contained in a single input element. Often, an output element\n"
|
|
);
|
|
printf(
|
|
" can overlap two or three input elements, and some input edges are not\n");
|
|
printf(
|
|
" present in the output mesh. Hence, a sequence of refined meshes forms a\n"
|
|
);
|
|
printf(
|
|
" hierarchy of nodes, but not a hierarchy of elements. If you refine a\n");
|
|
printf(
|
|
" mesh of higher-order elements, the hierarchical property applies only to\n"
|
|
);
|
|
printf(
|
|
" the nodes at the corners of an element; the midpoint nodes on each edge\n");
|
|
printf(" are discarded before the mesh is refined.\n\n");
|
|
printf(
|
|
" Maximum area constraints in .poly files operate differently from those in\n"
|
|
);
|
|
printf(
|
|
" .area files. A maximum area in a .poly file applies to the whole\n");
|
|
printf(
|
|
" (segment-bounded) region in which a point falls, whereas a maximum area\n");
|
|
printf(
|
|
" in an .area file applies to only one triangle. Area constraints in .poly\n"
|
|
);
|
|
printf(
|
|
" files are used only when a mesh is first generated, whereas area\n");
|
|
printf(
|
|
" constraints in .area files are used only to refine an existing mesh, and\n"
|
|
);
|
|
printf(
|
|
" are typically based on a posteriori error estimates resulting from a\n");
|
|
printf(" finite element simulation on that mesh.\n\n");
|
|
printf(
|
|
" `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n");
|
|
printf(
|
|
" refines the triangulation to enforce a 25 degree minimum angle, and then\n"
|
|
);
|
|
printf(
|
|
" writes the refined triangulation to object.2.node and object.2.ele.\n");
|
|
printf("\n");
|
|
printf(
|
|
" `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n"
|
|
);
|
|
printf(
|
|
" After reconstructing the mesh and its subsegments, Triangle refines the\n");
|
|
printf(
|
|
" mesh so that no triangle has area greater than 6.2, and furthermore the\n");
|
|
printf(
|
|
" triangles satisfy the maximum area constraints in z.3.area. No angle\n");
|
|
printf(
|
|
" bound is imposed at all. The output is written to z.4.node, z.4.ele, and\n"
|
|
);
|
|
printf(" z.4.poly.\n\n");
|
|
printf(
|
|
" The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
|
|
printf(
|
|
" x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
|
|
printf(" suitable for multigrid.\n\n");
|
|
printf("Convex Hulls and Mesh Boundaries:\n\n");
|
|
printf(
|
|
" If the input is a vertex set (not a PSLG), Triangle produces its convex\n");
|
|
printf(
|
|
" hull as a by-product in the output .poly file if you use the -c switch.\n");
|
|
printf(
|
|
" There are faster algorithms for finding a two-dimensional convex hull\n");
|
|
printf(" than triangulation, of course, but this one comes for free.\n\n");
|
|
printf(
|
|
" If the input is an unconstrained mesh (you are using the -r switch but\n");
|
|
printf(
|
|
" not the -p switch), Triangle produces a list of its boundary edges\n");
|
|
printf(
|
|
" (including hole boundaries) as a by-product when you use the -c switch.\n");
|
|
printf(
|
|
" If you also use the -p switch, the output .poly file contains all the\n");
|
|
printf(" segments from the input .poly file as well.\n\n");
|
|
printf("Voronoi Diagrams:\n\n");
|
|
printf(
|
|
" The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
|
|
printf(
|
|
" .v.edge. For example, `triangle -v points' reads points.node, produces\n");
|
|
printf(
|
|
" its Delaunay triangulation in points.1.node and points.1.ele, and\n");
|
|
printf(
|
|
" produces its Voronoi diagram in points.1.v.node and points.1.v.edge. The\n"
|
|
);
|
|
printf(
|
|
" .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
|
|
printf(
|
|
" file contains a list of all Voronoi edges, some of which may be infinite\n"
|
|
);
|
|
printf(
|
|
" rays. (The choice of filenames makes it easy to run the set of Voronoi\n");
|
|
printf(" vertices through Triangle, if so desired.)\n\n");
|
|
printf(
|
|
" This implementation does not use exact arithmetic to compute the Voronoi\n"
|
|
);
|
|
printf(
|
|
" vertices, and does not check whether neighboring vertices are identical.\n"
|
|
);
|
|
printf(
|
|
" Be forewarned that if the Delaunay triangulation is degenerate or\n");
|
|
printf(
|
|
" near-degenerate, the Voronoi diagram may have duplicate vertices or\n");
|
|
printf(" crossing edges.\n\n");
|
|
printf(
|
|
" The result is a valid Voronoi diagram only if Triangle's output is a true\n"
|
|
);
|
|
printf(
|
|
" Delaunay triangulation. The Voronoi output is usually meaningless (and\n");
|
|
printf(
|
|
" may contain crossing edges and other pathology) if the output is a CDT or\n"
|
|
);
|
|
printf(
|
|
" CCDT, or if it has holes or concavities. If the triangulated domain is\n");
|
|
printf(
|
|
" convex and has no holes, you can use -D switch to force Triangle to\n");
|
|
printf(
|
|
" construct a conforming Delaunay triangulation instead of a CCDT, so the\n");
|
|
printf(" Voronoi diagram will be valid.\n\n");
|
|
printf("Mesh Topology:\n\n");
|
|
printf(
|
|
" You may wish to know which triangles are adjacent to a certain Delaunay\n");
|
|
printf(
|
|
" edge in an .edge file, which Voronoi cells are adjacent to a certain\n");
|
|
printf(
|
|
" Voronoi edge in a .v.edge file, or which Voronoi cells are adjacent to\n");
|
|
printf(
|
|
" each other. All of this information can be found by cross-referencing\n");
|
|
printf(
|
|
" output files with the recollection that the Delaunay triangulation and\n");
|
|
printf(" the Voronoi diagram are planar duals.\n\n");
|
|
printf(
|
|
" Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
|
|
printf(
|
|
" the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
|
|
printf(
|
|
" wise from the Voronoi edge. Triangle j of an .ele file is the dual of\n");
|
|
printf(
|
|
" vertex j of the corresponding .v.node file. Voronoi cell k is the dual\n");
|
|
printf(" of vertex k of the corresponding .node file.\n\n");
|
|
printf(
|
|
" Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
|
|
printf(
|
|
" vertices of the corresponding Voronoi edge. If the endpoints of a\n");
|
|
printf(
|
|
" Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n"
|
|
);
|
|
printf(
|
|
" and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n"
|
|
);
|
|
printf(
|
|
" respectively. To find the Voronoi cells adjacent to a Voronoi edge, look\n"
|
|
);
|
|
printf(
|
|
" at the endpoints of the corresponding Delaunay edge. If the endpoints of\n"
|
|
);
|
|
printf(
|
|
" a Delaunay edge are input vertices 7 and 12, then Voronoi cells 7 and 12\n"
|
|
);
|
|
printf(
|
|
" adjoin the right and left sides of the corresponding Voronoi edge,\n");
|
|
printf(
|
|
" respectively. To find which Voronoi cells are adjacent to each other,\n");
|
|
printf(" just read the list of Delaunay edges.\n\n");
|
|
printf(
|
|
" Triangle does not write a list of the edges adjoining each Voronoi cell,\n"
|
|
);
|
|
printf(
|
|
" but you can reconstructed it straightforwardly. For instance, to find\n");
|
|
printf(
|
|
" all the edges of Voronoi cell 1, search the output .edge file for every\n");
|
|
printf(
|
|
" edge that has input vertex 1 as an endpoint. The corresponding dual\n");
|
|
printf(
|
|
" edges in the output .v.edge file form the boundary of Voronoi cell 1.\n");
|
|
printf("\n");
|
|
printf(
|
|
" For each Voronoi vertex, the .neigh file gives a list of the three\n");
|
|
printf(
|
|
" Voronoi vertices attached to it. You might find this more convenient\n");
|
|
printf(" than the .v.edge file.\n\n");
|
|
printf("Quadratic Elements:\n\n");
|
|
printf(
|
|
" Triangle generates meshes with subparametric quadratic elements if the\n");
|
|
printf(
|
|
" -o2 switch is specified. Quadratic elements have six nodes per element,\n"
|
|
);
|
|
printf(
|
|
" rather than three. `Subparametric' means that the edges of the triangles\n"
|
|
);
|
|
printf(
|
|
" are always straight, so that subparametric quadratic elements are\n");
|
|
printf(
|
|
" geometrically identical to linear elements, even though they can be used\n"
|
|
);
|
|
printf(
|
|
" with quadratic interpolating functions. The three extra nodes of an\n");
|
|
printf(
|
|
" element fall at the midpoints of the three edges, with the fourth, fifth,\n"
|
|
);
|
|
printf(
|
|
" and sixth nodes appearing opposite the first, second, and third corners\n");
|
|
printf(" respectively.\n\n");
|
|
printf("Domains with Small Angles:\n\n");
|
|
printf(
|
|
" If two input segments adjoin each other at a small angle, clearly the -q\n"
|
|
);
|
|
printf(
|
|
" switch cannot remove the small angle. Moreover, Triangle may have no\n");
|
|
printf(
|
|
" choice but to generate additional triangles whose smallest angles are\n");
|
|
printf(
|
|
" smaller than the specified bound. However, these triangles only appear\n");
|
|
printf(
|
|
" between input segments separated by small angles. Moreover, if you\n");
|
|
printf(
|
|
" request a minimum angle of theta degrees, Triangle will generally produce\n"
|
|
);
|
|
printf(
|
|
" no angle larger than 180 - 2 theta, even if it is forced to compromise on\n"
|
|
);
|
|
printf(" the minimum angle.\n\n");
|
|
printf("Statistics:\n\n");
|
|
printf(
|
|
" After generating a mesh, Triangle prints a count of entities in the\n");
|
|
printf(
|
|
" output mesh, including the number of vertices, triangles, edges, exterior\n"
|
|
);
|
|
printf(
|
|
" boundary edges (i.e. subsegments on the boundary of the triangulation,\n");
|
|
printf(
|
|
" including hole boundaries), interior boundary edges (i.e. subsegments of\n"
|
|
);
|
|
printf(
|
|
" input segments not on the boundary), and total subsegments. If you've\n");
|
|
printf(
|
|
" forgotten the statistics for an existing mesh, run Triangle on that mesh\n"
|
|
);
|
|
printf(
|
|
" with the -rNEP switches to read the mesh and print the statistics without\n"
|
|
);
|
|
printf(
|
|
" writing any files. Use -rpNEP if you've got a .poly file for the mesh.\n");
|
|
printf("\n");
|
|
printf(
|
|
" The -V switch produces extended statistics, including a rough estimate\n");
|
|
printf(
|
|
" of memory use, the number of calls to geometric predicates, and\n");
|
|
printf(
|
|
" histograms of the angles and the aspect ratios of the triangles in the\n");
|
|
printf(" mesh.\n\n");
|
|
printf("Exact Arithmetic:\n\n");
|
|
printf(
|
|
" Triangle uses adaptive exact arithmetic to perform what computational\n");
|
|
printf(
|
|
" geometers call the `orientation' and `incircle' tests. If the floating-\n"
|
|
);
|
|
printf(
|
|
" point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
|
|
printf(
|
|
" most workstations do), and does not use extended precision internal\n");
|
|
printf(
|
|
" floating-point registers, then your output is guaranteed to be an\n");
|
|
printf(
|
|
" absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n"
|
|
);
|
|
printf(
|
|
" error notwithstanding. The word `adaptive' implies that these arithmetic\n"
|
|
);
|
|
printf(
|
|
" routines compute the result only to the precision necessary to guarantee\n"
|
|
);
|
|
printf(
|
|
" correctness, so they are usually nearly as fast as their approximate\n");
|
|
printf(" counterparts.\n\n");
|
|
printf(
|
|
" May CPUs, including Intel x86 processors, have extended precision\n");
|
|
printf(
|
|
" floating-point registers. These must be reconfigured so their precision\n"
|
|
);
|
|
printf(
|
|
" is reduced to memory precision. Triangle does this if it is compiled\n");
|
|
printf(" correctly. See the makefile for details.\n\n");
|
|
printf(
|
|
" The exact tests can be disabled with the -X switch. On most inputs, this\n"
|
|
);
|
|
printf(
|
|
" switch reduces the computation time by about eight percent--it's not\n");
|
|
printf(
|
|
" worth the risk. There are rare difficult inputs (having many collinear\n");
|
|
printf(
|
|
" and cocircular vertices), however, for which the difference in speed\n");
|
|
printf(
|
|
" could be a factor of two. Be forewarned that these are precisely the\n");
|
|
printf(
|
|
" inputs most likely to cause errors if you use the -X switch. Hence, the\n"
|
|
);
|
|
printf(" -X switch is not recommended.\n\n");
|
|
printf(
|
|
" Unfortunately, the exact tests don't solve every numerical problem.\n");
|
|
printf(
|
|
" Exact arithmetic is not used to compute the positions of new vertices,\n");
|
|
printf(
|
|
" because the bit complexity of vertex coordinates would grow without\n");
|
|
printf(
|
|
" bound. Hence, segment intersections aren't computed exactly; in very\n");
|
|
printf(
|
|
" unusual cases, roundoff error in computing an intersection point might\n");
|
|
printf(
|
|
" actually lead to an inverted triangle and an invalid triangulation.\n");
|
|
printf(
|
|
" (This is one reason to specify your own intersection points in your .poly\n"
|
|
);
|
|
printf(
|
|
" files.) Similarly, exact arithmetic is not used to compute the vertices\n"
|
|
);
|
|
printf(" of the Voronoi diagram.\n\n");
|
|
printf(
|
|
" Another pair of problems not solved by the exact arithmetic routines is\n");
|
|
printf(
|
|
" underflow and overflow. If Triangle is compiled for double precision\n");
|
|
printf(
|
|
" arithmetic, I believe that Triangle's geometric predicates work correctly\n"
|
|
);
|
|
printf(
|
|
" if the exponent of every input coordinate falls in the range [-148, 201].\n"
|
|
);
|
|
printf(
|
|
" Underflow can silently prevent the orientation and incircle tests from\n");
|
|
printf(
|
|
" being performed exactly, while overflow typically causes a floating\n");
|
|
printf(" exception.\n\n");
|
|
printf("Calling Triangle from Another Program:\n\n");
|
|
printf(" Read the file triangle.h for details.\n\n");
|
|
printf("Troubleshooting:\n\n");
|
|
printf(" Please read this section before mailing me bugs.\n\n");
|
|
printf(" `My output mesh has no triangles!'\n\n");
|
|
printf(
|
|
" If you're using a PSLG, you've probably failed to specify a proper set\n"
|
|
);
|
|
printf(
|
|
" of bounding segments, or forgotten to use the -c switch. Or you may\n");
|
|
printf(
|
|
" have placed a hole badly, thereby eating all your triangles. To test\n");
|
|
printf(" these possibilities, try again with the -c and -O switches.\n");
|
|
printf(
|
|
" Alternatively, all your input vertices may be collinear, in which case\n"
|
|
);
|
|
printf(" you can hardly expect to triangulate them.\n\n");
|
|
printf(" `Triangle doesn't terminate, or just crashes.'\n\n");
|
|
printf(
|
|
" Bad things can happen when triangles get so small that the distance\n");
|
|
printf(
|
|
" between their vertices isn't much larger than the precision of your\n");
|
|
printf(
|
|
" machine's arithmetic. If you've compiled Triangle for single-precision\n"
|
|
);
|
|
printf(
|
|
" arithmetic, you might do better by recompiling it for double-precision.\n"
|
|
);
|
|
printf(
|
|
" Then again, you might just have to settle for more lenient constraints\n"
|
|
);
|
|
printf(
|
|
" on the minimum angle and the maximum area than you had planned.\n");
|
|
printf("\n");
|
|
printf(
|
|
" You can minimize precision problems by ensuring that the origin lies\n");
|
|
printf(
|
|
" inside your vertex set, or even inside the densest part of your\n");
|
|
printf(
|
|
" mesh. If you're triangulating an object whose x-coordinates all fall\n");
|
|
printf(
|
|
" between 6247133 and 6247134, you're not leaving much floating-point\n");
|
|
printf(" precision for Triangle to work with.\n\n");
|
|
printf(
|
|
" Precision problems can occur covertly if the input PSLG contains two\n");
|
|
printf(
|
|
" segments that meet (or intersect) at an extremely small angle, or if\n");
|
|
printf(
|
|
" such an angle is introduced by the -c switch. If you don't realize\n");
|
|
printf(
|
|
" that a tiny angle is being formed, you might never discover why\n");
|
|
printf(
|
|
" Triangle is crashing. To check for this possibility, use the -S switch\n"
|
|
);
|
|
printf(
|
|
" (with an appropriate limit on the number of Steiner points, found by\n");
|
|
printf(
|
|
" trial-and-error) to stop Triangle early, and view the output .poly file\n"
|
|
);
|
|
printf(
|
|
" with Show Me (described below). Look carefully for regions where dense\n"
|
|
);
|
|
printf(
|
|
" clusters of vertices are forming and for small angles between segments.\n"
|
|
);
|
|
printf(
|
|
" Zoom in closely, as such segments might look like a single segment from\n"
|
|
);
|
|
printf(" a distance.\n\n");
|
|
printf(
|
|
" If some of the input values are too large, Triangle may suffer a\n");
|
|
printf(
|
|
" floating exception due to overflow when attempting to perform an\n");
|
|
printf(
|
|
" orientation or incircle test. (Read the section on exact arithmetic\n");
|
|
printf(
|
|
" above.) Again, I recommend compiling Triangle for double (rather\n");
|
|
printf(" than single) precision arithmetic.\n\n");
|
|
printf(
|
|
" Unexpected problems can arise if you use quality meshing (-q, -a, or\n");
|
|
printf(
|
|
" -u) with an input that is not segment-bounded--that is, if your input\n");
|
|
printf(
|
|
" is a vertex set, or you're using the -c switch. If the convex hull of\n"
|
|
);
|
|
printf(
|
|
" your input vertices has collinear vertices on its boundary, an input\n");
|
|
printf(
|
|
" vertex that you think lies on the convex hull might actually lie just\n");
|
|
printf(
|
|
" inside the convex hull. If so, the vertex and the nearby convex hull\n");
|
|
printf(
|
|
" edge form an extremely thin triangle. When Triangle tries to refine\n");
|
|
printf(
|
|
" the mesh to enforce angle and area constraints, Triangle might generate\n"
|
|
);
|
|
printf(
|
|
" extremely tiny triangles, or it might fail because of insufficient\n");
|
|
printf(" floating-point precision.\n\n");
|
|
printf(
|
|
" `The numbering of the output vertices doesn't match the input vertices.'\n"
|
|
);
|
|
printf("\n");
|
|
printf(
|
|
" You may have had duplicate input vertices, or you may have eaten some\n");
|
|
printf(
|
|
" of your input vertices with a hole, or by placing them outside the area\n"
|
|
);
|
|
printf(
|
|
" enclosed by segments. In any case, you can solve the problem by not\n");
|
|
printf(" using the -j switch.\n\n");
|
|
printf(
|
|
" `Triangle executes without incident, but when I look at the resulting\n");
|
|
printf(
|
|
" mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
|
|
printf("\n");
|
|
printf(
|
|
" If you select the -X switch, Triangle occasionally makes mistakes due\n");
|
|
printf(
|
|
" to floating-point roundoff error. Although these errors are rare,\n");
|
|
printf(
|
|
" don't use the -X switch. If you still have problems, please report the\n"
|
|
);
|
|
printf(" bug.\n\n");
|
|
printf(
|
|
" `Triangle executes without incident, but when I look at the resulting\n");
|
|
printf(" Voronoi diagram, it has overlapping edges or other geometric\n");
|
|
printf(" inconsistencies.'\n");
|
|
printf("\n");
|
|
printf(
|
|
" If your input is a PSLG (-p), you can only expect a meaningful Voronoi\n"
|
|
);
|
|
printf(
|
|
" diagram if the domain you are triangulating is convex and free of\n");
|
|
printf(
|
|
" holes, and you use the -D switch to construct a conforming Delaunay\n");
|
|
printf(" triangulation (instead of a CDT or CCDT).\n\n");
|
|
printf(
|
|
" Strange things can happen if you've taken liberties with your PSLG. Do\n");
|
|
printf(
|
|
" you have a vertex lying in the middle of a segment? Triangle sometimes\n");
|
|
printf(
|
|
" copes poorly with that sort of thing. Do you want to lay out a collinear\n"
|
|
);
|
|
printf(
|
|
" row of evenly spaced, segment-connected vertices? Have you simply\n");
|
|
printf(
|
|
" defined one long segment connecting the leftmost vertex to the rightmost\n"
|
|
);
|
|
printf(
|
|
" vertex, and a bunch of vertices lying along it? This method occasionally\n"
|
|
);
|
|
printf(
|
|
" works, especially with horizontal and vertical lines, but often it\n");
|
|
printf(
|
|
" doesn't, and you'll have to connect each adjacent pair of vertices with a\n"
|
|
);
|
|
printf(" separate segment. If you don't like it, tough.\n\n");
|
|
printf(
|
|
" Furthermore, if you have segments that intersect other than at their\n");
|
|
printf(
|
|
" endpoints, try not to let the intersections fall extremely close to PSLG\n"
|
|
);
|
|
printf(" vertices or each other.\n\n");
|
|
printf(
|
|
" If you have problems refining a triangulation not produced by Triangle:\n");
|
|
printf(
|
|
" Are you sure the triangulation is geometrically valid? Is it formatted\n");
|
|
printf(
|
|
" correctly for Triangle? Are the triangles all listed so the first three\n"
|
|
);
|
|
printf(
|
|
" vertices are their corners in counterclockwise order? Are all of the\n");
|
|
printf(
|
|
" triangles constrained Delaunay? Triangle's Delaunay refinement algorithm\n"
|
|
);
|
|
printf(" assumes that it starts with a CDT.\n\n");
|
|
printf("Show Me:\n\n");
|
|
printf(
|
|
" Triangle comes with a separate program named `Show Me', whose primary\n");
|
|
printf(
|
|
" purpose is to draw meshes on your screen or in PostScript. Its secondary\n"
|
|
);
|
|
printf(
|
|
" purpose is to check the validity of your input files, and do so more\n");
|
|
printf(
|
|
" thoroughly than Triangle does. Unlike Triangle, Show Me requires that\n");
|
|
printf(
|
|
" you have the X Windows system. Sorry, Microsoft Windows users.\n");
|
|
printf("\n");
|
|
printf("Triangle on the Web:\n");
|
|
printf("\n");
|
|
printf(" To see an illustrated version of these instructions, check out\n");
|
|
printf("\n");
|
|
printf(" http://www.cs.cmu.edu/~quake/triangle.html\n");
|
|
printf("\n");
|
|
printf("A Brief Plea:\n");
|
|
printf("\n");
|
|
printf(
|
|
" If you use Triangle, and especially if you use it to accomplish real\n");
|
|
printf(
|
|
" work, I would like very much to hear from you. A short letter or email\n");
|
|
printf(
|
|
" (to jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot\n"
|
|
);
|
|
printf(
|
|
" to me. The more people I know are using this program, the more easily I\n"
|
|
);
|
|
printf(
|
|
" can justify spending time on improvements, which in turn will benefit\n");
|
|
printf(
|
|
" you. Also, I can put you on a list to receive email whenever a new\n");
|
|
printf(" version of Triangle is available.\n\n");
|
|
printf(
|
|
" If you use a mesh generated by Triangle in a publication, please include\n"
|
|
);
|
|
printf(
|
|
" an acknowledgment as well. And please spell Triangle with a capital `T'!\n"
|
|
);
|
|
printf(
|
|
" If you want to include a citation, use `Jonathan Richard Shewchuk,\n");
|
|
printf(
|
|
" ``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay\n");
|
|
printf(
|
|
" Triangulator,'' in Applied Computational Geometry: Towards Geometric\n");
|
|
printf(
|
|
" Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of\n");
|
|
printf(
|
|
" Lecture Notes in Computer Science, pages 203-222, Springer-Verlag,\n");
|
|
printf(
|
|
" Berlin, May 1996. (From the First ACM Workshop on Applied Computational\n"
|
|
);
|
|
printf(" Geometry.)'\n\n");
|
|
printf("Research credit:\n\n");
|
|
printf(
|
|
" Of course, I can take credit for only a fraction of the ideas that made\n");
|
|
printf(
|
|
" this mesh generator possible. Triangle owes its existence to the efforts\n"
|
|
);
|
|
printf(
|
|
" of many fine computational geometers and other researchers, including\n");
|
|
printf(
|
|
" Marshall Bern, L. Paul Chew, Kenneth L. Clarkson, Boris Delaunay, Rex A.\n"
|
|
);
|
|
printf(
|
|
" Dwyer, David Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E.\n");
|
|
printf(
|
|
" Knuth, Charles L. Lawson, Der-Tsai Lee, Gary L. Miller, Ernst P. Mucke,\n");
|
|
printf(
|
|
" Steven E. Pav, Douglas M. Priest, Jim Ruppert, Isaac Saias, Bruce J.\n");
|
|
printf(
|
|
" Schachter, Micha Sharir, Peter W. Shor, Daniel D. Sleator, Jorge Stolfi,\n"
|
|
);
|
|
printf(" Robert E. Tarjan, Alper Ungor, Christopher J. Van Wyk, Noel J.\n");
|
|
printf(
|
|
" Walkington, and Binhai Zhu. See the comments at the beginning of the\n");
|
|
printf(" source code for references.\n\n");
|
|
triexit(0);
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* internalerror() Ask the user to send me the defective product. Exit. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
void internalerror()
|
|
{
|
|
printf(" Please report this bug to jrs@cs.berkeley.edu\n");
|
|
printf(" Include the message above, your input data set, and the exact\n");
|
|
printf(" command line you used to run Triangle.\n");
|
|
triexit(1);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* parsecommandline() Read the command line, identify switches, and set */
|
|
/* up options and file names. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void parsecommandline(int argc, char **argv, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void parsecommandline(argc, argv, b)
|
|
int argc;
|
|
char **argv;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
#define STARTINDEX 0
|
|
#else /* not TRILIBRARY */
|
|
#define STARTINDEX 1
|
|
int increment;
|
|
int meshnumber;
|
|
#endif /* not TRILIBRARY */
|
|
int i, j, k;
|
|
char workstring[FILENAMESIZE];
|
|
|
|
b->poly = b->refine = b->quality = 0;
|
|
b->vararea = b->fixedarea = b->usertest = 0;
|
|
b->regionattrib = b->convex = b->weighted = b->jettison = 0;
|
|
b->firstnumber = 1;
|
|
b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
|
|
b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
|
|
b->noiterationnum = 0;
|
|
b->noholes = b->noexact = 0;
|
|
b->incremental = b->sweepline = 0;
|
|
b->dwyer = 1;
|
|
b->splitseg = 0;
|
|
b->docheck = 0;
|
|
b->nobisect = 0;
|
|
b->conformdel = 0;
|
|
b->steiner = -1;
|
|
b->order = 1;
|
|
b->minangle = 0.0;
|
|
b->maxarea = -1.0;
|
|
b->quiet = b->verbose = 0;
|
|
#ifndef TRILIBRARY
|
|
b->innodefilename[0] = '\0';
|
|
#endif /* not TRILIBRARY */
|
|
|
|
for (i = STARTINDEX; i < argc; i++) {
|
|
#ifndef TRILIBRARY
|
|
if (argv[i][0] == '-') {
|
|
#endif /* not TRILIBRARY */
|
|
for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
|
|
if (argv[i][j] == 'p') {
|
|
b->poly = 1;
|
|
}
|
|
#ifndef CDT_ONLY
|
|
if (argv[i][j] == 'r') {
|
|
b->refine = 1;
|
|
}
|
|
if (argv[i][j] == 'q') {
|
|
b->quality = 1;
|
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
|
|
(argv[i][j + 1] == '.')) {
|
|
k = 0;
|
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
|
|
(argv[i][j + 1] == '.')) {
|
|
j++;
|
|
workstring[k] = argv[i][j];
|
|
k++;
|
|
}
|
|
workstring[k] = '\0';
|
|
b->minangle = (REAL) strtod(workstring, (char **) NULL);
|
|
} else {
|
|
b->minangle = 20.0;
|
|
}
|
|
}
|
|
if (argv[i][j] == 'a') {
|
|
b->quality = 1;
|
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
|
|
(argv[i][j + 1] == '.')) {
|
|
b->fixedarea = 1;
|
|
k = 0;
|
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
|
|
(argv[i][j + 1] == '.')) {
|
|
j++;
|
|
workstring[k] = argv[i][j];
|
|
k++;
|
|
}
|
|
workstring[k] = '\0';
|
|
b->maxarea = (REAL) strtod(workstring, (char **) NULL);
|
|
if (b->maxarea <= 0.0) {
|
|
printf("Error: Maximum area must be greater than zero.\n");
|
|
triexit(1);
|
|
}
|
|
} else {
|
|
b->vararea = 1;
|
|
}
|
|
}
|
|
if (argv[i][j] == 'u') {
|
|
b->quality = 1;
|
|
b->usertest = 1;
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
if (argv[i][j] == 'A') {
|
|
b->regionattrib = 1;
|
|
}
|
|
if (argv[i][j] == 'c') {
|
|
b->convex = 1;
|
|
}
|
|
if (argv[i][j] == 'w') {
|
|
b->weighted = 1;
|
|
}
|
|
if (argv[i][j] == 'W') {
|
|
b->weighted = 2;
|
|
}
|
|
if (argv[i][j] == 'j') {
|
|
b->jettison = 1;
|
|
}
|
|
if (argv[i][j] == 'z') {
|
|
b->firstnumber = 0;
|
|
}
|
|
if (argv[i][j] == 'e') {
|
|
b->edgesout = 1;
|
|
}
|
|
if (argv[i][j] == 'v') {
|
|
b->voronoi = 1;
|
|
}
|
|
if (argv[i][j] == 'n') {
|
|
b->neighbors = 1;
|
|
}
|
|
if (argv[i][j] == 'g') {
|
|
b->geomview = 1;
|
|
}
|
|
if (argv[i][j] == 'B') {
|
|
b->nobound = 1;
|
|
}
|
|
if (argv[i][j] == 'P') {
|
|
b->nopolywritten = 1;
|
|
}
|
|
if (argv[i][j] == 'N') {
|
|
b->nonodewritten = 1;
|
|
}
|
|
if (argv[i][j] == 'E') {
|
|
b->noelewritten = 1;
|
|
}
|
|
#ifndef TRILIBRARY
|
|
if (argv[i][j] == 'I') {
|
|
b->noiterationnum = 1;
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
if (argv[i][j] == 'O') {
|
|
b->noholes = 1;
|
|
}
|
|
if (argv[i][j] == 'X') {
|
|
b->noexact = 1;
|
|
}
|
|
if (argv[i][j] == 'o') {
|
|
if (argv[i][j + 1] == '2') {
|
|
j++;
|
|
b->order = 2;
|
|
}
|
|
}
|
|
#ifndef CDT_ONLY
|
|
if (argv[i][j] == 'Y') {
|
|
b->nobisect++;
|
|
}
|
|
if (argv[i][j] == 'S') {
|
|
b->steiner = 0;
|
|
while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
|
|
j++;
|
|
b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
|
|
}
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
#ifndef REDUCED
|
|
if (argv[i][j] == 'i') {
|
|
b->incremental = 1;
|
|
}
|
|
if (argv[i][j] == 'F') {
|
|
b->sweepline = 1;
|
|
}
|
|
#endif /* not REDUCED */
|
|
if (argv[i][j] == 'l') {
|
|
b->dwyer = 0;
|
|
}
|
|
#ifndef REDUCED
|
|
#ifndef CDT_ONLY
|
|
if (argv[i][j] == 's') {
|
|
b->splitseg = 1;
|
|
}
|
|
if ((argv[i][j] == 'D') || (argv[i][j] == 'L')) {
|
|
b->quality = 1;
|
|
b->conformdel = 1;
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
if (argv[i][j] == 'C') {
|
|
b->docheck = 1;
|
|
}
|
|
#endif /* not REDUCED */
|
|
if (argv[i][j] == 'Q') {
|
|
b->quiet = 1;
|
|
}
|
|
if (argv[i][j] == 'V') {
|
|
b->verbose++;
|
|
}
|
|
#ifndef TRILIBRARY
|
|
if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
|
|
(argv[i][j] == '?')) {
|
|
info();
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
#ifndef TRILIBRARY
|
|
} else {
|
|
strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1);
|
|
b->innodefilename[FILENAMESIZE - 1] = '\0';
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
#ifndef TRILIBRARY
|
|
if (b->innodefilename[0] == '\0') {
|
|
syntax();
|
|
}
|
|
if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) {
|
|
b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
|
|
}
|
|
if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) {
|
|
b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
|
|
b->poly = 1;
|
|
}
|
|
#ifndef CDT_ONLY
|
|
if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) {
|
|
b->innodefilename[strlen(b->innodefilename) - 4] = '\0';
|
|
b->refine = 1;
|
|
}
|
|
if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) {
|
|
b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
|
|
b->refine = 1;
|
|
b->quality = 1;
|
|
b->vararea = 1;
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
#endif /* not TRILIBRARY */
|
|
b->usesegments = b->poly || b->refine || b->quality || b->convex;
|
|
b->goodangle = cos(b->minangle * PI / 180.0);
|
|
if (b->goodangle == 1.0) {
|
|
b->offconstant = 0.0;
|
|
} else {
|
|
b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
|
|
}
|
|
b->goodangle *= b->goodangle;
|
|
if (b->refine && b->noiterationnum) {
|
|
printf(
|
|
"Error: You cannot use the -I switch when refining a triangulation.\n");
|
|
triexit(1);
|
|
}
|
|
/* Be careful not to allocate space for element area constraints that */
|
|
/* will never be assigned any value (other than the default -1.0). */
|
|
if (!b->refine && !b->poly) {
|
|
b->vararea = 0;
|
|
}
|
|
/* Be careful not to add an extra attribute to each element unless the */
|
|
/* input supports it (PSLG in, but not refining a preexisting mesh). */
|
|
if (b->refine || !b->poly) {
|
|
b->regionattrib = 0;
|
|
}
|
|
/* Regular/weighted triangulations are incompatible with PSLGs */
|
|
/* and meshing. */
|
|
if (b->weighted && (b->poly || b->quality)) {
|
|
b->weighted = 0;
|
|
if (!b->quiet) {
|
|
printf("Warning: weighted triangulations (-w, -W) are incompatible\n");
|
|
printf(" with PSLGs (-p) and meshing (-q, -a, -u). Weights ignored.\n"
|
|
);
|
|
}
|
|
}
|
|
if (b->jettison && b->nonodewritten && !b->quiet) {
|
|
printf("Warning: -j and -N switches are somewhat incompatible.\n");
|
|
printf(" If any vertices are jettisoned, you will need the output\n");
|
|
printf(" .node file to reconstruct the new node indices.");
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
strcpy(b->inpolyfilename, b->innodefilename);
|
|
strcpy(b->inelefilename, b->innodefilename);
|
|
strcpy(b->areafilename, b->innodefilename);
|
|
increment = 0;
|
|
strcpy(workstring, b->innodefilename);
|
|
j = 1;
|
|
while (workstring[j] != '\0') {
|
|
if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
|
|
increment = j + 1;
|
|
}
|
|
j++;
|
|
}
|
|
meshnumber = 0;
|
|
if (increment > 0) {
|
|
j = increment;
|
|
do {
|
|
if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
|
|
meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
|
|
} else {
|
|
increment = 0;
|
|
}
|
|
j++;
|
|
} while (workstring[j] != '\0');
|
|
}
|
|
if (b->noiterationnum) {
|
|
strcpy(b->outnodefilename, b->innodefilename);
|
|
strcpy(b->outelefilename, b->innodefilename);
|
|
strcpy(b->edgefilename, b->innodefilename);
|
|
strcpy(b->vnodefilename, b->innodefilename);
|
|
strcpy(b->vedgefilename, b->innodefilename);
|
|
strcpy(b->neighborfilename, b->innodefilename);
|
|
strcpy(b->offfilename, b->innodefilename);
|
|
strcat(b->outnodefilename, ".node");
|
|
strcat(b->outelefilename, ".ele");
|
|
strcat(b->edgefilename, ".edge");
|
|
strcat(b->vnodefilename, ".v.node");
|
|
strcat(b->vedgefilename, ".v.edge");
|
|
strcat(b->neighborfilename, ".neigh");
|
|
strcat(b->offfilename, ".off");
|
|
} else if (increment == 0) {
|
|
strcpy(b->outnodefilename, b->innodefilename);
|
|
strcpy(b->outpolyfilename, b->innodefilename);
|
|
strcpy(b->outelefilename, b->innodefilename);
|
|
strcpy(b->edgefilename, b->innodefilename);
|
|
strcpy(b->vnodefilename, b->innodefilename);
|
|
strcpy(b->vedgefilename, b->innodefilename);
|
|
strcpy(b->neighborfilename, b->innodefilename);
|
|
strcpy(b->offfilename, b->innodefilename);
|
|
strcat(b->outnodefilename, ".1.node");
|
|
strcat(b->outpolyfilename, ".1.poly");
|
|
strcat(b->outelefilename, ".1.ele");
|
|
strcat(b->edgefilename, ".1.edge");
|
|
strcat(b->vnodefilename, ".1.v.node");
|
|
strcat(b->vedgefilename, ".1.v.edge");
|
|
strcat(b->neighborfilename, ".1.neigh");
|
|
strcat(b->offfilename, ".1.off");
|
|
} else {
|
|
workstring[increment] = '%';
|
|
workstring[increment + 1] = 'd';
|
|
workstring[increment + 2] = '\0';
|
|
sprintf(b->outnodefilename, workstring, meshnumber + 1);
|
|
strcpy(b->outpolyfilename, b->outnodefilename);
|
|
strcpy(b->outelefilename, b->outnodefilename);
|
|
strcpy(b->edgefilename, b->outnodefilename);
|
|
strcpy(b->vnodefilename, b->outnodefilename);
|
|
strcpy(b->vedgefilename, b->outnodefilename);
|
|
strcpy(b->neighborfilename, b->outnodefilename);
|
|
strcpy(b->offfilename, b->outnodefilename);
|
|
strcat(b->outnodefilename, ".node");
|
|
strcat(b->outpolyfilename, ".poly");
|
|
strcat(b->outelefilename, ".ele");
|
|
strcat(b->edgefilename, ".edge");
|
|
strcat(b->vnodefilename, ".v.node");
|
|
strcat(b->vedgefilename, ".v.edge");
|
|
strcat(b->neighborfilename, ".neigh");
|
|
strcat(b->offfilename, ".off");
|
|
}
|
|
strcat(b->innodefilename, ".node");
|
|
strcat(b->inpolyfilename, ".poly");
|
|
strcat(b->inelefilename, ".ele");
|
|
strcat(b->areafilename, ".area");
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* User interaction routines begin here *********/
|
|
|
|
/********* Debugging routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* printtriangle() Print out the details of an oriented triangle. */
|
|
/* */
|
|
/* I originally wrote this procedure to simplify debugging; it can be */
|
|
/* called directly from the debugger, and presents information about an */
|
|
/* oriented triangle in digestible form. It's also used when the */
|
|
/* highest level of verbosity (`-VVV') is specified. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void printtriangle(m, b, t)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *t;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri printtri;
|
|
struct osub printsh;
|
|
vertex printvertex;
|
|
|
|
printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
|
|
t->orient);
|
|
decode(t->tri[0], printtri);
|
|
if (printtri.tri == m->dummytri) {
|
|
printf(" [0] = Outer space\n");
|
|
} else {
|
|
printf(" [0] = x%lx %d\n", (unsigned long) printtri.tri,
|
|
printtri.orient);
|
|
}
|
|
decode(t->tri[1], printtri);
|
|
if (printtri.tri == m->dummytri) {
|
|
printf(" [1] = Outer space\n");
|
|
} else {
|
|
printf(" [1] = x%lx %d\n", (unsigned long) printtri.tri,
|
|
printtri.orient);
|
|
}
|
|
decode(t->tri[2], printtri);
|
|
if (printtri.tri == m->dummytri) {
|
|
printf(" [2] = Outer space\n");
|
|
} else {
|
|
printf(" [2] = x%lx %d\n", (unsigned long) printtri.tri,
|
|
printtri.orient);
|
|
}
|
|
|
|
org(*t, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
|
|
else
|
|
printf(" Origin[%d] = x%lx (%.12g, %.12g)\n",
|
|
(t->orient + 1) % 3 + 3, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
dest(*t, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Dest [%d] = NULL\n", (t->orient + 2) % 3 + 3);
|
|
else
|
|
printf(" Dest [%d] = x%lx (%.12g, %.12g)\n",
|
|
(t->orient + 2) % 3 + 3, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
apex(*t, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Apex [%d] = NULL\n", t->orient + 3);
|
|
else
|
|
printf(" Apex [%d] = x%lx (%.12g, %.12g)\n",
|
|
t->orient + 3, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
|
|
if (b->usesegments) {
|
|
sdecode(t->tri[6], printsh);
|
|
if (printsh.ss != m->dummysub) {
|
|
printf(" [6] = x%lx %d\n", (unsigned long) printsh.ss,
|
|
printsh.ssorient);
|
|
}
|
|
sdecode(t->tri[7], printsh);
|
|
if (printsh.ss != m->dummysub) {
|
|
printf(" [7] = x%lx %d\n", (unsigned long) printsh.ss,
|
|
printsh.ssorient);
|
|
}
|
|
sdecode(t->tri[8], printsh);
|
|
if (printsh.ss != m->dummysub) {
|
|
printf(" [8] = x%lx %d\n", (unsigned long) printsh.ss,
|
|
printsh.ssorient);
|
|
}
|
|
}
|
|
|
|
if (b->vararea) {
|
|
printf(" Area constraint: %.4g\n", areabound(*t));
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* printsubseg() Print out the details of an oriented subsegment. */
|
|
/* */
|
|
/* I originally wrote this procedure to simplify debugging; it can be */
|
|
/* called directly from the debugger, and presents information about an */
|
|
/* oriented subsegment in digestible form. It's also used when the highest */
|
|
/* level of verbosity (`-VVV') is specified. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void printsubseg(m, b, s)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct osub *s;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct osub printsh;
|
|
struct otri printtri;
|
|
vertex printvertex;
|
|
|
|
printf("subsegment x%lx with orientation %d and mark %d:\n",
|
|
(unsigned long) s->ss, s->ssorient, mark(*s));
|
|
sdecode(s->ss[0], printsh);
|
|
if (printsh.ss == m->dummysub) {
|
|
printf(" [0] = No subsegment\n");
|
|
} else {
|
|
printf(" [0] = x%lx %d\n", (unsigned long) printsh.ss,
|
|
printsh.ssorient);
|
|
}
|
|
sdecode(s->ss[1], printsh);
|
|
if (printsh.ss == m->dummysub) {
|
|
printf(" [1] = No subsegment\n");
|
|
} else {
|
|
printf(" [1] = x%lx %d\n", (unsigned long) printsh.ss,
|
|
printsh.ssorient);
|
|
}
|
|
|
|
sorg(*s, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Origin[%d] = NULL\n", 2 + s->ssorient);
|
|
else
|
|
printf(" Origin[%d] = x%lx (%.12g, %.12g)\n",
|
|
2 + s->ssorient, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
sdest(*s, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Dest [%d] = NULL\n", 3 - s->ssorient);
|
|
else
|
|
printf(" Dest [%d] = x%lx (%.12g, %.12g)\n",
|
|
3 - s->ssorient, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
|
|
decode(s->ss[6], printtri);
|
|
if (printtri.tri == m->dummytri) {
|
|
printf(" [6] = Outer space\n");
|
|
} else {
|
|
printf(" [6] = x%lx %d\n", (unsigned long) printtri.tri,
|
|
printtri.orient);
|
|
}
|
|
decode(s->ss[7], printtri);
|
|
if (printtri.tri == m->dummytri) {
|
|
printf(" [7] = Outer space\n");
|
|
} else {
|
|
printf(" [7] = x%lx %d\n", (unsigned long) printtri.tri,
|
|
printtri.orient);
|
|
}
|
|
|
|
segorg(*s, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Segment origin[%d] = NULL\n", 4 + s->ssorient);
|
|
else
|
|
printf(" Segment origin[%d] = x%lx (%.12g, %.12g)\n",
|
|
4 + s->ssorient, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
segdest(*s, printvertex);
|
|
if (printvertex == (vertex) NULL)
|
|
printf(" Segment dest [%d] = NULL\n", 5 - s->ssorient);
|
|
else
|
|
printf(" Segment dest [%d] = x%lx (%.12g, %.12g)\n",
|
|
5 - s->ssorient, (unsigned long) printvertex,
|
|
printvertex[0], printvertex[1]);
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Debugging routines end here *********/
|
|
|
|
/********* Memory management routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* poolzero() Set all of a pool's fields to zero. */
|
|
/* */
|
|
/* This procedure should never be called on a pool that has any memory */
|
|
/* allocated to it, as that memory would leak. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void poolzero(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void poolzero(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
pool->firstblock = (VOID **) NULL;
|
|
pool->nowblock = (VOID **) NULL;
|
|
pool->nextitem = (VOID *) NULL;
|
|
pool->deaditemstack = (VOID *) NULL;
|
|
pool->pathblock = (VOID **) NULL;
|
|
pool->pathitem = (VOID *) NULL;
|
|
pool->alignbytes = 0;
|
|
pool->itembytes = 0;
|
|
pool->itemsperblock = 0;
|
|
pool->itemsfirstblock = 0;
|
|
pool->items = 0;
|
|
pool->maxitems = 0;
|
|
pool->unallocateditems = 0;
|
|
pool->pathitemsleft = 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* poolrestart() Deallocate all items in a pool. */
|
|
/* */
|
|
/* The pool is returned to its starting state, except that no memory is */
|
|
/* freed to the operating system. Rather, the previously allocated blocks */
|
|
/* are ready to be reused. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void poolrestart(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void poolrestart(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
unsigned long alignptr;
|
|
|
|
pool->items = 0;
|
|
pool->maxitems = 0;
|
|
|
|
/* Set the currently active block. */
|
|
pool->nowblock = pool->firstblock;
|
|
/* Find the first item in the pool. Increment by the size of (VOID *). */
|
|
alignptr = (unsigned long) (pool->nowblock + 1);
|
|
/* Align the item on an `alignbytes'-byte boundary. */
|
|
pool->nextitem = (VOID *)
|
|
(alignptr + (unsigned long) pool->alignbytes -
|
|
(alignptr % (unsigned long) pool->alignbytes));
|
|
/* There are lots of unallocated items left in this block. */
|
|
pool->unallocateditems = pool->itemsfirstblock;
|
|
/* The stack of deallocated items is empty. */
|
|
pool->deaditemstack = (VOID *) NULL;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* poolinit() Initialize a pool of memory for allocation of items. */
|
|
/* */
|
|
/* This routine initializes the machinery for allocating items. A `pool' */
|
|
/* is created whose records have size at least `bytecount'. Items will be */
|
|
/* allocated in `itemcount'-item blocks. Each item is assumed to be a */
|
|
/* collection of words, and either pointers or floating-point values are */
|
|
/* assumed to be the "primary" word type. (The "primary" word type is used */
|
|
/* to determine alignment of items.) If `alignment' isn't zero, all items */
|
|
/* will be `alignment'-byte aligned in memory. `alignment' must be either */
|
|
/* a multiple or a factor of the primary word size; powers of two are safe. */
|
|
/* `alignment' is normally used to create a few unused bits at the bottom */
|
|
/* of each item's pointer, in which information may be stored. */
|
|
/* */
|
|
/* Don't change this routine unless you understand it. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void poolinit(struct memorypool *pool, int bytecount, int itemcount,
|
|
int firstitemcount, int alignment)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void poolinit(pool, bytecount, itemcount, firstitemcount, alignment)
|
|
struct memorypool *pool;
|
|
int bytecount;
|
|
int itemcount;
|
|
int firstitemcount;
|
|
int alignment;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Find the proper alignment, which must be at least as large as: */
|
|
/* - The parameter `alignment'. */
|
|
/* - sizeof(VOID *), so the stack of dead items can be maintained */
|
|
/* without unaligned accesses. */
|
|
if (alignment > sizeof(VOID *)) {
|
|
pool->alignbytes = alignment;
|
|
} else {
|
|
pool->alignbytes = sizeof(VOID *);
|
|
}
|
|
pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *
|
|
pool->alignbytes;
|
|
pool->itemsperblock = itemcount;
|
|
if (firstitemcount == 0) {
|
|
pool->itemsfirstblock = itemcount;
|
|
} else {
|
|
pool->itemsfirstblock = firstitemcount;
|
|
}
|
|
|
|
/* Allocate a block of items. Space for `itemsfirstblock' items and one */
|
|
/* pointer (to point to the next block) are allocated, as well as space */
|
|
/* to ensure alignment of the items. */
|
|
pool->firstblock = (VOID **)
|
|
trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) +
|
|
pool->alignbytes);
|
|
/* Set the next block pointer to NULL. */
|
|
*(pool->firstblock) = (VOID *) NULL;
|
|
poolrestart(pool);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* pooldeinit() Free to the operating system all memory taken by a pool. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void pooldeinit(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void pooldeinit(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
while (pool->firstblock != (VOID **) NULL) {
|
|
pool->nowblock = (VOID **) *(pool->firstblock);
|
|
trifree((VOID *) pool->firstblock);
|
|
pool->firstblock = pool->nowblock;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* poolalloc() Allocate space for an item. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
VOID *poolalloc(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
VOID *poolalloc(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
VOID *newitem;
|
|
VOID **newblock;
|
|
unsigned long alignptr;
|
|
|
|
/* First check the linked list of dead items. If the list is not */
|
|
/* empty, allocate an item from the list rather than a fresh one. */
|
|
if (pool->deaditemstack != (VOID *) NULL) {
|
|
newitem = pool->deaditemstack; /* Take first item in list. */
|
|
pool->deaditemstack = * (VOID **) pool->deaditemstack;
|
|
} else {
|
|
/* Check if there are any free items left in the current block. */
|
|
if (pool->unallocateditems == 0) {
|
|
/* Check if another block must be allocated. */
|
|
if (*(pool->nowblock) == (VOID *) NULL) {
|
|
/* Allocate a new block of items, pointed to by the previous block. */
|
|
newblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes +
|
|
(int) sizeof(VOID *) +
|
|
pool->alignbytes);
|
|
*(pool->nowblock) = (VOID *) newblock;
|
|
/* The next block pointer is NULL. */
|
|
*newblock = (VOID *) NULL;
|
|
}
|
|
|
|
/* Move to the new block. */
|
|
pool->nowblock = (VOID **) *(pool->nowblock);
|
|
/* Find the first item in the block. */
|
|
/* Increment by the size of (VOID *). */
|
|
alignptr = (unsigned long) (pool->nowblock + 1);
|
|
/* Align the item on an `alignbytes'-byte boundary. */
|
|
pool->nextitem = (VOID *)
|
|
(alignptr + (unsigned long) pool->alignbytes -
|
|
(alignptr % (unsigned long) pool->alignbytes));
|
|
/* There are lots of unallocated items left in this block. */
|
|
pool->unallocateditems = pool->itemsperblock;
|
|
}
|
|
|
|
/* Allocate a new item. */
|
|
newitem = pool->nextitem;
|
|
/* Advance `nextitem' pointer to next free item in block. */
|
|
pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);
|
|
pool->unallocateditems--;
|
|
pool->maxitems++;
|
|
}
|
|
pool->items++;
|
|
return newitem;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* pooldealloc() Deallocate space for an item. */
|
|
/* */
|
|
/* The deallocated space is stored in a queue for later reuse. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void pooldealloc(struct memorypool *pool, VOID *dyingitem)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void pooldealloc(pool, dyingitem)
|
|
struct memorypool *pool;
|
|
VOID *dyingitem;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Push freshly killed item onto stack. */
|
|
*((VOID **) dyingitem) = pool->deaditemstack;
|
|
pool->deaditemstack = dyingitem;
|
|
pool->items--;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* traversalinit() Prepare to traverse the entire list of items. */
|
|
/* */
|
|
/* This routine is used in conjunction with traverse(). */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void traversalinit(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void traversalinit(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
unsigned long alignptr;
|
|
|
|
/* Begin the traversal in the first block. */
|
|
pool->pathblock = pool->firstblock;
|
|
/* Find the first item in the block. Increment by the size of (VOID *). */
|
|
alignptr = (unsigned long) (pool->pathblock + 1);
|
|
/* Align with item on an `alignbytes'-byte boundary. */
|
|
pool->pathitem = (VOID *)
|
|
(alignptr + (unsigned long) pool->alignbytes -
|
|
(alignptr % (unsigned long) pool->alignbytes));
|
|
/* Set the number of items left in the current block. */
|
|
pool->pathitemsleft = pool->itemsfirstblock;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* traverse() Find the next item in the list. */
|
|
/* */
|
|
/* This routine is used in conjunction with traversalinit(). Be forewarned */
|
|
/* that this routine successively returns all items in the list, including */
|
|
/* deallocated ones on the deaditemqueue. It's up to you to figure out */
|
|
/* which ones are actually dead. Why? I don't want to allocate extra */
|
|
/* space just to demarcate dead items. It can usually be done more */
|
|
/* space-efficiently by a routine that knows something about the structure */
|
|
/* of the item. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
VOID *traverse(struct memorypool *pool)
|
|
#else /* not ANSI_DECLARATORS */
|
|
VOID *traverse(pool)
|
|
struct memorypool *pool;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
VOID *newitem;
|
|
unsigned long alignptr;
|
|
|
|
/* Stop upon exhausting the list of items. */
|
|
if (pool->pathitem == pool->nextitem) {
|
|
return (VOID *) NULL;
|
|
}
|
|
|
|
/* Check whether any untraversed items remain in the current block. */
|
|
if (pool->pathitemsleft == 0) {
|
|
/* Find the next block. */
|
|
pool->pathblock = (VOID **) *(pool->pathblock);
|
|
/* Find the first item in the block. Increment by the size of (VOID *). */
|
|
alignptr = (unsigned long) (pool->pathblock + 1);
|
|
/* Align with item on an `alignbytes'-byte boundary. */
|
|
pool->pathitem = (VOID *)
|
|
(alignptr + (unsigned long) pool->alignbytes -
|
|
(alignptr % (unsigned long) pool->alignbytes));
|
|
/* Set the number of items left in the current block. */
|
|
pool->pathitemsleft = pool->itemsperblock;
|
|
}
|
|
|
|
newitem = pool->pathitem;
|
|
/* Find the next item in the block. */
|
|
pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);
|
|
pool->pathitemsleft--;
|
|
return newitem;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* dummyinit() Initialize the triangle that fills "outer space" and the */
|
|
/* omnipresent subsegment. */
|
|
/* */
|
|
/* The triangle that fills "outer space," called `dummytri', is pointed to */
|
|
/* by every triangle and subsegment on a boundary (be it outer or inner) of */
|
|
/* the triangulation. Also, `dummytri' points to one of the triangles on */
|
|
/* the convex hull (until the holes and concavities are carved), making it */
|
|
/* possible to find a starting triangle for point location. */
|
|
/* */
|
|
/* The omnipresent subsegment, `dummysub', is pointed to by every triangle */
|
|
/* or subsegment that doesn't have a full complement of real subsegments */
|
|
/* to point to. */
|
|
/* */
|
|
/* `dummytri' and `dummysub' are generally required to fulfill only a few */
|
|
/* invariants: their vertices must remain NULL and `dummytri' must always */
|
|
/* be bonded (at offset zero) to some triangle on the convex hull of the */
|
|
/* mesh, via a boundary edge. Otherwise, the connections of `dummytri' and */
|
|
/* `dummysub' may change willy-nilly. This makes it possible to avoid */
|
|
/* writing a good deal of special-case code (in the edge flip, for example) */
|
|
/* for dealing with the boundary of the mesh, places where no subsegment is */
|
|
/* present, and so forth. Other entities are frequently bonded to */
|
|
/* `dummytri' and `dummysub' as if they were real mesh entities, with no */
|
|
/* harm done. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,
|
|
int subsegbytes)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void dummyinit(m, b, trianglebytes, subsegbytes)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int trianglebytes;
|
|
int subsegbytes;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
unsigned long alignptr;
|
|
|
|
/* Set up `dummytri', the `triangle' that occupies "outer space." */
|
|
m->dummytribase = (triangle *) trimalloc(trianglebytes +
|
|
m->triangles.alignbytes);
|
|
/* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
|
|
alignptr = (unsigned long) m->dummytribase;
|
|
m->dummytri = (triangle *)
|
|
(alignptr + (unsigned long) m->triangles.alignbytes -
|
|
(alignptr % (unsigned long) m->triangles.alignbytes));
|
|
/* Initialize the three adjoining triangles to be "outer space." These */
|
|
/* will eventually be changed by various bonding operations, but their */
|
|
/* values don't really matter, as long as they can legally be */
|
|
/* dereferenced. */
|
|
m->dummytri[0] = (triangle) m->dummytri;
|
|
m->dummytri[1] = (triangle) m->dummytri;
|
|
m->dummytri[2] = (triangle) m->dummytri;
|
|
/* Three NULL vertices. */
|
|
m->dummytri[3] = (triangle) NULL;
|
|
m->dummytri[4] = (triangle) NULL;
|
|
m->dummytri[5] = (triangle) NULL;
|
|
|
|
if (b->usesegments) {
|
|
/* Set up `dummysub', the omnipresent subsegment pointed to by any */
|
|
/* triangle side or subsegment end that isn't attached to a real */
|
|
/* subsegment. */
|
|
m->dummysubbase = (subseg *) trimalloc(subsegbytes +
|
|
m->subsegs.alignbytes);
|
|
/* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
|
|
alignptr = (unsigned long) m->dummysubbase;
|
|
m->dummysub = (subseg *)
|
|
(alignptr + (unsigned long) m->subsegs.alignbytes -
|
|
(alignptr % (unsigned long) m->subsegs.alignbytes));
|
|
/* Initialize the two adjoining subsegments to be the omnipresent */
|
|
/* subsegment. These will eventually be changed by various bonding */
|
|
/* operations, but their values don't really matter, as long as they */
|
|
/* can legally be dereferenced. */
|
|
m->dummysub[0] = (subseg) m->dummysub;
|
|
m->dummysub[1] = (subseg) m->dummysub;
|
|
/* Four NULL vertices. */
|
|
m->dummysub[2] = (subseg) NULL;
|
|
m->dummysub[3] = (subseg) NULL;
|
|
m->dummysub[4] = (subseg) NULL;
|
|
m->dummysub[5] = (subseg) NULL;
|
|
/* Initialize the two adjoining triangles to be "outer space." */
|
|
m->dummysub[6] = (subseg) m->dummytri;
|
|
m->dummysub[7] = (subseg) m->dummytri;
|
|
/* Set the boundary marker to zero. */
|
|
* (int *) (m->dummysub + 8) = 0;
|
|
|
|
/* Initialize the three adjoining subsegments of `dummytri' to be */
|
|
/* the omnipresent subsegment. */
|
|
m->dummytri[6] = (triangle) m->dummysub;
|
|
m->dummytri[7] = (triangle) m->dummysub;
|
|
m->dummytri[8] = (triangle) m->dummysub;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* initializevertexpool() Calculate the size of the vertex data structure */
|
|
/* and initialize its memory pool. */
|
|
/* */
|
|
/* This routine also computes the `vertexmarkindex' and `vertex2triindex' */
|
|
/* indices used to find values within each vertex. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void initializevertexpool(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void initializevertexpool(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int vertexsize;
|
|
|
|
/* The index within each vertex at which the boundary marker is found, */
|
|
/* followed by the vertex type. Ensure the vertex marker is aligned to */
|
|
/* a sizeof(int)-byte address. */
|
|
m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) +
|
|
sizeof(int) - 1) /
|
|
sizeof(int);
|
|
vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
|
|
if (b->poly) {
|
|
/* The index within each vertex at which a triangle pointer is found. */
|
|
/* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
|
|
m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
|
|
sizeof(triangle);
|
|
vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
|
|
}
|
|
|
|
/* Initialize the pool of vertices. */
|
|
poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
|
|
m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
|
|
sizeof(REAL));
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* initializetrisubpools() Calculate the sizes of the triangle and */
|
|
/* subsegment data structures and initialize */
|
|
/* their memory pools. */
|
|
/* */
|
|
/* This routine also computes the `highorderindex', `elemattribindex', and */
|
|
/* `areaboundindex' indices used to find values within each triangle. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void initializetrisubpools(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void initializetrisubpools(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int trisize;
|
|
|
|
/* The index within each triangle at which the extra nodes (above three) */
|
|
/* associated with high order elements are found. There are three */
|
|
/* pointers to other triangles, three pointers to corners, and possibly */
|
|
/* three pointers to subsegments before the extra nodes. */
|
|
m->highorderindex = 6 + (b->usesegments * 3);
|
|
/* The number of bytes occupied by a triangle. */
|
|
trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
|
|
sizeof(triangle);
|
|
/* The index within each triangle at which its attributes are found, */
|
|
/* where the index is measured in REALs. */
|
|
m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
|
|
/* The index within each triangle at which the maximum area constraint */
|
|
/* is found, where the index is measured in REALs. Note that if the */
|
|
/* `regionattrib' flag is set, an additional attribute will be added. */
|
|
m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
|
|
/* If triangle attributes or an area bound are needed, increase the number */
|
|
/* of bytes occupied by a triangle. */
|
|
if (b->vararea) {
|
|
trisize = (m->areaboundindex + 1) * sizeof(REAL);
|
|
} else if (m->eextras + b->regionattrib > 0) {
|
|
trisize = m->areaboundindex * sizeof(REAL);
|
|
}
|
|
/* If a Voronoi diagram or triangle neighbor graph is requested, make */
|
|
/* sure there's room to store an integer index in each triangle. This */
|
|
/* integer index can occupy the same space as the subsegment pointers */
|
|
/* or attributes or area constraint or extra nodes. */
|
|
if ((b->voronoi || b->neighbors) &&
|
|
(trisize < 6 * sizeof(triangle) + sizeof(int))) {
|
|
trisize = 6 * sizeof(triangle) + sizeof(int);
|
|
}
|
|
|
|
/* Having determined the memory size of a triangle, initialize the pool. */
|
|
poolinit(&m->triangles, trisize, TRIPERBLOCK,
|
|
(2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :
|
|
TRIPERBLOCK, 4);
|
|
|
|
if (b->usesegments) {
|
|
/* Initialize the pool of subsegments. Take into account all eight */
|
|
/* pointers and one boundary marker. */
|
|
poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),
|
|
SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
|
|
|
|
/* Initialize the "outer space" triangle and omnipresent subsegment. */
|
|
dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
|
|
} else {
|
|
/* Initialize the "outer space" triangle. */
|
|
dummyinit(m, b, m->triangles.itembytes, 0);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triangledealloc() Deallocate space for a triangle, marking it dead. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triangledealloc(struct mesh *m, triangle *dyingtriangle)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triangledealloc(m, dyingtriangle)
|
|
struct mesh *m;
|
|
triangle *dyingtriangle;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Mark the triangle as dead. This makes it possible to detect dead */
|
|
/* triangles when traversing the list of all triangles. */
|
|
killtri(dyingtriangle);
|
|
pooldealloc(&m->triangles, (VOID *) dyingtriangle);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triangletraverse() Traverse the triangles, skipping dead ones. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
triangle *triangletraverse(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
triangle *triangletraverse(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
triangle *newtriangle;
|
|
|
|
do {
|
|
newtriangle = (triangle *) traverse(&m->triangles);
|
|
if (newtriangle == (triangle *) NULL) {
|
|
return (triangle *) NULL;
|
|
}
|
|
} while (deadtri(newtriangle)); /* Skip dead ones. */
|
|
return newtriangle;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* subsegdealloc() Deallocate space for a subsegment, marking it dead. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void subsegdealloc(m, dyingsubseg)
|
|
struct mesh *m;
|
|
subseg *dyingsubseg;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Mark the subsegment as dead. This makes it possible to detect dead */
|
|
/* subsegments when traversing the list of all subsegments. */
|
|
killsubseg(dyingsubseg);
|
|
pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* subsegtraverse() Traverse the subsegments, skipping dead ones. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
subseg *subsegtraverse(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
subseg *subsegtraverse(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
subseg *newsubseg;
|
|
|
|
do {
|
|
newsubseg = (subseg *) traverse(&m->subsegs);
|
|
if (newsubseg == (subseg *) NULL) {
|
|
return (subseg *) NULL;
|
|
}
|
|
} while (deadsubseg(newsubseg)); /* Skip dead ones. */
|
|
return newsubseg;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* vertexdealloc() Deallocate space for a vertex, marking it dead. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void vertexdealloc(struct mesh *m, vertex dyingvertex)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void vertexdealloc(m, dyingvertex)
|
|
struct mesh *m;
|
|
vertex dyingvertex;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Mark the vertex as dead. This makes it possible to detect dead */
|
|
/* vertices when traversing the list of all vertices. */
|
|
setvertextype(dyingvertex, DEADVERTEX);
|
|
pooldealloc(&m->vertices, (VOID *) dyingvertex);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* vertextraverse() Traverse the vertices, skipping dead ones. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
vertex vertextraverse(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
vertex vertextraverse(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex newvertex;
|
|
|
|
do {
|
|
newvertex = (vertex) traverse(&m->vertices);
|
|
if (newvertex == (vertex) NULL) {
|
|
return (vertex) NULL;
|
|
}
|
|
} while (vertextype(newvertex) == DEADVERTEX); /* Skip dead ones. */
|
|
return newvertex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* badsubsegdealloc() Deallocate space for a bad subsegment, marking it */
|
|
/* dead. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void badsubsegdealloc(m, dyingseg)
|
|
struct mesh *m;
|
|
struct badsubseg *dyingseg;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
/* Set subsegment's origin to NULL. This makes it possible to detect dead */
|
|
/* badsubsegs when traversing the list of all badsubsegs . */
|
|
dyingseg->subsegorg = (vertex) NULL;
|
|
pooldealloc(&m->badsubsegs, (VOID *) dyingseg);
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* badsubsegtraverse() Traverse the bad subsegments, skipping dead ones. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct badsubseg *badsubsegtraverse(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct badsubseg *badsubsegtraverse(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct badsubseg *newseg;
|
|
|
|
do {
|
|
newseg = (struct badsubseg *) traverse(&m->badsubsegs);
|
|
if (newseg == (struct badsubseg *) NULL) {
|
|
return (struct badsubseg *) NULL;
|
|
}
|
|
} while (newseg->subsegorg == (vertex) NULL); /* Skip dead ones. */
|
|
return newseg;
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* getvertex() Get a specific vertex, by number, from the list. */
|
|
/* */
|
|
/* The first vertex is number 'firstnumber'. */
|
|
/* */
|
|
/* Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
|
|
/* is large). I don't care to take the trouble to make it work in constant */
|
|
/* time. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
vertex getvertex(struct mesh *m, struct behavior *b, int number)
|
|
#else /* not ANSI_DECLARATORS */
|
|
vertex getvertex(m, b, number)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int number;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
VOID **getblock;
|
|
char *foundvertex;
|
|
unsigned long alignptr;
|
|
int current;
|
|
|
|
getblock = m->vertices.firstblock;
|
|
current = b->firstnumber;
|
|
|
|
/* Find the right block. */
|
|
if (current + m->vertices.itemsfirstblock <= number) {
|
|
getblock = (VOID **) *getblock;
|
|
current += m->vertices.itemsfirstblock;
|
|
while (current + m->vertices.itemsperblock <= number) {
|
|
getblock = (VOID **) *getblock;
|
|
current += m->vertices.itemsperblock;
|
|
}
|
|
}
|
|
|
|
/* Now find the right vertex. */
|
|
alignptr = (unsigned long) (getblock + 1);
|
|
foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes -
|
|
(alignptr % (unsigned long) m->vertices.alignbytes));
|
|
return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triangledeinit() Free all remaining allocated memory. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triangledeinit(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triangledeinit(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
pooldeinit(&m->triangles);
|
|
trifree((VOID *) m->dummytribase);
|
|
if (b->usesegments) {
|
|
pooldeinit(&m->subsegs);
|
|
trifree((VOID *) m->dummysubbase);
|
|
}
|
|
pooldeinit(&m->vertices);
|
|
#ifndef CDT_ONLY
|
|
if (b->quality) {
|
|
pooldeinit(&m->badsubsegs);
|
|
if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
|
|
pooldeinit(&m->badtriangles);
|
|
pooldeinit(&m->flipstackers);
|
|
}
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Memory management routines end here *********/
|
|
|
|
/********* Constructors begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* maketriangle() Create a new triangle with orientation zero. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void maketriangle(m, b, newotri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *newotri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int i;
|
|
|
|
newotri->tri = (triangle *) poolalloc(&m->triangles);
|
|
/* Initialize the three adjoining triangles to be "outer space". */
|
|
newotri->tri[0] = (triangle) m->dummytri;
|
|
newotri->tri[1] = (triangle) m->dummytri;
|
|
newotri->tri[2] = (triangle) m->dummytri;
|
|
/* Three NULL vertices. */
|
|
newotri->tri[3] = (triangle) NULL;
|
|
newotri->tri[4] = (triangle) NULL;
|
|
newotri->tri[5] = (triangle) NULL;
|
|
if (b->usesegments) {
|
|
/* Initialize the three adjoining subsegments to be the omnipresent */
|
|
/* subsegment. */
|
|
newotri->tri[6] = (triangle) m->dummysub;
|
|
newotri->tri[7] = (triangle) m->dummysub;
|
|
newotri->tri[8] = (triangle) m->dummysub;
|
|
}
|
|
for (i = 0; i < m->eextras; i++) {
|
|
setelemattribute(*newotri, i, 0.0);
|
|
}
|
|
if (b->vararea) {
|
|
setareabound(*newotri, -1.0);
|
|
}
|
|
|
|
newotri->orient = 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* makesubseg() Create a new subsegment with orientation zero. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void makesubseg(struct mesh *m, struct osub *newsubseg)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void makesubseg(m, newsubseg)
|
|
struct mesh *m;
|
|
struct osub *newsubseg;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
|
|
/* Initialize the two adjoining subsegments to be the omnipresent */
|
|
/* subsegment. */
|
|
newsubseg->ss[0] = (subseg) m->dummysub;
|
|
newsubseg->ss[1] = (subseg) m->dummysub;
|
|
/* Four NULL vertices. */
|
|
newsubseg->ss[2] = (subseg) NULL;
|
|
newsubseg->ss[3] = (subseg) NULL;
|
|
newsubseg->ss[4] = (subseg) NULL;
|
|
newsubseg->ss[5] = (subseg) NULL;
|
|
/* Initialize the two adjoining triangles to be "outer space." */
|
|
newsubseg->ss[6] = (subseg) m->dummytri;
|
|
newsubseg->ss[7] = (subseg) m->dummytri;
|
|
/* Set the boundary marker to zero. */
|
|
setmark(*newsubseg, 0);
|
|
|
|
newsubseg->ssorient = 0;
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Constructors end here *********/
|
|
|
|
/********* Geometric primitives begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/* The adaptive exact arithmetic geometric predicates implemented herein are */
|
|
/* described in detail in my paper, "Adaptive Precision Floating-Point */
|
|
/* Arithmetic and Fast Robust Geometric Predicates." See the header for a */
|
|
/* full citation. */
|
|
|
|
/* Which of the following two methods of finding the absolute values is */
|
|
/* fastest is compiler-dependent. A few compilers can inline and optimize */
|
|
/* the fabs() call; but most will incur the overhead of a function call, */
|
|
/* which is disastrously slow. A faster way on IEEE machines might be to */
|
|
/* mask the appropriate bit, but that's difficult to do in C without */
|
|
/* forcing the value to be stored to memory (rather than be kept in the */
|
|
/* register to which the optimizer assigned it). */
|
|
|
|
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
|
|
/* #define Absolute(a) fabs(a) */
|
|
|
|
/* Many of the operations are broken up into two pieces, a main part that */
|
|
/* performs an approximate operation, and a "tail" that computes the */
|
|
/* roundoff error of that operation. */
|
|
/* */
|
|
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
|
|
/* Split(), and Two_Product() are all implemented as described in the */
|
|
/* reference. Each of these macros requires certain variables to be */
|
|
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
|
|
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
|
|
/* they store the result of an operation that may incur roundoff error. */
|
|
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
|
|
/* also be declared `INEXACT'. */
|
|
|
|
#define Fast_Two_Sum_Tail(a, b, x, y) \
|
|
bvirt = x - a; \
|
|
y = b - bvirt
|
|
|
|
#define Fast_Two_Sum(a, b, x, y) \
|
|
x = (REAL) (a + b); \
|
|
Fast_Two_Sum_Tail(a, b, x, y)
|
|
|
|
#define Two_Sum_Tail(a, b, x, y) \
|
|
bvirt = (REAL) (x - a); \
|
|
avirt = x - bvirt; \
|
|
bround = b - bvirt; \
|
|
around = a - avirt; \
|
|
y = around + bround
|
|
|
|
#define Two_Sum(a, b, x, y) \
|
|
x = (REAL) (a + b); \
|
|
Two_Sum_Tail(a, b, x, y)
|
|
|
|
#define Two_Diff_Tail(a, b, x, y) \
|
|
bvirt = (REAL) (a - x); \
|
|
avirt = x + bvirt; \
|
|
bround = bvirt - b; \
|
|
around = a - avirt; \
|
|
y = around + bround
|
|
|
|
#define Two_Diff(a, b, x, y) \
|
|
x = (REAL) (a - b); \
|
|
Two_Diff_Tail(a, b, x, y)
|
|
|
|
#define Split(a, ahi, alo) \
|
|
c = (REAL) (splitter * a); \
|
|
abig = (REAL) (c - a); \
|
|
ahi = c - abig; \
|
|
alo = a - ahi
|
|
|
|
#define Two_Product_Tail(a, b, x, y) \
|
|
Split(a, ahi, alo); \
|
|
Split(b, bhi, blo); \
|
|
err1 = x - (ahi * bhi); \
|
|
err2 = err1 - (alo * bhi); \
|
|
err3 = err2 - (ahi * blo); \
|
|
y = (alo * blo) - err3
|
|
|
|
#define Two_Product(a, b, x, y) \
|
|
x = (REAL) (a * b); \
|
|
Two_Product_Tail(a, b, x, y)
|
|
|
|
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
|
|
/* already been split. Avoids redundant splitting. */
|
|
|
|
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
|
|
x = (REAL) (a * b); \
|
|
Split(a, ahi, alo); \
|
|
err1 = x - (ahi * bhi); \
|
|
err2 = err1 - (alo * bhi); \
|
|
err3 = err2 - (ahi * blo); \
|
|
y = (alo * blo) - err3
|
|
|
|
/* Square() can be done more quickly than Two_Product(). */
|
|
|
|
#define Square_Tail(a, x, y) \
|
|
Split(a, ahi, alo); \
|
|
err1 = x - (ahi * ahi); \
|
|
err3 = err1 - ((ahi + ahi) * alo); \
|
|
y = (alo * alo) - err3
|
|
|
|
#define Square(a, x, y) \
|
|
x = (REAL) (a * a); \
|
|
Square_Tail(a, x, y)
|
|
|
|
/* Macros for summing expansions of various fixed lengths. These are all */
|
|
/* unrolled versions of Expansion_Sum(). */
|
|
|
|
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
|
|
Two_Sum(a0, b , _i, x0); \
|
|
Two_Sum(a1, _i, x2, x1)
|
|
|
|
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
|
|
Two_Diff(a0, b , _i, x0); \
|
|
Two_Sum( a1, _i, x2, x1)
|
|
|
|
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
|
|
Two_One_Sum(_j, _0, b1, x3, x2, x1)
|
|
|
|
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
|
|
Two_One_Diff(_j, _0, b1, x3, x2, x1)
|
|
|
|
/* Macro for multiplying a two-component expansion by a single component. */
|
|
|
|
#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
|
|
Split(b, bhi, blo); \
|
|
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
|
|
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, x1); \
|
|
Fast_Two_Sum(_j, _k, x3, x2)
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* exactinit() Initialize the variables used for exact arithmetic. */
|
|
/* */
|
|
/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
|
|
/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
|
|
/* error. It is used for floating-point error analysis. */
|
|
/* */
|
|
/* `splitter' is used to split floating-point numbers into two half- */
|
|
/* length significands for exact multiplication. */
|
|
/* */
|
|
/* I imagine that a highly optimizing compiler might be too smart for its */
|
|
/* own good, and somehow cause this routine to fail, if it pretends that */
|
|
/* floating-point arithmetic is too much like real arithmetic. */
|
|
/* */
|
|
/* Don't change this routine unless you fully understand it. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
void exactinit()
|
|
{
|
|
REAL half;
|
|
REAL check, lastcheck;
|
|
int every_other;
|
|
#ifdef LINUX
|
|
int cword;
|
|
#endif /* LINUX */
|
|
|
|
#ifdef CPU86
|
|
#ifdef SINGLE
|
|
_control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
|
|
#else /* not SINGLE */
|
|
_control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
|
|
#endif /* not SINGLE */
|
|
#endif /* CPU86 */
|
|
#ifdef LINUX
|
|
#ifdef SINGLE
|
|
/* cword = 4223; */
|
|
cword = 4210; /* set FPU control word for single precision */
|
|
#else /* not SINGLE */
|
|
/* cword = 4735; */
|
|
cword = 4722; /* set FPU control word for double precision */
|
|
#endif /* not SINGLE */
|
|
_FPU_SETCW(cword);
|
|
#endif /* LINUX */
|
|
|
|
every_other = 1;
|
|
half = 0.5;
|
|
epsilon = 1.0;
|
|
splitter = 1.0;
|
|
check = 1.0;
|
|
/* Repeatedly divide `epsilon' by two until it is too small to add to */
|
|
/* one without causing roundoff. (Also check if the sum is equal to */
|
|
/* the previous sum, for machines that round up instead of using exact */
|
|
/* rounding. Not that these routines will work on such machines.) */
|
|
do {
|
|
lastcheck = check;
|
|
epsilon *= half;
|
|
if (every_other) {
|
|
splitter *= 2.0;
|
|
}
|
|
every_other = !every_other;
|
|
check = 1.0 + epsilon;
|
|
} while ((check != 1.0) && (check != lastcheck));
|
|
splitter += 1.0;
|
|
/* Error bounds for orientation and incircle tests. */
|
|
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
|
|
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
|
|
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
|
|
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
|
|
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
|
|
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
|
|
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
|
|
o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
|
|
o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
|
|
o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
|
|
/* components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + f. See my Robust Predicates paper for details. */
|
|
/* */
|
|
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
|
|
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
|
|
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
|
|
/* properties. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int fast_expansion_sum_zeroelim(elen, e, flen, f, h) /* h cannot be e or f. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
INEXACT REAL hh;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
int eindex, findex, hindex;
|
|
REAL enow, fnow;
|
|
|
|
enow = e[0];
|
|
fnow = f[0];
|
|
eindex = findex = 0;
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Q = enow;
|
|
enow = e[++eindex];
|
|
} else {
|
|
Q = fnow;
|
|
fnow = f[++findex];
|
|
}
|
|
hindex = 0;
|
|
if ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Fast_Two_Sum(enow, Q, Qnew, hh);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, Q, Qnew, hh);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
while ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
}
|
|
while (eindex < elen) {
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
enow = e[++eindex];
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
while (findex < flen) {
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
fnow = f[++findex];
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
|
|
/* eliminating zero components from the */
|
|
/* output expansion. */
|
|
/* */
|
|
/* Sets h = be. See my Robust Predicates paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
|
|
/* properties as well. (That is, if e has one of these properties, so */
|
|
/* will h.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int scale_expansion_zeroelim(elen, e, b, h) /* e and h cannot be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL b;
|
|
REAL *h;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
INEXACT REAL Q, sum;
|
|
REAL hh;
|
|
INEXACT REAL product1;
|
|
REAL product0;
|
|
int eindex, hindex;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
|
|
Split(b, bhi, blo);
|
|
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
|
|
hindex = 0;
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
|
|
Two_Sum(Q, product0, sum, hh);
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
Fast_Two_Sum(product1, sum, Q, hh);
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* estimate() Produce a one-word estimate of an expansion's value. */
|
|
/* */
|
|
/* See my Robust Predicates paper for details. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL estimate(int elen, REAL *e)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL estimate(elen, e)
|
|
int elen;
|
|
REAL *e;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL Q;
|
|
int eindex;
|
|
|
|
Q = e[0];
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
Q += e[eindex];
|
|
}
|
|
return Q;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* counterclockwise() Return a positive value if the points pa, pb, and */
|
|
/* pc occur in counterclockwise order; a negative */
|
|
/* value if they occur in clockwise order; and zero */
|
|
/* if they are collinear. The result is also a rough */
|
|
/* approximation of twice the signed area of the */
|
|
/* triangle defined by the three points. */
|
|
/* */
|
|
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. This determinant is */
|
|
/* computed adaptively, in the sense that exact arithmetic is used only to */
|
|
/* the degree it is needed to ensure that the returned value has the */
|
|
/* correct sign. Hence, this function is usually quite fast, but will run */
|
|
/* more slowly when the input points are collinear or nearly so. */
|
|
/* */
|
|
/* See my Robust Predicates paper for details. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL counterclockwiseadapt(pa, pb, pc, detsum)
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
REAL detsum;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
INEXACT REAL acx, acy, bcx, bcy;
|
|
REAL acxtail, acytail, bcxtail, bcytail;
|
|
INEXACT REAL detleft, detright;
|
|
REAL detlefttail, detrighttail;
|
|
REAL det, errbound;
|
|
REAL B[4], C1[8], C2[12], D[16];
|
|
INEXACT REAL B3;
|
|
int C1length, C2length, Dlength;
|
|
REAL u[4];
|
|
INEXACT REAL u3;
|
|
INEXACT REAL s1, t1;
|
|
REAL s0, t0;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
acx = (REAL) (pa[0] - pc[0]);
|
|
bcx = (REAL) (pb[0] - pc[0]);
|
|
acy = (REAL) (pa[1] - pc[1]);
|
|
bcy = (REAL) (pb[1] - pc[1]);
|
|
|
|
Two_Product(acx, bcy, detleft, detlefttail);
|
|
Two_Product(acy, bcx, detright, detrighttail);
|
|
|
|
Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
|
|
B3, B[2], B[1], B[0]);
|
|
B[3] = B3;
|
|
|
|
det = estimate(4, B);
|
|
errbound = ccwerrboundB * detsum;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
|
|
Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
|
|
Two_Diff_Tail(pa[1], pc[1], acy, acytail);
|
|
Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
|
|
|
|
if ((acxtail == 0.0) && (acytail == 0.0)
|
|
&& (bcxtail == 0.0) && (bcytail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
|
|
det += (acx * bcytail + bcy * acxtail)
|
|
- (acy * bcxtail + bcx * acytail);
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Product(acxtail, bcy, s1, s0);
|
|
Two_Product(acytail, bcx, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
|
|
|
|
Two_Product(acx, bcytail, s1, s0);
|
|
Two_Product(acy, bcxtail, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
|
|
|
|
Two_Product(acxtail, bcytail, s1, s0);
|
|
Two_Product(acytail, bcxtail, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
|
|
|
|
return(D[Dlength - 1]);
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL counterclockwise(struct mesh *m, struct behavior *b,
|
|
vertex pa, vertex pb, vertex pc)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL counterclockwise(m, b, pa, pb, pc)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL detleft, detright, det;
|
|
REAL detsum, errbound;
|
|
|
|
m->counterclockcount++;
|
|
|
|
detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
|
|
detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
|
|
det = detleft - detright;
|
|
|
|
if (b->noexact) {
|
|
return det;
|
|
}
|
|
|
|
if (detleft > 0.0) {
|
|
if (detright <= 0.0) {
|
|
return det;
|
|
} else {
|
|
detsum = detleft + detright;
|
|
}
|
|
} else if (detleft < 0.0) {
|
|
if (detright >= 0.0) {
|
|
return det;
|
|
} else {
|
|
detsum = -detleft - detright;
|
|
}
|
|
} else {
|
|
return det;
|
|
}
|
|
|
|
errbound = ccwerrboundA * detsum;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return counterclockwiseadapt(pa, pb, pc, detsum);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* incircle() Return a positive value if the point pd lies inside the */
|
|
/* circle passing through pa, pb, and pc; a negative value if */
|
|
/* it lies outside; and zero if the four points are cocircular.*/
|
|
/* The points pa, pb, and pc must be in counterclockwise */
|
|
/* order, or the sign of the result will be reversed. */
|
|
/* */
|
|
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. This determinant is */
|
|
/* computed adaptively, in the sense that exact arithmetic is used only to */
|
|
/* the degree it is needed to ensure that the returned value has the */
|
|
/* correct sign. Hence, this function is usually quite fast, but will run */
|
|
/* more slowly when the input points are cocircular or nearly so. */
|
|
/* */
|
|
/* See my Robust Predicates paper for details. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL incircleadapt(pa, pb, pc, pd, permanent)
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
vertex pd;
|
|
REAL permanent;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
|
|
REAL det, errbound;
|
|
|
|
INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
REAL bc[4], ca[4], ab[4];
|
|
INEXACT REAL bc3, ca3, ab3;
|
|
REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
|
|
int axbclen, axxbclen, aybclen, ayybclen, alen;
|
|
REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
|
|
int bxcalen, bxxcalen, bycalen, byycalen, blen;
|
|
REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
|
|
int cxablen, cxxablen, cyablen, cyyablen, clen;
|
|
REAL abdet[64];
|
|
int ablen;
|
|
REAL fin1[1152], fin2[1152];
|
|
REAL *finnow, *finother, *finswap;
|
|
int finlength;
|
|
|
|
REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
|
|
INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
|
|
REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
|
|
REAL aa[4], bb[4], cc[4];
|
|
INEXACT REAL aa3, bb3, cc3;
|
|
INEXACT REAL ti1, tj1;
|
|
REAL ti0, tj0;
|
|
REAL u[4], v[4];
|
|
INEXACT REAL u3, v3;
|
|
REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
|
|
REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
|
|
int temp8len, temp16alen, temp16blen, temp16clen;
|
|
int temp32alen, temp32blen, temp48len, temp64len;
|
|
REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
|
|
int axtbblen, axtcclen, aytbblen, aytcclen;
|
|
REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
|
|
int bxtaalen, bxtcclen, bytaalen, bytcclen;
|
|
REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
|
|
int cxtaalen, cxtbblen, cytaalen, cytbblen;
|
|
REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
|
|
int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
|
|
REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
|
|
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
|
|
REAL axtbctt[8], aytbctt[8], bxtcatt[8];
|
|
REAL bytcatt[8], cxtabtt[8], cytabtt[8];
|
|
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
|
|
REAL abt[8], bct[8], cat[8];
|
|
int abtlen, bctlen, catlen;
|
|
REAL abtt[4], bctt[4], catt[4];
|
|
int abttlen, bcttlen, cattlen;
|
|
INEXACT REAL abtt3, bctt3, catt3;
|
|
REAL negate;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
adx = (REAL) (pa[0] - pd[0]);
|
|
bdx = (REAL) (pb[0] - pd[0]);
|
|
cdx = (REAL) (pc[0] - pd[0]);
|
|
ady = (REAL) (pa[1] - pd[1]);
|
|
bdy = (REAL) (pb[1] - pd[1]);
|
|
cdy = (REAL) (pc[1] - pd[1]);
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
bc[3] = bc3;
|
|
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
|
|
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
|
|
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
|
|
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
|
|
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
ca[3] = ca3;
|
|
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
|
|
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
|
|
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
|
|
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
|
|
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
ab[3] = ab3;
|
|
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
|
|
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
|
|
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
|
|
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
|
|
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
det = estimate(finlength, fin1);
|
|
errbound = iccerrboundB * permanent;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
|
|
&& (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
|
|
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
|
|
- (bdy * cdxtail + cdx * bdytail))
|
|
+ 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
|
|
+ ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
|
|
- (cdy * adxtail + adx * cdytail))
|
|
+ 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
|
|
+ ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
|
|
- (ady * bdxtail + bdx * adytail))
|
|
+ 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
finnow = fin1;
|
|
finother = fin2;
|
|
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)
|
|
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
Square(adx, adxadx1, adxadx0);
|
|
Square(ady, adyady1, adyady0);
|
|
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
|
|
aa[3] = aa3;
|
|
}
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)
|
|
|| (adxtail != 0.0) || (adytail != 0.0)) {
|
|
Square(bdx, bdxbdx1, bdxbdx0);
|
|
Square(bdy, bdybdy1, bdybdy0);
|
|
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
|
|
bb[3] = bb3;
|
|
}
|
|
if ((adxtail != 0.0) || (adytail != 0.0)
|
|
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
Square(cdx, cdxcdx1, cdxcdx0);
|
|
Square(cdy, cdycdy1, cdycdy0);
|
|
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
|
|
cc[3] = cc3;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
|
|
temp16a);
|
|
|
|
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
|
|
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
|
|
|
|
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
|
|
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
|
|
temp16a);
|
|
|
|
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
|
|
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
|
|
|
|
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
|
|
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdxtail != 0.0) {
|
|
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
|
|
temp16a);
|
|
|
|
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
|
|
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
|
|
|
|
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
|
|
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
|
|
temp16a);
|
|
|
|
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
|
|
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
|
|
|
|
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
|
|
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdxtail != 0.0) {
|
|
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
|
|
temp16a);
|
|
|
|
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
|
|
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
|
|
|
|
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
|
|
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
|
|
temp16a);
|
|
|
|
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
|
|
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
|
|
|
|
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
|
|
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
if ((adxtail != 0.0) || (adytail != 0.0)) {
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)
|
|
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
Two_Product(bdxtail, cdy, ti1, ti0);
|
|
Two_Product(bdx, cdytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -bdy;
|
|
Two_Product(cdxtail, negate, ti1, ti0);
|
|
negate = -bdytail;
|
|
Two_Product(cdx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
|
|
|
|
Two_Product(bdxtail, cdytail, ti1, ti0);
|
|
Two_Product(cdxtail, bdytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
|
|
bctt[3] = bctt3;
|
|
bcttlen = 4;
|
|
} else {
|
|
bct[0] = 0.0;
|
|
bctlen = 1;
|
|
bctt[0] = 0.0;
|
|
bcttlen = 1;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
|
|
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
|
|
temp32a);
|
|
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
|
|
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
|
|
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
|
|
temp32a);
|
|
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
|
|
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)
|
|
|| (adxtail != 0.0) || (adytail != 0.0)) {
|
|
Two_Product(cdxtail, ady, ti1, ti0);
|
|
Two_Product(cdx, adytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -cdy;
|
|
Two_Product(adxtail, negate, ti1, ti0);
|
|
negate = -cdytail;
|
|
Two_Product(adx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
|
|
|
|
Two_Product(cdxtail, adytail, ti1, ti0);
|
|
Two_Product(adxtail, cdytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
|
|
catt[3] = catt3;
|
|
cattlen = 4;
|
|
} else {
|
|
cat[0] = 0.0;
|
|
catlen = 1;
|
|
catt[0] = 0.0;
|
|
cattlen = 1;
|
|
}
|
|
|
|
if (bdxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
|
|
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
|
|
temp32a);
|
|
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
|
|
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
|
|
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
|
|
temp32a);
|
|
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
|
|
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
if ((adxtail != 0.0) || (adytail != 0.0)
|
|
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
Two_Product(adxtail, bdy, ti1, ti0);
|
|
Two_Product(adx, bdytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -ady;
|
|
Two_Product(bdxtail, negate, ti1, ti0);
|
|
negate = -adytail;
|
|
Two_Product(bdx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
|
|
|
|
Two_Product(adxtail, bdytail, ti1, ti0);
|
|
Two_Product(bdxtail, adytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
|
|
abtt[3] = abtt3;
|
|
abttlen = 4;
|
|
} else {
|
|
abt[0] = 0.0;
|
|
abtlen = 1;
|
|
abtt[0] = 0.0;
|
|
abttlen = 1;
|
|
}
|
|
|
|
if (cdxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
|
|
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
|
|
temp32a);
|
|
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
|
|
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
|
|
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
|
|
temp32a);
|
|
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
|
|
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
|
|
return finnow[finlength - 1];
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL incircle(struct mesh *m, struct behavior *b,
|
|
vertex pa, vertex pb, vertex pc, vertex pd)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL incircle(m, b, pa, pb, pc, pd)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
vertex pd;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL adx, bdx, cdx, ady, bdy, cdy;
|
|
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
REAL alift, blift, clift;
|
|
REAL det;
|
|
REAL permanent, errbound;
|
|
|
|
m->incirclecount++;
|
|
|
|
adx = pa[0] - pd[0];
|
|
bdx = pb[0] - pd[0];
|
|
cdx = pc[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdy = pb[1] - pd[1];
|
|
cdy = pc[1] - pd[1];
|
|
|
|
bdxcdy = bdx * cdy;
|
|
cdxbdy = cdx * bdy;
|
|
alift = adx * adx + ady * ady;
|
|
|
|
cdxady = cdx * ady;
|
|
adxcdy = adx * cdy;
|
|
blift = bdx * bdx + bdy * bdy;
|
|
|
|
adxbdy = adx * bdy;
|
|
bdxady = bdx * ady;
|
|
clift = cdx * cdx + cdy * cdy;
|
|
|
|
det = alift * (bdxcdy - cdxbdy)
|
|
+ blift * (cdxady - adxcdy)
|
|
+ clift * (adxbdy - bdxady);
|
|
|
|
if (b->noexact) {
|
|
return det;
|
|
}
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
|
|
+ (Absolute(cdxady) + Absolute(adxcdy)) * blift
|
|
+ (Absolute(adxbdy) + Absolute(bdxady)) * clift;
|
|
errbound = iccerrboundA * permanent;
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return incircleadapt(pa, pb, pc, pd, permanent);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* orient3d() Return a positive value if the point pd lies below the */
|
|
/* plane passing through pa, pb, and pc; "below" is defined so */
|
|
/* that pa, pb, and pc appear in counterclockwise order when */
|
|
/* viewed from above the plane. Returns a negative value if */
|
|
/* pd lies above the plane. Returns zero if the points are */
|
|
/* coplanar. The result is also a rough approximation of six */
|
|
/* times the signed volume of the tetrahedron defined by the */
|
|
/* four points. */
|
|
/* */
|
|
/* Uses exact arithmetic if necessary to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. This determinant is */
|
|
/* computed adaptively, in the sense that exact arithmetic is used only to */
|
|
/* the degree it is needed to ensure that the returned value has the */
|
|
/* correct sign. Hence, this function is usually quite fast, but will run */
|
|
/* more slowly when the input points are coplanar or nearly so. */
|
|
/* */
|
|
/* See my Robust Predicates paper for details. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
|
|
REAL aheight, REAL bheight, REAL cheight, REAL dheight,
|
|
REAL permanent)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL orient3dadapt(pa, pb, pc, pd,
|
|
aheight, bheight, cheight, dheight, permanent)
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
vertex pd;
|
|
REAL aheight;
|
|
REAL bheight;
|
|
REAL cheight;
|
|
REAL dheight;
|
|
REAL permanent;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
|
|
REAL det, errbound;
|
|
|
|
INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
REAL bc[4], ca[4], ab[4];
|
|
INEXACT REAL bc3, ca3, ab3;
|
|
REAL adet[8], bdet[8], cdet[8];
|
|
int alen, blen, clen;
|
|
REAL abdet[16];
|
|
int ablen;
|
|
REAL *finnow, *finother, *finswap;
|
|
REAL fin1[192], fin2[192];
|
|
int finlength;
|
|
|
|
REAL adxtail, bdxtail, cdxtail;
|
|
REAL adytail, bdytail, cdytail;
|
|
REAL adheighttail, bdheighttail, cdheighttail;
|
|
INEXACT REAL at_blarge, at_clarge;
|
|
INEXACT REAL bt_clarge, bt_alarge;
|
|
INEXACT REAL ct_alarge, ct_blarge;
|
|
REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
|
|
int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
|
|
INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
|
|
INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
|
|
REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
|
|
REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
|
|
INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
|
|
INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
|
|
REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
|
|
REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
|
|
REAL bct[8], cat[8], abt[8];
|
|
int bctlen, catlen, abtlen;
|
|
INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
|
|
INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
|
|
REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
|
|
REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
|
|
REAL u[4], v[12], w[16];
|
|
INEXACT REAL u3;
|
|
int vlength, wlength;
|
|
REAL negate;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k;
|
|
REAL _0;
|
|
|
|
adx = (REAL) (pa[0] - pd[0]);
|
|
bdx = (REAL) (pb[0] - pd[0]);
|
|
cdx = (REAL) (pc[0] - pd[0]);
|
|
ady = (REAL) (pa[1] - pd[1]);
|
|
bdy = (REAL) (pb[1] - pd[1]);
|
|
cdy = (REAL) (pc[1] - pd[1]);
|
|
adheight = (REAL) (aheight - dheight);
|
|
bdheight = (REAL) (bheight - dheight);
|
|
cdheight = (REAL) (cheight - dheight);
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
bc[3] = bc3;
|
|
alen = scale_expansion_zeroelim(4, bc, adheight, adet);
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
ca[3] = ca3;
|
|
blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
ab[3] = ab3;
|
|
clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
det = estimate(finlength, fin1);
|
|
errbound = o3derrboundB * permanent;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
|
|
Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
|
|
Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
|
|
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
|
|
(adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
|
|
(adheighttail == 0.0) &&
|
|
(bdheighttail == 0.0) &&
|
|
(cdheighttail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
|
|
det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
|
|
(bdy * cdxtail + cdx * bdytail)) +
|
|
adheighttail * (bdx * cdy - bdy * cdx)) +
|
|
(bdheight * ((cdx * adytail + ady * cdxtail) -
|
|
(cdy * adxtail + adx * cdytail)) +
|
|
bdheighttail * (cdx * ady - cdy * adx)) +
|
|
(cdheight * ((adx * bdytail + bdy * adxtail) -
|
|
(ady * bdxtail + bdx * adytail)) +
|
|
cdheighttail * (adx * bdy - ady * bdx));
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
finnow = fin1;
|
|
finother = fin2;
|
|
|
|
if (adxtail == 0.0) {
|
|
if (adytail == 0.0) {
|
|
at_b[0] = 0.0;
|
|
at_blen = 1;
|
|
at_c[0] = 0.0;
|
|
at_clen = 1;
|
|
} else {
|
|
negate = -adytail;
|
|
Two_Product(negate, bdx, at_blarge, at_b[0]);
|
|
at_b[1] = at_blarge;
|
|
at_blen = 2;
|
|
Two_Product(adytail, cdx, at_clarge, at_c[0]);
|
|
at_c[1] = at_clarge;
|
|
at_clen = 2;
|
|
}
|
|
} else {
|
|
if (adytail == 0.0) {
|
|
Two_Product(adxtail, bdy, at_blarge, at_b[0]);
|
|
at_b[1] = at_blarge;
|
|
at_blen = 2;
|
|
negate = -adxtail;
|
|
Two_Product(negate, cdy, at_clarge, at_c[0]);
|
|
at_c[1] = at_clarge;
|
|
at_clen = 2;
|
|
} else {
|
|
Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
|
|
Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
|
|
Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
|
|
at_blarge, at_b[2], at_b[1], at_b[0]);
|
|
at_b[3] = at_blarge;
|
|
at_blen = 4;
|
|
Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
|
|
Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
|
|
Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
|
|
at_clarge, at_c[2], at_c[1], at_c[0]);
|
|
at_c[3] = at_clarge;
|
|
at_clen = 4;
|
|
}
|
|
}
|
|
if (bdxtail == 0.0) {
|
|
if (bdytail == 0.0) {
|
|
bt_c[0] = 0.0;
|
|
bt_clen = 1;
|
|
bt_a[0] = 0.0;
|
|
bt_alen = 1;
|
|
} else {
|
|
negate = -bdytail;
|
|
Two_Product(negate, cdx, bt_clarge, bt_c[0]);
|
|
bt_c[1] = bt_clarge;
|
|
bt_clen = 2;
|
|
Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
|
|
bt_a[1] = bt_alarge;
|
|
bt_alen = 2;
|
|
}
|
|
} else {
|
|
if (bdytail == 0.0) {
|
|
Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
|
|
bt_c[1] = bt_clarge;
|
|
bt_clen = 2;
|
|
negate = -bdxtail;
|
|
Two_Product(negate, ady, bt_alarge, bt_a[0]);
|
|
bt_a[1] = bt_alarge;
|
|
bt_alen = 2;
|
|
} else {
|
|
Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
|
|
Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
|
|
Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
|
|
bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
|
|
bt_c[3] = bt_clarge;
|
|
bt_clen = 4;
|
|
Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
|
|
Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
|
|
Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
|
|
bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
|
|
bt_a[3] = bt_alarge;
|
|
bt_alen = 4;
|
|
}
|
|
}
|
|
if (cdxtail == 0.0) {
|
|
if (cdytail == 0.0) {
|
|
ct_a[0] = 0.0;
|
|
ct_alen = 1;
|
|
ct_b[0] = 0.0;
|
|
ct_blen = 1;
|
|
} else {
|
|
negate = -cdytail;
|
|
Two_Product(negate, adx, ct_alarge, ct_a[0]);
|
|
ct_a[1] = ct_alarge;
|
|
ct_alen = 2;
|
|
Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
|
|
ct_b[1] = ct_blarge;
|
|
ct_blen = 2;
|
|
}
|
|
} else {
|
|
if (cdytail == 0.0) {
|
|
Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
|
|
ct_a[1] = ct_alarge;
|
|
ct_alen = 2;
|
|
negate = -cdxtail;
|
|
Two_Product(negate, bdy, ct_blarge, ct_b[0]);
|
|
ct_b[1] = ct_blarge;
|
|
ct_blen = 2;
|
|
} else {
|
|
Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
|
|
Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
|
|
Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
|
|
ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
|
|
ct_a[3] = ct_alarge;
|
|
ct_alen = 4;
|
|
Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
|
|
Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
|
|
Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
|
|
ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
|
|
ct_b[3] = ct_blarge;
|
|
ct_blen = 4;
|
|
}
|
|
}
|
|
|
|
bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
if (adheighttail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdheighttail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdheighttail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
if (bdytail != 0.0) {
|
|
Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdheighttail != 0.0) {
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (cdytail != 0.0) {
|
|
negate = -adxtail;
|
|
Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdheighttail != 0.0) {
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
if (bdxtail != 0.0) {
|
|
if (cdytail != 0.0) {
|
|
Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adheighttail != 0.0) {
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (adytail != 0.0) {
|
|
negate = -bdxtail;
|
|
Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdheighttail != 0.0) {
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
if (cdxtail != 0.0) {
|
|
if (adytail != 0.0) {
|
|
Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdheighttail != 0.0) {
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (bdytail != 0.0) {
|
|
negate = -cdxtail;
|
|
Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adheighttail != 0.0) {
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
|
|
u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (adheighttail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdheighttail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdheighttail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
return finnow[finlength - 1];
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL orient3d(struct mesh *m, struct behavior *b,
|
|
vertex pa, vertex pb, vertex pc, vertex pd,
|
|
REAL aheight, REAL bheight, REAL cheight, REAL dheight)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
vertex pd;
|
|
REAL aheight;
|
|
REAL bheight;
|
|
REAL cheight;
|
|
REAL dheight;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
|
|
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
REAL det;
|
|
REAL permanent, errbound;
|
|
|
|
m->orient3dcount++;
|
|
|
|
adx = pa[0] - pd[0];
|
|
bdx = pb[0] - pd[0];
|
|
cdx = pc[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdy = pb[1] - pd[1];
|
|
cdy = pc[1] - pd[1];
|
|
adheight = aheight - dheight;
|
|
bdheight = bheight - dheight;
|
|
cdheight = cheight - dheight;
|
|
|
|
bdxcdy = bdx * cdy;
|
|
cdxbdy = cdx * bdy;
|
|
|
|
cdxady = cdx * ady;
|
|
adxcdy = adx * cdy;
|
|
|
|
adxbdy = adx * bdy;
|
|
bdxady = bdx * ady;
|
|
|
|
det = adheight * (bdxcdy - cdxbdy)
|
|
+ bdheight * (cdxady - adxcdy)
|
|
+ cdheight * (adxbdy - bdxady);
|
|
|
|
if (b->noexact) {
|
|
return det;
|
|
}
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
|
|
+ (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
|
|
+ (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
|
|
errbound = o3derrboundA * permanent;
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
|
|
permanent);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* nonregular() Return a positive value if the point pd is incompatible */
|
|
/* with the circle or plane passing through pa, pb, and pc */
|
|
/* (meaning that pd is inside the circle or below the */
|
|
/* plane); a negative value if it is compatible; and zero if */
|
|
/* the four points are cocircular/coplanar. The points pa, */
|
|
/* pb, and pc must be in counterclockwise order, or the sign */
|
|
/* of the result will be reversed. */
|
|
/* */
|
|
/* If the -w switch is used, the points are lifted onto the parabolic */
|
|
/* lifting map, then they are dropped according to their weights, then the */
|
|
/* 3D orientation test is applied. If the -W switch is used, the points' */
|
|
/* heights are already provided, so the 3D orientation test is applied */
|
|
/* directly. If neither switch is used, the incircle test is applied. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL nonregular(struct mesh *m, struct behavior *b,
|
|
vertex pa, vertex pb, vertex pc, vertex pd)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL nonregular(m, b, pa, pb, pc, pd)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
vertex pd;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
if (b->weighted == 0) {
|
|
return incircle(m, b, pa, pb, pc, pd);
|
|
} else if (b->weighted == 1) {
|
|
return orient3d(m, b, pa, pb, pc, pd,
|
|
pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
|
|
pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
|
|
pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
|
|
pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
|
|
} else {
|
|
return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* findcircumcenter() Find the circumcenter of a triangle. */
|
|
/* */
|
|
/* The result is returned both in terms of x-y coordinates and xi-eta */
|
|
/* (barycentric) coordinates. The xi-eta coordinate system is defined in */
|
|
/* terms of the triangle: the origin of the triangle is the origin of the */
|
|
/* coordinate system; the destination of the triangle is one unit along the */
|
|
/* xi axis; and the apex of the triangle is one unit along the eta axis. */
|
|
/* This procedure also returns the square of the length of the triangle's */
|
|
/* shortest edge. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void findcircumcenter(struct mesh *m, struct behavior *b,
|
|
vertex torg, vertex tdest, vertex tapex,
|
|
vertex circumcenter, REAL *xi, REAL *eta, int offcenter)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta,
|
|
offcenter)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex torg;
|
|
vertex tdest;
|
|
vertex tapex;
|
|
vertex circumcenter;
|
|
REAL *xi;
|
|
REAL *eta;
|
|
int offcenter;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL xdo, ydo, xao, yao;
|
|
REAL dodist, aodist, dadist;
|
|
REAL denominator;
|
|
REAL dx, dy, dxoff, dyoff;
|
|
|
|
m->circumcentercount++;
|
|
|
|
/* Compute the circumcenter of the triangle. */
|
|
xdo = tdest[0] - torg[0];
|
|
ydo = tdest[1] - torg[1];
|
|
xao = tapex[0] - torg[0];
|
|
yao = tapex[1] - torg[1];
|
|
dodist = xdo * xdo + ydo * ydo;
|
|
aodist = xao * xao + yao * yao;
|
|
dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
|
|
(tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
|
|
if (b->noexact) {
|
|
denominator = 0.5 / (xdo * yao - xao * ydo);
|
|
} else {
|
|
/* Use the counterclockwise() routine to ensure a positive (and */
|
|
/* reasonably accurate) result, avoiding any possibility of */
|
|
/* division by zero. */
|
|
denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
|
|
/* Don't count the above as an orientation test. */
|
|
m->counterclockcount--;
|
|
}
|
|
dx = (yao * dodist - ydo * aodist) * denominator;
|
|
dy = (xdo * aodist - xao * dodist) * denominator;
|
|
|
|
/* Find the (squared) length of the triangle's shortest edge. This */
|
|
/* serves as a conservative estimate of the insertion radius of the */
|
|
/* circumcenter's parent. The estimate is used to ensure that */
|
|
/* the algorithm terminates even if very small angles appear in */
|
|
/* the input PSLG. */
|
|
if ((dodist < aodist) && (dodist < dadist)) {
|
|
if (offcenter && (b->offconstant > 0.0)) {
|
|
/* Find the position of the off-center, as described by Alper Ungor. */
|
|
dxoff = 0.5 * xdo - b->offconstant * ydo;
|
|
dyoff = 0.5 * ydo + b->offconstant * xdo;
|
|
/* If the off-center is closer to the origin than the */
|
|
/* circumcenter, use the off-center instead. */
|
|
if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
|
|
dx = dxoff;
|
|
dy = dyoff;
|
|
}
|
|
}
|
|
} else if (aodist < dadist) {
|
|
if (offcenter && (b->offconstant > 0.0)) {
|
|
dxoff = 0.5 * xao + b->offconstant * yao;
|
|
dyoff = 0.5 * yao - b->offconstant * xao;
|
|
/* If the off-center is closer to the origin than the */
|
|
/* circumcenter, use the off-center instead. */
|
|
if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
|
|
dx = dxoff;
|
|
dy = dyoff;
|
|
}
|
|
}
|
|
} else {
|
|
if (offcenter && (b->offconstant > 0.0)) {
|
|
dxoff = 0.5 * (tapex[0] - tdest[0]) -
|
|
b->offconstant * (tapex[1] - tdest[1]);
|
|
dyoff = 0.5 * (tapex[1] - tdest[1]) +
|
|
b->offconstant * (tapex[0] - tdest[0]);
|
|
/* If the off-center is closer to the destination than the */
|
|
/* circumcenter, use the off-center instead. */
|
|
if (dxoff * dxoff + dyoff * dyoff <
|
|
(dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
|
|
dx = xdo + dxoff;
|
|
dy = ydo + dyoff;
|
|
}
|
|
}
|
|
}
|
|
|
|
circumcenter[0] = torg[0] + dx;
|
|
circumcenter[1] = torg[1] + dy;
|
|
|
|
/* To interpolate vertex attributes for the new vertex inserted at */
|
|
/* the circumcenter, define a coordinate system with a xi-axis, */
|
|
/* directed from the triangle's origin to its destination, and */
|
|
/* an eta-axis, directed from its origin to its apex. */
|
|
/* Calculate the xi and eta coordinates of the circumcenter. */
|
|
*xi = (yao * dx - xao * dy) * (2.0 * denominator);
|
|
*eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Geometric primitives end here *********/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triangleinit() Initialize some variables. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triangleinit(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triangleinit(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
poolzero(&m->vertices);
|
|
poolzero(&m->triangles);
|
|
poolzero(&m->subsegs);
|
|
poolzero(&m->viri);
|
|
poolzero(&m->badsubsegs);
|
|
poolzero(&m->badtriangles);
|
|
poolzero(&m->flipstackers);
|
|
poolzero(&m->splaynodes);
|
|
|
|
m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
|
|
m->undeads = 0; /* No eliminated input vertices yet. */
|
|
m->samples = 1; /* Point location should take at least one sample. */
|
|
m->checksegments = 0; /* There are no segments in the triangulation yet. */
|
|
m->checkquality = 0; /* The quality triangulation stage has not begun. */
|
|
m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
|
|
m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
|
|
randomseed = 1;
|
|
|
|
exactinit(); /* Initialize exact arithmetic constants. */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* randomnation() Generate a random number between 0 and `choices' - 1. */
|
|
/* */
|
|
/* This is a simple linear congruential random number generator. Hence, it */
|
|
/* is a bad random number generator, but good enough for most randomized */
|
|
/* geometric algorithms. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
unsigned long randomnation(unsigned int choices)
|
|
#else /* not ANSI_DECLARATORS */
|
|
unsigned long randomnation(choices)
|
|
unsigned int choices;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
randomseed = (randomseed * 1366l + 150889l) % 714025l;
|
|
return randomseed / (714025l / choices + 1);
|
|
}
|
|
|
|
/********* Mesh quality testing routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* checkmesh() Test the mesh for topological consistency. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void checkmesh(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void checkmesh(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop;
|
|
struct otri oppotri, oppooppotri;
|
|
vertex triorg, tridest, triapex;
|
|
vertex oppoorg, oppodest;
|
|
int horrors;
|
|
int saveexact;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
/* Temporarily turn on exact arithmetic if it's off. */
|
|
saveexact = b->noexact;
|
|
b->noexact = 0;
|
|
if (!b->quiet) {
|
|
printf(" Checking consistency of mesh...\n");
|
|
}
|
|
horrors = 0;
|
|
/* Run through the list of triangles, checking each one. */
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
/* Check all three edges of the triangle. */
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
org(triangleloop, triorg);
|
|
dest(triangleloop, tridest);
|
|
if (triangleloop.orient == 0) { /* Only test for inversion once. */
|
|
/* Test if the triangle is flat or inverted. */
|
|
apex(triangleloop, triapex);
|
|
if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) {
|
|
printf(" !! !! Inverted ");
|
|
printtriangle(m, b, &triangleloop);
|
|
horrors++;
|
|
}
|
|
}
|
|
/* Find the neighboring triangle on this edge. */
|
|
sym(triangleloop, oppotri);
|
|
if (oppotri.tri != m->dummytri) {
|
|
/* Check that the triangle's neighbor knows it's a neighbor. */
|
|
sym(oppotri, oppooppotri);
|
|
if ((triangleloop.tri != oppooppotri.tri)
|
|
|| (triangleloop.orient != oppooppotri.orient)) {
|
|
printf(" !! !! Asymmetric triangle-triangle bond:\n");
|
|
if (triangleloop.tri == oppooppotri.tri) {
|
|
printf(" (Right triangle, wrong orientation)\n");
|
|
}
|
|
printf(" First ");
|
|
printtriangle(m, b, &triangleloop);
|
|
printf(" Second (nonreciprocating) ");
|
|
printtriangle(m, b, &oppotri);
|
|
horrors++;
|
|
}
|
|
/* Check that both triangles agree on the identities */
|
|
/* of their shared vertices. */
|
|
org(oppotri, oppoorg);
|
|
dest(oppotri, oppodest);
|
|
if ((triorg != oppodest) || (tridest != oppoorg)) {
|
|
printf(" !! !! Mismatched edge coordinates between two triangles:\n"
|
|
);
|
|
printf(" First mismatched ");
|
|
printtriangle(m, b, &triangleloop);
|
|
printf(" Second mismatched ");
|
|
printtriangle(m, b, &oppotri);
|
|
horrors++;
|
|
}
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
if (horrors == 0) {
|
|
if (!b->quiet) {
|
|
printf(" In my studied opinion, the mesh appears to be consistent.\n");
|
|
}
|
|
} else if (horrors == 1) {
|
|
printf(" !! !! !! !! Precisely one festering wound discovered.\n");
|
|
} else {
|
|
printf(" !! !! !! !! %d abominations witnessed.\n", horrors);
|
|
}
|
|
/* Restore the status of exact arithmetic. */
|
|
b->noexact = saveexact;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* checkdelaunay() Ensure that the mesh is (constrained) Delaunay. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void checkdelaunay(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void checkdelaunay(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop;
|
|
struct otri oppotri;
|
|
struct osub opposubseg;
|
|
vertex triorg, tridest, triapex;
|
|
vertex oppoapex;
|
|
int shouldbedelaunay;
|
|
int horrors;
|
|
int saveexact;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
/* Temporarily turn on exact arithmetic if it's off. */
|
|
saveexact = b->noexact;
|
|
b->noexact = 0;
|
|
if (!b->quiet) {
|
|
printf(" Checking Delaunay property of mesh...\n");
|
|
}
|
|
horrors = 0;
|
|
/* Run through the list of triangles, checking each one. */
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
/* Check all three edges of the triangle. */
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
org(triangleloop, triorg);
|
|
dest(triangleloop, tridest);
|
|
apex(triangleloop, triapex);
|
|
sym(triangleloop, oppotri);
|
|
apex(oppotri, oppoapex);
|
|
/* Only test that the edge is locally Delaunay if there is an */
|
|
/* adjoining triangle whose pointer is larger (to ensure that */
|
|
/* each pair isn't tested twice). */
|
|
shouldbedelaunay = (oppotri.tri != m->dummytri) &&
|
|
!deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) &&
|
|
(triorg != m->infvertex1) && (triorg != m->infvertex2) &&
|
|
(triorg != m->infvertex3) &&
|
|
(tridest != m->infvertex1) && (tridest != m->infvertex2) &&
|
|
(tridest != m->infvertex3) &&
|
|
(triapex != m->infvertex1) && (triapex != m->infvertex2) &&
|
|
(triapex != m->infvertex3) &&
|
|
(oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) &&
|
|
(oppoapex != m->infvertex3);
|
|
if (m->checksegments && shouldbedelaunay) {
|
|
/* If a subsegment separates the triangles, then the edge is */
|
|
/* constrained, so no local Delaunay test should be done. */
|
|
tspivot(triangleloop, opposubseg);
|
|
if (opposubseg.ss != m->dummysub){
|
|
shouldbedelaunay = 0;
|
|
}
|
|
}
|
|
if (shouldbedelaunay) {
|
|
if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) {
|
|
if (!b->weighted) {
|
|
printf(" !! !! Non-Delaunay pair of triangles:\n");
|
|
printf(" First non-Delaunay ");
|
|
printtriangle(m, b, &triangleloop);
|
|
printf(" Second non-Delaunay ");
|
|
} else {
|
|
printf(" !! !! Non-regular pair of triangles:\n");
|
|
printf(" First non-regular ");
|
|
printtriangle(m, b, &triangleloop);
|
|
printf(" Second non-regular ");
|
|
}
|
|
printtriangle(m, b, &oppotri);
|
|
horrors++;
|
|
}
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
if (horrors == 0) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
" By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
|
|
}
|
|
} else if (horrors == 1) {
|
|
printf(
|
|
" !! !! !! !! Precisely one terrifying transgression identified.\n");
|
|
} else {
|
|
printf(" !! !! !! !! %d obscenities viewed with horror.\n", horrors);
|
|
}
|
|
/* Restore the status of exact arithmetic. */
|
|
b->noexact = saveexact;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* enqueuebadtriang() Add a bad triangle data structure to the end of a */
|
|
/* queue. */
|
|
/* */
|
|
/* The queue is actually a set of 4096 queues. I use multiple queues to */
|
|
/* give priority to smaller angles. I originally implemented a heap, but */
|
|
/* the queues are faster by a larger margin than I'd suspected. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void enqueuebadtriang(struct mesh *m, struct behavior *b,
|
|
struct badtriang *badtri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void enqueuebadtriang(m, b, badtri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct badtriang *badtri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL length, multiplier;
|
|
int exponent, expincrement;
|
|
int queuenumber;
|
|
int posexponent;
|
|
int i;
|
|
|
|
if (b->verbose > 2) {
|
|
printf(" Queueing bad triangle:\n");
|
|
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
badtri->triangorg[0], badtri->triangorg[1],
|
|
badtri->triangdest[0], badtri->triangdest[1],
|
|
badtri->triangapex[0], badtri->triangapex[1]);
|
|
}
|
|
|
|
/* Determine the appropriate queue to put the bad triangle into. */
|
|
/* Recall that the key is the square of its shortest edge length. */
|
|
if (badtri->key >= 1.0) {
|
|
length = badtri->key;
|
|
posexponent = 1;
|
|
} else {
|
|
/* `badtri->key' is 2.0 to a negative exponent, so we'll record that */
|
|
/* fact and use the reciprocal of `badtri->key', which is > 1.0. */
|
|
length = 1.0 / badtri->key;
|
|
posexponent = 0;
|
|
}
|
|
/* `length' is approximately 2.0 to what exponent? The following code */
|
|
/* determines the answer in time logarithmic in the exponent. */
|
|
exponent = 0;
|
|
while (length > 2.0) {
|
|
/* Find an approximation by repeated squaring of two. */
|
|
expincrement = 1;
|
|
multiplier = 0.5;
|
|
while (length * multiplier * multiplier > 1.0) {
|
|
expincrement *= 2;
|
|
multiplier *= multiplier;
|
|
}
|
|
/* Reduce the value of `length', then iterate if necessary. */
|
|
exponent += expincrement;
|
|
length *= multiplier;
|
|
}
|
|
/* `length' is approximately squareroot(2.0) to what exponent? */
|
|
exponent = 2.0 * exponent + (length > SQUAREROOTTWO);
|
|
/* `exponent' is now in the range 0...2047 for IEEE double precision. */
|
|
/* Choose a queue in the range 0...4095. The shortest edges have the */
|
|
/* highest priority (queue 4095). */
|
|
if (posexponent) {
|
|
queuenumber = 2047 - exponent;
|
|
} else {
|
|
queuenumber = 2048 + exponent;
|
|
}
|
|
|
|
/* Are we inserting into an empty queue? */
|
|
if (m->queuefront[queuenumber] == (struct badtriang *) NULL) {
|
|
/* Yes, we are inserting into an empty queue. */
|
|
/* Will this become the highest-priority queue? */
|
|
if (queuenumber > m->firstnonemptyq) {
|
|
/* Yes, this is the highest-priority queue. */
|
|
m->nextnonemptyq[queuenumber] = m->firstnonemptyq;
|
|
m->firstnonemptyq = queuenumber;
|
|
} else {
|
|
/* No, this is not the highest-priority queue. */
|
|
/* Find the queue with next higher priority. */
|
|
i = queuenumber + 1;
|
|
while (m->queuefront[i] == (struct badtriang *) NULL) {
|
|
i++;
|
|
}
|
|
/* Mark the newly nonempty queue as following a higher-priority queue. */
|
|
m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i];
|
|
m->nextnonemptyq[i] = queuenumber;
|
|
}
|
|
/* Put the bad triangle at the beginning of the (empty) queue. */
|
|
m->queuefront[queuenumber] = badtri;
|
|
} else {
|
|
/* Add the bad triangle to the end of an already nonempty queue. */
|
|
m->queuetail[queuenumber]->nexttriang = badtri;
|
|
}
|
|
/* Maintain a pointer to the last triangle of the queue. */
|
|
m->queuetail[queuenumber] = badtri;
|
|
/* Newly enqueued bad triangle has no successor in the queue. */
|
|
badtri->nexttriang = (struct badtriang *) NULL;
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* enqueuebadtri() Add a bad triangle to the end of a queue. */
|
|
/* */
|
|
/* Allocates a badtriang data structure for the triangle, then passes it to */
|
|
/* enqueuebadtriang(). */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri,
|
|
REAL minedge, vertex enqapex, vertex enqorg, vertex enqdest)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void enqueuebadtri(m, b, enqtri, minedge, enqapex, enqorg, enqdest)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *enqtri;
|
|
REAL minedge;
|
|
vertex enqapex;
|
|
vertex enqorg;
|
|
vertex enqdest;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct badtriang *newbad;
|
|
|
|
/* Allocate space for the bad triangle. */
|
|
newbad = (struct badtriang *) poolalloc(&m->badtriangles);
|
|
newbad->poortri = encode(*enqtri);
|
|
newbad->key = minedge;
|
|
newbad->triangapex = enqapex;
|
|
newbad->triangorg = enqorg;
|
|
newbad->triangdest = enqdest;
|
|
enqueuebadtriang(m, b, newbad);
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* dequeuebadtriang() Remove a triangle from the front of the queue. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct badtriang *dequeuebadtriang(struct mesh *m)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct badtriang *dequeuebadtriang(m)
|
|
struct mesh *m;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct badtriang *result;
|
|
|
|
/* If no queues are nonempty, return NULL. */
|
|
if (m->firstnonemptyq < 0) {
|
|
return (struct badtriang *) NULL;
|
|
}
|
|
/* Find the first triangle of the highest-priority queue. */
|
|
result = m->queuefront[m->firstnonemptyq];
|
|
/* Remove the triangle from the queue. */
|
|
m->queuefront[m->firstnonemptyq] = result->nexttriang;
|
|
/* If this queue is now empty, note the new highest-priority */
|
|
/* nonempty queue. */
|
|
if (result == m->queuetail[m->firstnonemptyq]) {
|
|
m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* checkseg4encroach() Check a subsegment to see if it is encroached; add */
|
|
/* it to the list if it is. */
|
|
/* */
|
|
/* A subsegment is encroached if there is a vertex in its diametral lens. */
|
|
/* For Ruppert's algorithm (-D switch), the "diametral lens" is the */
|
|
/* diametral circle. For Chew's algorithm (default), the diametral lens is */
|
|
/* just big enough to enclose two isosceles triangles whose bases are the */
|
|
/* subsegment. Each of the two isosceles triangles has two angles equal */
|
|
/* to `b->minangle'. */
|
|
/* */
|
|
/* Chew's algorithm does not require diametral lenses at all--but they save */
|
|
/* time. Any vertex inside a subsegment's diametral lens implies that the */
|
|
/* triangle adjoining the subsegment will be too skinny, so it's only a */
|
|
/* matter of time before the encroaching vertex is deleted by Chew's */
|
|
/* algorithm. It's faster to simply not insert the doomed vertex in the */
|
|
/* first place, which is why I use diametral lenses with Chew's algorithm. */
|
|
/* */
|
|
/* Returns a nonzero value if the subsegment is encroached. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int checkseg4encroach(struct mesh *m, struct behavior *b,
|
|
struct osub *testsubseg)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int checkseg4encroach(m, b, testsubseg)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct osub *testsubseg;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri neighbortri;
|
|
struct osub testsym;
|
|
struct badsubseg *encroachedseg;
|
|
REAL dotproduct;
|
|
int encroached;
|
|
int sides;
|
|
vertex eorg, edest, eapex;
|
|
triangle ptr; /* Temporary variable used by stpivot(). */
|
|
|
|
encroached = 0;
|
|
sides = 0;
|
|
|
|
sorg(*testsubseg, eorg);
|
|
sdest(*testsubseg, edest);
|
|
/* Check one neighbor of the subsegment. */
|
|
stpivot(*testsubseg, neighbortri);
|
|
/* Does the neighbor exist, or is this a boundary edge? */
|
|
if (neighbortri.tri != m->dummytri) {
|
|
sides++;
|
|
/* Find a vertex opposite this subsegment. */
|
|
apex(neighbortri, eapex);
|
|
/* Check whether the apex is in the diametral lens of the subsegment */
|
|
/* (the diametral circle if `conformdel' is set). A dot product */
|
|
/* of two sides of the triangle is used to check whether the angle */
|
|
/* at the apex is greater than (180 - 2 `minangle') degrees (for */
|
|
/* lenses; 90 degrees for diametral circles). */
|
|
dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
|
|
if (dotproduct < 0.0) {
|
|
if (b->conformdel ||
|
|
(dotproduct * dotproduct >=
|
|
(2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
|
|
((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
|
|
((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
|
|
encroached = 1;
|
|
}
|
|
}
|
|
}
|
|
/* Check the other neighbor of the subsegment. */
|
|
ssym(*testsubseg, testsym);
|
|
stpivot(testsym, neighbortri);
|
|
/* Does the neighbor exist, or is this a boundary edge? */
|
|
if (neighbortri.tri != m->dummytri) {
|
|
sides++;
|
|
/* Find the other vertex opposite this subsegment. */
|
|
apex(neighbortri, eapex);
|
|
/* Check whether the apex is in the diametral lens of the subsegment */
|
|
/* (or the diametral circle, if `conformdel' is set). */
|
|
dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
|
|
if (dotproduct < 0.0) {
|
|
if (b->conformdel ||
|
|
(dotproduct * dotproduct >=
|
|
(2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
|
|
((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
|
|
((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
|
|
encroached += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) {
|
|
if (b->verbose > 2) {
|
|
printf(
|
|
" Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
|
|
eorg[0], eorg[1], edest[0], edest[1]);
|
|
}
|
|
/* Add the subsegment to the list of encroached subsegments. */
|
|
/* Be sure to get the orientation right. */
|
|
encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs);
|
|
if (encroached == 1) {
|
|
encroachedseg->encsubseg = sencode(*testsubseg);
|
|
encroachedseg->subsegorg = eorg;
|
|
encroachedseg->subsegdest = edest;
|
|
} else {
|
|
encroachedseg->encsubseg = sencode(testsym);
|
|
encroachedseg->subsegorg = edest;
|
|
encroachedseg->subsegdest = eorg;
|
|
}
|
|
}
|
|
|
|
return encroached;
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* testtriangle() Test a triangle for quality and size. */
|
|
/* */
|
|
/* Tests a triangle to see if it satisfies the minimum angle condition and */
|
|
/* the maximum area condition. Triangles that aren't up to spec are added */
|
|
/* to the bad triangle queue. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void testtriangle(m, b, testtri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *testtri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri tri1, tri2;
|
|
struct osub testsub;
|
|
vertex torg, tdest, tapex;
|
|
vertex base1, base2;
|
|
vertex org1, dest1, org2, dest2;
|
|
vertex joinvertex;
|
|
REAL dxod, dyod, dxda, dyda, dxao, dyao;
|
|
REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
|
|
REAL apexlen, orglen, destlen, minedge;
|
|
REAL angle;
|
|
REAL area;
|
|
REAL dist1, dist2;
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
triangle ptr; /* Temporary variable used by oprev() and dnext(). */
|
|
|
|
org(*testtri, torg);
|
|
dest(*testtri, tdest);
|
|
apex(*testtri, tapex);
|
|
dxod = torg[0] - tdest[0];
|
|
dyod = torg[1] - tdest[1];
|
|
dxda = tdest[0] - tapex[0];
|
|
dyda = tdest[1] - tapex[1];
|
|
dxao = tapex[0] - torg[0];
|
|
dyao = tapex[1] - torg[1];
|
|
dxod2 = dxod * dxod;
|
|
dyod2 = dyod * dyod;
|
|
dxda2 = dxda * dxda;
|
|
dyda2 = dyda * dyda;
|
|
dxao2 = dxao * dxao;
|
|
dyao2 = dyao * dyao;
|
|
/* Find the lengths of the triangle's three edges. */
|
|
apexlen = dxod2 + dyod2;
|
|
orglen = dxda2 + dyda2;
|
|
destlen = dxao2 + dyao2;
|
|
|
|
if ((apexlen < orglen) && (apexlen < destlen)) {
|
|
/* The edge opposite the apex is shortest. */
|
|
minedge = apexlen;
|
|
/* Find the square of the cosine of the angle at the apex. */
|
|
angle = dxda * dxao + dyda * dyao;
|
|
angle = angle * angle / (orglen * destlen);
|
|
base1 = torg;
|
|
base2 = tdest;
|
|
otricopy(*testtri, tri1);
|
|
} else if (orglen < destlen) {
|
|
/* The edge opposite the origin is shortest. */
|
|
minedge = orglen;
|
|
/* Find the square of the cosine of the angle at the origin. */
|
|
angle = dxod * dxao + dyod * dyao;
|
|
angle = angle * angle / (apexlen * destlen);
|
|
base1 = tdest;
|
|
base2 = tapex;
|
|
lnext(*testtri, tri1);
|
|
} else {
|
|
/* The edge opposite the destination is shortest. */
|
|
minedge = destlen;
|
|
/* Find the square of the cosine of the angle at the destination. */
|
|
angle = dxod * dxda + dyod * dyda;
|
|
angle = angle * angle / (apexlen * orglen);
|
|
base1 = tapex;
|
|
base2 = torg;
|
|
lprev(*testtri, tri1);
|
|
}
|
|
|
|
if (b->vararea || b->fixedarea || b->usertest) {
|
|
/* Check whether the area is larger than permitted. */
|
|
area = 0.5 * (dxod * dyda - dyod * dxda);
|
|
if (b->fixedarea && (area > b->maxarea)) {
|
|
/* Add this triangle to the list of bad triangles. */
|
|
enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
|
|
return;
|
|
}
|
|
|
|
/* Nonpositive area constraints are treated as unconstrained. */
|
|
if ((b->vararea) && (area > areabound(*testtri)) &&
|
|
(areabound(*testtri) > 0.0)) {
|
|
/* Add this triangle to the list of bad triangles. */
|
|
enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
|
|
return;
|
|
}
|
|
|
|
if (b->usertest) {
|
|
/* Check whether the user thinks this triangle is too large. */
|
|
if (triunsuitable(torg, tdest, tapex, area)) {
|
|
enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check whether the angle is smaller than permitted. */
|
|
if (angle > b->goodangle) {
|
|
/* Use the rules of Miller, Pav, and Walkington to decide that certain */
|
|
/* triangles should not be split, even if they have bad angles. */
|
|
/* A skinny triangle is not split if its shortest edge subtends a */
|
|
/* small input angle, and both endpoints of the edge lie on a */
|
|
/* concentric circular shell. For convenience, I make a small */
|
|
/* adjustment to that rule: I check if the endpoints of the edge */
|
|
/* both lie in segment interiors, equidistant from the apex where */
|
|
/* the two segments meet. */
|
|
/* First, check if both points lie in segment interiors. */
|
|
if ((vertextype(base1) == SEGMENTVERTEX) &&
|
|
(vertextype(base2) == SEGMENTVERTEX)) {
|
|
/* Check if both points lie in a common segment. If they do, the */
|
|
/* skinny triangle is enqueued to be split as usual. */
|
|
tspivot(tri1, testsub);
|
|
if (testsub.ss == m->dummysub) {
|
|
/* No common segment. Find a subsegment that contains `torg'. */
|
|
otricopy(tri1, tri2);
|
|
do {
|
|
oprevself(tri1);
|
|
tspivot(tri1, testsub);
|
|
} while (testsub.ss == m->dummysub);
|
|
/* Find the endpoints of the containing segment. */
|
|
segorg(testsub, org1);
|
|
segdest(testsub, dest1);
|
|
/* Find a subsegment that contains `tdest'. */
|
|
do {
|
|
dnextself(tri2);
|
|
tspivot(tri2, testsub);
|
|
} while (testsub.ss == m->dummysub);
|
|
/* Find the endpoints of the containing segment. */
|
|
segorg(testsub, org2);
|
|
segdest(testsub, dest2);
|
|
/* Check if the two containing segments have an endpoint in common. */
|
|
joinvertex = (vertex) NULL;
|
|
if ((dest1[0] == org2[0]) && (dest1[1] == org2[1])) {
|
|
joinvertex = dest1;
|
|
} else if ((org1[0] == dest2[0]) && (org1[1] == dest2[1])) {
|
|
joinvertex = org1;
|
|
}
|
|
if (joinvertex != (vertex) NULL) {
|
|
/* Compute the distance from the common endpoint (of the two */
|
|
/* segments) to each of the endpoints of the shortest edge. */
|
|
dist1 = ((base1[0] - joinvertex[0]) * (base1[0] - joinvertex[0]) +
|
|
(base1[1] - joinvertex[1]) * (base1[1] - joinvertex[1]));
|
|
dist2 = ((base2[0] - joinvertex[0]) * (base2[0] - joinvertex[0]) +
|
|
(base2[1] - joinvertex[1]) * (base2[1] - joinvertex[1]));
|
|
/* If the two distances are equal, don't split the triangle. */
|
|
if ((dist1 < 1.001 * dist2) && (dist1 > 0.999 * dist2)) {
|
|
/* Return now to avoid enqueueing the bad triangle. */
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add this triangle to the list of bad triangles. */
|
|
enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Mesh quality testing routines end here *********/
|
|
|
|
/********* Point location routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* makevertexmap() Construct a mapping from vertices to triangles to */
|
|
/* improve the speed of point location for segment */
|
|
/* insertion. */
|
|
/* */
|
|
/* Traverses all the triangles, and provides each corner of each triangle */
|
|
/* with a pointer to that triangle. Of course, pointers will be */
|
|
/* overwritten by other pointers because (almost) each vertex is a corner */
|
|
/* of several triangles, but in the end every vertex will point to some */
|
|
/* triangle that contains it. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void makevertexmap(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void makevertexmap(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop;
|
|
vertex triorg;
|
|
|
|
if (b->verbose) {
|
|
printf(" Constructing mapping from vertices to triangles.\n");
|
|
}
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
/* Check all three vertices of the triangle. */
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
org(triangleloop, triorg);
|
|
setvertex2tri(triorg, encode(triangleloop));
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* preciselocate() Find a triangle or edge containing a given point. */
|
|
/* */
|
|
/* Begins its search from `searchtri'. It is important that `searchtri' */
|
|
/* be a handle with the property that `searchpoint' is strictly to the left */
|
|
/* of the edge denoted by `searchtri', or is collinear with that edge and */
|
|
/* does not intersect that edge. (In particular, `searchpoint' should not */
|
|
/* be the origin or destination of that edge.) */
|
|
/* */
|
|
/* These conditions are imposed because preciselocate() is normally used in */
|
|
/* one of two situations: */
|
|
/* */
|
|
/* (1) To try to find the location to insert a new point. Normally, we */
|
|
/* know an edge that the point is strictly to the left of. In the */
|
|
/* incremental Delaunay algorithm, that edge is a bounding box edge. */
|
|
/* In Ruppert's Delaunay refinement algorithm for quality meshing, */
|
|
/* that edge is the shortest edge of the triangle whose circumcenter */
|
|
/* is being inserted. */
|
|
/* */
|
|
/* (2) To try to find an existing point. In this case, any edge on the */
|
|
/* convex hull is a good starting edge. You must screen out the */
|
|
/* possibility that the vertex sought is an endpoint of the starting */
|
|
/* edge before you call preciselocate(). */
|
|
/* */
|
|
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
|
|
/* */
|
|
/* This implementation differs from that given by Guibas and Stolfi. It */
|
|
/* walks from triangle to triangle, crossing an edge only if `searchpoint' */
|
|
/* is on the other side of the line containing that edge. After entering */
|
|
/* a triangle, there are two edges by which one can leave that triangle. */
|
|
/* If both edges are valid (`searchpoint' is on the other side of both */
|
|
/* edges), one of the two is chosen by drawing a line perpendicular to */
|
|
/* the entry edge (whose endpoints are `forg' and `fdest') passing through */
|
|
/* `fapex'. Depending on which side of this perpendicular `searchpoint' */
|
|
/* falls on, an exit edge is chosen. */
|
|
/* */
|
|
/* This implementation is empirically faster than the Guibas and Stolfi */
|
|
/* point location routine (which I originally used), which tends to spiral */
|
|
/* in toward its target. */
|
|
/* */
|
|
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
|
|
/* is a handle whose origin is the existing vertex. */
|
|
/* */
|
|
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
|
|
/* handle whose primary edge is the edge on which the point lies. */
|
|
/* */
|
|
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
|
|
/* `searchtri' is a handle on the triangle that contains the point. */
|
|
/* */
|
|
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
|
|
/* handle whose primary edge the point is to the right of. This might */
|
|
/* occur when the circumcenter of a triangle falls just slightly outside */
|
|
/* the mesh due to floating-point roundoff error. It also occurs when */
|
|
/* seeking a hole or region point that a foolish user has placed outside */
|
|
/* the mesh. */
|
|
/* */
|
|
/* If `stopatsubsegment' is nonzero, the search will stop if it tries to */
|
|
/* walk through a subsegment, and will return OUTSIDE. */
|
|
/* */
|
|
/* WARNING: This routine is designed for convex triangulations, and will */
|
|
/* not generally work after the holes and concavities have been carved. */
|
|
/* However, it can still be used to find the circumcenter of a triangle, as */
|
|
/* long as the search is begun from the triangle in question. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
enum locateresult preciselocate(struct mesh *m, struct behavior *b,
|
|
vertex searchpoint, struct otri *searchtri,
|
|
int stopatsubsegment)
|
|
#else /* not ANSI_DECLARATORS */
|
|
enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex searchpoint;
|
|
struct otri *searchtri;
|
|
int stopatsubsegment;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri backtracktri;
|
|
struct osub checkedge;
|
|
vertex forg, fdest, fapex;
|
|
REAL orgorient, destorient;
|
|
int moveleft;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (b->verbose > 2) {
|
|
printf(" Searching for point (%.12g, %.12g).\n",
|
|
searchpoint[0], searchpoint[1]);
|
|
}
|
|
/* Where are we? */
|
|
org(*searchtri, forg);
|
|
dest(*searchtri, fdest);
|
|
apex(*searchtri, fapex);
|
|
while (1) {
|
|
if (b->verbose > 2) {
|
|
printf(" At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
|
|
}
|
|
/* Check whether the apex is the point we seek. */
|
|
if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
|
|
lprevself(*searchtri);
|
|
return ONVERTEX;
|
|
}
|
|
/* Does the point lie on the other side of the line defined by the */
|
|
/* triangle edge opposite the triangle's destination? */
|
|
destorient = counterclockwise(m, b, forg, fapex, searchpoint);
|
|
/* Does the point lie on the other side of the line defined by the */
|
|
/* triangle edge opposite the triangle's origin? */
|
|
orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
|
|
if (destorient > 0.0) {
|
|
if (orgorient > 0.0) {
|
|
/* Move left if the inner product of (fapex - searchpoint) and */
|
|
/* (fdest - forg) is positive. This is equivalent to drawing */
|
|
/* a line perpendicular to the line (forg, fdest) and passing */
|
|
/* through `fapex', and determining which side of this line */
|
|
/* `searchpoint' falls on. */
|
|
moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
|
|
(fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
|
|
} else {
|
|
moveleft = 1;
|
|
}
|
|
} else {
|
|
if (orgorient > 0.0) {
|
|
moveleft = 0;
|
|
} else {
|
|
/* The point we seek must be on the boundary of or inside this */
|
|
/* triangle. */
|
|
if (destorient == 0.0) {
|
|
lprevself(*searchtri);
|
|
return ONEDGE;
|
|
}
|
|
if (orgorient == 0.0) {
|
|
lnextself(*searchtri);
|
|
return ONEDGE;
|
|
}
|
|
return INTRIANGLE;
|
|
}
|
|
}
|
|
|
|
/* Move to another triangle. Leave a trace `backtracktri' in case */
|
|
/* floating-point roundoff or some such bogey causes us to walk */
|
|
/* off a boundary of the triangulation. */
|
|
if (moveleft) {
|
|
lprev(*searchtri, backtracktri);
|
|
fdest = fapex;
|
|
} else {
|
|
lnext(*searchtri, backtracktri);
|
|
forg = fapex;
|
|
}
|
|
sym(backtracktri, *searchtri);
|
|
|
|
if (m->checksegments && stopatsubsegment) {
|
|
/* Check for walking through a subsegment. */
|
|
tspivot(backtracktri, checkedge);
|
|
if (checkedge.ss != m->dummysub) {
|
|
/* Go back to the last triangle. */
|
|
otricopy(backtracktri, *searchtri);
|
|
return OUTSIDE;
|
|
}
|
|
}
|
|
/* Check for walking right out of the triangulation. */
|
|
if (searchtri->tri == m->dummytri) {
|
|
/* Go back to the last triangle. */
|
|
otricopy(backtracktri, *searchtri);
|
|
return OUTSIDE;
|
|
}
|
|
|
|
apex(*searchtri, fapex);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* locate() Find a triangle or edge containing a given point. */
|
|
/* */
|
|
/* Searching begins from one of: the input `searchtri', a recently */
|
|
/* encountered triangle `recenttri', or from a triangle chosen from a */
|
|
/* random sample. The choice is made by determining which triangle's */
|
|
/* origin is closest to the point we are searching for. Normally, */
|
|
/* `searchtri' should be a handle on the convex hull of the triangulation. */
|
|
/* */
|
|
/* Details on the random sampling method can be found in the Mucke, Saias, */
|
|
/* and Zhu paper cited in the header of this code. */
|
|
/* */
|
|
/* On completion, `searchtri' is a triangle that contains `searchpoint'. */
|
|
/* */
|
|
/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */
|
|
/* is a handle whose origin is the existing vertex. */
|
|
/* */
|
|
/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */
|
|
/* handle whose primary edge is the edge on which the point lies. */
|
|
/* */
|
|
/* Returns INTRIANGLE if the point lies strictly within a triangle. */
|
|
/* `searchtri' is a handle on the triangle that contains the point. */
|
|
/* */
|
|
/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */
|
|
/* handle whose primary edge the point is to the right of. This might */
|
|
/* occur when the circumcenter of a triangle falls just slightly outside */
|
|
/* the mesh due to floating-point roundoff error. It also occurs when */
|
|
/* seeking a hole or region point that a foolish user has placed outside */
|
|
/* the mesh. */
|
|
/* */
|
|
/* WARNING: This routine is designed for convex triangulations, and will */
|
|
/* not generally work after the holes and concavities have been carved. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
enum locateresult locate(struct mesh *m, struct behavior *b,
|
|
vertex searchpoint, struct otri *searchtri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
enum locateresult locate(m, b, searchpoint, searchtri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex searchpoint;
|
|
struct otri *searchtri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
VOID **sampleblock;
|
|
char *firsttri;
|
|
struct otri sampletri;
|
|
vertex torg, tdest;
|
|
unsigned long alignptr;
|
|
REAL searchdist, dist;
|
|
REAL ahead;
|
|
long samplesperblock, totalsamplesleft, samplesleft;
|
|
long population, totalpopulation;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
if (b->verbose > 2) {
|
|
printf(" Randomly sampling for a triangle near point (%.12g, %.12g).\n",
|
|
searchpoint[0], searchpoint[1]);
|
|
}
|
|
/* Record the distance from the suggested starting triangle to the */
|
|
/* point we seek. */
|
|
org(*searchtri, torg);
|
|
searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
|
|
(searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
|
|
if (b->verbose > 2) {
|
|
printf(" Boundary triangle has origin (%.12g, %.12g).\n",
|
|
torg[0], torg[1]);
|
|
}
|
|
|
|
/* If a recently encountered triangle has been recorded and has not been */
|
|
/* deallocated, test it as a good starting point. */
|
|
if (m->recenttri.tri != (triangle *) NULL) {
|
|
if (!deadtri(m->recenttri.tri)) {
|
|
org(m->recenttri, torg);
|
|
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
|
|
otricopy(m->recenttri, *searchtri);
|
|
return ONVERTEX;
|
|
}
|
|
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
|
|
(searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
|
|
if (dist < searchdist) {
|
|
otricopy(m->recenttri, *searchtri);
|
|
searchdist = dist;
|
|
if (b->verbose > 2) {
|
|
printf(" Choosing recent triangle with origin (%.12g, %.12g).\n",
|
|
torg[0], torg[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The number of random samples taken is proportional to the cube root of */
|
|
/* the number of triangles in the mesh. The next bit of code assumes */
|
|
/* that the number of triangles increases monotonically (or at least */
|
|
/* doesn't decrease enough to matter). */
|
|
while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
|
|
m->triangles.items) {
|
|
m->samples++;
|
|
}
|
|
|
|
/* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples */
|
|
/* from each block of triangles (except the first)--until we meet the */
|
|
/* sample quota. The ceiling means that blocks at the end might be */
|
|
/* neglected, but I don't care. */
|
|
samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
|
|
/* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
|
|
/* from the first block of triangles. */
|
|
samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /
|
|
m->triangles.maxitems + 1;
|
|
totalsamplesleft = m->samples;
|
|
population = m->triangles.itemsfirstblock;
|
|
totalpopulation = m->triangles.maxitems;
|
|
sampleblock = m->triangles.firstblock;
|
|
sampletri.orient = 0;
|
|
while (totalsamplesleft > 0) {
|
|
/* If we're in the last block, `population' needs to be corrected. */
|
|
if (population > totalpopulation) {
|
|
population = totalpopulation;
|
|
}
|
|
/* Find a pointer to the first triangle in the block. */
|
|
alignptr = (unsigned long) (sampleblock + 1);
|
|
firsttri = (char *) (alignptr +
|
|
(unsigned long) m->triangles.alignbytes -
|
|
(alignptr %
|
|
(unsigned long) m->triangles.alignbytes));
|
|
|
|
/* Choose `samplesleft' randomly sampled triangles in this block. */
|
|
do {
|
|
sampletri.tri = (triangle *) (firsttri +
|
|
(randomnation((unsigned int) population) *
|
|
m->triangles.itembytes));
|
|
if (!deadtri(sampletri.tri)) {
|
|
org(sampletri, torg);
|
|
dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
|
|
(searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
|
|
if (dist < searchdist) {
|
|
otricopy(sampletri, *searchtri);
|
|
searchdist = dist;
|
|
if (b->verbose > 2) {
|
|
printf(" Choosing triangle with origin (%.12g, %.12g).\n",
|
|
torg[0], torg[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
samplesleft--;
|
|
totalsamplesleft--;
|
|
} while ((samplesleft > 0) && (totalsamplesleft > 0));
|
|
|
|
if (totalsamplesleft > 0) {
|
|
sampleblock = (VOID **) *sampleblock;
|
|
samplesleft = samplesperblock;
|
|
totalpopulation -= population;
|
|
population = TRIPERBLOCK;
|
|
}
|
|
}
|
|
|
|
/* Where are we? */
|
|
org(*searchtri, torg);
|
|
dest(*searchtri, tdest);
|
|
/* Check the starting triangle's vertices. */
|
|
if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
|
|
return ONVERTEX;
|
|
}
|
|
if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
|
|
lnextself(*searchtri);
|
|
return ONVERTEX;
|
|
}
|
|
/* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
|
|
ahead = counterclockwise(m, b, torg, tdest, searchpoint);
|
|
if (ahead < 0.0) {
|
|
/* Turn around so that `searchpoint' is to the left of the */
|
|
/* edge specified by `searchtri'. */
|
|
symself(*searchtri);
|
|
} else if (ahead == 0.0) {
|
|
/* Check if `searchpoint' is between `torg' and `tdest'. */
|
|
if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
|
|
((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
|
|
return ONEDGE;
|
|
}
|
|
}
|
|
return preciselocate(m, b, searchpoint, searchtri, 0);
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Point location routines end here *********/
|
|
|
|
/********* Mesh transformation routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* insertsubseg() Create a new subsegment and insert it between two */
|
|
/* triangles. */
|
|
/* */
|
|
/* The new subsegment is inserted at the edge described by the handle */
|
|
/* `tri'. Its vertices are properly initialized. The marker `subsegmark' */
|
|
/* is applied to the subsegment and, if appropriate, its vertices. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
|
|
int subsegmark)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void insertsubseg(m, b, tri, subsegmark)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *tri; /* Edge at which to insert the new subsegment. */
|
|
int subsegmark; /* Marker for the new subsegment. */
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri oppotri;
|
|
struct osub newsubseg;
|
|
vertex triorg, tridest;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
org(*tri, triorg);
|
|
dest(*tri, tridest);
|
|
/* Mark vertices if possible. */
|
|
if (vertexmark(triorg) == 0) {
|
|
setvertexmark(triorg, subsegmark);
|
|
}
|
|
if (vertexmark(tridest) == 0) {
|
|
setvertexmark(tridest, subsegmark);
|
|
}
|
|
/* Check if there's already a subsegment here. */
|
|
tspivot(*tri, newsubseg);
|
|
if (newsubseg.ss == m->dummysub) {
|
|
/* Make new subsegment and initialize its vertices. */
|
|
makesubseg(m, &newsubseg);
|
|
setsorg(newsubseg, tridest);
|
|
setsdest(newsubseg, triorg);
|
|
setsegorg(newsubseg, tridest);
|
|
setsegdest(newsubseg, triorg);
|
|
/* Bond new subsegment to the two triangles it is sandwiched between. */
|
|
/* Note that the facing triangle `oppotri' might be equal to */
|
|
/* `dummytri' (outer space), but the new subsegment is bonded to it */
|
|
/* all the same. */
|
|
tsbond(*tri, newsubseg);
|
|
sym(*tri, oppotri);
|
|
ssymself(newsubseg);
|
|
tsbond(oppotri, newsubseg);
|
|
setmark(newsubseg, subsegmark);
|
|
if (b->verbose > 2) {
|
|
printf(" Inserting new ");
|
|
printsubseg(m, b, &newsubseg);
|
|
}
|
|
} else {
|
|
if (mark(newsubseg) == 0) {
|
|
setmark(newsubseg, subsegmark);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* Terminology */
|
|
/* */
|
|
/* A "local transformation" replaces a small set of triangles with another */
|
|
/* set of triangles. This may or may not involve inserting or deleting a */
|
|
/* vertex. */
|
|
/* */
|
|
/* The term "casing" is used to describe the set of triangles that are */
|
|
/* attached to the triangles being transformed, but are not transformed */
|
|
/* themselves. Think of the casing as a fixed hollow structure inside */
|
|
/* which all the action happens. A "casing" is only defined relative to */
|
|
/* a single transformation; each occurrence of a transformation will */
|
|
/* involve a different casing. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* flip() Transform two triangles to two different triangles by flipping */
|
|
/* an edge counterclockwise within a quadrilateral. */
|
|
/* */
|
|
/* Imagine the original triangles, abc and bad, oriented so that the */
|
|
/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
|
|
/* and the vertex a on the right. The vertex c lies below the edge, and */
|
|
/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
|
|
/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
|
|
/* */
|
|
/* The triangles abc and bad are deleted and replaced by the triangles cdb */
|
|
/* and dca. The triangles that represent abc and bad are NOT deallocated; */
|
|
/* they are reused for dca and cdb, respectively. Hence, any handles that */
|
|
/* may have held the original triangles are still valid, although not */
|
|
/* directed as they were before. */
|
|
/* */
|
|
/* Upon completion of this routine, the `flipedge' handle holds the edge */
|
|
/* dc of triangle dca, and is directed down, from vertex d to vertex c. */
|
|
/* (Hence, the two triangles have rotated counterclockwise.) */
|
|
/* */
|
|
/* WARNING: This transformation is geometrically valid only if the */
|
|
/* quadrilateral adbc is convex. Furthermore, this transformation is */
|
|
/* valid only if there is not a subsegment between the triangles abc and */
|
|
/* bad. This routine does not check either of these preconditions, and */
|
|
/* it is the responsibility of the calling routine to ensure that they are */
|
|
/* met. If they are not, the streets shall be filled with wailing and */
|
|
/* gnashing of teeth. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void flip(m, b, flipedge)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *flipedge; /* Handle for the triangle abc. */
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri botleft, botright;
|
|
struct otri topleft, topright;
|
|
struct otri top;
|
|
struct otri botlcasing, botrcasing;
|
|
struct otri toplcasing, toprcasing;
|
|
struct osub botlsubseg, botrsubseg;
|
|
struct osub toplsubseg, toprsubseg;
|
|
vertex leftvertex, rightvertex, botvertex;
|
|
vertex farvertex;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
/* Identify the vertices of the quadrilateral. */
|
|
org(*flipedge, rightvertex);
|
|
dest(*flipedge, leftvertex);
|
|
apex(*flipedge, botvertex);
|
|
sym(*flipedge, top);
|
|
#ifdef SELF_CHECK
|
|
if (top.tri == m->dummytri) {
|
|
printf("Internal error in flip(): Attempt to flip on boundary.\n");
|
|
lnextself(*flipedge);
|
|
return;
|
|
}
|
|
if (m->checksegments) {
|
|
tspivot(*flipedge, toplsubseg);
|
|
if (toplsubseg.ss != m->dummysub) {
|
|
printf("Internal error in flip(): Attempt to flip a segment.\n");
|
|
lnextself(*flipedge);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
apex(top, farvertex);
|
|
|
|
/* Identify the casing of the quadrilateral. */
|
|
lprev(top, topleft);
|
|
sym(topleft, toplcasing);
|
|
lnext(top, topright);
|
|
sym(topright, toprcasing);
|
|
lnext(*flipedge, botleft);
|
|
sym(botleft, botlcasing);
|
|
lprev(*flipedge, botright);
|
|
sym(botright, botrcasing);
|
|
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
|
|
bond(topleft, botlcasing);
|
|
bond(botleft, botrcasing);
|
|
bond(botright, toprcasing);
|
|
bond(topright, toplcasing);
|
|
|
|
if (m->checksegments) {
|
|
/* Check for subsegments and rebond them to the quadrilateral. */
|
|
tspivot(topleft, toplsubseg);
|
|
tspivot(botleft, botlsubseg);
|
|
tspivot(botright, botrsubseg);
|
|
tspivot(topright, toprsubseg);
|
|
if (toplsubseg.ss == m->dummysub) {
|
|
tsdissolve(topright);
|
|
} else {
|
|
tsbond(topright, toplsubseg);
|
|
}
|
|
if (botlsubseg.ss == m->dummysub) {
|
|
tsdissolve(topleft);
|
|
} else {
|
|
tsbond(topleft, botlsubseg);
|
|
}
|
|
if (botrsubseg.ss == m->dummysub) {
|
|
tsdissolve(botleft);
|
|
} else {
|
|
tsbond(botleft, botrsubseg);
|
|
}
|
|
if (toprsubseg.ss == m->dummysub) {
|
|
tsdissolve(botright);
|
|
} else {
|
|
tsbond(botright, toprsubseg);
|
|
}
|
|
}
|
|
|
|
/* New vertex assignments for the rotated quadrilateral. */
|
|
setorg(*flipedge, farvertex);
|
|
setdest(*flipedge, botvertex);
|
|
setapex(*flipedge, rightvertex);
|
|
setorg(top, botvertex);
|
|
setdest(top, farvertex);
|
|
setapex(top, leftvertex);
|
|
if (b->verbose > 2) {
|
|
printf(" Edge flip results in left ");
|
|
printtriangle(m, b, &top);
|
|
printf(" and right ");
|
|
printtriangle(m, b, flipedge);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* unflip() Transform two triangles to two different triangles by */
|
|
/* flipping an edge clockwise within a quadrilateral. Reverses */
|
|
/* the flip() operation so that the data structures representing */
|
|
/* the triangles are back where they were before the flip(). */
|
|
/* */
|
|
/* Imagine the original triangles, abc and bad, oriented so that the */
|
|
/* shared edge ab lies in a horizontal plane, with the vertex b on the left */
|
|
/* and the vertex a on the right. The vertex c lies below the edge, and */
|
|
/* the vertex d lies above the edge. The `flipedge' handle holds the edge */
|
|
/* ab of triangle abc, and is directed left, from vertex a to vertex b. */
|
|
/* */
|
|
/* The triangles abc and bad are deleted and replaced by the triangles cdb */
|
|
/* and dca. The triangles that represent abc and bad are NOT deallocated; */
|
|
/* they are reused for cdb and dca, respectively. Hence, any handles that */
|
|
/* may have held the original triangles are still valid, although not */
|
|
/* directed as they were before. */
|
|
/* */
|
|
/* Upon completion of this routine, the `flipedge' handle holds the edge */
|
|
/* cd of triangle cdb, and is directed up, from vertex c to vertex d. */
|
|
/* (Hence, the two triangles have rotated clockwise.) */
|
|
/* */
|
|
/* WARNING: This transformation is geometrically valid only if the */
|
|
/* quadrilateral adbc is convex. Furthermore, this transformation is */
|
|
/* valid only if there is not a subsegment between the triangles abc and */
|
|
/* bad. This routine does not check either of these preconditions, and */
|
|
/* it is the responsibility of the calling routine to ensure that they are */
|
|
/* met. If they are not, the streets shall be filled with wailing and */
|
|
/* gnashing of teeth. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void unflip(m, b, flipedge)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *flipedge; /* Handle for the triangle abc. */
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri botleft, botright;
|
|
struct otri topleft, topright;
|
|
struct otri top;
|
|
struct otri botlcasing, botrcasing;
|
|
struct otri toplcasing, toprcasing;
|
|
struct osub botlsubseg, botrsubseg;
|
|
struct osub toplsubseg, toprsubseg;
|
|
vertex leftvertex, rightvertex, botvertex;
|
|
vertex farvertex;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
/* Identify the vertices of the quadrilateral. */
|
|
org(*flipedge, rightvertex);
|
|
dest(*flipedge, leftvertex);
|
|
apex(*flipedge, botvertex);
|
|
sym(*flipedge, top);
|
|
#ifdef SELF_CHECK
|
|
if (top.tri == m->dummytri) {
|
|
printf("Internal error in unflip(): Attempt to flip on boundary.\n");
|
|
lnextself(*flipedge);
|
|
return;
|
|
}
|
|
if (m->checksegments) {
|
|
tspivot(*flipedge, toplsubseg);
|
|
if (toplsubseg.ss != m->dummysub) {
|
|
printf("Internal error in unflip(): Attempt to flip a subsegment.\n");
|
|
lnextself(*flipedge);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
apex(top, farvertex);
|
|
|
|
/* Identify the casing of the quadrilateral. */
|
|
lprev(top, topleft);
|
|
sym(topleft, toplcasing);
|
|
lnext(top, topright);
|
|
sym(topright, toprcasing);
|
|
lnext(*flipedge, botleft);
|
|
sym(botleft, botlcasing);
|
|
lprev(*flipedge, botright);
|
|
sym(botright, botrcasing);
|
|
/* Rotate the quadrilateral one-quarter turn clockwise. */
|
|
bond(topleft, toprcasing);
|
|
bond(botleft, toplcasing);
|
|
bond(botright, botlcasing);
|
|
bond(topright, botrcasing);
|
|
|
|
if (m->checksegments) {
|
|
/* Check for subsegments and rebond them to the quadrilateral. */
|
|
tspivot(topleft, toplsubseg);
|
|
tspivot(botleft, botlsubseg);
|
|
tspivot(botright, botrsubseg);
|
|
tspivot(topright, toprsubseg);
|
|
if (toplsubseg.ss == m->dummysub) {
|
|
tsdissolve(botleft);
|
|
} else {
|
|
tsbond(botleft, toplsubseg);
|
|
}
|
|
if (botlsubseg.ss == m->dummysub) {
|
|
tsdissolve(botright);
|
|
} else {
|
|
tsbond(botright, botlsubseg);
|
|
}
|
|
if (botrsubseg.ss == m->dummysub) {
|
|
tsdissolve(topright);
|
|
} else {
|
|
tsbond(topright, botrsubseg);
|
|
}
|
|
if (toprsubseg.ss == m->dummysub) {
|
|
tsdissolve(topleft);
|
|
} else {
|
|
tsbond(topleft, toprsubseg);
|
|
}
|
|
}
|
|
|
|
/* New vertex assignments for the rotated quadrilateral. */
|
|
setorg(*flipedge, botvertex);
|
|
setdest(*flipedge, farvertex);
|
|
setapex(*flipedge, leftvertex);
|
|
setorg(top, farvertex);
|
|
setdest(top, botvertex);
|
|
setapex(top, rightvertex);
|
|
if (b->verbose > 2) {
|
|
printf(" Edge unflip results in left ");
|
|
printtriangle(m, b, flipedge);
|
|
printf(" and right ");
|
|
printtriangle(m, b, &top);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* insertvertex() Insert a vertex into a Delaunay triangulation, */
|
|
/* performing flips as necessary to maintain the Delaunay */
|
|
/* property. */
|
|
/* */
|
|
/* The point `insertvertex' is located. If `searchtri.tri' is not NULL, */
|
|
/* the search for the containing triangle begins from `searchtri'. If */
|
|
/* `searchtri.tri' is NULL, a full point location procedure is called. */
|
|
/* If `insertvertex' is found inside a triangle, the triangle is split into */
|
|
/* three; if `insertvertex' lies on an edge, the edge is split in two, */
|
|
/* thereby splitting the two adjacent triangles into four. Edge flips are */
|
|
/* used to restore the Delaunay property. If `insertvertex' lies on an */
|
|
/* existing vertex, no action is taken, and the value DUPLICATEVERTEX is */
|
|
/* returned. On return, `searchtri' is set to a handle whose origin is the */
|
|
/* existing vertex. */
|
|
/* */
|
|
/* Normally, the parameter `splitseg' is set to NULL, implying that no */
|
|
/* subsegment should be split. In this case, if `insertvertex' is found to */
|
|
/* lie on a segment, no action is taken, and the value VIOLATINGVERTEX is */
|
|
/* returned. On return, `searchtri' is set to a handle whose primary edge */
|
|
/* is the violated subsegment. */
|
|
/* */
|
|
/* If the calling routine wishes to split a subsegment by inserting a */
|
|
/* vertex in it, the parameter `splitseg' should be that subsegment. In */
|
|
/* this case, `searchtri' MUST be the triangle handle reached by pivoting */
|
|
/* from that subsegment; no point location is done. */
|
|
/* */
|
|
/* `segmentflaws' and `triflaws' are flags that indicate whether or not */
|
|
/* there should be checks for the creation of encroached subsegments or bad */
|
|
/* quality triangles. If a newly inserted vertex encroaches upon */
|
|
/* subsegments, these subsegments are added to the list of subsegments to */
|
|
/* be split if `segmentflaws' is set. If bad triangles are created, these */
|
|
/* are added to the queue if `triflaws' is set. */
|
|
/* */
|
|
/* If a duplicate vertex or violated segment does not prevent the vertex */
|
|
/* from being inserted, the return value will be ENCROACHINGVERTEX if the */
|
|
/* vertex encroaches upon a subsegment (and checking is enabled), or */
|
|
/* SUCCESSFULVERTEX otherwise. In either case, `searchtri' is set to a */
|
|
/* handle whose origin is the newly inserted vertex. */
|
|
/* */
|
|
/* insertvertex() does not use flip() for reasons of speed; some */
|
|
/* information can be reused from edge flip to edge flip, like the */
|
|
/* locations of subsegments. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
|
|
vertex newvertex, struct otri *searchtri,
|
|
struct osub *splitseg,
|
|
int segmentflaws, int triflaws)
|
|
#else /* not ANSI_DECLARATORS */
|
|
enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg,
|
|
segmentflaws, triflaws)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex newvertex;
|
|
struct otri *searchtri;
|
|
struct osub *splitseg;
|
|
int segmentflaws;
|
|
int triflaws;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri horiz;
|
|
struct otri top;
|
|
struct otri botleft, botright;
|
|
struct otri topleft, topright;
|
|
struct otri newbotleft, newbotright;
|
|
struct otri newtopright;
|
|
struct otri botlcasing, botrcasing;
|
|
struct otri toplcasing, toprcasing;
|
|
struct otri testtri;
|
|
struct osub botlsubseg, botrsubseg;
|
|
struct osub toplsubseg, toprsubseg;
|
|
struct osub brokensubseg;
|
|
struct osub checksubseg;
|
|
struct osub rightsubseg;
|
|
struct osub newsubseg;
|
|
struct badsubseg *encroached;
|
|
struct flipstacker *newflip;
|
|
vertex first;
|
|
vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
|
|
vertex segmentorg, segmentdest;
|
|
REAL attrib;
|
|
REAL area;
|
|
enum insertvertexresult success;
|
|
enum locateresult intersect;
|
|
int doflip;
|
|
int mirrorflag;
|
|
int enq;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by spivot() and tspivot(). */
|
|
|
|
if (b->verbose > 1) {
|
|
printf(" Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
|
|
}
|
|
|
|
if (splitseg == (struct osub *) NULL) {
|
|
/* Find the location of the vertex to be inserted. Check if a good */
|
|
/* starting triangle has already been provided by the caller. */
|
|
if (searchtri->tri == m->dummytri) {
|
|
/* Find a boundary triangle. */
|
|
horiz.tri = m->dummytri;
|
|
horiz.orient = 0;
|
|
symself(horiz);
|
|
/* Search for a triangle containing `newvertex'. */
|
|
intersect = locate(m, b, newvertex, &horiz);
|
|
} else {
|
|
/* Start searching from the triangle provided by the caller. */
|
|
otricopy(*searchtri, horiz);
|
|
intersect = preciselocate(m, b, newvertex, &horiz, 1);
|
|
}
|
|
} else {
|
|
/* The calling routine provides the subsegment in which */
|
|
/* the vertex is inserted. */
|
|
otricopy(*searchtri, horiz);
|
|
intersect = ONEDGE;
|
|
}
|
|
|
|
if (intersect == ONVERTEX) {
|
|
/* There's already a vertex there. Return in `searchtri' a triangle */
|
|
/* whose origin is the existing vertex. */
|
|
otricopy(horiz, *searchtri);
|
|
otricopy(horiz, m->recenttri);
|
|
return DUPLICATEVERTEX;
|
|
}
|
|
if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
|
|
/* The vertex falls on an edge or boundary. */
|
|
if (m->checksegments && (splitseg == (struct osub *) NULL)) {
|
|
/* Check whether the vertex falls on a subsegment. */
|
|
tspivot(horiz, brokensubseg);
|
|
if (brokensubseg.ss != m->dummysub) {
|
|
/* The vertex falls on a subsegment, and hence will not be inserted. */
|
|
if (segmentflaws) {
|
|
enq = b->nobisect != 2;
|
|
if (enq && (b->nobisect == 1)) {
|
|
/* This subsegment may be split only if it is an */
|
|
/* internal boundary. */
|
|
sym(horiz, testtri);
|
|
enq = testtri.tri != m->dummytri;
|
|
}
|
|
if (enq) {
|
|
/* Add the subsegment to the list of encroached subsegments. */
|
|
encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
|
|
encroached->encsubseg = sencode(brokensubseg);
|
|
sorg(brokensubseg, encroached->subsegorg);
|
|
sdest(brokensubseg, encroached->subsegdest);
|
|
if (b->verbose > 2) {
|
|
printf(
|
|
" Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
|
|
encroached->subsegorg[0], encroached->subsegorg[1],
|
|
encroached->subsegdest[0], encroached->subsegdest[1]);
|
|
}
|
|
}
|
|
}
|
|
/* Return a handle whose primary edge contains the vertex, */
|
|
/* which has not been inserted. */
|
|
otricopy(horiz, *searchtri);
|
|
otricopy(horiz, m->recenttri);
|
|
return VIOLATINGVERTEX;
|
|
}
|
|
}
|
|
|
|
/* Insert the vertex on an edge, dividing one triangle into two (if */
|
|
/* the edge lies on a boundary) or two triangles into four. */
|
|
lprev(horiz, botright);
|
|
sym(botright, botrcasing);
|
|
sym(horiz, topright);
|
|
/* Is there a second triangle? (Or does this edge lie on a boundary?) */
|
|
mirrorflag = topright.tri != m->dummytri;
|
|
if (mirrorflag) {
|
|
lnextself(topright);
|
|
sym(topright, toprcasing);
|
|
maketriangle(m, b, &newtopright);
|
|
} else {
|
|
/* Splitting a boundary edge increases the number of boundary edges. */
|
|
m->hullsize++;
|
|
}
|
|
maketriangle(m, b, &newbotright);
|
|
|
|
/* Set the vertices of changed and new triangles. */
|
|
org(horiz, rightvertex);
|
|
dest(horiz, leftvertex);
|
|
apex(horiz, botvertex);
|
|
setorg(newbotright, botvertex);
|
|
setdest(newbotright, rightvertex);
|
|
setapex(newbotright, newvertex);
|
|
setorg(horiz, newvertex);
|
|
for (i = 0; i < m->eextras; i++) {
|
|
/* Set the element attributes of a new triangle. */
|
|
setelemattribute(newbotright, i, elemattribute(botright, i));
|
|
}
|
|
if (b->vararea) {
|
|
/* Set the area constraint of a new triangle. */
|
|
setareabound(newbotright, areabound(botright));
|
|
}
|
|
if (mirrorflag) {
|
|
dest(topright, topvertex);
|
|
setorg(newtopright, rightvertex);
|
|
setdest(newtopright, topvertex);
|
|
setapex(newtopright, newvertex);
|
|
setorg(topright, newvertex);
|
|
for (i = 0; i < m->eextras; i++) {
|
|
/* Set the element attributes of another new triangle. */
|
|
setelemattribute(newtopright, i, elemattribute(topright, i));
|
|
}
|
|
if (b->vararea) {
|
|
/* Set the area constraint of another new triangle. */
|
|
setareabound(newtopright, areabound(topright));
|
|
}
|
|
}
|
|
|
|
/* There may be subsegments that need to be bonded */
|
|
/* to the new triangle(s). */
|
|
if (m->checksegments) {
|
|
tspivot(botright, botrsubseg);
|
|
if (botrsubseg.ss != m->dummysub) {
|
|
tsdissolve(botright);
|
|
tsbond(newbotright, botrsubseg);
|
|
}
|
|
if (mirrorflag) {
|
|
tspivot(topright, toprsubseg);
|
|
if (toprsubseg.ss != m->dummysub) {
|
|
tsdissolve(topright);
|
|
tsbond(newtopright, toprsubseg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Bond the new triangle(s) to the surrounding triangles. */
|
|
bond(newbotright, botrcasing);
|
|
lprevself(newbotright);
|
|
bond(newbotright, botright);
|
|
lprevself(newbotright);
|
|
if (mirrorflag) {
|
|
bond(newtopright, toprcasing);
|
|
lnextself(newtopright);
|
|
bond(newtopright, topright);
|
|
lnextself(newtopright);
|
|
bond(newtopright, newbotright);
|
|
}
|
|
|
|
if (splitseg != (struct osub *) NULL) {
|
|
/* Split the subsegment into two. */
|
|
setsdest(*splitseg, newvertex);
|
|
segorg(*splitseg, segmentorg);
|
|
segdest(*splitseg, segmentdest);
|
|
ssymself(*splitseg);
|
|
spivot(*splitseg, rightsubseg);
|
|
insertsubseg(m, b, &newbotright, mark(*splitseg));
|
|
tspivot(newbotright, newsubseg);
|
|
setsegorg(newsubseg, segmentorg);
|
|
setsegdest(newsubseg, segmentdest);
|
|
sbond(*splitseg, newsubseg);
|
|
ssymself(newsubseg);
|
|
sbond(newsubseg, rightsubseg);
|
|
ssymself(*splitseg);
|
|
/* Transfer the subsegment's boundary marker to the vertex */
|
|
/* if required. */
|
|
if (vertexmark(newvertex) == 0) {
|
|
setvertexmark(newvertex, mark(*splitseg));
|
|
}
|
|
}
|
|
|
|
if (m->checkquality) {
|
|
poolrestart(&m->flipstackers);
|
|
m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
|
|
m->lastflip->flippedtri = encode(horiz);
|
|
m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
|
|
}
|
|
|
|
#ifdef SELF_CHECK
|
|
if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(
|
|
" Clockwise triangle prior to edge vertex insertion (bottom).\n");
|
|
}
|
|
if (mirrorflag) {
|
|
if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle prior to edge vertex insertion (top).\n");
|
|
}
|
|
if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(
|
|
" Clockwise triangle after edge vertex insertion (top right).\n");
|
|
}
|
|
if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(
|
|
" Clockwise triangle after edge vertex insertion (top left).\n");
|
|
}
|
|
}
|
|
if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(
|
|
" Clockwise triangle after edge vertex insertion (bottom left).\n");
|
|
}
|
|
if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(
|
|
" Clockwise triangle after edge vertex insertion (bottom right).\n");
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
if (b->verbose > 2) {
|
|
printf(" Updating bottom left ");
|
|
printtriangle(m, b, &botright);
|
|
if (mirrorflag) {
|
|
printf(" Updating top left ");
|
|
printtriangle(m, b, &topright);
|
|
printf(" Creating top right ");
|
|
printtriangle(m, b, &newtopright);
|
|
}
|
|
printf(" Creating bottom right ");
|
|
printtriangle(m, b, &newbotright);
|
|
}
|
|
|
|
/* Position `horiz' on the first edge to check for */
|
|
/* the Delaunay property. */
|
|
lnextself(horiz);
|
|
} else {
|
|
/* Insert the vertex in a triangle, splitting it into three. */
|
|
lnext(horiz, botleft);
|
|
lprev(horiz, botright);
|
|
sym(botleft, botlcasing);
|
|
sym(botright, botrcasing);
|
|
maketriangle(m, b, &newbotleft);
|
|
maketriangle(m, b, &newbotright);
|
|
|
|
/* Set the vertices of changed and new triangles. */
|
|
org(horiz, rightvertex);
|
|
dest(horiz, leftvertex);
|
|
apex(horiz, botvertex);
|
|
setorg(newbotleft, leftvertex);
|
|
setdest(newbotleft, botvertex);
|
|
setapex(newbotleft, newvertex);
|
|
setorg(newbotright, botvertex);
|
|
setdest(newbotright, rightvertex);
|
|
setapex(newbotright, newvertex);
|
|
setapex(horiz, newvertex);
|
|
for (i = 0; i < m->eextras; i++) {
|
|
/* Set the element attributes of the new triangles. */
|
|
attrib = elemattribute(horiz, i);
|
|
setelemattribute(newbotleft, i, attrib);
|
|
setelemattribute(newbotright, i, attrib);
|
|
}
|
|
if (b->vararea) {
|
|
/* Set the area constraint of the new triangles. */
|
|
area = areabound(horiz);
|
|
setareabound(newbotleft, area);
|
|
setareabound(newbotright, area);
|
|
}
|
|
|
|
/* There may be subsegments that need to be bonded */
|
|
/* to the new triangles. */
|
|
if (m->checksegments) {
|
|
tspivot(botleft, botlsubseg);
|
|
if (botlsubseg.ss != m->dummysub) {
|
|
tsdissolve(botleft);
|
|
tsbond(newbotleft, botlsubseg);
|
|
}
|
|
tspivot(botright, botrsubseg);
|
|
if (botrsubseg.ss != m->dummysub) {
|
|
tsdissolve(botright);
|
|
tsbond(newbotright, botrsubseg);
|
|
}
|
|
}
|
|
|
|
/* Bond the new triangles to the surrounding triangles. */
|
|
bond(newbotleft, botlcasing);
|
|
bond(newbotright, botrcasing);
|
|
lnextself(newbotleft);
|
|
lprevself(newbotright);
|
|
bond(newbotleft, newbotright);
|
|
lnextself(newbotleft);
|
|
bond(botleft, newbotleft);
|
|
lprevself(newbotright);
|
|
bond(botright, newbotright);
|
|
|
|
if (m->checkquality) {
|
|
poolrestart(&m->flipstackers);
|
|
m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
|
|
m->lastflip->flippedtri = encode(horiz);
|
|
m->lastflip->prevflip = (struct flipstacker *) NULL;
|
|
}
|
|
|
|
#ifdef SELF_CHECK
|
|
if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle prior to vertex insertion.\n");
|
|
}
|
|
if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle after vertex insertion (top).\n");
|
|
}
|
|
if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle after vertex insertion (left).\n");
|
|
}
|
|
if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle after vertex insertion (right).\n");
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
if (b->verbose > 2) {
|
|
printf(" Updating top ");
|
|
printtriangle(m, b, &horiz);
|
|
printf(" Creating left ");
|
|
printtriangle(m, b, &newbotleft);
|
|
printf(" Creating right ");
|
|
printtriangle(m, b, &newbotright);
|
|
}
|
|
}
|
|
|
|
/* The insertion is successful by default, unless an encroached */
|
|
/* subsegment is found. */
|
|
success = SUCCESSFULVERTEX;
|
|
/* Circle around the newly inserted vertex, checking each edge opposite */
|
|
/* it for the Delaunay property. Non-Delaunay edges are flipped. */
|
|
/* `horiz' is always the edge being checked. `first' marks where to */
|
|
/* stop circling. */
|
|
org(horiz, first);
|
|
rightvertex = first;
|
|
dest(horiz, leftvertex);
|
|
/* Circle until finished. */
|
|
while (1) {
|
|
/* By default, the edge will be flipped. */
|
|
doflip = 1;
|
|
|
|
if (m->checksegments) {
|
|
/* Check for a subsegment, which cannot be flipped. */
|
|
tspivot(horiz, checksubseg);
|
|
if (checksubseg.ss != m->dummysub) {
|
|
/* The edge is a subsegment and cannot be flipped. */
|
|
doflip = 0;
|
|
#ifndef CDT_ONLY
|
|
if (segmentflaws) {
|
|
/* Does the new vertex encroach upon this subsegment? */
|
|
if (checkseg4encroach(m, b, &checksubseg)) {
|
|
success = ENCROACHINGVERTEX;
|
|
}
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
}
|
|
}
|
|
|
|
if (doflip) {
|
|
/* Check if the edge is a boundary edge. */
|
|
sym(horiz, top);
|
|
if (top.tri == m->dummytri) {
|
|
/* The edge is a boundary edge and cannot be flipped. */
|
|
doflip = 0;
|
|
} else {
|
|
/* Find the vertex on the other side of the edge. */
|
|
apex(top, farvertex);
|
|
/* In the incremental Delaunay triangulation algorithm, any of */
|
|
/* `leftvertex', `rightvertex', and `farvertex' could be vertices */
|
|
/* of the triangular bounding box. These vertices must be */
|
|
/* treated as if they are infinitely distant, even though their */
|
|
/* "coordinates" are not. */
|
|
if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
|
|
(leftvertex == m->infvertex3)) {
|
|
/* `leftvertex' is infinitely distant. Check the convexity of */
|
|
/* the boundary of the triangulation. 'farvertex' might be */
|
|
/* infinite as well, but trust me, this same condition should */
|
|
/* be applied. */
|
|
doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
|
|
> 0.0;
|
|
} else if ((rightvertex == m->infvertex1) ||
|
|
(rightvertex == m->infvertex2) ||
|
|
(rightvertex == m->infvertex3)) {
|
|
/* `rightvertex' is infinitely distant. Check the convexity of */
|
|
/* the boundary of the triangulation. 'farvertex' might be */
|
|
/* infinite as well, but trust me, this same condition should */
|
|
/* be applied. */
|
|
doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
|
|
> 0.0;
|
|
} else if ((farvertex == m->infvertex1) ||
|
|
(farvertex == m->infvertex2) ||
|
|
(farvertex == m->infvertex3)) {
|
|
/* `farvertex' is infinitely distant and cannot be inside */
|
|
/* the circumcircle of the triangle `horiz'. */
|
|
doflip = 0;
|
|
} else {
|
|
/* Test whether the edge is locally Delaunay. */
|
|
doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
|
|
farvertex) > 0.0;
|
|
}
|
|
if (doflip) {
|
|
/* We made it! Flip the edge `horiz' by rotating its containing */
|
|
/* quadrilateral (the two triangles adjacent to `horiz'). */
|
|
/* Identify the casing of the quadrilateral. */
|
|
lprev(top, topleft);
|
|
sym(topleft, toplcasing);
|
|
lnext(top, topright);
|
|
sym(topright, toprcasing);
|
|
lnext(horiz, botleft);
|
|
sym(botleft, botlcasing);
|
|
lprev(horiz, botright);
|
|
sym(botright, botrcasing);
|
|
/* Rotate the quadrilateral one-quarter turn counterclockwise. */
|
|
bond(topleft, botlcasing);
|
|
bond(botleft, botrcasing);
|
|
bond(botright, toprcasing);
|
|
bond(topright, toplcasing);
|
|
if (m->checksegments) {
|
|
/* Check for subsegments and rebond them to the quadrilateral. */
|
|
tspivot(topleft, toplsubseg);
|
|
tspivot(botleft, botlsubseg);
|
|
tspivot(botright, botrsubseg);
|
|
tspivot(topright, toprsubseg);
|
|
if (toplsubseg.ss == m->dummysub) {
|
|
tsdissolve(topright);
|
|
} else {
|
|
tsbond(topright, toplsubseg);
|
|
}
|
|
if (botlsubseg.ss == m->dummysub) {
|
|
tsdissolve(topleft);
|
|
} else {
|
|
tsbond(topleft, botlsubseg);
|
|
}
|
|
if (botrsubseg.ss == m->dummysub) {
|
|
tsdissolve(botleft);
|
|
} else {
|
|
tsbond(botleft, botrsubseg);
|
|
}
|
|
if (toprsubseg.ss == m->dummysub) {
|
|
tsdissolve(botright);
|
|
} else {
|
|
tsbond(botright, toprsubseg);
|
|
}
|
|
}
|
|
/* New vertex assignments for the rotated quadrilateral. */
|
|
setorg(horiz, farvertex);
|
|
setdest(horiz, newvertex);
|
|
setapex(horiz, rightvertex);
|
|
setorg(top, newvertex);
|
|
setdest(top, farvertex);
|
|
setapex(top, leftvertex);
|
|
for (i = 0; i < m->eextras; i++) {
|
|
/* Take the average of the two triangles' attributes. */
|
|
attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
|
|
setelemattribute(top, i, attrib);
|
|
setelemattribute(horiz, i, attrib);
|
|
}
|
|
if (b->vararea) {
|
|
if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
|
|
area = -1.0;
|
|
} else {
|
|
/* Take the average of the two triangles' area constraints. */
|
|
/* This prevents small area constraints from migrating a */
|
|
/* long, long way from their original location due to flips. */
|
|
area = 0.5 * (areabound(top) + areabound(horiz));
|
|
}
|
|
setareabound(top, area);
|
|
setareabound(horiz, area);
|
|
}
|
|
|
|
if (m->checkquality) {
|
|
newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
|
|
newflip->flippedtri = encode(horiz);
|
|
newflip->prevflip = m->lastflip;
|
|
m->lastflip = newflip;
|
|
}
|
|
|
|
#ifdef SELF_CHECK
|
|
if (newvertex != (vertex) NULL) {
|
|
if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
|
|
0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle prior to edge flip (bottom).\n");
|
|
}
|
|
/* The following test has been removed because constrainededge() */
|
|
/* sometimes generates inverted triangles that insertvertex() */
|
|
/* removes. */
|
|
/*
|
|
if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
|
|
0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle prior to edge flip (top).\n");
|
|
}
|
|
*/
|
|
if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
|
|
0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle after edge flip (left).\n");
|
|
}
|
|
if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
|
|
0.0) {
|
|
printf("Internal error in insertvertex():\n");
|
|
printf(" Clockwise triangle after edge flip (right).\n");
|
|
}
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
if (b->verbose > 2) {
|
|
printf(" Edge flip results in left ");
|
|
lnextself(topleft);
|
|
printtriangle(m, b, &topleft);
|
|
printf(" and right ");
|
|
printtriangle(m, b, &horiz);
|
|
}
|
|
/* On the next iterations, consider the two edges that were */
|
|
/* exposed (this is, are now visible to the newly inserted */
|
|
/* vertex) by the edge flip. */
|
|
lprevself(horiz);
|
|
leftvertex = farvertex;
|
|
}
|
|
}
|
|
}
|
|
if (!doflip) {
|
|
/* The handle `horiz' is accepted as locally Delaunay. */
|
|
#ifndef CDT_ONLY
|
|
if (triflaws) {
|
|
/* Check the triangle `horiz' for quality. */
|
|
testtriangle(m, b, &horiz);
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
/* Look for the next edge around the newly inserted vertex. */
|
|
lnextself(horiz);
|
|
sym(horiz, testtri);
|
|
/* Check for finishing a complete revolution about the new vertex, or */
|
|
/* falling outside of the triangulation. The latter will happen */
|
|
/* when a vertex is inserted at a boundary. */
|
|
if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
|
|
/* We're done. Return a triangle whose origin is the new vertex. */
|
|
lnext(horiz, *searchtri);
|
|
lnext(horiz, m->recenttri);
|
|
return success;
|
|
}
|
|
/* Finish finding the next edge around the newly inserted vertex. */
|
|
lnext(testtri, horiz);
|
|
rightvertex = leftvertex;
|
|
dest(horiz, leftvertex);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* triangulatepolygon() Find the Delaunay triangulation of a polygon that */
|
|
/* has a certain "nice" shape. This includes the */
|
|
/* polygons that result from deletion of a vertex or */
|
|
/* insertion of a segment. */
|
|
/* */
|
|
/* This is a conceptually difficult routine. The starting assumption is */
|
|
/* that we have a polygon with n sides. n - 1 of these sides are currently */
|
|
/* represented as edges in the mesh. One side, called the "base", need not */
|
|
/* be. */
|
|
/* */
|
|
/* Inside the polygon is a structure I call a "fan", consisting of n - 1 */
|
|
/* triangles that share a common origin. For each of these triangles, the */
|
|
/* edge opposite the origin is one of the sides of the polygon. The */
|
|
/* primary edge of each triangle is the edge directed from the origin to */
|
|
/* the destination; note that this is not the same edge that is a side of */
|
|
/* the polygon. `firstedge' is the primary edge of the first triangle. */
|
|
/* From there, the triangles follow in counterclockwise order about the */
|
|
/* polygon, until `lastedge', the primary edge of the last triangle. */
|
|
/* `firstedge' and `lastedge' are probably connected to other triangles */
|
|
/* beyond the extremes of the fan, but their identity is not important, as */
|
|
/* long as the fan remains connected to them. */
|
|
/* */
|
|
/* Imagine the polygon oriented so that its base is at the bottom. This */
|
|
/* puts `firstedge' on the far right, and `lastedge' on the far left. */
|
|
/* The right vertex of the base is the destination of `firstedge', and the */
|
|
/* left vertex of the base is the apex of `lastedge'. */
|
|
/* */
|
|
/* The challenge now is to find the right sequence of edge flips to */
|
|
/* transform the fan into a Delaunay triangulation of the polygon. Each */
|
|
/* edge flip effectively removes one triangle from the fan, committing it */
|
|
/* to the polygon. The resulting polygon has one fewer edge. If `doflip' */
|
|
/* is set, the final flip will be performed, resulting in a fan of one */
|
|
/* (useless?) triangle. If `doflip' is not set, the final flip is not */
|
|
/* performed, resulting in a fan of two triangles, and an unfinished */
|
|
/* triangular polygon that is not yet filled out with a single triangle. */
|
|
/* On completion of the routine, `lastedge' is the last remaining triangle, */
|
|
/* or the leftmost of the last two. */
|
|
/* */
|
|
/* Although the flips are performed in the order described above, the */
|
|
/* decisions about what flips to perform are made in precisely the reverse */
|
|
/* order. The recursive triangulatepolygon() procedure makes a decision, */
|
|
/* uses up to two recursive calls to triangulate the "subproblems" */
|
|
/* (polygons with fewer edges), and then performs an edge flip. */
|
|
/* */
|
|
/* The "decision" it makes is which vertex of the polygon should be */
|
|
/* connected to the base. This decision is made by testing every possible */
|
|
/* vertex. Once the best vertex is found, the two edges that connect this */
|
|
/* vertex to the base become the bases for two smaller polygons. These */
|
|
/* are triangulated recursively. Unfortunately, this approach can take */
|
|
/* O(n^2) time not only in the worst case, but in many common cases. It's */
|
|
/* rarely a big deal for vertex deletion, where n is rarely larger than */
|
|
/* ten, but it could be a big deal for segment insertion, especially if */
|
|
/* there's a lot of long segments that each cut many triangles. I ought to */
|
|
/* code a faster algorithm some day. */
|
|
/* */
|
|
/* The `edgecount' parameter is the number of sides of the polygon, */
|
|
/* including its base. `triflaws' is a flag that determines whether the */
|
|
/* new triangles should be tested for quality, and enqueued if they are */
|
|
/* bad. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triangulatepolygon(struct mesh *m, struct behavior *b,
|
|
struct otri *firstedge, struct otri *lastedge,
|
|
int edgecount, int doflip, int triflaws)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *firstedge;
|
|
struct otri *lastedge;
|
|
int edgecount;
|
|
int doflip;
|
|
int triflaws;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri testtri;
|
|
struct otri besttri;
|
|
struct otri tempedge;
|
|
vertex leftbasevertex, rightbasevertex;
|
|
vertex testvertex;
|
|
vertex bestvertex;
|
|
int bestnumber;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
|
|
|
|
/* Identify the base vertices. */
|
|
apex(*lastedge, leftbasevertex);
|
|
dest(*firstedge, rightbasevertex);
|
|
if (b->verbose > 2) {
|
|
printf(" Triangulating interior polygon at edge\n");
|
|
printf(" (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
|
|
leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
|
|
}
|
|
/* Find the best vertex to connect the base to. */
|
|
onext(*firstedge, besttri);
|
|
dest(besttri, bestvertex);
|
|
otricopy(besttri, testtri);
|
|
bestnumber = 1;
|
|
for (i = 2; i <= edgecount - 2; i++) {
|
|
onextself(testtri);
|
|
dest(testtri, testvertex);
|
|
/* Is this a better vertex? */
|
|
if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
|
|
testvertex) > 0.0) {
|
|
otricopy(testtri, besttri);
|
|
bestvertex = testvertex;
|
|
bestnumber = i;
|
|
}
|
|
}
|
|
if (b->verbose > 2) {
|
|
printf(" Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
|
|
bestvertex[1]);
|
|
}
|
|
if (bestnumber > 1) {
|
|
/* Recursively triangulate the smaller polygon on the right. */
|
|
oprev(besttri, tempedge);
|
|
triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
|
|
triflaws);
|
|
}
|
|
if (bestnumber < edgecount - 2) {
|
|
/* Recursively triangulate the smaller polygon on the left. */
|
|
sym(besttri, tempedge);
|
|
triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
|
|
triflaws);
|
|
/* Find `besttri' again; it may have been lost to edge flips. */
|
|
sym(tempedge, besttri);
|
|
}
|
|
if (doflip) {
|
|
/* Do one final edge flip. */
|
|
flip(m, b, &besttri);
|
|
#ifndef CDT_ONLY
|
|
if (triflaws) {
|
|
/* Check the quality of the newly committed triangle. */
|
|
sym(besttri, testtri);
|
|
testtriangle(m, b, &testtri);
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
}
|
|
/* Return the base triangle. */
|
|
otricopy(besttri, *lastedge);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* deletevertex() Delete a vertex from a Delaunay triangulation, ensuring */
|
|
/* that the triangulation remains Delaunay. */
|
|
/* */
|
|
/* The origin of `deltri' is deleted. The union of the triangles adjacent */
|
|
/* to this vertex is a polygon, for which the Delaunay triangulation is */
|
|
/* found. Two triangles are removed from the mesh. */
|
|
/* */
|
|
/* Only interior vertices that do not lie on segments or boundaries may be */
|
|
/* deleted. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void deletevertex(m, b, deltri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *deltri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri countingtri;
|
|
struct otri firstedge, lastedge;
|
|
struct otri deltriright;
|
|
struct otri lefttri, righttri;
|
|
struct otri leftcasing, rightcasing;
|
|
struct osub leftsubseg, rightsubseg;
|
|
vertex delvertex;
|
|
vertex neworg;
|
|
int edgecount;
|
|
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
org(*deltri, delvertex);
|
|
if (b->verbose > 1) {
|
|
printf(" Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]);
|
|
}
|
|
vertexdealloc(m, delvertex);
|
|
|
|
/* Count the degree of the vertex being deleted. */
|
|
onext(*deltri, countingtri);
|
|
edgecount = 1;
|
|
while (!otriequal(*deltri, countingtri)) {
|
|
#ifdef SELF_CHECK
|
|
if (countingtri.tri == m->dummytri) {
|
|
printf("Internal error in deletevertex():\n");
|
|
printf(" Attempt to delete boundary vertex.\n");
|
|
internalerror();
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
edgecount++;
|
|
onextself(countingtri);
|
|
}
|
|
|
|
#ifdef SELF_CHECK
|
|
if (edgecount < 3) {
|
|
printf("Internal error in deletevertex():\n Vertex has degree %d.\n",
|
|
edgecount);
|
|
internalerror();
|
|
}
|
|
#endif /* SELF_CHECK */
|
|
if (edgecount > 3) {
|
|
/* Triangulate the polygon defined by the union of all triangles */
|
|
/* adjacent to the vertex being deleted. Check the quality of */
|
|
/* the resulting triangles. */
|
|
onext(*deltri, firstedge);
|
|
oprev(*deltri, lastedge);
|
|
triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0,
|
|
!b->nobisect);
|
|
}
|
|
/* Splice out two triangles. */
|
|
lprev(*deltri, deltriright);
|
|
dnext(*deltri, lefttri);
|
|
sym(lefttri, leftcasing);
|
|
oprev(deltriright, righttri);
|
|
sym(righttri, rightcasing);
|
|
bond(*deltri, leftcasing);
|
|
bond(deltriright, rightcasing);
|
|
tspivot(lefttri, leftsubseg);
|
|
if (leftsubseg.ss != m->dummysub) {
|
|
tsbond(*deltri, leftsubseg);
|
|
}
|
|
tspivot(righttri, rightsubseg);
|
|
if (rightsubseg.ss != m->dummysub) {
|
|
tsbond(deltriright, rightsubseg);
|
|
}
|
|
|
|
/* Set the new origin of `deltri' and check its quality. */
|
|
org(lefttri, neworg);
|
|
setorg(*deltri, neworg);
|
|
if (!b->nobisect) {
|
|
testtriangle(m, b, deltri);
|
|
}
|
|
|
|
/* Delete the two spliced-out triangles. */
|
|
triangledealloc(m, lefttri.tri);
|
|
triangledealloc(m, righttri.tri);
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* undovertex() Undo the most recent vertex insertion. */
|
|
/* */
|
|
/* Walks through the list of transformations (flips and a vertex insertion) */
|
|
/* in the reverse of the order in which they were done, and undoes them. */
|
|
/* The inserted vertex is removed from the triangulation and deallocated. */
|
|
/* Two triangles (possibly just one) are also deallocated. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void undovertex(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void undovertex(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri fliptri;
|
|
struct otri botleft, botright, topright;
|
|
struct otri botlcasing, botrcasing, toprcasing;
|
|
struct otri gluetri;
|
|
struct osub botlsubseg, botrsubseg, toprsubseg;
|
|
vertex botvertex, rightvertex;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
/* Walk through the list of transformations (flips and a vertex insertion) */
|
|
/* in the reverse of the order in which they were done, and undo them. */
|
|
while (m->lastflip != (struct flipstacker *) NULL) {
|
|
/* Find a triangle involved in the last unreversed transformation. */
|
|
decode(m->lastflip->flippedtri, fliptri);
|
|
|
|
/* We are reversing one of three transformations: a trisection of one */
|
|
/* triangle into three (by inserting a vertex in the triangle), a */
|
|
/* bisection of two triangles into four (by inserting a vertex in an */
|
|
/* edge), or an edge flip. */
|
|
if (m->lastflip->prevflip == (struct flipstacker *) NULL) {
|
|
/* Restore a triangle that was split into three triangles, */
|
|
/* so it is again one triangle. */
|
|
dprev(fliptri, botleft);
|
|
lnextself(botleft);
|
|
onext(fliptri, botright);
|
|
lprevself(botright);
|
|
sym(botleft, botlcasing);
|
|
sym(botright, botrcasing);
|
|
dest(botleft, botvertex);
|
|
|
|
setapex(fliptri, botvertex);
|
|
lnextself(fliptri);
|
|
bond(fliptri, botlcasing);
|
|
tspivot(botleft, botlsubseg);
|
|
tsbond(fliptri, botlsubseg);
|
|
lnextself(fliptri);
|
|
bond(fliptri, botrcasing);
|
|
tspivot(botright, botrsubseg);
|
|
tsbond(fliptri, botrsubseg);
|
|
|
|
/* Delete the two spliced-out triangles. */
|
|
triangledealloc(m, botleft.tri);
|
|
triangledealloc(m, botright.tri);
|
|
} else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) {
|
|
/* Restore two triangles that were split into four triangles, */
|
|
/* so they are again two triangles. */
|
|
lprev(fliptri, gluetri);
|
|
sym(gluetri, botright);
|
|
lnextself(botright);
|
|
sym(botright, botrcasing);
|
|
dest(botright, rightvertex);
|
|
|
|
setorg(fliptri, rightvertex);
|
|
bond(gluetri, botrcasing);
|
|
tspivot(botright, botrsubseg);
|
|
tsbond(gluetri, botrsubseg);
|
|
|
|
/* Delete the spliced-out triangle. */
|
|
triangledealloc(m, botright.tri);
|
|
|
|
sym(fliptri, gluetri);
|
|
if (gluetri.tri != m->dummytri) {
|
|
lnextself(gluetri);
|
|
dnext(gluetri, topright);
|
|
sym(topright, toprcasing);
|
|
|
|
setorg(gluetri, rightvertex);
|
|
bond(gluetri, toprcasing);
|
|
tspivot(topright, toprsubseg);
|
|
tsbond(gluetri, toprsubseg);
|
|
|
|
/* Delete the spliced-out triangle. */
|
|
triangledealloc(m, topright.tri);
|
|
}
|
|
|
|
/* This is the end of the list, sneakily encoded. */
|
|
m->lastflip->prevflip = (struct flipstacker *) NULL;
|
|
} else {
|
|
/* Undo an edge flip. */
|
|
unflip(m, b, &fliptri);
|
|
}
|
|
|
|
/* Go on and process the next transformation. */
|
|
m->lastflip = m->lastflip->prevflip;
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Mesh transformation routines end here *********/
|
|
|
|
/********* Divide-and-conquer Delaunay triangulation begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* The divide-and-conquer bounding box */
|
|
/* */
|
|
/* I originally implemented the divide-and-conquer and incremental Delaunay */
|
|
/* triangulations using the edge-based data structure presented by Guibas */
|
|
/* and Stolfi. Switching to a triangle-based data structure doubled the */
|
|
/* speed. However, I had to think of a few extra tricks to maintain the */
|
|
/* elegance of the original algorithms. */
|
|
/* */
|
|
/* The "bounding box" used by my variant of the divide-and-conquer */
|
|
/* algorithm uses one triangle for each edge of the convex hull of the */
|
|
/* triangulation. These bounding triangles all share a common apical */
|
|
/* vertex, which is represented by NULL and which represents nothing. */
|
|
/* The bounding triangles are linked in a circular fan about this NULL */
|
|
/* vertex, and the edges on the convex hull of the triangulation appear */
|
|
/* opposite the NULL vertex. You might find it easiest to imagine that */
|
|
/* the NULL vertex is a point in 3D space behind the center of the */
|
|
/* triangulation, and that the bounding triangles form a sort of cone. */
|
|
/* */
|
|
/* This bounding box makes it easy to represent degenerate cases. For */
|
|
/* instance, the triangulation of two vertices is a single edge. This edge */
|
|
/* is represented by two bounding box triangles, one on each "side" of the */
|
|
/* edge. These triangles are also linked together in a fan about the NULL */
|
|
/* vertex. */
|
|
/* */
|
|
/* The bounding box also makes it easy to traverse the convex hull, as the */
|
|
/* divide-and-conquer algorithm needs to do. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* vertexsort() Sort an array of vertices by x-coordinate, using the */
|
|
/* y-coordinate as a secondary key. */
|
|
/* */
|
|
/* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */
|
|
/* the usual quicksort mistakes. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void vertexsort(vertex *sortarray, int arraysize)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void vertexsort(sortarray, arraysize)
|
|
vertex *sortarray;
|
|
int arraysize;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int left, right;
|
|
int pivot;
|
|
REAL pivotx, pivoty;
|
|
vertex temp;
|
|
|
|
if (arraysize == 2) {
|
|
/* Recursive base case. */
|
|
if ((sortarray[0][0] > sortarray[1][0]) ||
|
|
((sortarray[0][0] == sortarray[1][0]) &&
|
|
(sortarray[0][1] > sortarray[1][1]))) {
|
|
temp = sortarray[1];
|
|
sortarray[1] = sortarray[0];
|
|
sortarray[0] = temp;
|
|
}
|
|
return;
|
|
}
|
|
/* Choose a random pivot to split the array. */
|
|
pivot = (int) randomnation((unsigned int) arraysize);
|
|
pivotx = sortarray[pivot][0];
|
|
pivoty = sortarray[pivot][1];
|
|
/* Split the array. */
|
|
left = -1;
|
|
right = arraysize;
|
|
while (left < right) {
|
|
/* Search for a vertex whose x-coordinate is too large for the left. */
|
|
do {
|
|
left++;
|
|
} while ((left <= right) && ((sortarray[left][0] < pivotx) ||
|
|
((sortarray[left][0] == pivotx) &&
|
|
(sortarray[left][1] < pivoty))));
|
|
/* Search for a vertex whose x-coordinate is too small for the right. */
|
|
do {
|
|
right--;
|
|
} while ((left <= right) && ((sortarray[right][0] > pivotx) ||
|
|
((sortarray[right][0] == pivotx) &&
|
|
(sortarray[right][1] > pivoty))));
|
|
if (left < right) {
|
|
/* Swap the left and right vertices. */
|
|
temp = sortarray[left];
|
|
sortarray[left] = sortarray[right];
|
|
sortarray[right] = temp;
|
|
}
|
|
}
|
|
if (left > 1) {
|
|
/* Recursively sort the left subset. */
|
|
vertexsort(sortarray, left);
|
|
}
|
|
if (right < arraysize - 2) {
|
|
/* Recursively sort the right subset. */
|
|
vertexsort(&sortarray[right + 1], arraysize - right - 1);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* vertexmedian() An order statistic algorithm, almost. Shuffles an */
|
|
/* array of vertices so that the first `median' vertices */
|
|
/* occur lexicographically before the remaining vertices. */
|
|
/* */
|
|
/* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */
|
|
/* if axis == 1. Very similar to the vertexsort() procedure, but runs in */
|
|
/* randomized linear time. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void vertexmedian(sortarray, arraysize, median, axis)
|
|
vertex *sortarray;
|
|
int arraysize;
|
|
int median;
|
|
int axis;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int left, right;
|
|
int pivot;
|
|
REAL pivot1, pivot2;
|
|
vertex temp;
|
|
|
|
if (arraysize == 2) {
|
|
/* Recursive base case. */
|
|
if ((sortarray[0][axis] > sortarray[1][axis]) ||
|
|
((sortarray[0][axis] == sortarray[1][axis]) &&
|
|
(sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
|
|
temp = sortarray[1];
|
|
sortarray[1] = sortarray[0];
|
|
sortarray[0] = temp;
|
|
}
|
|
return;
|
|
}
|
|
/* Choose a random pivot to split the array. */
|
|
pivot = (int) randomnation((unsigned int) arraysize);
|
|
pivot1 = sortarray[pivot][axis];
|
|
pivot2 = sortarray[pivot][1 - axis];
|
|
/* Split the array. */
|
|
left = -1;
|
|
right = arraysize;
|
|
while (left < right) {
|
|
/* Search for a vertex whose x-coordinate is too large for the left. */
|
|
do {
|
|
left++;
|
|
} while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
|
|
((sortarray[left][axis] == pivot1) &&
|
|
(sortarray[left][1 - axis] < pivot2))));
|
|
/* Search for a vertex whose x-coordinate is too small for the right. */
|
|
do {
|
|
right--;
|
|
} while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
|
|
((sortarray[right][axis] == pivot1) &&
|
|
(sortarray[right][1 - axis] > pivot2))));
|
|
if (left < right) {
|
|
/* Swap the left and right vertices. */
|
|
temp = sortarray[left];
|
|
sortarray[left] = sortarray[right];
|
|
sortarray[right] = temp;
|
|
}
|
|
}
|
|
/* Unlike in vertexsort(), at most one of the following */
|
|
/* conditionals is true. */
|
|
if (left > median) {
|
|
/* Recursively shuffle the left subset. */
|
|
vertexmedian(sortarray, left, median, axis);
|
|
}
|
|
if (right < median - 1) {
|
|
/* Recursively shuffle the right subset. */
|
|
vertexmedian(&sortarray[right + 1], arraysize - right - 1,
|
|
median - right - 1, axis);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* alternateaxes() Sorts the vertices as appropriate for the divide-and- */
|
|
/* conquer algorithm with alternating cuts. */
|
|
/* */
|
|
/* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */
|
|
/* For the base case, subsets containing only two or three vertices are */
|
|
/* always sorted by x-coordinate. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void alternateaxes(vertex *sortarray, int arraysize, int axis)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void alternateaxes(sortarray, arraysize, axis)
|
|
vertex *sortarray;
|
|
int arraysize;
|
|
int axis;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int divider;
|
|
|
|
divider = arraysize >> 1;
|
|
if (arraysize <= 3) {
|
|
/* Recursive base case: subsets of two or three vertices will be */
|
|
/* handled specially, and should always be sorted by x-coordinate. */
|
|
axis = 0;
|
|
}
|
|
/* Partition with a horizontal or vertical cut. */
|
|
vertexmedian(sortarray, arraysize, divider, axis);
|
|
/* Recursively partition the subsets with a cross cut. */
|
|
if (arraysize - divider >= 2) {
|
|
if (divider >= 2) {
|
|
alternateaxes(sortarray, divider, 1 - axis);
|
|
}
|
|
alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* mergehulls() Merge two adjacent Delaunay triangulations into a */
|
|
/* single Delaunay triangulation. */
|
|
/* */
|
|
/* This is similar to the algorithm given by Guibas and Stolfi, but uses */
|
|
/* a triangle-based, rather than edge-based, data structure. */
|
|
/* */
|
|
/* The algorithm walks up the gap between the two triangulations, knitting */
|
|
/* them together. As they are merged, some of their bounding triangles */
|
|
/* are converted into real triangles of the triangulation. The procedure */
|
|
/* pulls each hull's bounding triangles apart, then knits them together */
|
|
/* like the teeth of two gears. The Delaunay property determines, at each */
|
|
/* step, whether the next "tooth" is a bounding triangle of the left hull */
|
|
/* or the right. When a bounding triangle becomes real, its apex is */
|
|
/* changed from NULL to a real vertex. */
|
|
/* */
|
|
/* Only two new triangles need to be allocated. These become new bounding */
|
|
/* triangles at the top and bottom of the seam. They are used to connect */
|
|
/* the remaining bounding triangles (those that have not been converted */
|
|
/* into real triangles) into a single fan. */
|
|
/* */
|
|
/* On entry, `farleft' and `innerleft' are bounding triangles of the left */
|
|
/* triangulation. The origin of `farleft' is the leftmost vertex, and */
|
|
/* the destination of `innerleft' is the rightmost vertex of the */
|
|
/* triangulation. Similarly, `innerright' and `farright' are bounding */
|
|
/* triangles of the right triangulation. The origin of `innerright' and */
|
|
/* destination of `farright' are the leftmost and rightmost vertices. */
|
|
/* */
|
|
/* On completion, the origin of `farleft' is the leftmost vertex of the */
|
|
/* merged triangulation, and the destination of `farright' is the rightmost */
|
|
/* vertex. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
|
|
struct otri *innerleft, struct otri *innerright,
|
|
struct otri *farright, int axis)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void mergehulls(m, b, farleft, innerleft, innerright, farright, axis)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *farleft;
|
|
struct otri *innerleft;
|
|
struct otri *innerright;
|
|
struct otri *farright;
|
|
int axis;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri leftcand, rightcand;
|
|
struct otri baseedge;
|
|
struct otri nextedge;
|
|
struct otri sidecasing, topcasing, outercasing;
|
|
struct otri checkedge;
|
|
vertex innerleftdest;
|
|
vertex innerrightorg;
|
|
vertex innerleftapex, innerrightapex;
|
|
vertex farleftpt, farrightpt;
|
|
vertex farleftapex, farrightapex;
|
|
vertex lowerleft, lowerright;
|
|
vertex upperleft, upperright;
|
|
vertex nextapex;
|
|
vertex checkvertex;
|
|
int changemade;
|
|
int badedge;
|
|
int leftfinished, rightfinished;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
dest(*innerleft, innerleftdest);
|
|
apex(*innerleft, innerleftapex);
|
|
org(*innerright, innerrightorg);
|
|
apex(*innerright, innerrightapex);
|
|
/* Special treatment for horizontal cuts. */
|
|
if (b->dwyer && (axis == 1)) {
|
|
org(*farleft, farleftpt);
|
|
apex(*farleft, farleftapex);
|
|
dest(*farright, farrightpt);
|
|
apex(*farright, farrightapex);
|
|
/* The pointers to the extremal vertices are shifted to point to the */
|
|
/* topmost and bottommost vertex of each hull, rather than the */
|
|
/* leftmost and rightmost vertices. */
|
|
while (farleftapex[1] < farleftpt[1]) {
|
|
lnextself(*farleft);
|
|
symself(*farleft);
|
|
farleftpt = farleftapex;
|
|
apex(*farleft, farleftapex);
|
|
}
|
|
sym(*innerleft, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
while (checkvertex[1] > innerleftdest[1]) {
|
|
lnext(checkedge, *innerleft);
|
|
innerleftapex = innerleftdest;
|
|
innerleftdest = checkvertex;
|
|
sym(*innerleft, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
}
|
|
while (innerrightapex[1] < innerrightorg[1]) {
|
|
lnextself(*innerright);
|
|
symself(*innerright);
|
|
innerrightorg = innerrightapex;
|
|
apex(*innerright, innerrightapex);
|
|
}
|
|
sym(*farright, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
while (checkvertex[1] > farrightpt[1]) {
|
|
lnext(checkedge, *farright);
|
|
farrightapex = farrightpt;
|
|
farrightpt = checkvertex;
|
|
sym(*farright, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
}
|
|
}
|
|
/* Find a line tangent to and below both hulls. */
|
|
do {
|
|
changemade = 0;
|
|
/* Make innerleftdest the "bottommost" vertex of the left hull. */
|
|
if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
|
|
0.0) {
|
|
lprevself(*innerleft);
|
|
symself(*innerleft);
|
|
innerleftdest = innerleftapex;
|
|
apex(*innerleft, innerleftapex);
|
|
changemade = 1;
|
|
}
|
|
/* Make innerrightorg the "bottommost" vertex of the right hull. */
|
|
if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
|
|
0.0) {
|
|
lnextself(*innerright);
|
|
symself(*innerright);
|
|
innerrightorg = innerrightapex;
|
|
apex(*innerright, innerrightapex);
|
|
changemade = 1;
|
|
}
|
|
} while (changemade);
|
|
/* Find the two candidates to be the next "gear tooth." */
|
|
sym(*innerleft, leftcand);
|
|
sym(*innerright, rightcand);
|
|
/* Create the bottom new bounding triangle. */
|
|
maketriangle(m, b, &baseedge);
|
|
/* Connect it to the bounding boxes of the left and right triangulations. */
|
|
bond(baseedge, *innerleft);
|
|
lnextself(baseedge);
|
|
bond(baseedge, *innerright);
|
|
lnextself(baseedge);
|
|
setorg(baseedge, innerrightorg);
|
|
setdest(baseedge, innerleftdest);
|
|
/* Apex is intentionally left NULL. */
|
|
if (b->verbose > 2) {
|
|
printf(" Creating base bounding ");
|
|
printtriangle(m, b, &baseedge);
|
|
}
|
|
/* Fix the extreme triangles if necessary. */
|
|
org(*farleft, farleftpt);
|
|
if (innerleftdest == farleftpt) {
|
|
lnext(baseedge, *farleft);
|
|
}
|
|
dest(*farright, farrightpt);
|
|
if (innerrightorg == farrightpt) {
|
|
lprev(baseedge, *farright);
|
|
}
|
|
/* The vertices of the current knitting edge. */
|
|
lowerleft = innerleftdest;
|
|
lowerright = innerrightorg;
|
|
/* The candidate vertices for knitting. */
|
|
apex(leftcand, upperleft);
|
|
apex(rightcand, upperright);
|
|
/* Walk up the gap between the two triangulations, knitting them together. */
|
|
while (1) {
|
|
/* Have we reached the top? (This isn't quite the right question, */
|
|
/* because even though the left triangulation might seem finished now, */
|
|
/* moving up on the right triangulation might reveal a new vertex of */
|
|
/* the left triangulation. And vice-versa.) */
|
|
leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
|
|
0.0;
|
|
rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
|
|
<= 0.0;
|
|
if (leftfinished && rightfinished) {
|
|
/* Create the top new bounding triangle. */
|
|
maketriangle(m, b, &nextedge);
|
|
setorg(nextedge, lowerleft);
|
|
setdest(nextedge, lowerright);
|
|
/* Apex is intentionally left NULL. */
|
|
/* Connect it to the bounding boxes of the two triangulations. */
|
|
bond(nextedge, baseedge);
|
|
lnextself(nextedge);
|
|
bond(nextedge, rightcand);
|
|
lnextself(nextedge);
|
|
bond(nextedge, leftcand);
|
|
if (b->verbose > 2) {
|
|
printf(" Creating top bounding ");
|
|
printtriangle(m, b, &nextedge);
|
|
}
|
|
/* Special treatment for horizontal cuts. */
|
|
if (b->dwyer && (axis == 1)) {
|
|
org(*farleft, farleftpt);
|
|
apex(*farleft, farleftapex);
|
|
dest(*farright, farrightpt);
|
|
apex(*farright, farrightapex);
|
|
sym(*farleft, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
/* The pointers to the extremal vertices are restored to the */
|
|
/* leftmost and rightmost vertices (rather than topmost and */
|
|
/* bottommost). */
|
|
while (checkvertex[0] < farleftpt[0]) {
|
|
lprev(checkedge, *farleft);
|
|
farleftapex = farleftpt;
|
|
farleftpt = checkvertex;
|
|
sym(*farleft, checkedge);
|
|
apex(checkedge, checkvertex);
|
|
}
|
|
while (farrightapex[0] > farrightpt[0]) {
|
|
lprevself(*farright);
|
|
symself(*farright);
|
|
farrightpt = farrightapex;
|
|
apex(*farright, farrightapex);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
/* Consider eliminating edges from the left triangulation. */
|
|
if (!leftfinished) {
|
|
/* What vertex would be exposed if an edge were deleted? */
|
|
lprev(leftcand, nextedge);
|
|
symself(nextedge);
|
|
apex(nextedge, nextapex);
|
|
/* If nextapex is NULL, then no vertex would be exposed; the */
|
|
/* triangulation would have been eaten right through. */
|
|
if (nextapex != (vertex) NULL) {
|
|
/* Check whether the edge is Delaunay. */
|
|
badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
|
|
0.0;
|
|
while (badedge) {
|
|
/* Eliminate the edge with an edge flip. As a result, the */
|
|
/* left triangulation will have one more boundary triangle. */
|
|
lnextself(nextedge);
|
|
sym(nextedge, topcasing);
|
|
lnextself(nextedge);
|
|
sym(nextedge, sidecasing);
|
|
bond(nextedge, topcasing);
|
|
bond(leftcand, sidecasing);
|
|
lnextself(leftcand);
|
|
sym(leftcand, outercasing);
|
|
lprevself(nextedge);
|
|
bond(nextedge, outercasing);
|
|
/* Correct the vertices to reflect the edge flip. */
|
|
setorg(leftcand, lowerleft);
|
|
setdest(leftcand, NULL);
|
|
setapex(leftcand, nextapex);
|
|
setorg(nextedge, NULL);
|
|
setdest(nextedge, upperleft);
|
|
setapex(nextedge, nextapex);
|
|
/* Consider the newly exposed vertex. */
|
|
upperleft = nextapex;
|
|
/* What vertex would be exposed if another edge were deleted? */
|
|
otricopy(sidecasing, nextedge);
|
|
apex(nextedge, nextapex);
|
|
if (nextapex != (vertex) NULL) {
|
|
/* Check whether the edge is Delaunay. */
|
|
badedge = incircle(m, b, lowerleft, lowerright, upperleft,
|
|
nextapex) > 0.0;
|
|
} else {
|
|
/* Avoid eating right through the triangulation. */
|
|
badedge = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Consider eliminating edges from the right triangulation. */
|
|
if (!rightfinished) {
|
|
/* What vertex would be exposed if an edge were deleted? */
|
|
lnext(rightcand, nextedge);
|
|
symself(nextedge);
|
|
apex(nextedge, nextapex);
|
|
/* If nextapex is NULL, then no vertex would be exposed; the */
|
|
/* triangulation would have been eaten right through. */
|
|
if (nextapex != (vertex) NULL) {
|
|
/* Check whether the edge is Delaunay. */
|
|
badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
|
|
0.0;
|
|
while (badedge) {
|
|
/* Eliminate the edge with an edge flip. As a result, the */
|
|
/* right triangulation will have one more boundary triangle. */
|
|
lprevself(nextedge);
|
|
sym(nextedge, topcasing);
|
|
lprevself(nextedge);
|
|
sym(nextedge, sidecasing);
|
|
bond(nextedge, topcasing);
|
|
bond(rightcand, sidecasing);
|
|
lprevself(rightcand);
|
|
sym(rightcand, outercasing);
|
|
lnextself(nextedge);
|
|
bond(nextedge, outercasing);
|
|
/* Correct the vertices to reflect the edge flip. */
|
|
setorg(rightcand, NULL);
|
|
setdest(rightcand, lowerright);
|
|
setapex(rightcand, nextapex);
|
|
setorg(nextedge, upperright);
|
|
setdest(nextedge, NULL);
|
|
setapex(nextedge, nextapex);
|
|
/* Consider the newly exposed vertex. */
|
|
upperright = nextapex;
|
|
/* What vertex would be exposed if another edge were deleted? */
|
|
otricopy(sidecasing, nextedge);
|
|
apex(nextedge, nextapex);
|
|
if (nextapex != (vertex) NULL) {
|
|
/* Check whether the edge is Delaunay. */
|
|
badedge = incircle(m, b, lowerleft, lowerright, upperright,
|
|
nextapex) > 0.0;
|
|
} else {
|
|
/* Avoid eating right through the triangulation. */
|
|
badedge = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (leftfinished || (!rightfinished &&
|
|
(incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
|
|
0.0))) {
|
|
/* Knit the triangulations, adding an edge from `lowerleft' */
|
|
/* to `upperright'. */
|
|
bond(baseedge, rightcand);
|
|
lprev(rightcand, baseedge);
|
|
setdest(baseedge, lowerleft);
|
|
lowerright = upperright;
|
|
sym(baseedge, rightcand);
|
|
apex(rightcand, upperright);
|
|
} else {
|
|
/* Knit the triangulations, adding an edge from `upperleft' */
|
|
/* to `lowerright'. */
|
|
bond(baseedge, leftcand);
|
|
lnext(leftcand, baseedge);
|
|
setorg(baseedge, lowerright);
|
|
lowerleft = upperleft;
|
|
sym(baseedge, leftcand);
|
|
apex(leftcand, upperleft);
|
|
}
|
|
if (b->verbose > 2) {
|
|
printf(" Connecting ");
|
|
printtriangle(m, b, &baseedge);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* divconqrecurse() Recursively form a Delaunay triangulation by the */
|
|
/* divide-and-conquer method. */
|
|
/* */
|
|
/* Recursively breaks down the problem into smaller pieces, which are */
|
|
/* knitted together by mergehulls(). The base cases (problems of two or */
|
|
/* three vertices) are handled specially here. */
|
|
/* */
|
|
/* On completion, `farleft' and `farright' are bounding triangles such that */
|
|
/* the origin of `farleft' is the leftmost vertex (breaking ties by */
|
|
/* choosing the highest leftmost vertex), and the destination of */
|
|
/* `farright' is the rightmost vertex (breaking ties by choosing the */
|
|
/* lowest rightmost vertex). */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
|
|
int vertices, int axis,
|
|
struct otri *farleft, struct otri *farright)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex *sortarray;
|
|
int vertices;
|
|
int axis;
|
|
struct otri *farleft;
|
|
struct otri *farright;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri midtri, tri1, tri2, tri3;
|
|
struct otri innerleft, innerright;
|
|
REAL area;
|
|
int divider;
|
|
|
|
if (b->verbose > 2) {
|
|
printf(" Triangulating %d vertices.\n", vertices);
|
|
}
|
|
if (vertices == 2) {
|
|
/* The triangulation of two vertices is an edge. An edge is */
|
|
/* represented by two bounding triangles. */
|
|
maketriangle(m, b, farleft);
|
|
setorg(*farleft, sortarray[0]);
|
|
setdest(*farleft, sortarray[1]);
|
|
/* The apex is intentionally left NULL. */
|
|
maketriangle(m, b, farright);
|
|
setorg(*farright, sortarray[1]);
|
|
setdest(*farright, sortarray[0]);
|
|
/* The apex is intentionally left NULL. */
|
|
bond(*farleft, *farright);
|
|
lprevself(*farleft);
|
|
lnextself(*farright);
|
|
bond(*farleft, *farright);
|
|
lprevself(*farleft);
|
|
lnextself(*farright);
|
|
bond(*farleft, *farright);
|
|
if (b->verbose > 2) {
|
|
printf(" Creating ");
|
|
printtriangle(m, b, farleft);
|
|
printf(" Creating ");
|
|
printtriangle(m, b, farright);
|
|
}
|
|
/* Ensure that the origin of `farleft' is sortarray[0]. */
|
|
lprev(*farright, *farleft);
|
|
return;
|
|
} else if (vertices == 3) {
|
|
/* The triangulation of three vertices is either a triangle (with */
|
|
/* three bounding triangles) or two edges (with four bounding */
|
|
/* triangles). In either case, four triangles are created. */
|
|
maketriangle(m, b, &midtri);
|
|
maketriangle(m, b, &tri1);
|
|
maketriangle(m, b, &tri2);
|
|
maketriangle(m, b, &tri3);
|
|
area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
|
|
if (area == 0.0) {
|
|
/* Three collinear vertices; the triangulation is two edges. */
|
|
setorg(midtri, sortarray[0]);
|
|
setdest(midtri, sortarray[1]);
|
|
setorg(tri1, sortarray[1]);
|
|
setdest(tri1, sortarray[0]);
|
|
setorg(tri2, sortarray[2]);
|
|
setdest(tri2, sortarray[1]);
|
|
setorg(tri3, sortarray[1]);
|
|
setdest(tri3, sortarray[2]);
|
|
/* All apices are intentionally left NULL. */
|
|
bond(midtri, tri1);
|
|
bond(tri2, tri3);
|
|
lnextself(midtri);
|
|
lprevself(tri1);
|
|
lnextself(tri2);
|
|
lprevself(tri3);
|
|
bond(midtri, tri3);
|
|
bond(tri1, tri2);
|
|
lnextself(midtri);
|
|
lprevself(tri1);
|
|
lnextself(tri2);
|
|
lprevself(tri3);
|
|
bond(midtri, tri1);
|
|
bond(tri2, tri3);
|
|
/* Ensure that the origin of `farleft' is sortarray[0]. */
|
|
otricopy(tri1, *farleft);
|
|
/* Ensure that the destination of `farright' is sortarray[2]. */
|
|
otricopy(tri2, *farright);
|
|
} else {
|
|
/* The three vertices are not collinear; the triangulation is one */
|
|
/* triangle, namely `midtri'. */
|
|
setorg(midtri, sortarray[0]);
|
|
setdest(tri1, sortarray[0]);
|
|
setorg(tri3, sortarray[0]);
|
|
/* Apices of tri1, tri2, and tri3 are left NULL. */
|
|
if (area > 0.0) {
|
|
/* The vertices are in counterclockwise order. */
|
|
setdest(midtri, sortarray[1]);
|
|
setorg(tri1, sortarray[1]);
|
|
setdest(tri2, sortarray[1]);
|
|
setapex(midtri, sortarray[2]);
|
|
setorg(tri2, sortarray[2]);
|
|
setdest(tri3, sortarray[2]);
|
|
} else {
|
|
/* The vertices are in clockwise order. */
|
|
setdest(midtri, sortarray[2]);
|
|
setorg(tri1, sortarray[2]);
|
|
setdest(tri2, sortarray[2]);
|
|
setapex(midtri, sortarray[1]);
|
|
setorg(tri2, sortarray[1]);
|
|
setdest(tri3, sortarray[1]);
|
|
}
|
|
/* The topology does not depend on how the vertices are ordered. */
|
|
bond(midtri, tri1);
|
|
lnextself(midtri);
|
|
bond(midtri, tri2);
|
|
lnextself(midtri);
|
|
bond(midtri, tri3);
|
|
lprevself(tri1);
|
|
lnextself(tri2);
|
|
bond(tri1, tri2);
|
|
lprevself(tri1);
|
|
lprevself(tri3);
|
|
bond(tri1, tri3);
|
|
lnextself(tri2);
|
|
lprevself(tri3);
|
|
bond(tri2, tri3);
|
|
/* Ensure that the origin of `farleft' is sortarray[0]. */
|
|
otricopy(tri1, *farleft);
|
|
/* Ensure that the destination of `farright' is sortarray[2]. */
|
|
if (area > 0.0) {
|
|
otricopy(tri2, *farright);
|
|
} else {
|
|
lnext(*farleft, *farright);
|
|
}
|
|
}
|
|
if (b->verbose > 2) {
|
|
printf(" Creating ");
|
|
printtriangle(m, b, &midtri);
|
|
printf(" Creating ");
|
|
printtriangle(m, b, &tri1);
|
|
printf(" Creating ");
|
|
printtriangle(m, b, &tri2);
|
|
printf(" Creating ");
|
|
printtriangle(m, b, &tri3);
|
|
}
|
|
return;
|
|
} else {
|
|
/* Split the vertices in half. */
|
|
divider = vertices >> 1;
|
|
/* Recursively triangulate each half. */
|
|
divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
|
|
divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
|
|
&innerright, farright);
|
|
if (b->verbose > 1) {
|
|
printf(" Joining triangulations with %d and %d vertices.\n", divider,
|
|
vertices - divider);
|
|
}
|
|
/* Merge the two triangulations into one. */
|
|
mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
|
|
}
|
|
}
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long removeghosts(m, b, startghost)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *startghost;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri searchedge;
|
|
struct otri dissolveedge;
|
|
struct otri deadtriangle;
|
|
vertex markorg;
|
|
long hullsize;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
if (b->verbose) {
|
|
printf(" Removing ghost triangles.\n");
|
|
}
|
|
/* Find an edge on the convex hull to start point location from. */
|
|
lprev(*startghost, searchedge);
|
|
symself(searchedge);
|
|
m->dummytri[0] = encode(searchedge);
|
|
/* Remove the bounding box and count the convex hull edges. */
|
|
otricopy(*startghost, dissolveedge);
|
|
hullsize = 0;
|
|
do {
|
|
hullsize++;
|
|
lnext(dissolveedge, deadtriangle);
|
|
lprevself(dissolveedge);
|
|
symself(dissolveedge);
|
|
/* If no PSLG is involved, set the boundary markers of all the vertices */
|
|
/* on the convex hull. If a PSLG is used, this step is done later. */
|
|
if (!b->poly) {
|
|
/* Watch out for the case where all the input vertices are collinear. */
|
|
if (dissolveedge.tri != m->dummytri) {
|
|
org(dissolveedge, markorg);
|
|
if (vertexmark(markorg) == 0) {
|
|
setvertexmark(markorg, 1);
|
|
}
|
|
}
|
|
}
|
|
/* Remove a bounding triangle from a convex hull triangle. */
|
|
dissolve(dissolveedge);
|
|
/* Find the next bounding triangle. */
|
|
sym(deadtriangle, dissolveedge);
|
|
/* Delete the bounding triangle. */
|
|
triangledealloc(m, deadtriangle.tri);
|
|
} while (!otriequal(dissolveedge, *startghost));
|
|
return hullsize;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */
|
|
/* conquer method. */
|
|
/* */
|
|
/* Sorts the vertices, calls a recursive procedure to triangulate them, and */
|
|
/* removes the bounding box, setting boundary markers as appropriate. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long divconqdelaunay(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long divconqdelaunay(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex *sortarray;
|
|
struct otri hullleft, hullright;
|
|
int divider;
|
|
int i, j;
|
|
|
|
if (b->verbose) {
|
|
printf(" Sorting vertices.\n");
|
|
}
|
|
|
|
/* Allocate an array of pointers to vertices for sorting. */
|
|
sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
|
|
traversalinit(&m->vertices);
|
|
for (i = 0; i < m->invertices; i++) {
|
|
sortarray[i] = vertextraverse(m);
|
|
}
|
|
/* Sort the vertices. */
|
|
vertexsort(sortarray, m->invertices);
|
|
/* Discard duplicate vertices, which can really mess up the algorithm. */
|
|
i = 0;
|
|
for (j = 1; j < m->invertices; j++) {
|
|
if ((sortarray[i][0] == sortarray[j][0])
|
|
&& (sortarray[i][1] == sortarray[j][1])) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
|
|
sortarray[j][0], sortarray[j][1]);
|
|
}
|
|
setvertextype(sortarray[j], UNDEADVERTEX);
|
|
m->undeads++;
|
|
} else {
|
|
i++;
|
|
sortarray[i] = sortarray[j];
|
|
}
|
|
}
|
|
i++;
|
|
if (b->dwyer) {
|
|
/* Re-sort the array of vertices to accommodate alternating cuts. */
|
|
divider = i >> 1;
|
|
if (i - divider >= 2) {
|
|
if (divider >= 2) {
|
|
alternateaxes(sortarray, divider, 1);
|
|
}
|
|
alternateaxes(&sortarray[divider], i - divider, 1);
|
|
}
|
|
}
|
|
|
|
if (b->verbose) {
|
|
printf(" Forming triangulation.\n");
|
|
}
|
|
|
|
/* Form the Delaunay triangulation. */
|
|
divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
|
|
trifree((VOID *) sortarray);
|
|
|
|
return removeghosts(m, b, &hullleft);
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Divide-and-conquer Delaunay triangulation ends here *********/
|
|
|
|
/********* Incremental Delaunay triangulation begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* boundingbox() Form an "infinite" bounding triangle to insert vertices */
|
|
/* into. */
|
|
/* */
|
|
/* The vertices at "infinity" are assigned finite coordinates, which are */
|
|
/* used by the point location routines, but (mostly) ignored by the */
|
|
/* Delaunay edge flip routines. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void boundingbox(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void boundingbox(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri inftri; /* Handle for the triangular bounding box. */
|
|
REAL width;
|
|
|
|
if (b->verbose) {
|
|
printf(" Creating triangular bounding box.\n");
|
|
}
|
|
/* Find the width (or height, whichever is larger) of the triangulation. */
|
|
width = m->xmax - m->xmin;
|
|
if (m->ymax - m->ymin > width) {
|
|
width = m->ymax - m->ymin;
|
|
}
|
|
if (width == 0.0) {
|
|
width = 1.0;
|
|
}
|
|
/* Create the vertices of the bounding box. */
|
|
m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes);
|
|
m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes);
|
|
m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes);
|
|
m->infvertex1[0] = m->xmin - 50.0 * width;
|
|
m->infvertex1[1] = m->ymin - 40.0 * width;
|
|
m->infvertex2[0] = m->xmax + 50.0 * width;
|
|
m->infvertex2[1] = m->ymin - 40.0 * width;
|
|
m->infvertex3[0] = 0.5 * (m->xmin + m->xmax);
|
|
m->infvertex3[1] = m->ymax + 60.0 * width;
|
|
|
|
/* Create the bounding box. */
|
|
maketriangle(m, b, &inftri);
|
|
setorg(inftri, m->infvertex1);
|
|
setdest(inftri, m->infvertex2);
|
|
setapex(inftri, m->infvertex3);
|
|
/* Link dummytri to the bounding box so we can always find an */
|
|
/* edge to begin searching (point location) from. */
|
|
m->dummytri[0] = (triangle) inftri.tri;
|
|
if (b->verbose > 2) {
|
|
printf(" Creating ");
|
|
printtriangle(m, b, &inftri);
|
|
}
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* removebox() Remove the "infinite" bounding triangle, setting boundary */
|
|
/* markers as appropriate. */
|
|
/* */
|
|
/* The triangular bounding box has three boundary triangles (one for each */
|
|
/* side of the bounding box), and a bunch of triangles fanning out from */
|
|
/* the three bounding box vertices (one triangle for each edge of the */
|
|
/* convex hull of the inner mesh). This routine removes these triangles. */
|
|
/* */
|
|
/* Returns the number of edges on the convex hull of the triangulation. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long removebox(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long removebox(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri deadtriangle;
|
|
struct otri searchedge;
|
|
struct otri checkedge;
|
|
struct otri nextedge, finaledge, dissolveedge;
|
|
vertex markorg;
|
|
long hullsize;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
if (b->verbose) {
|
|
printf(" Removing triangular bounding box.\n");
|
|
}
|
|
/* Find a boundary triangle. */
|
|
nextedge.tri = m->dummytri;
|
|
nextedge.orient = 0;
|
|
symself(nextedge);
|
|
/* Mark a place to stop. */
|
|
lprev(nextedge, finaledge);
|
|
lnextself(nextedge);
|
|
symself(nextedge);
|
|
/* Find a triangle (on the boundary of the vertex set) that isn't */
|
|
/* a bounding box triangle. */
|
|
lprev(nextedge, searchedge);
|
|
symself(searchedge);
|
|
/* Check whether nextedge is another boundary triangle */
|
|
/* adjacent to the first one. */
|
|
lnext(nextedge, checkedge);
|
|
symself(checkedge);
|
|
if (checkedge.tri == m->dummytri) {
|
|
/* Go on to the next triangle. There are only three boundary */
|
|
/* triangles, and this next triangle cannot be the third one, */
|
|
/* so it's safe to stop here. */
|
|
lprevself(searchedge);
|
|
symself(searchedge);
|
|
}
|
|
/* Find a new boundary edge to search from, as the current search */
|
|
/* edge lies on a bounding box triangle and will be deleted. */
|
|
m->dummytri[0] = encode(searchedge);
|
|
hullsize = -2l;
|
|
while (!otriequal(nextedge, finaledge)) {
|
|
hullsize++;
|
|
lprev(nextedge, dissolveedge);
|
|
symself(dissolveedge);
|
|
/* If not using a PSLG, the vertices should be marked now. */
|
|
/* (If using a PSLG, markhull() will do the job.) */
|
|
if (!b->poly) {
|
|
/* Be careful! One must check for the case where all the input */
|
|
/* vertices are collinear, and thus all the triangles are part of */
|
|
/* the bounding box. Otherwise, the setvertexmark() call below */
|
|
/* will cause a bad pointer reference. */
|
|
if (dissolveedge.tri != m->dummytri) {
|
|
org(dissolveedge, markorg);
|
|
if (vertexmark(markorg) == 0) {
|
|
setvertexmark(markorg, 1);
|
|
}
|
|
}
|
|
}
|
|
/* Disconnect the bounding box triangle from the mesh triangle. */
|
|
dissolve(dissolveedge);
|
|
lnext(nextedge, deadtriangle);
|
|
sym(deadtriangle, nextedge);
|
|
/* Get rid of the bounding box triangle. */
|
|
triangledealloc(m, deadtriangle.tri);
|
|
/* Do we need to turn the corner? */
|
|
if (nextedge.tri == m->dummytri) {
|
|
/* Turn the corner. */
|
|
otricopy(dissolveedge, nextedge);
|
|
}
|
|
}
|
|
triangledealloc(m, finaledge.tri);
|
|
|
|
trifree((VOID *) m->infvertex1); /* Deallocate the bounding box vertices. */
|
|
trifree((VOID *) m->infvertex2);
|
|
trifree((VOID *) m->infvertex3);
|
|
|
|
return hullsize;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* incrementaldelaunay() Form a Delaunay triangulation by incrementally */
|
|
/* inserting vertices. */
|
|
/* */
|
|
/* Returns the number of edges on the convex hull of the triangulation. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long incrementaldelaunay(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long incrementaldelaunay(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri starttri;
|
|
vertex vertexloop;
|
|
|
|
/* Create a triangular bounding box. */
|
|
boundingbox(m, b);
|
|
if (b->verbose) {
|
|
printf(" Incrementally inserting vertices.\n");
|
|
}
|
|
traversalinit(&m->vertices);
|
|
vertexloop = vertextraverse(m);
|
|
while (vertexloop != (vertex) NULL) {
|
|
starttri.tri = m->dummytri;
|
|
if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0)
|
|
== DUPLICATEVERTEX) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
|
|
vertexloop[0], vertexloop[1]);
|
|
}
|
|
setvertextype(vertexloop, UNDEADVERTEX);
|
|
m->undeads++;
|
|
}
|
|
vertexloop = vertextraverse(m);
|
|
}
|
|
/* Remove the bounding box. */
|
|
return removebox(m, b);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Incremental Delaunay triangulation ends here *********/
|
|
|
|
/********* Sweepline Delaunay triangulation begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void eventheapinsert(struct event **heap, int heapsize, struct event *newevent)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void eventheapinsert(heap, heapsize, newevent)
|
|
struct event **heap;
|
|
int heapsize;
|
|
struct event *newevent;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL eventx, eventy;
|
|
int eventnum;
|
|
int parent;
|
|
int notdone;
|
|
|
|
eventx = newevent->xkey;
|
|
eventy = newevent->ykey;
|
|
eventnum = heapsize;
|
|
notdone = eventnum > 0;
|
|
while (notdone) {
|
|
parent = (eventnum - 1) >> 1;
|
|
if ((heap[parent]->ykey < eventy) ||
|
|
((heap[parent]->ykey == eventy)
|
|
&& (heap[parent]->xkey <= eventx))) {
|
|
notdone = 0;
|
|
} else {
|
|
heap[eventnum] = heap[parent];
|
|
heap[eventnum]->heapposition = eventnum;
|
|
|
|
eventnum = parent;
|
|
notdone = eventnum > 0;
|
|
}
|
|
}
|
|
heap[eventnum] = newevent;
|
|
newevent->heapposition = eventnum;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void eventheapify(struct event **heap, int heapsize, int eventnum)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void eventheapify(heap, heapsize, eventnum)
|
|
struct event **heap;
|
|
int heapsize;
|
|
int eventnum;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct event *thisevent;
|
|
REAL eventx, eventy;
|
|
int leftchild, rightchild;
|
|
int smallest;
|
|
int notdone;
|
|
|
|
thisevent = heap[eventnum];
|
|
eventx = thisevent->xkey;
|
|
eventy = thisevent->ykey;
|
|
leftchild = 2 * eventnum + 1;
|
|
notdone = leftchild < heapsize;
|
|
while (notdone) {
|
|
if ((heap[leftchild]->ykey < eventy) ||
|
|
((heap[leftchild]->ykey == eventy)
|
|
&& (heap[leftchild]->xkey < eventx))) {
|
|
smallest = leftchild;
|
|
} else {
|
|
smallest = eventnum;
|
|
}
|
|
rightchild = leftchild + 1;
|
|
if (rightchild < heapsize) {
|
|
if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
|
|
((heap[rightchild]->ykey == heap[smallest]->ykey)
|
|
&& (heap[rightchild]->xkey < heap[smallest]->xkey))) {
|
|
smallest = rightchild;
|
|
}
|
|
}
|
|
if (smallest == eventnum) {
|
|
notdone = 0;
|
|
} else {
|
|
heap[eventnum] = heap[smallest];
|
|
heap[eventnum]->heapposition = eventnum;
|
|
heap[smallest] = thisevent;
|
|
thisevent->heapposition = smallest;
|
|
|
|
eventnum = smallest;
|
|
leftchild = 2 * eventnum + 1;
|
|
notdone = leftchild < heapsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void eventheapdelete(struct event **heap, int heapsize, int eventnum)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void eventheapdelete(heap, heapsize, eventnum)
|
|
struct event **heap;
|
|
int heapsize;
|
|
int eventnum;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct event *moveevent;
|
|
REAL eventx, eventy;
|
|
int parent;
|
|
int notdone;
|
|
|
|
moveevent = heap[heapsize - 1];
|
|
if (eventnum > 0) {
|
|
eventx = moveevent->xkey;
|
|
eventy = moveevent->ykey;
|
|
do {
|
|
parent = (eventnum - 1) >> 1;
|
|
if ((heap[parent]->ykey < eventy) ||
|
|
((heap[parent]->ykey == eventy)
|
|
&& (heap[parent]->xkey <= eventx))) {
|
|
notdone = 0;
|
|
} else {
|
|
heap[eventnum] = heap[parent];
|
|
heap[eventnum]->heapposition = eventnum;
|
|
|
|
eventnum = parent;
|
|
notdone = eventnum > 0;
|
|
}
|
|
} while (notdone);
|
|
}
|
|
heap[eventnum] = moveevent;
|
|
moveevent->heapposition = eventnum;
|
|
eventheapify(heap, heapsize - 1, eventnum);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void createeventheap(struct mesh *m, struct event ***eventheap,
|
|
struct event **events, struct event **freeevents)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void createeventheap(m, eventheap, events, freeevents)
|
|
struct mesh *m;
|
|
struct event ***eventheap;
|
|
struct event **events;
|
|
struct event **freeevents;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex thisvertex;
|
|
int maxevents;
|
|
int i;
|
|
|
|
maxevents = (3 * m->invertices) / 2;
|
|
*eventheap = (struct event **) trimalloc(maxevents *
|
|
(int) sizeof(struct event *));
|
|
*events = (struct event *) trimalloc(maxevents * (int) sizeof(struct event));
|
|
traversalinit(&m->vertices);
|
|
for (i = 0; i < m->invertices; i++) {
|
|
thisvertex = vertextraverse(m);
|
|
(*events)[i].eventptr = (VOID *) thisvertex;
|
|
(*events)[i].xkey = thisvertex[0];
|
|
(*events)[i].ykey = thisvertex[1];
|
|
eventheapinsert(*eventheap, i, *events + i);
|
|
}
|
|
*freeevents = (struct event *) NULL;
|
|
for (i = maxevents - 1; i >= m->invertices; i--) {
|
|
(*events)[i].eventptr = (VOID *) *freeevents;
|
|
*freeevents = *events + i;
|
|
}
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int rightofhyperbola(m, fronttri, newsite)
|
|
struct mesh *m;
|
|
struct otri *fronttri;
|
|
vertex newsite;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex leftvertex, rightvertex;
|
|
REAL dxa, dya, dxb, dyb;
|
|
|
|
m->hyperbolacount++;
|
|
|
|
dest(*fronttri, leftvertex);
|
|
apex(*fronttri, rightvertex);
|
|
if ((leftvertex[1] < rightvertex[1]) ||
|
|
((leftvertex[1] == rightvertex[1]) &&
|
|
(leftvertex[0] < rightvertex[0]))) {
|
|
if (newsite[0] >= rightvertex[0]) {
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (newsite[0] <= leftvertex[0]) {
|
|
return 0;
|
|
}
|
|
}
|
|
dxa = leftvertex[0] - newsite[0];
|
|
dya = leftvertex[1] - newsite[1];
|
|
dxb = rightvertex[0] - newsite[0];
|
|
dyb = rightvertex[1] - newsite[1];
|
|
return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
REAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc)
|
|
#else /* not ANSI_DECLARATORS */
|
|
REAL circletop(m, pa, pb, pc, ccwabc)
|
|
struct mesh *m;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
REAL ccwabc;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL xac, yac, xbc, ybc, xab, yab;
|
|
REAL aclen2, bclen2, ablen2;
|
|
|
|
m->circletopcount++;
|
|
|
|
xac = pa[0] - pc[0];
|
|
yac = pa[1] - pc[1];
|
|
xbc = pb[0] - pc[0];
|
|
ybc = pb[1] - pc[1];
|
|
xab = pa[0] - pb[0];
|
|
yab = pa[1] - pb[1];
|
|
aclen2 = xac * xac + yac * yac;
|
|
bclen2 = xbc * xbc + ybc * ybc;
|
|
ablen2 = xab * xab + yab * yab;
|
|
return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
|
|
/ (2.0 * ccwabc);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void check4deadevent(struct otri *checktri, struct event **freeevents,
|
|
struct event **eventheap, int *heapsize)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void check4deadevent(checktri, freeevents, eventheap, heapsize)
|
|
struct otri *checktri;
|
|
struct event **freeevents;
|
|
struct event **eventheap;
|
|
int *heapsize;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct event *deadevent;
|
|
vertex eventvertex;
|
|
int eventnum;
|
|
|
|
org(*checktri, eventvertex);
|
|
if (eventvertex != (vertex) NULL) {
|
|
deadevent = (struct event *) eventvertex;
|
|
eventnum = deadevent->heapposition;
|
|
deadevent->eventptr = (VOID *) *freeevents;
|
|
*freeevents = deadevent;
|
|
eventheapdelete(eventheap, *heapsize, eventnum);
|
|
(*heapsize)--;
|
|
setorg(*checktri, NULL);
|
|
}
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct splaynode *splay(struct mesh *m, struct splaynode *splaytree,
|
|
vertex searchpoint, struct otri *searchtri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct splaynode *splay(m, splaytree, searchpoint, searchtri)
|
|
struct mesh *m;
|
|
struct splaynode *splaytree;
|
|
vertex searchpoint;
|
|
struct otri *searchtri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct splaynode *child, *grandchild;
|
|
struct splaynode *lefttree, *righttree;
|
|
struct splaynode *leftright;
|
|
vertex checkvertex;
|
|
int rightofroot, rightofchild;
|
|
|
|
if (splaytree == (struct splaynode *) NULL) {
|
|
return (struct splaynode *) NULL;
|
|
}
|
|
dest(splaytree->keyedge, checkvertex);
|
|
if (checkvertex == splaytree->keydest) {
|
|
rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint);
|
|
if (rightofroot) {
|
|
otricopy(splaytree->keyedge, *searchtri);
|
|
child = splaytree->rchild;
|
|
} else {
|
|
child = splaytree->lchild;
|
|
}
|
|
if (child == (struct splaynode *) NULL) {
|
|
return splaytree;
|
|
}
|
|
dest(child->keyedge, checkvertex);
|
|
if (checkvertex != child->keydest) {
|
|
child = splay(m, child, searchpoint, searchtri);
|
|
if (child == (struct splaynode *) NULL) {
|
|
if (rightofroot) {
|
|
splaytree->rchild = (struct splaynode *) NULL;
|
|
} else {
|
|
splaytree->lchild = (struct splaynode *) NULL;
|
|
}
|
|
return splaytree;
|
|
}
|
|
}
|
|
rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint);
|
|
if (rightofchild) {
|
|
otricopy(child->keyedge, *searchtri);
|
|
grandchild = splay(m, child->rchild, searchpoint, searchtri);
|
|
child->rchild = grandchild;
|
|
} else {
|
|
grandchild = splay(m, child->lchild, searchpoint, searchtri);
|
|
child->lchild = grandchild;
|
|
}
|
|
if (grandchild == (struct splaynode *) NULL) {
|
|
if (rightofroot) {
|
|
splaytree->rchild = child->lchild;
|
|
child->lchild = splaytree;
|
|
} else {
|
|
splaytree->lchild = child->rchild;
|
|
child->rchild = splaytree;
|
|
}
|
|
return child;
|
|
}
|
|
if (rightofchild) {
|
|
if (rightofroot) {
|
|
splaytree->rchild = child->lchild;
|
|
child->lchild = splaytree;
|
|
} else {
|
|
splaytree->lchild = grandchild->rchild;
|
|
grandchild->rchild = splaytree;
|
|
}
|
|
child->rchild = grandchild->lchild;
|
|
grandchild->lchild = child;
|
|
} else {
|
|
if (rightofroot) {
|
|
splaytree->rchild = grandchild->lchild;
|
|
grandchild->lchild = splaytree;
|
|
} else {
|
|
splaytree->lchild = child->rchild;
|
|
child->rchild = splaytree;
|
|
}
|
|
child->lchild = grandchild->rchild;
|
|
grandchild->rchild = child;
|
|
}
|
|
return grandchild;
|
|
} else {
|
|
lefttree = splay(m, splaytree->lchild, searchpoint, searchtri);
|
|
righttree = splay(m, splaytree->rchild, searchpoint, searchtri);
|
|
|
|
pooldealloc(&m->splaynodes, (VOID *) splaytree);
|
|
if (lefttree == (struct splaynode *) NULL) {
|
|
return righttree;
|
|
} else if (righttree == (struct splaynode *) NULL) {
|
|
return lefttree;
|
|
} else if (lefttree->rchild == (struct splaynode *) NULL) {
|
|
lefttree->rchild = righttree->lchild;
|
|
righttree->lchild = lefttree;
|
|
return righttree;
|
|
} else if (righttree->lchild == (struct splaynode *) NULL) {
|
|
righttree->lchild = lefttree->rchild;
|
|
lefttree->rchild = righttree;
|
|
return lefttree;
|
|
} else {
|
|
/* printf("Holy Toledo!!!\n"); */
|
|
leftright = lefttree->rchild;
|
|
while (leftright->rchild != (struct splaynode *) NULL) {
|
|
leftright = leftright->rchild;
|
|
}
|
|
leftright->rchild = righttree;
|
|
return lefttree;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot,
|
|
struct otri *newkey, vertex searchpoint)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct splaynode *splayinsert(m, splayroot, newkey, searchpoint)
|
|
struct mesh *m;
|
|
struct splaynode *splayroot;
|
|
struct otri *newkey;
|
|
vertex searchpoint;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct splaynode *newsplaynode;
|
|
|
|
newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes);
|
|
otricopy(*newkey, newsplaynode->keyedge);
|
|
dest(*newkey, newsplaynode->keydest);
|
|
if (splayroot == (struct splaynode *) NULL) {
|
|
newsplaynode->lchild = (struct splaynode *) NULL;
|
|
newsplaynode->rchild = (struct splaynode *) NULL;
|
|
} else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) {
|
|
newsplaynode->lchild = splayroot;
|
|
newsplaynode->rchild = splayroot->rchild;
|
|
splayroot->rchild = (struct splaynode *) NULL;
|
|
} else {
|
|
newsplaynode->lchild = splayroot->lchild;
|
|
newsplaynode->rchild = splayroot;
|
|
splayroot->lchild = (struct splaynode *) NULL;
|
|
}
|
|
return newsplaynode;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct splaynode *circletopinsert(struct mesh *m, struct behavior *b,
|
|
struct splaynode *splayroot,
|
|
struct otri *newkey,
|
|
vertex pa, vertex pb, vertex pc, REAL topy)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct splaynode *splayroot;
|
|
struct otri *newkey;
|
|
vertex pa;
|
|
vertex pb;
|
|
vertex pc;
|
|
REAL topy;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL ccwabc;
|
|
REAL xac, yac, xbc, ybc;
|
|
REAL aclen2, bclen2;
|
|
REAL searchpoint[2];
|
|
struct otri dummytri;
|
|
|
|
ccwabc = counterclockwise(m, b, pa, pb, pc);
|
|
xac = pa[0] - pc[0];
|
|
yac = pa[1] - pc[1];
|
|
xbc = pb[0] - pc[0];
|
|
ybc = pb[1] - pc[1];
|
|
aclen2 = xac * xac + yac * yac;
|
|
bclen2 = xbc * xbc + ybc * ybc;
|
|
searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
|
|
searchpoint[1] = topy;
|
|
return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri),
|
|
newkey, (vertex) searchpoint);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
struct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot,
|
|
struct otri *bottommost, vertex searchvertex,
|
|
struct otri *searchtri, int *farright)
|
|
#else /* not ANSI_DECLARATORS */
|
|
struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex,
|
|
searchtri, farright)
|
|
struct mesh *m;
|
|
struct splaynode *splayroot;
|
|
struct otri *bottommost;
|
|
vertex searchvertex;
|
|
struct otri *searchtri;
|
|
int *farright;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int farrightflag;
|
|
triangle ptr; /* Temporary variable used by onext(). */
|
|
|
|
otricopy(*bottommost, *searchtri);
|
|
splayroot = splay(m, splayroot, searchvertex, searchtri);
|
|
|
|
farrightflag = 0;
|
|
while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) {
|
|
onextself(*searchtri);
|
|
farrightflag = otriequal(*searchtri, *bottommost);
|
|
}
|
|
*farright = farrightflag;
|
|
return splayroot;
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
#ifndef REDUCED
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long sweeplinedelaunay(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long sweeplinedelaunay(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct event **eventheap;
|
|
struct event *events;
|
|
struct event *freeevents;
|
|
struct event *nextevent;
|
|
struct event *newevent;
|
|
struct splaynode *splayroot;
|
|
struct otri bottommost;
|
|
struct otri searchtri;
|
|
struct otri fliptri;
|
|
struct otri lefttri, righttri, farlefttri, farrighttri;
|
|
struct otri inserttri;
|
|
vertex firstvertex, secondvertex;
|
|
vertex nextvertex, lastvertex;
|
|
vertex connectvertex;
|
|
vertex leftvertex, midvertex, rightvertex;
|
|
REAL lefttest, righttest;
|
|
int heapsize;
|
|
int check4events, farrightflag;
|
|
triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */
|
|
|
|
poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK,
|
|
SPLAYNODEPERBLOCK, 0);
|
|
splayroot = (struct splaynode *) NULL;
|
|
|
|
if (b->verbose) {
|
|
printf(" Placing vertices in event heap.\n");
|
|
}
|
|
createeventheap(m, &eventheap, &events, &freeevents);
|
|
heapsize = m->invertices;
|
|
|
|
if (b->verbose) {
|
|
printf(" Forming triangulation.\n");
|
|
}
|
|
maketriangle(m, b, &lefttri);
|
|
maketriangle(m, b, &righttri);
|
|
bond(lefttri, righttri);
|
|
lnextself(lefttri);
|
|
lprevself(righttri);
|
|
bond(lefttri, righttri);
|
|
lnextself(lefttri);
|
|
lprevself(righttri);
|
|
bond(lefttri, righttri);
|
|
firstvertex = (vertex) eventheap[0]->eventptr;
|
|
eventheap[0]->eventptr = (VOID *) freeevents;
|
|
freeevents = eventheap[0];
|
|
eventheapdelete(eventheap, heapsize, 0);
|
|
heapsize--;
|
|
do {
|
|
if (heapsize == 0) {
|
|
printf("Error: Input vertices are all identical.\n");
|
|
triexit(1);
|
|
}
|
|
secondvertex = (vertex) eventheap[0]->eventptr;
|
|
eventheap[0]->eventptr = (VOID *) freeevents;
|
|
freeevents = eventheap[0];
|
|
eventheapdelete(eventheap, heapsize, 0);
|
|
heapsize--;
|
|
if ((firstvertex[0] == secondvertex[0]) &&
|
|
(firstvertex[1] == secondvertex[1])) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
|
|
secondvertex[0], secondvertex[1]);
|
|
}
|
|
setvertextype(secondvertex, UNDEADVERTEX);
|
|
m->undeads++;
|
|
}
|
|
} while ((firstvertex[0] == secondvertex[0]) &&
|
|
(firstvertex[1] == secondvertex[1]));
|
|
setorg(lefttri, firstvertex);
|
|
setdest(lefttri, secondvertex);
|
|
setorg(righttri, secondvertex);
|
|
setdest(righttri, firstvertex);
|
|
lprev(lefttri, bottommost);
|
|
lastvertex = secondvertex;
|
|
while (heapsize > 0) {
|
|
nextevent = eventheap[0];
|
|
eventheapdelete(eventheap, heapsize, 0);
|
|
heapsize--;
|
|
check4events = 1;
|
|
if (nextevent->xkey < m->xmin) {
|
|
decode(nextevent->eventptr, fliptri);
|
|
oprev(fliptri, farlefttri);
|
|
check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
|
|
onext(fliptri, farrighttri);
|
|
check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
|
|
|
|
if (otriequal(farlefttri, bottommost)) {
|
|
lprev(fliptri, bottommost);
|
|
}
|
|
flip(m, b, &fliptri);
|
|
setapex(fliptri, NULL);
|
|
lprev(fliptri, lefttri);
|
|
lnext(fliptri, righttri);
|
|
sym(lefttri, farlefttri);
|
|
|
|
if (randomnation(SAMPLERATE) == 0) {
|
|
symself(fliptri);
|
|
dest(fliptri, leftvertex);
|
|
apex(fliptri, midvertex);
|
|
org(fliptri, rightvertex);
|
|
splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex,
|
|
midvertex, rightvertex, nextevent->ykey);
|
|
}
|
|
} else {
|
|
nextvertex = (vertex) nextevent->eventptr;
|
|
if ((nextvertex[0] == lastvertex[0]) &&
|
|
(nextvertex[1] == lastvertex[1])) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
|
|
nextvertex[0], nextvertex[1]);
|
|
}
|
|
setvertextype(nextvertex, UNDEADVERTEX);
|
|
m->undeads++;
|
|
check4events = 0;
|
|
} else {
|
|
lastvertex = nextvertex;
|
|
|
|
splayroot = frontlocate(m, splayroot, &bottommost, nextvertex,
|
|
&searchtri, &farrightflag);
|
|
/*
|
|
otricopy(bottommost, searchtri);
|
|
farrightflag = 0;
|
|
while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) {
|
|
onextself(searchtri);
|
|
farrightflag = otriequal(searchtri, bottommost);
|
|
}
|
|
*/
|
|
|
|
check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
|
|
|
|
otricopy(searchtri, farrighttri);
|
|
sym(searchtri, farlefttri);
|
|
maketriangle(m, b, &lefttri);
|
|
maketriangle(m, b, &righttri);
|
|
dest(farrighttri, connectvertex);
|
|
setorg(lefttri, connectvertex);
|
|
setdest(lefttri, nextvertex);
|
|
setorg(righttri, nextvertex);
|
|
setdest(righttri, connectvertex);
|
|
bond(lefttri, righttri);
|
|
lnextself(lefttri);
|
|
lprevself(righttri);
|
|
bond(lefttri, righttri);
|
|
lnextself(lefttri);
|
|
lprevself(righttri);
|
|
bond(lefttri, farlefttri);
|
|
bond(righttri, farrighttri);
|
|
if (!farrightflag && otriequal(farrighttri, bottommost)) {
|
|
otricopy(lefttri, bottommost);
|
|
}
|
|
|
|
if (randomnation(SAMPLERATE) == 0) {
|
|
splayroot = splayinsert(m, splayroot, &lefttri, nextvertex);
|
|
} else if (randomnation(SAMPLERATE) == 0) {
|
|
lnext(righttri, inserttri);
|
|
splayroot = splayinsert(m, splayroot, &inserttri, nextvertex);
|
|
}
|
|
}
|
|
}
|
|
nextevent->eventptr = (VOID *) freeevents;
|
|
freeevents = nextevent;
|
|
|
|
if (check4events) {
|
|
apex(farlefttri, leftvertex);
|
|
dest(lefttri, midvertex);
|
|
apex(lefttri, rightvertex);
|
|
lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
|
|
if (lefttest > 0.0) {
|
|
newevent = freeevents;
|
|
freeevents = (struct event *) freeevents->eventptr;
|
|
newevent->xkey = m->xminextreme;
|
|
newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
|
|
lefttest);
|
|
newevent->eventptr = (VOID *) encode(lefttri);
|
|
eventheapinsert(eventheap, heapsize, newevent);
|
|
heapsize++;
|
|
setorg(lefttri, newevent);
|
|
}
|
|
apex(righttri, leftvertex);
|
|
org(righttri, midvertex);
|
|
apex(farrighttri, rightvertex);
|
|
righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
|
|
if (righttest > 0.0) {
|
|
newevent = freeevents;
|
|
freeevents = (struct event *) freeevents->eventptr;
|
|
newevent->xkey = m->xminextreme;
|
|
newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
|
|
righttest);
|
|
newevent->eventptr = (VOID *) encode(farrighttri);
|
|
eventheapinsert(eventheap, heapsize, newevent);
|
|
heapsize++;
|
|
setorg(farrighttri, newevent);
|
|
}
|
|
}
|
|
}
|
|
|
|
pooldeinit(&m->splaynodes);
|
|
lprevself(bottommost);
|
|
return removeghosts(m, b, &bottommost);
|
|
}
|
|
|
|
#endif /* not REDUCED */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Sweepline Delaunay triangulation ends here *********/
|
|
|
|
/********* General mesh construction routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* delaunay() Form a Delaunay triangulation. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long delaunay(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long delaunay(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
long hulledges;
|
|
|
|
m->eextras = 0;
|
|
initializetrisubpools(m, b);
|
|
|
|
#ifdef REDUCED
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Constructing Delaunay triangulation by divide-and-conquer method.\n");
|
|
}
|
|
hulledges = divconqdelaunay(m, b);
|
|
#else /* not REDUCED */
|
|
if (!b->quiet) {
|
|
printf("Constructing Delaunay triangulation ");
|
|
if (b->incremental) {
|
|
printf("by incremental method.\n");
|
|
} else if (b->sweepline) {
|
|
printf("by sweepline method.\n");
|
|
} else {
|
|
printf("by divide-and-conquer method.\n");
|
|
}
|
|
}
|
|
if (b->incremental) {
|
|
hulledges = incrementaldelaunay(m, b);
|
|
} else if (b->sweepline) {
|
|
hulledges = sweeplinedelaunay(m, b);
|
|
} else {
|
|
hulledges = divconqdelaunay(m, b);
|
|
}
|
|
#endif /* not REDUCED */
|
|
|
|
if (m->triangles.items == 0) {
|
|
/* The input vertices were all collinear, so there are no triangles. */
|
|
return 0l;
|
|
} else {
|
|
return hulledges;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* reconstruct() Reconstruct a triangulation from its .ele (and possibly */
|
|
/* .poly) file. Used when the -r switch is used. */
|
|
/* */
|
|
/* Reads an .ele file and reconstructs the original mesh. If the -p switch */
|
|
/* is used, this procedure will also read a .poly file and reconstruct the */
|
|
/* subsegments of the original mesh. If the -a switch is used, this */
|
|
/* procedure will also read an .area file and set a maximum area constraint */
|
|
/* on each triangle. */
|
|
/* */
|
|
/* Vertices that are not corners of triangles, such as nodes on edges of */
|
|
/* subparametric elements, are discarded. */
|
|
/* */
|
|
/* This routine finds the adjacencies between triangles (and subsegments) */
|
|
/* by forming one stack of triangles for each vertex. Each triangle is on */
|
|
/* three different stacks simultaneously. Each triangle's subsegment */
|
|
/* pointers are used to link the items in each stack. This memory-saving */
|
|
/* feature makes the code harder to read. The most important thing to keep */
|
|
/* in mind is that each triangle is removed from a stack precisely when */
|
|
/* the corresponding pointer is adjusted to refer to a subsegment rather */
|
|
/* than the next triangle of the stack. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int reconstruct(struct mesh *m, struct behavior *b, int *trianglelist,
|
|
REAL *triangleattriblist, REAL *trianglearealist,
|
|
int elements, int corners, int attribs,
|
|
int *segmentlist,int *segmentmarkerlist, int numberofsegments)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist,
|
|
elements, corners, attribs, segmentlist, segmentmarkerlist,
|
|
numberofsegments)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int *trianglelist;
|
|
REAL *triangleattriblist;
|
|
REAL *trianglearealist;
|
|
int elements;
|
|
int corners;
|
|
int attribs;
|
|
int *segmentlist;
|
|
int *segmentmarkerlist;
|
|
int numberofsegments;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
long reconstruct(struct mesh *m, struct behavior *b, char *elefilename,
|
|
char *areafilename, char *polyfilename, FILE *polyfile)
|
|
#else /* not ANSI_DECLARATORS */
|
|
long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *elefilename;
|
|
char *areafilename;
|
|
char *polyfilename;
|
|
FILE *polyfile;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
int vertexindex;
|
|
int attribindex;
|
|
#else /* not TRILIBRARY */
|
|
FILE *elefile;
|
|
FILE *areafile;
|
|
char inputline[INPUTLINESIZE];
|
|
char *stringptr;
|
|
int areaelements;
|
|
#endif /* not TRILIBRARY */
|
|
struct otri triangleloop;
|
|
struct otri triangleleft;
|
|
struct otri checktri;
|
|
struct otri checkleft;
|
|
struct otri checkneighbor;
|
|
struct osub subsegloop;
|
|
triangle *vertexarray;
|
|
triangle *prevlink;
|
|
triangle nexttri;
|
|
vertex tdest, tapex;
|
|
vertex checkdest, checkapex;
|
|
vertex shorg;
|
|
vertex killvertex;
|
|
vertex segmentorg, segmentdest;
|
|
REAL area;
|
|
int corner[3];
|
|
int end[2];
|
|
int killvertexindex;
|
|
int incorners;
|
|
int segmentmarkers;
|
|
int boundmarker;
|
|
int aroundvertex;
|
|
long hullsize;
|
|
int notfound;
|
|
long elementnumber, segmentnumber;
|
|
int i, j;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
#ifdef TRILIBRARY
|
|
m->inelements = elements;
|
|
incorners = corners;
|
|
if (incorners < 3) {
|
|
printf("Error: Triangles must have at least 3 vertices.\n");
|
|
triexit(1);
|
|
}
|
|
m->eextras = attribs;
|
|
#else /* not TRILIBRARY */
|
|
/* Read the triangles from an .ele file. */
|
|
if (!b->quiet) {
|
|
printf("Opening %s.\n", elefilename);
|
|
}
|
|
elefile = fopen(elefilename, "r");
|
|
if (elefile == (FILE *) NULL) {
|
|
printf(" Error: Cannot access file %s.\n", elefilename);
|
|
triexit(1);
|
|
}
|
|
/* Read number of triangles, number of vertices per triangle, and */
|
|
/* number of triangle attributes from .ele file. */
|
|
stringptr = readline(inputline, elefile, elefilename);
|
|
m->inelements = (int) strtol(stringptr, &stringptr, 0);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
incorners = 3;
|
|
} else {
|
|
incorners = (int) strtol(stringptr, &stringptr, 0);
|
|
if (incorners < 3) {
|
|
printf("Error: Triangles in %s must have at least 3 vertices.\n",
|
|
elefilename);
|
|
triexit(1);
|
|
}
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
m->eextras = 0;
|
|
} else {
|
|
m->eextras = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
initializetrisubpools(m, b);
|
|
|
|
/* Create the triangles. */
|
|
for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) {
|
|
maketriangle(m, b, &triangleloop);
|
|
/* Mark the triangle as living. */
|
|
triangleloop.tri[3] = (triangle) triangleloop.tri;
|
|
}
|
|
|
|
segmentmarkers = 0;
|
|
if (b->poly) {
|
|
#ifdef TRILIBRARY
|
|
m->insegments = numberofsegments;
|
|
segmentmarkers = segmentmarkerlist != (int *) NULL;
|
|
#else /* not TRILIBRARY */
|
|
/* Read number of segments and number of segment */
|
|
/* boundary markers from .poly file. */
|
|
stringptr = readline(inputline, polyfile, b->inpolyfilename);
|
|
m->insegments = (int) strtol(stringptr, &stringptr, 0);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr != '\0') {
|
|
segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/* Create the subsegments. */
|
|
for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) {
|
|
makesubseg(m, &subsegloop);
|
|
/* Mark the subsegment as living. */
|
|
subsegloop.ss[2] = (subseg) subsegloop.ss;
|
|
}
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
vertexindex = 0;
|
|
attribindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (b->vararea) {
|
|
/* Open an .area file, check for consistency with the .ele file. */
|
|
if (!b->quiet) {
|
|
printf("Opening %s.\n", areafilename);
|
|
}
|
|
areafile = fopen(areafilename, "r");
|
|
if (areafile == (FILE *) NULL) {
|
|
printf(" Error: Cannot access file %s.\n", areafilename);
|
|
triexit(1);
|
|
}
|
|
stringptr = readline(inputline, areafile, areafilename);
|
|
areaelements = (int) strtol(stringptr, &stringptr, 0);
|
|
if (areaelements != m->inelements) {
|
|
printf("Error: %s and %s disagree on number of triangles.\n",
|
|
elefilename, areafilename);
|
|
triexit(1);
|
|
}
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
if (!b->quiet) {
|
|
printf("Reconstructing mesh.\n");
|
|
}
|
|
/* Allocate a temporary array that maps each vertex to some adjacent */
|
|
/* triangle. I took care to allocate all the permanent memory for */
|
|
/* triangles and subsegments first. */
|
|
vertexarray = (triangle *) trimalloc(m->vertices.items *
|
|
(int) sizeof(triangle));
|
|
/* Each vertex is initially unrepresented. */
|
|
for (i = 0; i < m->vertices.items; i++) {
|
|
vertexarray[i] = (triangle) m->dummytri;
|
|
}
|
|
|
|
if (b->verbose) {
|
|
printf(" Assembling triangles.\n");
|
|
}
|
|
/* Read the triangles from the .ele file, and link */
|
|
/* together those that share an edge. */
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber = b->firstnumber;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
#ifdef TRILIBRARY
|
|
/* Copy the triangle's three corners. */
|
|
for (j = 0; j < 3; j++) {
|
|
corner[j] = trianglelist[vertexindex++];
|
|
if ((corner[j] < b->firstnumber) ||
|
|
(corner[j] >= b->firstnumber + m->invertices)) {
|
|
printf("Error: Triangle %ld has an invalid vertex index.\n",
|
|
elementnumber);
|
|
triexit(1);
|
|
}
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
/* Read triangle number and the triangle's three corners. */
|
|
stringptr = readline(inputline, elefile, elefilename);
|
|
for (j = 0; j < 3; j++) {
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Triangle %ld is missing vertex %d in %s.\n",
|
|
elementnumber, j + 1, elefilename);
|
|
triexit(1);
|
|
} else {
|
|
corner[j] = (int) strtol(stringptr, &stringptr, 0);
|
|
if ((corner[j] < b->firstnumber) ||
|
|
(corner[j] >= b->firstnumber + m->invertices)) {
|
|
printf("Error: Triangle %ld has an invalid vertex index.\n",
|
|
elementnumber);
|
|
triexit(1);
|
|
}
|
|
}
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/* Find out about (and throw away) extra nodes. */
|
|
for (j = 3; j < incorners; j++) {
|
|
#ifdef TRILIBRARY
|
|
killvertexindex = trianglelist[vertexindex++];
|
|
#else /* not TRILIBRARY */
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr != '\0') {
|
|
killvertexindex = (int) strtol(stringptr, &stringptr, 0);
|
|
#endif /* not TRILIBRARY */
|
|
if ((killvertexindex >= b->firstnumber) &&
|
|
(killvertexindex < b->firstnumber + m->invertices)) {
|
|
/* Delete the non-corner vertex if it's not already deleted. */
|
|
killvertex = getvertex(m, b, killvertexindex);
|
|
if (vertextype(killvertex) != DEADVERTEX) {
|
|
vertexdealloc(m, killvertex);
|
|
}
|
|
}
|
|
#ifndef TRILIBRARY
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/* Read the triangle's attributes. */
|
|
for (j = 0; j < m->eextras; j++) {
|
|
#ifdef TRILIBRARY
|
|
setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
|
|
#else /* not TRILIBRARY */
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
setelemattribute(triangleloop, j, 0);
|
|
} else {
|
|
setelemattribute(triangleloop, j,
|
|
(REAL) strtod(stringptr, &stringptr));
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
if (b->vararea) {
|
|
#ifdef TRILIBRARY
|
|
area = trianglearealist[elementnumber - b->firstnumber];
|
|
#else /* not TRILIBRARY */
|
|
/* Read an area constraint from the .area file. */
|
|
stringptr = readline(inputline, areafile, areafilename);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
area = -1.0; /* No constraint on this triangle. */
|
|
} else {
|
|
area = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
setareabound(triangleloop, area);
|
|
}
|
|
|
|
/* Set the triangle's vertices. */
|
|
triangleloop.orient = 0;
|
|
setorg(triangleloop, getvertex(m, b, corner[0]));
|
|
setdest(triangleloop, getvertex(m, b, corner[1]));
|
|
setapex(triangleloop, getvertex(m, b, corner[2]));
|
|
/* Try linking the triangle to others that share these vertices. */
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
/* Take the number for the origin of triangleloop. */
|
|
aroundvertex = corner[triangleloop.orient];
|
|
/* Look for other triangles having this vertex. */
|
|
nexttri = vertexarray[aroundvertex - b->firstnumber];
|
|
/* Link the current triangle to the next one in the stack. */
|
|
triangleloop.tri[6 + triangleloop.orient] = nexttri;
|
|
/* Push the current triangle onto the stack. */
|
|
vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop);
|
|
decode(nexttri, checktri);
|
|
if (checktri.tri != m->dummytri) {
|
|
dest(triangleloop, tdest);
|
|
apex(triangleloop, tapex);
|
|
/* Look for other triangles that share an edge. */
|
|
do {
|
|
dest(checktri, checkdest);
|
|
apex(checktri, checkapex);
|
|
if (tapex == checkdest) {
|
|
/* The two triangles share an edge; bond them together. */
|
|
lprev(triangleloop, triangleleft);
|
|
bond(triangleleft, checktri);
|
|
}
|
|
if (tdest == checkapex) {
|
|
/* The two triangles share an edge; bond them together. */
|
|
lprev(checktri, checkleft);
|
|
bond(triangleloop, checkleft);
|
|
}
|
|
/* Find the next triangle in the stack. */
|
|
nexttri = checktri.tri[6 + checktri.orient];
|
|
decode(nexttri, checktri);
|
|
} while (checktri.tri != m->dummytri);
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber++;
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
vertexindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
fclose(elefile);
|
|
if (b->vararea) {
|
|
fclose(areafile);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
hullsize = 0; /* Prepare to count the boundary edges. */
|
|
if (b->poly) {
|
|
if (b->verbose) {
|
|
printf(" Marking segments in triangulation.\n");
|
|
}
|
|
/* Read the segments from the .poly file, and link them */
|
|
/* to their neighboring triangles. */
|
|
boundmarker = 0;
|
|
traversalinit(&m->subsegs);
|
|
subsegloop.ss = subsegtraverse(m);
|
|
segmentnumber = b->firstnumber;
|
|
while (subsegloop.ss != (subseg *) NULL) {
|
|
#ifdef TRILIBRARY
|
|
end[0] = segmentlist[vertexindex++];
|
|
end[1] = segmentlist[vertexindex++];
|
|
if (segmentmarkers) {
|
|
boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber];
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
/* Read the endpoints of each segment, and possibly a boundary marker. */
|
|
stringptr = readline(inputline, polyfile, b->inpolyfilename);
|
|
/* Skip the first (segment number) field. */
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Segment %ld has no endpoints in %s.\n", segmentnumber,
|
|
polyfilename);
|
|
triexit(1);
|
|
} else {
|
|
end[0] = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Segment %ld is missing its second endpoint in %s.\n",
|
|
segmentnumber, polyfilename);
|
|
triexit(1);
|
|
} else {
|
|
end[1] = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
if (segmentmarkers) {
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
boundmarker = 0;
|
|
} else {
|
|
boundmarker = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
for (j = 0; j < 2; j++) {
|
|
if ((end[j] < b->firstnumber) ||
|
|
(end[j] >= b->firstnumber + m->invertices)) {
|
|
printf("Error: Segment %ld has an invalid vertex index.\n",
|
|
segmentnumber);
|
|
triexit(1);
|
|
}
|
|
}
|
|
|
|
/* set the subsegment's vertices. */
|
|
subsegloop.ssorient = 0;
|
|
segmentorg = getvertex(m, b, end[0]);
|
|
segmentdest = getvertex(m, b, end[1]);
|
|
setsorg(subsegloop, segmentorg);
|
|
setsdest(subsegloop, segmentdest);
|
|
setsegorg(subsegloop, segmentorg);
|
|
setsegdest(subsegloop, segmentdest);
|
|
setmark(subsegloop, boundmarker);
|
|
/* Try linking the subsegment to triangles that share these vertices. */
|
|
for (subsegloop.ssorient = 0; subsegloop.ssorient < 2;
|
|
subsegloop.ssorient++) {
|
|
/* Take the number for the destination of subsegloop. */
|
|
aroundvertex = end[1 - subsegloop.ssorient];
|
|
/* Look for triangles having this vertex. */
|
|
prevlink = &vertexarray[aroundvertex - b->firstnumber];
|
|
nexttri = vertexarray[aroundvertex - b->firstnumber];
|
|
decode(nexttri, checktri);
|
|
sorg(subsegloop, shorg);
|
|
notfound = 1;
|
|
/* Look for triangles having this edge. Note that I'm only */
|
|
/* comparing each triangle's destination with the subsegment; */
|
|
/* each triangle's apex is handled through a different vertex. */
|
|
/* Because each triangle appears on three vertices' lists, each */
|
|
/* occurrence of a triangle on a list can (and does) represent */
|
|
/* an edge. In this way, most edges are represented twice, and */
|
|
/* every triangle-subsegment bond is represented once. */
|
|
while (notfound && (checktri.tri != m->dummytri)) {
|
|
dest(checktri, checkdest);
|
|
if (shorg == checkdest) {
|
|
/* We have a match. Remove this triangle from the list. */
|
|
*prevlink = checktri.tri[6 + checktri.orient];
|
|
/* Bond the subsegment to the triangle. */
|
|
tsbond(checktri, subsegloop);
|
|
/* Check if this is a boundary edge. */
|
|
sym(checktri, checkneighbor);
|
|
if (checkneighbor.tri == m->dummytri) {
|
|
/* The next line doesn't insert a subsegment (because there's */
|
|
/* already one there), but it sets the boundary markers of */
|
|
/* the existing subsegment and its vertices. */
|
|
insertsubseg(m, b, &checktri, 1);
|
|
hullsize++;
|
|
}
|
|
notfound = 0;
|
|
}
|
|
/* Find the next triangle in the stack. */
|
|
prevlink = &checktri.tri[6 + checktri.orient];
|
|
nexttri = checktri.tri[6 + checktri.orient];
|
|
decode(nexttri, checktri);
|
|
}
|
|
}
|
|
subsegloop.ss = subsegtraverse(m);
|
|
segmentnumber++;
|
|
}
|
|
}
|
|
|
|
/* Mark the remaining edges as not being attached to any subsegment. */
|
|
/* Also, count the (yet uncounted) boundary edges. */
|
|
for (i = 0; i < m->vertices.items; i++) {
|
|
/* Search the stack of triangles adjacent to a vertex. */
|
|
nexttri = vertexarray[i];
|
|
decode(nexttri, checktri);
|
|
while (checktri.tri != m->dummytri) {
|
|
/* Find the next triangle in the stack before this */
|
|
/* information gets overwritten. */
|
|
nexttri = checktri.tri[6 + checktri.orient];
|
|
/* No adjacent subsegment. (This overwrites the stack info.) */
|
|
tsdissolve(checktri);
|
|
sym(checktri, checkneighbor);
|
|
if (checkneighbor.tri == m->dummytri) {
|
|
insertsubseg(m, b, &checktri, 1);
|
|
hullsize++;
|
|
}
|
|
decode(nexttri, checktri);
|
|
}
|
|
}
|
|
|
|
trifree((VOID *) vertexarray);
|
|
return hullsize;
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* General mesh construction routines end here *********/
|
|
|
|
/********* Segment insertion begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* finddirection() Find the first triangle on the path from one point */
|
|
/* to another. */
|
|
/* */
|
|
/* Finds the triangle that intersects a line segment drawn from the */
|
|
/* origin of `searchtri' to the point `searchpoint', and returns the result */
|
|
/* in `searchtri'. The origin of `searchtri' does not change, even though */
|
|
/* the triangle returned may differ from the one passed in. This routine */
|
|
/* is used to find the direction to move in to get from one point to */
|
|
/* another. */
|
|
/* */
|
|
/* The return value notes whether the destination or apex of the found */
|
|
/* triangle is collinear with the two points in question. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
|
|
struct otri *searchtri,
|
|
vertex searchpoint)
|
|
#else /* not ANSI_DECLARATORS */
|
|
enum finddirectionresult finddirection(m, b, searchtri, searchpoint)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *searchtri;
|
|
vertex searchpoint;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri checktri;
|
|
vertex startvertex;
|
|
vertex leftvertex, rightvertex;
|
|
REAL leftccw, rightccw;
|
|
int leftflag, rightflag;
|
|
triangle ptr; /* Temporary variable used by onext() and oprev(). */
|
|
|
|
org(*searchtri, startvertex);
|
|
dest(*searchtri, rightvertex);
|
|
apex(*searchtri, leftvertex);
|
|
/* Is `searchpoint' to the left? */
|
|
leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
|
|
leftflag = leftccw > 0.0;
|
|
/* Is `searchpoint' to the right? */
|
|
rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
|
|
rightflag = rightccw > 0.0;
|
|
if (leftflag && rightflag) {
|
|
/* `searchtri' faces directly away from `searchpoint'. We could go left */
|
|
/* or right. Ask whether it's a triangle or a boundary on the left. */
|
|
onext(*searchtri, checktri);
|
|
if (checktri.tri == m->dummytri) {
|
|
leftflag = 0;
|
|
} else {
|
|
rightflag = 0;
|
|
}
|
|
}
|
|
while (leftflag) {
|
|
/* Turn left until satisfied. */
|
|
onextself(*searchtri);
|
|
if (searchtri->tri == m->dummytri) {
|
|
printf("Internal error in finddirection(): Unable to find a\n");
|
|
printf(" triangle leading from (%.12g, %.12g) to", startvertex[0],
|
|
startvertex[1]);
|
|
printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
|
|
internalerror();
|
|
}
|
|
apex(*searchtri, leftvertex);
|
|
rightccw = leftccw;
|
|
leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
|
|
leftflag = leftccw > 0.0;
|
|
}
|
|
while (rightflag) {
|
|
/* Turn right until satisfied. */
|
|
oprevself(*searchtri);
|
|
if (searchtri->tri == m->dummytri) {
|
|
printf("Internal error in finddirection(): Unable to find a\n");
|
|
printf(" triangle leading from (%.12g, %.12g) to", startvertex[0],
|
|
startvertex[1]);
|
|
printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
|
|
internalerror();
|
|
}
|
|
dest(*searchtri, rightvertex);
|
|
leftccw = rightccw;
|
|
rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
|
|
rightflag = rightccw > 0.0;
|
|
}
|
|
if (leftccw == 0.0) {
|
|
return LEFTCOLLINEAR;
|
|
} else if (rightccw == 0.0) {
|
|
return RIGHTCOLLINEAR;
|
|
} else {
|
|
return WITHIN;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* segmentintersection() Find the intersection of an existing segment */
|
|
/* and a segment that is being inserted. Insert */
|
|
/* a vertex at the intersection, splitting an */
|
|
/* existing subsegment. */
|
|
/* */
|
|
/* The segment being inserted connects the apex of splittri to endpoint2. */
|
|
/* splitsubseg is the subsegment being split, and MUST adjoin splittri. */
|
|
/* Hence, endpoints of the subsegment being split are the origin and */
|
|
/* destination of splittri. */
|
|
/* */
|
|
/* On completion, splittri is a handle having the newly inserted */
|
|
/* intersection point as its origin, and endpoint1 as its destination. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void segmentintersection(struct mesh *m, struct behavior *b,
|
|
struct otri *splittri, struct osub *splitsubseg,
|
|
vertex endpoint2)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void segmentintersection(m, b, splittri, splitsubseg, endpoint2)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *splittri;
|
|
struct osub *splitsubseg;
|
|
vertex endpoint2;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct osub opposubseg;
|
|
vertex endpoint1;
|
|
vertex torg, tdest;
|
|
vertex leftvertex, rightvertex;
|
|
vertex newvertex;
|
|
enum insertvertexresult success;
|
|
enum finddirectionresult collinear;
|
|
REAL ex, ey;
|
|
REAL tx, ty;
|
|
REAL etx, ety;
|
|
REAL split, denom;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by onext(). */
|
|
subseg sptr; /* Temporary variable used by snext(). */
|
|
|
|
/* Find the other three segment endpoints. */
|
|
apex(*splittri, endpoint1);
|
|
org(*splittri, torg);
|
|
dest(*splittri, tdest);
|
|
/* Segment intersection formulae; see the Antonio reference. */
|
|
tx = tdest[0] - torg[0];
|
|
ty = tdest[1] - torg[1];
|
|
ex = endpoint2[0] - endpoint1[0];
|
|
ey = endpoint2[1] - endpoint1[1];
|
|
etx = torg[0] - endpoint2[0];
|
|
ety = torg[1] - endpoint2[1];
|
|
denom = ty * ex - tx * ey;
|
|
if (denom == 0.0) {
|
|
printf("Internal error in segmentintersection():");
|
|
printf(" Attempt to find intersection of parallel segments.\n");
|
|
internalerror();
|
|
}
|
|
split = (ey * etx - ex * ety) / denom;
|
|
/* Create the new vertex. */
|
|
newvertex = (vertex) poolalloc(&m->vertices);
|
|
/* Interpolate its coordinate and attributes. */
|
|
for (i = 0; i < 2 + m->nextras; i++) {
|
|
newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
|
|
}
|
|
setvertexmark(newvertex, mark(*splitsubseg));
|
|
setvertextype(newvertex, INPUTVERTEX);
|
|
if (b->verbose > 1) {
|
|
printf(
|
|
" Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
|
|
torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
|
|
}
|
|
/* Insert the intersection vertex. This should always succeed. */
|
|
success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
|
|
if (success != SUCCESSFULVERTEX) {
|
|
printf("Internal error in segmentintersection():\n");
|
|
printf(" Failure to split a segment.\n");
|
|
internalerror();
|
|
}
|
|
/* Record a triangle whose origin is the new vertex. */
|
|
setvertex2tri(newvertex, encode(*splittri));
|
|
if (m->steinerleft > 0) {
|
|
m->steinerleft--;
|
|
}
|
|
|
|
/* Divide the segment into two, and correct the segment endpoints. */
|
|
ssymself(*splitsubseg);
|
|
spivot(*splitsubseg, opposubseg);
|
|
sdissolve(*splitsubseg);
|
|
sdissolve(opposubseg);
|
|
do {
|
|
setsegorg(*splitsubseg, newvertex);
|
|
snextself(*splitsubseg);
|
|
} while (splitsubseg->ss != m->dummysub);
|
|
do {
|
|
setsegorg(opposubseg, newvertex);
|
|
snextself(opposubseg);
|
|
} while (opposubseg.ss != m->dummysub);
|
|
|
|
/* Inserting the vertex may have caused edge flips. We wish to rediscover */
|
|
/* the edge connecting endpoint1 to the new intersection vertex. */
|
|
collinear = finddirection(m, b, splittri, endpoint1);
|
|
dest(*splittri, rightvertex);
|
|
apex(*splittri, leftvertex);
|
|
if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
|
|
onextself(*splittri);
|
|
} else if ((rightvertex[0] != endpoint1[0]) ||
|
|
(rightvertex[1] != endpoint1[1])) {
|
|
printf("Internal error in segmentintersection():\n");
|
|
printf(" Topological inconsistency after splitting a segment.\n");
|
|
internalerror();
|
|
}
|
|
/* `splittri' should have destination endpoint1. */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* scoutsegment() Scout the first triangle on the path from one endpoint */
|
|
/* to another, and check for completion (reaching the */
|
|
/* second endpoint), a collinear vertex, or the */
|
|
/* intersection of two segments. */
|
|
/* */
|
|
/* Returns one if the entire segment is successfully inserted, and zero if */
|
|
/* the job must be finished by conformingedge() or constrainededge(). */
|
|
/* */
|
|
/* If the first triangle on the path has the second endpoint as its */
|
|
/* destination or apex, a subsegment is inserted and the job is done. */
|
|
/* */
|
|
/* If the first triangle on the path has a destination or apex that lies on */
|
|
/* the segment, a subsegment is inserted connecting the first endpoint to */
|
|
/* the collinear vertex, and the search is continued from the collinear */
|
|
/* vertex. */
|
|
/* */
|
|
/* If the first triangle on the path has a subsegment opposite its origin, */
|
|
/* then there is a segment that intersects the segment being inserted. */
|
|
/* Their intersection vertex is inserted, splitting the subsegment. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
|
|
vertex endpoint2, int newmark)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int scoutsegment(m, b, searchtri, endpoint2, newmark)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *searchtri;
|
|
vertex endpoint2;
|
|
int newmark;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri crosstri;
|
|
struct osub crosssubseg;
|
|
vertex leftvertex, rightvertex;
|
|
enum finddirectionresult collinear;
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
collinear = finddirection(m, b, searchtri, endpoint2);
|
|
dest(*searchtri, rightvertex);
|
|
apex(*searchtri, leftvertex);
|
|
if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
|
|
((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
|
|
/* The segment is already an edge in the mesh. */
|
|
if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
|
|
lprevself(*searchtri);
|
|
}
|
|
/* Insert a subsegment, if there isn't already one there. */
|
|
insertsubseg(m, b, searchtri, newmark);
|
|
return 1;
|
|
} else if (collinear == LEFTCOLLINEAR) {
|
|
/* We've collided with a vertex between the segment's endpoints. */
|
|
/* Make the collinear vertex be the triangle's origin. */
|
|
lprevself(*searchtri);
|
|
insertsubseg(m, b, searchtri, newmark);
|
|
/* Insert the remainder of the segment. */
|
|
return scoutsegment(m, b, searchtri, endpoint2, newmark);
|
|
} else if (collinear == RIGHTCOLLINEAR) {
|
|
/* We've collided with a vertex between the segment's endpoints. */
|
|
insertsubseg(m, b, searchtri, newmark);
|
|
/* Make the collinear vertex be the triangle's origin. */
|
|
lnextself(*searchtri);
|
|
/* Insert the remainder of the segment. */
|
|
return scoutsegment(m, b, searchtri, endpoint2, newmark);
|
|
} else {
|
|
lnext(*searchtri, crosstri);
|
|
tspivot(crosstri, crosssubseg);
|
|
/* Check for a crossing segment. */
|
|
if (crosssubseg.ss == m->dummysub) {
|
|
return 0;
|
|
} else {
|
|
/* Insert a vertex at the intersection. */
|
|
segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
|
|
otricopy(crosstri, *searchtri);
|
|
insertsubseg(m, b, searchtri, newmark);
|
|
/* Insert the remainder of the segment. */
|
|
return scoutsegment(m, b, searchtri, endpoint2, newmark);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* conformingedge() Force a segment into a conforming Delaunay */
|
|
/* triangulation by inserting a vertex at its midpoint, */
|
|
/* and recursively forcing in the two half-segments if */
|
|
/* necessary. */
|
|
/* */
|
|
/* Generates a sequence of subsegments connecting `endpoint1' to */
|
|
/* `endpoint2'. `newmark' is the boundary marker of the segment, assigned */
|
|
/* to each new splitting vertex and subsegment. */
|
|
/* */
|
|
/* Note that conformingedge() does not always maintain the conforming */
|
|
/* Delaunay property. Once inserted, segments are locked into place; */
|
|
/* vertices inserted later (to force other segments in) may render these */
|
|
/* fixed segments non-Delaunay. The conforming Delaunay property will be */
|
|
/* restored by enforcequality() by splitting encroached subsegments. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef REDUCED
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void conformingedge(struct mesh *m, struct behavior *b,
|
|
vertex endpoint1, vertex endpoint2, int newmark)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void conformingedge(m, b, endpoint1, endpoint2, newmark)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex endpoint1;
|
|
vertex endpoint2;
|
|
int newmark;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri searchtri1, searchtri2;
|
|
struct osub brokensubseg;
|
|
vertex newvertex;
|
|
vertex midvertex1, midvertex2;
|
|
enum insertvertexresult success;
|
|
int i;
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (b->verbose > 2) {
|
|
printf("Forcing segment into triangulation by recursive splitting:\n");
|
|
printf(" (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
|
|
endpoint2[0], endpoint2[1]);
|
|
}
|
|
/* Create a new vertex to insert in the middle of the segment. */
|
|
newvertex = (vertex) poolalloc(&m->vertices);
|
|
/* Interpolate coordinates and attributes. */
|
|
for (i = 0; i < 2 + m->nextras; i++) {
|
|
newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
|
|
}
|
|
setvertexmark(newvertex, newmark);
|
|
setvertextype(newvertex, SEGMENTVERTEX);
|
|
/* No known triangle to search from. */
|
|
searchtri1.tri = m->dummytri;
|
|
/* Attempt to insert the new vertex. */
|
|
success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL,
|
|
0, 0);
|
|
if (success == DUPLICATEVERTEX) {
|
|
if (b->verbose > 2) {
|
|
printf(" Segment intersects existing vertex (%.12g, %.12g).\n",
|
|
newvertex[0], newvertex[1]);
|
|
}
|
|
/* Use the vertex that's already there. */
|
|
vertexdealloc(m, newvertex);
|
|
org(searchtri1, newvertex);
|
|
} else {
|
|
if (success == VIOLATINGVERTEX) {
|
|
if (b->verbose > 2) {
|
|
printf(" Two segments intersect at (%.12g, %.12g).\n",
|
|
newvertex[0], newvertex[1]);
|
|
}
|
|
/* By fluke, we've landed right on another segment. Split it. */
|
|
tspivot(searchtri1, brokensubseg);
|
|
success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg,
|
|
0, 0);
|
|
if (success != SUCCESSFULVERTEX) {
|
|
printf("Internal error in conformingedge():\n");
|
|
printf(" Failure to split a segment.\n");
|
|
internalerror();
|
|
}
|
|
}
|
|
/* The vertex has been inserted successfully. */
|
|
if (m->steinerleft > 0) {
|
|
m->steinerleft--;
|
|
}
|
|
}
|
|
otricopy(searchtri1, searchtri2);
|
|
/* `searchtri1' and `searchtri2' are fastened at their origins to */
|
|
/* `newvertex', and will be directed toward `endpoint1' and `endpoint2' */
|
|
/* respectively. First, we must get `searchtri2' out of the way so it */
|
|
/* won't be invalidated during the insertion of the first half of the */
|
|
/* segment. */
|
|
finddirection(m, b, &searchtri2, endpoint2);
|
|
if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) {
|
|
/* The origin of searchtri1 may have changed if a collision with an */
|
|
/* intervening vertex on the segment occurred. */
|
|
org(searchtri1, midvertex1);
|
|
conformingedge(m, b, midvertex1, endpoint1, newmark);
|
|
}
|
|
if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) {
|
|
/* The origin of searchtri2 may have changed if a collision with an */
|
|
/* intervening vertex on the segment occurred. */
|
|
org(searchtri2, midvertex2);
|
|
conformingedge(m, b, midvertex2, endpoint2, newmark);
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
#endif /* not REDUCED */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */
|
|
/* recursively from an existing vertex. Pay special */
|
|
/* attention to stacking inverted triangles. */
|
|
/* */
|
|
/* This is a support routine for inserting segments into a constrained */
|
|
/* Delaunay triangulation. */
|
|
/* */
|
|
/* The origin of fixuptri is treated as if it has just been inserted, and */
|
|
/* the local Delaunay condition needs to be enforced. It is only enforced */
|
|
/* in one sector, however, that being the angular range defined by */
|
|
/* fixuptri. */
|
|
/* */
|
|
/* This routine also needs to make decisions regarding the "stacking" of */
|
|
/* triangles. (Read the description of constrainededge() below before */
|
|
/* reading on here, so you understand the algorithm.) If the position of */
|
|
/* the new vertex (the origin of fixuptri) indicates that the vertex before */
|
|
/* it on the polygon is a reflex vertex, then "stack" the triangle by */
|
|
/* doing nothing. (fixuptri is an inverted triangle, which is how stacked */
|
|
/* triangles are identified.) */
|
|
/* */
|
|
/* Otherwise, check whether the vertex before that was a reflex vertex. */
|
|
/* If so, perform an edge flip, thereby eliminating an inverted triangle */
|
|
/* (popping it off the stack). The edge flip may result in the creation */
|
|
/* of a new inverted triangle, depending on whether or not the new vertex */
|
|
/* is visible to the vertex three edges behind on the polygon. */
|
|
/* */
|
|
/* If neither of the two vertices behind the new vertex are reflex */
|
|
/* vertices, fixuptri and fartri, the triangle opposite it, are not */
|
|
/* inverted; hence, ensure that the edge between them is locally Delaunay. */
|
|
/* */
|
|
/* `leftside' indicates whether or not fixuptri is to the left of the */
|
|
/* segment being inserted. (Imagine that the segment is pointing up from */
|
|
/* endpoint1 to endpoint2.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void delaunayfixup(struct mesh *m, struct behavior *b,
|
|
struct otri *fixuptri, int leftside)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void delaunayfixup(m, b, fixuptri, leftside)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *fixuptri;
|
|
int leftside;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri neartri;
|
|
struct otri fartri;
|
|
struct osub faredge;
|
|
vertex nearvertex, leftvertex, rightvertex, farvertex;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
lnext(*fixuptri, neartri);
|
|
sym(neartri, fartri);
|
|
/* Check if the edge opposite the origin of fixuptri can be flipped. */
|
|
if (fartri.tri == m->dummytri) {
|
|
return;
|
|
}
|
|
tspivot(neartri, faredge);
|
|
if (faredge.ss != m->dummysub) {
|
|
return;
|
|
}
|
|
/* Find all the relevant vertices. */
|
|
apex(neartri, nearvertex);
|
|
org(neartri, leftvertex);
|
|
dest(neartri, rightvertex);
|
|
apex(fartri, farvertex);
|
|
/* Check whether the previous polygon vertex is a reflex vertex. */
|
|
if (leftside) {
|
|
if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
|
|
/* leftvertex is a reflex vertex too. Nothing can */
|
|
/* be done until a convex section is found. */
|
|
return;
|
|
}
|
|
} else {
|
|
if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
|
|
/* rightvertex is a reflex vertex too. Nothing can */
|
|
/* be done until a convex section is found. */
|
|
return;
|
|
}
|
|
}
|
|
if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
|
|
/* fartri is not an inverted triangle, and farvertex is not a reflex */
|
|
/* vertex. As there are no reflex vertices, fixuptri isn't an */
|
|
/* inverted triangle, either. Hence, test the edge between the */
|
|
/* triangles to ensure it is locally Delaunay. */
|
|
if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
|
|
0.0) {
|
|
return;
|
|
}
|
|
/* Not locally Delaunay; go on to an edge flip. */
|
|
} /* else fartri is inverted; remove it from the stack by flipping. */
|
|
flip(m, b, &neartri);
|
|
lprevself(*fixuptri); /* Restore the origin of fixuptri after the flip. */
|
|
/* Recursively process the two triangles that result from the flip. */
|
|
delaunayfixup(m, b, fixuptri, leftside);
|
|
delaunayfixup(m, b, &fartri, leftside);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* constrainededge() Force a segment into a constrained Delaunay */
|
|
/* triangulation by deleting the triangles it */
|
|
/* intersects, and triangulating the polygons that */
|
|
/* form on each side of it. */
|
|
/* */
|
|
/* Generates a single subsegment connecting `endpoint1' to `endpoint2'. */
|
|
/* The triangle `starttri' has `endpoint1' as its origin. `newmark' is the */
|
|
/* boundary marker of the segment. */
|
|
/* */
|
|
/* To insert a segment, every triangle whose interior intersects the */
|
|
/* segment is deleted. The union of these deleted triangles is a polygon */
|
|
/* (which is not necessarily monotone, but is close enough), which is */
|
|
/* divided into two polygons by the new segment. This routine's task is */
|
|
/* to generate the Delaunay triangulation of these two polygons. */
|
|
/* */
|
|
/* You might think of this routine's behavior as a two-step process. The */
|
|
/* first step is to walk from endpoint1 to endpoint2, flipping each edge */
|
|
/* encountered. This step creates a fan of edges connected to endpoint1, */
|
|
/* including the desired edge to endpoint2. The second step enforces the */
|
|
/* Delaunay condition on each side of the segment in an incremental manner: */
|
|
/* proceeding along the polygon from endpoint1 to endpoint2 (this is done */
|
|
/* independently on each side of the segment), each vertex is "enforced" */
|
|
/* as if it had just been inserted, but affecting only the previous */
|
|
/* vertices. The result is the same as if the vertices had been inserted */
|
|
/* in the order they appear on the polygon, so the result is Delaunay. */
|
|
/* */
|
|
/* In truth, constrainededge() interleaves these two steps. The procedure */
|
|
/* walks from endpoint1 to endpoint2, and each time an edge is encountered */
|
|
/* and flipped, the newly exposed vertex (at the far end of the flipped */
|
|
/* edge) is "enforced" upon the previously flipped edges, usually affecting */
|
|
/* only one side of the polygon (depending upon which side of the segment */
|
|
/* the vertex falls on). */
|
|
/* */
|
|
/* The algorithm is complicated by the need to handle polygons that are not */
|
|
/* convex. Although the polygon is not necessarily monotone, it can be */
|
|
/* triangulated in a manner similar to the stack-based algorithms for */
|
|
/* monotone polygons. For each reflex vertex (local concavity) of the */
|
|
/* polygon, there will be an inverted triangle formed by one of the edge */
|
|
/* flips. (An inverted triangle is one with negative area - that is, its */
|
|
/* vertices are arranged in clockwise order - and is best thought of as a */
|
|
/* wrinkle in the fabric of the mesh.) Each inverted triangle can be */
|
|
/* thought of as a reflex vertex pushed on the stack, waiting to be fixed */
|
|
/* later. */
|
|
/* */
|
|
/* A reflex vertex is popped from the stack when a vertex is inserted that */
|
|
/* is visible to the reflex vertex. (However, if the vertex behind the */
|
|
/* reflex vertex is not visible to the reflex vertex, a new inverted */
|
|
/* triangle will take its place on the stack.) These details are handled */
|
|
/* by the delaunayfixup() routine above. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void constrainededge(struct mesh *m, struct behavior *b,
|
|
struct otri *starttri, vertex endpoint2, int newmark)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void constrainededge(m, b, starttri, endpoint2, newmark)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct otri *starttri;
|
|
vertex endpoint2;
|
|
int newmark;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri fixuptri, fixuptri2;
|
|
struct osub crosssubseg;
|
|
vertex endpoint1;
|
|
vertex farvertex;
|
|
REAL area;
|
|
int collision;
|
|
int done;
|
|
triangle ptr; /* Temporary variable used by sym() and oprev(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
org(*starttri, endpoint1);
|
|
lnext(*starttri, fixuptri);
|
|
flip(m, b, &fixuptri);
|
|
/* `collision' indicates whether we have found a vertex directly */
|
|
/* between endpoint1 and endpoint2. */
|
|
collision = 0;
|
|
done = 0;
|
|
do {
|
|
org(fixuptri, farvertex);
|
|
/* `farvertex' is the extreme point of the polygon we are "digging" */
|
|
/* to get from endpoint1 to endpoint2. */
|
|
if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
|
|
oprev(fixuptri, fixuptri2);
|
|
/* Enforce the Delaunay condition around endpoint2. */
|
|
delaunayfixup(m, b, &fixuptri, 0);
|
|
delaunayfixup(m, b, &fixuptri2, 1);
|
|
done = 1;
|
|
} else {
|
|
/* Check whether farvertex is to the left or right of the segment */
|
|
/* being inserted, to decide which edge of fixuptri to dig */
|
|
/* through next. */
|
|
area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
|
|
if (area == 0.0) {
|
|
/* We've collided with a vertex between endpoint1 and endpoint2. */
|
|
collision = 1;
|
|
oprev(fixuptri, fixuptri2);
|
|
/* Enforce the Delaunay condition around farvertex. */
|
|
delaunayfixup(m, b, &fixuptri, 0);
|
|
delaunayfixup(m, b, &fixuptri2, 1);
|
|
done = 1;
|
|
} else {
|
|
if (area > 0.0) { /* farvertex is to the left of the segment. */
|
|
oprev(fixuptri, fixuptri2);
|
|
/* Enforce the Delaunay condition around farvertex, on the */
|
|
/* left side of the segment only. */
|
|
delaunayfixup(m, b, &fixuptri2, 1);
|
|
/* Flip the edge that crosses the segment. After the edge is */
|
|
/* flipped, one of its endpoints is the fan vertex, and the */
|
|
/* destination of fixuptri is the fan vertex. */
|
|
lprevself(fixuptri);
|
|
} else { /* farvertex is to the right of the segment. */
|
|
delaunayfixup(m, b, &fixuptri, 0);
|
|
/* Flip the edge that crosses the segment. After the edge is */
|
|
/* flipped, one of its endpoints is the fan vertex, and the */
|
|
/* destination of fixuptri is the fan vertex. */
|
|
oprevself(fixuptri);
|
|
}
|
|
/* Check for two intersecting segments. */
|
|
tspivot(fixuptri, crosssubseg);
|
|
if (crosssubseg.ss == m->dummysub) {
|
|
flip(m, b, &fixuptri); /* May create inverted triangle at left. */
|
|
} else {
|
|
/* We've collided with a segment between endpoint1 and endpoint2. */
|
|
collision = 1;
|
|
/* Insert a vertex at the intersection. */
|
|
segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
|
|
done = 1;
|
|
}
|
|
}
|
|
}
|
|
} while (!done);
|
|
/* Insert a subsegment to make the segment permanent. */
|
|
insertsubseg(m, b, &fixuptri, newmark);
|
|
/* If there was a collision with an interceding vertex, install another */
|
|
/* segment connecting that vertex with endpoint2. */
|
|
if (collision) {
|
|
/* Insert the remainder of the segment. */
|
|
if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
|
|
constrainededge(m, b, &fixuptri, endpoint2, newmark);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* insertsegment() Insert a PSLG segment into a triangulation. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void insertsegment(struct mesh *m, struct behavior *b,
|
|
vertex endpoint1, vertex endpoint2, int newmark)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void insertsegment(m, b, endpoint1, endpoint2, newmark)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
vertex endpoint1;
|
|
vertex endpoint2;
|
|
int newmark;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri searchtri1, searchtri2;
|
|
triangle encodedtri;
|
|
vertex checkvertex;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
if (b->verbose > 1) {
|
|
printf(" Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
|
|
endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
|
|
}
|
|
|
|
/* Find a triangle whose origin is the segment's first endpoint. */
|
|
checkvertex = (vertex) NULL;
|
|
encodedtri = vertex2tri(endpoint1);
|
|
if (encodedtri != (triangle) NULL) {
|
|
decode(encodedtri, searchtri1);
|
|
org(searchtri1, checkvertex);
|
|
}
|
|
if (checkvertex != endpoint1) {
|
|
/* Find a boundary triangle to search from. */
|
|
searchtri1.tri = m->dummytri;
|
|
searchtri1.orient = 0;
|
|
symself(searchtri1);
|
|
/* Search for the segment's first endpoint by point location. */
|
|
if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
|
|
printf(
|
|
"Internal error in insertsegment(): Unable to locate PSLG vertex\n");
|
|
printf(" (%.12g, %.12g) in triangulation.\n",
|
|
endpoint1[0], endpoint1[1]);
|
|
internalerror();
|
|
}
|
|
}
|
|
/* Remember this triangle to improve subsequent point location. */
|
|
otricopy(searchtri1, m->recenttri);
|
|
/* Scout the beginnings of a path from the first endpoint */
|
|
/* toward the second. */
|
|
if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
|
|
/* The segment was easily inserted. */
|
|
return;
|
|
}
|
|
/* The first endpoint may have changed if a collision with an intervening */
|
|
/* vertex on the segment occurred. */
|
|
org(searchtri1, endpoint1);
|
|
|
|
/* Find a triangle whose origin is the segment's second endpoint. */
|
|
checkvertex = (vertex) NULL;
|
|
encodedtri = vertex2tri(endpoint2);
|
|
if (encodedtri != (triangle) NULL) {
|
|
decode(encodedtri, searchtri2);
|
|
org(searchtri2, checkvertex);
|
|
}
|
|
if (checkvertex != endpoint2) {
|
|
/* Find a boundary triangle to search from. */
|
|
searchtri2.tri = m->dummytri;
|
|
searchtri2.orient = 0;
|
|
symself(searchtri2);
|
|
/* Search for the segment's second endpoint by point location. */
|
|
if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
|
|
printf(
|
|
"Internal error in insertsegment(): Unable to locate PSLG vertex\n");
|
|
printf(" (%.12g, %.12g) in triangulation.\n",
|
|
endpoint2[0], endpoint2[1]);
|
|
internalerror();
|
|
}
|
|
}
|
|
/* Remember this triangle to improve subsequent point location. */
|
|
otricopy(searchtri2, m->recenttri);
|
|
/* Scout the beginnings of a path from the second endpoint */
|
|
/* toward the first. */
|
|
if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
|
|
/* The segment was easily inserted. */
|
|
return;
|
|
}
|
|
/* The second endpoint may have changed if a collision with an intervening */
|
|
/* vertex on the segment occurred. */
|
|
org(searchtri2, endpoint2);
|
|
|
|
#ifndef REDUCED
|
|
#ifndef CDT_ONLY
|
|
if (b->splitseg) {
|
|
/* Insert vertices to force the segment into the triangulation. */
|
|
conformingedge(m, b, endpoint1, endpoint2, newmark);
|
|
} else {
|
|
#endif /* not CDT_ONLY */
|
|
#endif /* not REDUCED */
|
|
/* Insert the segment directly into the triangulation. */
|
|
constrainededge(m, b, &searchtri1, endpoint2, newmark);
|
|
#ifndef REDUCED
|
|
#ifndef CDT_ONLY
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
#endif /* not REDUCED */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* markhull() Cover the convex hull of a triangulation with subsegments. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void markhull(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void markhull(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri hulltri;
|
|
struct otri nexttri;
|
|
struct otri starttri;
|
|
triangle ptr; /* Temporary variable used by sym() and oprev(). */
|
|
|
|
/* Find a triangle handle on the hull. */
|
|
hulltri.tri = m->dummytri;
|
|
hulltri.orient = 0;
|
|
symself(hulltri);
|
|
/* Remember where we started so we know when to stop. */
|
|
otricopy(hulltri, starttri);
|
|
/* Go once counterclockwise around the convex hull. */
|
|
do {
|
|
/* Create a subsegment if there isn't already one here. */
|
|
insertsubseg(m, b, &hulltri, 1);
|
|
/* To find the next hull edge, go clockwise around the next vertex. */
|
|
lnextself(hulltri);
|
|
oprev(hulltri, nexttri);
|
|
while (nexttri.tri != m->dummytri) {
|
|
otricopy(nexttri, hulltri);
|
|
oprev(hulltri, nexttri);
|
|
}
|
|
} while (!otriequal(hulltri, starttri));
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* formskeleton() Create the segments of a triangulation, including PSLG */
|
|
/* segments and edges on the convex hull. */
|
|
/* */
|
|
/* The PSLG segments are read from a .poly file. The return value is the */
|
|
/* number of segments in the file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
|
|
int *segmentmarkerlist, int numberofsegments)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int *segmentlist;
|
|
int *segmentmarkerlist;
|
|
int numberofsegments;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void formskeleton(struct mesh *m, struct behavior *b,
|
|
FILE *polyfile, char *polyfilename)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void formskeleton(m, b, polyfile, polyfilename)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
FILE *polyfile;
|
|
char *polyfilename;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
char polyfilename[6];
|
|
int index;
|
|
#else /* not TRILIBRARY */
|
|
char inputline[INPUTLINESIZE];
|
|
char *stringptr;
|
|
#endif /* not TRILIBRARY */
|
|
vertex endpoint1, endpoint2;
|
|
int segmentmarkers;
|
|
int end1, end2;
|
|
int boundmarker;
|
|
int i;
|
|
|
|
if (b->poly) {
|
|
if (!b->quiet) {
|
|
printf("Recovering segments in Delaunay triangulation.\n");
|
|
}
|
|
#ifdef TRILIBRARY
|
|
strcpy(polyfilename, "input");
|
|
m->insegments = numberofsegments;
|
|
segmentmarkers = segmentmarkerlist != (int *) NULL;
|
|
index = 0;
|
|
#else /* not TRILIBRARY */
|
|
/* Read the segments from a .poly file. */
|
|
/* Read number of segments and number of boundary markers. */
|
|
stringptr = readline(inputline, polyfile, polyfilename);
|
|
m->insegments = (int) strtol(stringptr, &stringptr, 0);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
segmentmarkers = 0;
|
|
} else {
|
|
segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
/* If the input vertices are collinear, there is no triangulation, */
|
|
/* so don't try to insert segments. */
|
|
if (m->triangles.items == 0) {
|
|
return;
|
|
}
|
|
|
|
/* If segments are to be inserted, compute a mapping */
|
|
/* from vertices to triangles. */
|
|
if (m->insegments > 0) {
|
|
makevertexmap(m, b);
|
|
if (b->verbose) {
|
|
printf(" Recovering PSLG segments.\n");
|
|
}
|
|
}
|
|
|
|
boundmarker = 0;
|
|
/* Read and insert the segments. */
|
|
for (i = 0; i < m->insegments; i++) {
|
|
#ifdef TRILIBRARY
|
|
end1 = segmentlist[index++];
|
|
end2 = segmentlist[index++];
|
|
if (segmentmarkers) {
|
|
boundmarker = segmentmarkerlist[i];
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
stringptr = readline(inputline, polyfile, b->inpolyfilename);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Segment %d has no endpoints in %s.\n",
|
|
b->firstnumber + i, polyfilename);
|
|
triexit(1);
|
|
} else {
|
|
end1 = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Segment %d is missing its second endpoint in %s.\n",
|
|
b->firstnumber + i, polyfilename);
|
|
triexit(1);
|
|
} else {
|
|
end2 = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
if (segmentmarkers) {
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
boundmarker = 0;
|
|
} else {
|
|
boundmarker = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
if ((end1 < b->firstnumber) ||
|
|
(end1 >= b->firstnumber + m->invertices)) {
|
|
if (!b->quiet) {
|
|
printf("Warning: Invalid first endpoint of segment %d in %s.\n",
|
|
b->firstnumber + i, polyfilename);
|
|
}
|
|
} else if ((end2 < b->firstnumber) ||
|
|
(end2 >= b->firstnumber + m->invertices)) {
|
|
if (!b->quiet) {
|
|
printf("Warning: Invalid second endpoint of segment %d in %s.\n",
|
|
b->firstnumber + i, polyfilename);
|
|
}
|
|
} else {
|
|
/* Find the vertices numbered `end1' and `end2'. */
|
|
endpoint1 = getvertex(m, b, end1);
|
|
endpoint2 = getvertex(m, b, end2);
|
|
if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
|
|
if (!b->quiet) {
|
|
printf("Warning: Endpoints of segment %d are coincident in %s.\n",
|
|
b->firstnumber + i, polyfilename);
|
|
}
|
|
} else {
|
|
insertsegment(m, b, endpoint1, endpoint2, boundmarker);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
m->insegments = 0;
|
|
}
|
|
if (b->convex || !b->poly) {
|
|
/* Enclose the convex hull with subsegments. */
|
|
if (b->verbose) {
|
|
printf(" Enclosing convex hull with segments.\n");
|
|
}
|
|
markhull(m, b);
|
|
}
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Segment insertion ends here *********/
|
|
|
|
/********* Carving out holes and concavities begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* infecthull() Virally infect all of the triangles of the convex hull */
|
|
/* that are not protected by subsegments. Where there are */
|
|
/* subsegments, set boundary markers as appropriate. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void infecthull(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void infecthull(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri hulltri;
|
|
struct otri nexttri;
|
|
struct otri starttri;
|
|
struct osub hullsubseg;
|
|
triangle **deadtriangle;
|
|
vertex horg, hdest;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (b->verbose) {
|
|
printf(" Marking concavities (external triangles) for elimination.\n");
|
|
}
|
|
/* Find a triangle handle on the hull. */
|
|
hulltri.tri = m->dummytri;
|
|
hulltri.orient = 0;
|
|
symself(hulltri);
|
|
/* Remember where we started so we know when to stop. */
|
|
otricopy(hulltri, starttri);
|
|
/* Go once counterclockwise around the convex hull. */
|
|
do {
|
|
/* Ignore triangles that are already infected. */
|
|
if (!infected(hulltri)) {
|
|
/* Is the triangle protected by a subsegment? */
|
|
tspivot(hulltri, hullsubseg);
|
|
if (hullsubseg.ss == m->dummysub) {
|
|
/* The triangle is not protected; infect it. */
|
|
if (!infected(hulltri)) {
|
|
infect(hulltri);
|
|
deadtriangle = (triangle **) poolalloc(&m->viri);
|
|
*deadtriangle = hulltri.tri;
|
|
}
|
|
} else {
|
|
/* The triangle is protected; set boundary markers if appropriate. */
|
|
if (mark(hullsubseg) == 0) {
|
|
setmark(hullsubseg, 1);
|
|
org(hulltri, horg);
|
|
dest(hulltri, hdest);
|
|
if (vertexmark(horg) == 0) {
|
|
setvertexmark(horg, 1);
|
|
}
|
|
if (vertexmark(hdest) == 0) {
|
|
setvertexmark(hdest, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* To find the next hull edge, go clockwise around the next vertex. */
|
|
lnextself(hulltri);
|
|
oprev(hulltri, nexttri);
|
|
while (nexttri.tri != m->dummytri) {
|
|
otricopy(nexttri, hulltri);
|
|
oprev(hulltri, nexttri);
|
|
}
|
|
} while (!otriequal(hulltri, starttri));
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* plague() Spread the virus from all infected triangles to any neighbors */
|
|
/* not protected by subsegments. Delete all infected triangles. */
|
|
/* */
|
|
/* This is the procedure that actually creates holes and concavities. */
|
|
/* */
|
|
/* This procedure operates in two phases. The first phase identifies all */
|
|
/* the triangles that will die, and marks them as infected. They are */
|
|
/* marked to ensure that each triangle is added to the virus pool only */
|
|
/* once, so the procedure will terminate. */
|
|
/* */
|
|
/* The second phase actually eliminates the infected triangles. It also */
|
|
/* eliminates orphaned vertices. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void plague(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void plague(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri testtri;
|
|
struct otri neighbor;
|
|
triangle **virusloop;
|
|
triangle **deadtriangle;
|
|
struct osub neighborsubseg;
|
|
vertex testvertex;
|
|
vertex norg, ndest;
|
|
vertex deadorg, deaddest, deadapex;
|
|
int killorg;
|
|
triangle ptr; /* Temporary variable used by sym() and onext(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (b->verbose) {
|
|
printf(" Marking neighbors of marked triangles.\n");
|
|
}
|
|
/* Loop through all the infected triangles, spreading the virus to */
|
|
/* their neighbors, then to their neighbors' neighbors. */
|
|
traversalinit(&m->viri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
while (virusloop != (triangle **) NULL) {
|
|
testtri.tri = *virusloop;
|
|
/* A triangle is marked as infected by messing with one of its pointers */
|
|
/* to subsegments, setting it to an illegal value. Hence, we have to */
|
|
/* temporarily uninfect this triangle so that we can examine its */
|
|
/* adjacent subsegments. */
|
|
uninfect(testtri);
|
|
if (b->verbose > 2) {
|
|
/* Assign the triangle an orientation for convenience in */
|
|
/* checking its vertices. */
|
|
testtri.orient = 0;
|
|
org(testtri, deadorg);
|
|
dest(testtri, deaddest);
|
|
apex(testtri, deadapex);
|
|
printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
deadorg[0], deadorg[1], deaddest[0], deaddest[1],
|
|
deadapex[0], deadapex[1]);
|
|
}
|
|
/* Check each of the triangle's three neighbors. */
|
|
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
|
|
/* Find the neighbor. */
|
|
sym(testtri, neighbor);
|
|
/* Check for a subsegment between the triangle and its neighbor. */
|
|
tspivot(testtri, neighborsubseg);
|
|
/* Check if the neighbor is nonexistent or already infected. */
|
|
if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
|
|
if (neighborsubseg.ss != m->dummysub) {
|
|
/* There is a subsegment separating the triangle from its */
|
|
/* neighbor, but both triangles are dying, so the subsegment */
|
|
/* dies too. */
|
|
subsegdealloc(m, neighborsubseg.ss);
|
|
if (neighbor.tri != m->dummytri) {
|
|
/* Make sure the subsegment doesn't get deallocated again */
|
|
/* later when the infected neighbor is visited. */
|
|
uninfect(neighbor);
|
|
tsdissolve(neighbor);
|
|
infect(neighbor);
|
|
}
|
|
}
|
|
} else { /* The neighbor exists and is not infected. */
|
|
if (neighborsubseg.ss == m->dummysub) {
|
|
/* There is no subsegment protecting the neighbor, so */
|
|
/* the neighbor becomes infected. */
|
|
if (b->verbose > 2) {
|
|
org(neighbor, deadorg);
|
|
dest(neighbor, deaddest);
|
|
apex(neighbor, deadapex);
|
|
printf(
|
|
" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
deadorg[0], deadorg[1], deaddest[0], deaddest[1],
|
|
deadapex[0], deadapex[1]);
|
|
}
|
|
infect(neighbor);
|
|
/* Ensure that the neighbor's neighbors will be infected. */
|
|
deadtriangle = (triangle **) poolalloc(&m->viri);
|
|
*deadtriangle = neighbor.tri;
|
|
} else { /* The neighbor is protected by a subsegment. */
|
|
/* Remove this triangle from the subsegment. */
|
|
stdissolve(neighborsubseg);
|
|
/* The subsegment becomes a boundary. Set markers accordingly. */
|
|
if (mark(neighborsubseg) == 0) {
|
|
setmark(neighborsubseg, 1);
|
|
}
|
|
org(neighbor, norg);
|
|
dest(neighbor, ndest);
|
|
if (vertexmark(norg) == 0) {
|
|
setvertexmark(norg, 1);
|
|
}
|
|
if (vertexmark(ndest) == 0) {
|
|
setvertexmark(ndest, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Remark the triangle as infected, so it doesn't get added to the */
|
|
/* virus pool again. */
|
|
infect(testtri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
}
|
|
|
|
if (b->verbose) {
|
|
printf(" Deleting marked triangles.\n");
|
|
}
|
|
|
|
traversalinit(&m->viri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
while (virusloop != (triangle **) NULL) {
|
|
testtri.tri = *virusloop;
|
|
|
|
/* Check each of the three corners of the triangle for elimination. */
|
|
/* This is done by walking around each vertex, checking if it is */
|
|
/* still connected to at least one live triangle. */
|
|
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
|
|
org(testtri, testvertex);
|
|
/* Check if the vertex has already been tested. */
|
|
if (testvertex != (vertex) NULL) {
|
|
killorg = 1;
|
|
/* Mark the corner of the triangle as having been tested. */
|
|
setorg(testtri, NULL);
|
|
/* Walk counterclockwise about the vertex. */
|
|
onext(testtri, neighbor);
|
|
/* Stop upon reaching a boundary or the starting triangle. */
|
|
while ((neighbor.tri != m->dummytri) &&
|
|
(!otriequal(neighbor, testtri))) {
|
|
if (infected(neighbor)) {
|
|
/* Mark the corner of this triangle as having been tested. */
|
|
setorg(neighbor, NULL);
|
|
} else {
|
|
/* A live triangle. The vertex survives. */
|
|
killorg = 0;
|
|
}
|
|
/* Walk counterclockwise about the vertex. */
|
|
onextself(neighbor);
|
|
}
|
|
/* If we reached a boundary, we must walk clockwise as well. */
|
|
if (neighbor.tri == m->dummytri) {
|
|
/* Walk clockwise about the vertex. */
|
|
oprev(testtri, neighbor);
|
|
/* Stop upon reaching a boundary. */
|
|
while (neighbor.tri != m->dummytri) {
|
|
if (infected(neighbor)) {
|
|
/* Mark the corner of this triangle as having been tested. */
|
|
setorg(neighbor, NULL);
|
|
} else {
|
|
/* A live triangle. The vertex survives. */
|
|
killorg = 0;
|
|
}
|
|
/* Walk clockwise about the vertex. */
|
|
oprevself(neighbor);
|
|
}
|
|
}
|
|
if (killorg) {
|
|
if (b->verbose > 1) {
|
|
printf(" Deleting vertex (%.12g, %.12g)\n",
|
|
testvertex[0], testvertex[1]);
|
|
}
|
|
setvertextype(testvertex, UNDEADVERTEX);
|
|
m->undeads++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Record changes in the number of boundary edges, and disconnect */
|
|
/* dead triangles from their neighbors. */
|
|
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
|
|
sym(testtri, neighbor);
|
|
if (neighbor.tri == m->dummytri) {
|
|
/* There is no neighboring triangle on this edge, so this edge */
|
|
/* is a boundary edge. This triangle is being deleted, so this */
|
|
/* boundary edge is deleted. */
|
|
m->hullsize--;
|
|
} else {
|
|
/* Disconnect the triangle from its neighbor. */
|
|
dissolve(neighbor);
|
|
/* There is a neighboring triangle on this edge, so this edge */
|
|
/* becomes a boundary edge when this triangle is deleted. */
|
|
m->hullsize++;
|
|
}
|
|
}
|
|
/* Return the dead triangle to the pool of triangles. */
|
|
triangledealloc(m, testtri.tri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
}
|
|
/* Empty the virus pool. */
|
|
poolrestart(&m->viri);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* regionplague() Spread regional attributes and/or area constraints */
|
|
/* (from a .poly file) throughout the mesh. */
|
|
/* */
|
|
/* This procedure operates in two phases. The first phase spreads an */
|
|
/* attribute and/or an area constraint through a (segment-bounded) region. */
|
|
/* The triangles are marked to ensure that each triangle is added to the */
|
|
/* virus pool only once, so the procedure will terminate. */
|
|
/* */
|
|
/* The second phase uninfects all infected triangles, returning them to */
|
|
/* normal. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void regionplague(struct mesh *m, struct behavior *b,
|
|
REAL attribute, REAL area)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void regionplague(m, b, attribute, area)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
REAL attribute;
|
|
REAL area;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri testtri;
|
|
struct otri neighbor;
|
|
triangle **virusloop;
|
|
triangle **regiontri;
|
|
struct osub neighborsubseg;
|
|
vertex regionorg, regiondest, regionapex;
|
|
triangle ptr; /* Temporary variable used by sym() and onext(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (b->verbose > 1) {
|
|
printf(" Marking neighbors of marked triangles.\n");
|
|
}
|
|
/* Loop through all the infected triangles, spreading the attribute */
|
|
/* and/or area constraint to their neighbors, then to their neighbors' */
|
|
/* neighbors. */
|
|
traversalinit(&m->viri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
while (virusloop != (triangle **) NULL) {
|
|
testtri.tri = *virusloop;
|
|
/* A triangle is marked as infected by messing with one of its pointers */
|
|
/* to subsegments, setting it to an illegal value. Hence, we have to */
|
|
/* temporarily uninfect this triangle so that we can examine its */
|
|
/* adjacent subsegments. */
|
|
uninfect(testtri);
|
|
if (b->regionattrib) {
|
|
/* Set an attribute. */
|
|
setelemattribute(testtri, m->eextras, attribute);
|
|
}
|
|
if (b->vararea) {
|
|
/* Set an area constraint. */
|
|
setareabound(testtri, area);
|
|
}
|
|
if (b->verbose > 2) {
|
|
/* Assign the triangle an orientation for convenience in */
|
|
/* checking its vertices. */
|
|
testtri.orient = 0;
|
|
org(testtri, regionorg);
|
|
dest(testtri, regiondest);
|
|
apex(testtri, regionapex);
|
|
printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
|
|
regionapex[0], regionapex[1]);
|
|
}
|
|
/* Check each of the triangle's three neighbors. */
|
|
for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
|
|
/* Find the neighbor. */
|
|
sym(testtri, neighbor);
|
|
/* Check for a subsegment between the triangle and its neighbor. */
|
|
tspivot(testtri, neighborsubseg);
|
|
/* Make sure the neighbor exists, is not already infected, and */
|
|
/* isn't protected by a subsegment. */
|
|
if ((neighbor.tri != m->dummytri) && !infected(neighbor)
|
|
&& (neighborsubseg.ss == m->dummysub)) {
|
|
if (b->verbose > 2) {
|
|
org(neighbor, regionorg);
|
|
dest(neighbor, regiondest);
|
|
apex(neighbor, regionapex);
|
|
printf(" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
regionorg[0], regionorg[1], regiondest[0], regiondest[1],
|
|
regionapex[0], regionapex[1]);
|
|
}
|
|
/* Infect the neighbor. */
|
|
infect(neighbor);
|
|
/* Ensure that the neighbor's neighbors will be infected. */
|
|
regiontri = (triangle **) poolalloc(&m->viri);
|
|
*regiontri = neighbor.tri;
|
|
}
|
|
}
|
|
/* Remark the triangle as infected, so it doesn't get added to the */
|
|
/* virus pool again. */
|
|
infect(testtri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
}
|
|
|
|
/* Uninfect all triangles. */
|
|
if (b->verbose > 1) {
|
|
printf(" Unmarking marked triangles.\n");
|
|
}
|
|
traversalinit(&m->viri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
while (virusloop != (triangle **) NULL) {
|
|
testtri.tri = *virusloop;
|
|
uninfect(testtri);
|
|
virusloop = (triangle **) traverse(&m->viri);
|
|
}
|
|
/* Empty the virus pool. */
|
|
poolrestart(&m->viri);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* carveholes() Find the holes and infect them. Find the area */
|
|
/* constraints and infect them. Infect the convex hull. */
|
|
/* Spread the infection and kill triangles. Spread the */
|
|
/* area constraints. */
|
|
/* */
|
|
/* This routine mainly calls other routines to carry out all these */
|
|
/* functions. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes,
|
|
REAL *regionlist, int regions)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void carveholes(m, b, holelist, holes, regionlist, regions)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
REAL *holelist;
|
|
int holes;
|
|
REAL *regionlist;
|
|
int regions;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri searchtri;
|
|
struct otri triangleloop;
|
|
struct otri *regiontris;
|
|
triangle **holetri;
|
|
triangle **regiontri;
|
|
vertex searchorg, searchdest;
|
|
enum locateresult intersect;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
if (!(b->quiet || (b->noholes && b->convex))) {
|
|
printf("Removing unwanted triangles.\n");
|
|
if (b->verbose && (holes > 0)) {
|
|
printf(" Marking holes for elimination.\n");
|
|
}
|
|
}
|
|
|
|
if (regions > 0) {
|
|
/* Allocate storage for the triangles in which region points fall. */
|
|
regiontris = (struct otri *) trimalloc(regions *
|
|
(int) sizeof(struct otri));
|
|
} else {
|
|
regiontris = (struct otri *) NULL;
|
|
}
|
|
|
|
if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
|
|
/* Initialize a pool of viri to be used for holes, concavities, */
|
|
/* regional attributes, and/or regional area constraints. */
|
|
poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
|
|
}
|
|
|
|
if (!b->convex) {
|
|
/* Mark as infected any unprotected triangles on the boundary. */
|
|
/* This is one way by which concavities are created. */
|
|
infecthull(m, b);
|
|
}
|
|
|
|
if ((holes > 0) && !b->noholes) {
|
|
/* Infect each triangle in which a hole lies. */
|
|
for (i = 0; i < 2 * holes; i += 2) {
|
|
/* Ignore holes that aren't within the bounds of the mesh. */
|
|
if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
|
|
&& (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
|
|
/* Start searching from some triangle on the outer boundary. */
|
|
searchtri.tri = m->dummytri;
|
|
searchtri.orient = 0;
|
|
symself(searchtri);
|
|
/* Ensure that the hole is to the left of this boundary edge; */
|
|
/* otherwise, locate() will falsely report that the hole */
|
|
/* falls within the starting triangle. */
|
|
org(searchtri, searchorg);
|
|
dest(searchtri, searchdest);
|
|
if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
|
|
0.0) {
|
|
/* Find a triangle that contains the hole. */
|
|
intersect = locate(m, b, &holelist[i], &searchtri);
|
|
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
|
|
/* Infect the triangle. This is done by marking the triangle */
|
|
/* as infected and including the triangle in the virus pool. */
|
|
infect(searchtri);
|
|
holetri = (triangle **) poolalloc(&m->viri);
|
|
*holetri = searchtri.tri;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now, we have to find all the regions BEFORE we carve the holes, because */
|
|
/* locate() won't work when the triangulation is no longer convex. */
|
|
/* (Incidentally, this is the reason why regional attributes and area */
|
|
/* constraints can't be used when refining a preexisting mesh, which */
|
|
/* might not be convex; they can only be used with a freshly */
|
|
/* triangulated PSLG.) */
|
|
if (regions > 0) {
|
|
/* Find the starting triangle for each region. */
|
|
for (i = 0; i < regions; i++) {
|
|
regiontris[i].tri = m->dummytri;
|
|
/* Ignore region points that aren't within the bounds of the mesh. */
|
|
if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
|
|
(regionlist[4 * i + 1] >= m->ymin) &&
|
|
(regionlist[4 * i + 1] <= m->ymax)) {
|
|
/* Start searching from some triangle on the outer boundary. */
|
|
searchtri.tri = m->dummytri;
|
|
searchtri.orient = 0;
|
|
symself(searchtri);
|
|
/* Ensure that the region point is to the left of this boundary */
|
|
/* edge; otherwise, locate() will falsely report that the */
|
|
/* region point falls within the starting triangle. */
|
|
org(searchtri, searchorg);
|
|
dest(searchtri, searchdest);
|
|
if (counterclockwise(m, b, searchorg, searchdest, ®ionlist[4 * i]) >
|
|
0.0) {
|
|
/* Find a triangle that contains the region point. */
|
|
intersect = locate(m, b, ®ionlist[4 * i], &searchtri);
|
|
if ((intersect != OUTSIDE) && (!infected(searchtri))) {
|
|
/* Record the triangle for processing after the */
|
|
/* holes have been carved. */
|
|
otricopy(searchtri, regiontris[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m->viri.items > 0) {
|
|
/* Carve the holes and concavities. */
|
|
plague(m, b);
|
|
}
|
|
/* The virus pool should be empty now. */
|
|
|
|
if (regions > 0) {
|
|
if (!b->quiet) {
|
|
if (b->regionattrib) {
|
|
if (b->vararea) {
|
|
printf("Spreading regional attributes and area constraints.\n");
|
|
} else {
|
|
printf("Spreading regional attributes.\n");
|
|
}
|
|
} else {
|
|
printf("Spreading regional area constraints.\n");
|
|
}
|
|
}
|
|
if (b->regionattrib && !b->refine) {
|
|
/* Assign every triangle a regional attribute of zero. */
|
|
traversalinit(&m->triangles);
|
|
triangleloop.orient = 0;
|
|
triangleloop.tri = triangletraverse(m);
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
setelemattribute(triangleloop, m->eextras, 0.0);
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
}
|
|
for (i = 0; i < regions; i++) {
|
|
if (regiontris[i].tri != m->dummytri) {
|
|
/* Make sure the triangle under consideration still exists. */
|
|
/* It may have been eaten by the virus. */
|
|
if (!deadtri(regiontris[i].tri)) {
|
|
/* Put one triangle in the virus pool. */
|
|
infect(regiontris[i]);
|
|
regiontri = (triangle **) poolalloc(&m->viri);
|
|
*regiontri = regiontris[i].tri;
|
|
/* Apply one region's attribute and/or area constraint. */
|
|
regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
|
|
/* The virus pool should be empty now. */
|
|
}
|
|
}
|
|
}
|
|
if (b->regionattrib && !b->refine) {
|
|
/* Note the fact that each triangle has an additional attribute. */
|
|
m->eextras++;
|
|
}
|
|
}
|
|
|
|
/* Free up memory. */
|
|
if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
|
|
pooldeinit(&m->viri);
|
|
}
|
|
if (regions > 0) {
|
|
trifree((VOID *) regiontris);
|
|
}
|
|
}
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Carving out holes and concavities ends here *********/
|
|
|
|
/********* Mesh quality maintenance begins here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* tallyencs() Traverse the entire list of subsegments, and check each */
|
|
/* to see if it is encroached. If so, add it to the list. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void tallyencs(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void tallyencs(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct osub subsegloop;
|
|
int dummy;
|
|
|
|
traversalinit(&m->subsegs);
|
|
subsegloop.ssorient = 0;
|
|
subsegloop.ss = subsegtraverse(m);
|
|
while (subsegloop.ss != (subseg *) NULL) {
|
|
/* If the segment is encroached, add it to the list. */
|
|
dummy = checkseg4encroach(m, b, &subsegloop);
|
|
subsegloop.ss = subsegtraverse(m);
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* precisionerror() Print an error message for precision problems. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
void precisionerror()
|
|
{
|
|
printf("Try increasing the area criterion and/or reducing the minimum\n");
|
|
printf(" allowable angle so that tiny triangles are not created.\n");
|
|
#ifdef SINGLE
|
|
printf("Alternatively, try recompiling me with double precision\n");
|
|
printf(" arithmetic (by removing \"#define SINGLE\" from the\n");
|
|
printf(" source file or \"-DSINGLE\" from the makefile).\n");
|
|
#endif /* SINGLE */
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* splitencsegs() Split all the encroached subsegments. */
|
|
/* */
|
|
/* Each encroached subsegment is repaired by splitting it - inserting a */
|
|
/* vertex at or near its midpoint. Newly inserted vertices may encroach */
|
|
/* upon other subsegments; these are also repaired. */
|
|
/* */
|
|
/* `triflaws' is a flag that specifies whether one should take note of new */
|
|
/* bad triangles that result from inserting vertices to repair encroached */
|
|
/* subsegments. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void splitencsegs(struct mesh *m, struct behavior *b, int triflaws)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void splitencsegs(m, b, triflaws)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int triflaws;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri enctri;
|
|
struct otri testtri;
|
|
struct osub testsh;
|
|
struct osub currentenc;
|
|
struct badsubseg *encloop;
|
|
vertex eorg, edest, eapex;
|
|
vertex newvertex;
|
|
enum insertvertexresult success;
|
|
REAL segmentlength, nearestpoweroftwo;
|
|
REAL split;
|
|
REAL multiplier, divisor;
|
|
int acuteorg, acuteorg2, acutedest, acutedest2;
|
|
int dummy;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by stpivot(). */
|
|
subseg sptr; /* Temporary variable used by snext(). */
|
|
|
|
/* Note that steinerleft == -1 if an unlimited number */
|
|
/* of Steiner points is allowed. */
|
|
while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) {
|
|
traversalinit(&m->badsubsegs);
|
|
encloop = badsubsegtraverse(m);
|
|
while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) {
|
|
sdecode(encloop->encsubseg, currentenc);
|
|
sorg(currentenc, eorg);
|
|
sdest(currentenc, edest);
|
|
/* Make sure that this segment is still the same segment it was */
|
|
/* when it was determined to be encroached. If the segment was */
|
|
/* enqueued multiple times (because several newly inserted */
|
|
/* vertices encroached it), it may have already been split. */
|
|
if (!deadsubseg(currentenc.ss) &&
|
|
(eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) {
|
|
/* To decide where to split a segment, we need to know if the */
|
|
/* segment shares an endpoint with an adjacent segment. */
|
|
/* The concern is that, if we simply split every encroached */
|
|
/* segment in its center, two adjacent segments with a small */
|
|
/* angle between them might lead to an infinite loop; each */
|
|
/* vertex added to split one segment will encroach upon the */
|
|
/* other segment, which must then be split with a vertex that */
|
|
/* will encroach upon the first segment, and so on forever. */
|
|
/* To avoid this, imagine a set of concentric circles, whose */
|
|
/* radii are powers of two, about each segment endpoint. */
|
|
/* These concentric circles determine where the segment is */
|
|
/* split. (If both endpoints are shared with adjacent */
|
|
/* segments, split the segment in the middle, and apply the */
|
|
/* concentric circles for later splittings.) */
|
|
|
|
/* Is the origin shared with another segment? */
|
|
stpivot(currentenc, enctri);
|
|
lnext(enctri, testtri);
|
|
tspivot(testtri, testsh);
|
|
acuteorg = testsh.ss != m->dummysub;
|
|
/* Is the destination shared with another segment? */
|
|
lnextself(testtri);
|
|
tspivot(testtri, testsh);
|
|
acutedest = testsh.ss != m->dummysub;
|
|
|
|
/* If we're using Chew's algorithm (rather than Ruppert's) */
|
|
/* to define encroachment, delete free vertices from the */
|
|
/* subsegment's diametral circle. */
|
|
if (!b->conformdel && !acuteorg && !acutedest) {
|
|
apex(enctri, eapex);
|
|
while ((vertextype(eapex) == FREEVERTEX) &&
|
|
((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
|
|
deletevertex(m, b, &testtri);
|
|
stpivot(currentenc, enctri);
|
|
apex(enctri, eapex);
|
|
lprev(enctri, testtri);
|
|
}
|
|
}
|
|
|
|
/* Now, check the other side of the segment, if there's a triangle */
|
|
/* there. */
|
|
sym(enctri, testtri);
|
|
if (testtri.tri != m->dummytri) {
|
|
/* Is the destination shared with another segment? */
|
|
lnextself(testtri);
|
|
tspivot(testtri, testsh);
|
|
acutedest2 = testsh.ss != m->dummysub;
|
|
acutedest = acutedest || acutedest2;
|
|
/* Is the origin shared with another segment? */
|
|
lnextself(testtri);
|
|
tspivot(testtri, testsh);
|
|
acuteorg2 = testsh.ss != m->dummysub;
|
|
acuteorg = acuteorg || acuteorg2;
|
|
|
|
/* Delete free vertices from the subsegment's diametral circle. */
|
|
if (!b->conformdel && !acuteorg2 && !acutedest2) {
|
|
org(testtri, eapex);
|
|
while ((vertextype(eapex) == FREEVERTEX) &&
|
|
((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
|
|
(eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
|
|
deletevertex(m, b, &testtri);
|
|
sym(enctri, testtri);
|
|
apex(testtri, eapex);
|
|
lprevself(testtri);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Use the concentric circles if exactly one endpoint is shared */
|
|
/* with another adjacent segment. */
|
|
if (acuteorg || acutedest) {
|
|
segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) +
|
|
(edest[1] - eorg[1]) * (edest[1] - eorg[1]));
|
|
/* Find the power of two that most evenly splits the segment. */
|
|
/* The worst case is a 2:1 ratio between subsegment lengths. */
|
|
nearestpoweroftwo = 1.0;
|
|
while (segmentlength > 3.0 * nearestpoweroftwo) {
|
|
nearestpoweroftwo *= 2.0;
|
|
}
|
|
while (segmentlength < 1.5 * nearestpoweroftwo) {
|
|
nearestpoweroftwo *= 0.5;
|
|
}
|
|
/* Where do we split the segment? */
|
|
split = nearestpoweroftwo / segmentlength;
|
|
if (acutedest) {
|
|
split = 1.0 - split;
|
|
}
|
|
} else {
|
|
/* If we're not worried about adjacent segments, split */
|
|
/* this segment in the middle. */
|
|
split = 0.5;
|
|
}
|
|
|
|
/* Create the new vertex. */
|
|
newvertex = (vertex) poolalloc(&m->vertices);
|
|
/* Interpolate its coordinate and attributes. */
|
|
for (i = 0; i < 2 + m->nextras; i++) {
|
|
newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]);
|
|
}
|
|
|
|
if (!b->noexact) {
|
|
/* Roundoff in the above calculation may yield a `newvertex' */
|
|
/* that is not precisely collinear with `eorg' and `edest'. */
|
|
/* Improve collinearity by one step of iterative refinement. */
|
|
multiplier = counterclockwise(m, b, eorg, edest, newvertex);
|
|
divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) +
|
|
(eorg[1] - edest[1]) * (eorg[1] - edest[1]));
|
|
if ((multiplier != 0.0) && (divisor != 0.0)) {
|
|
multiplier = multiplier / divisor;
|
|
/* Watch out for NANs. */
|
|
if (multiplier == multiplier) {
|
|
newvertex[0] += multiplier * (edest[1] - eorg[1]);
|
|
newvertex[1] += multiplier * (eorg[0] - edest[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
setvertexmark(newvertex, mark(currentenc));
|
|
setvertextype(newvertex, SEGMENTVERTEX);
|
|
if (b->verbose > 1) {
|
|
printf(
|
|
" Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
|
|
eorg[0], eorg[1], edest[0], edest[1],
|
|
newvertex[0], newvertex[1]);
|
|
}
|
|
/* Check whether the new vertex lies on an endpoint. */
|
|
if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) ||
|
|
((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) {
|
|
printf("Error: Ran out of precision at (%.12g, %.12g).\n",
|
|
newvertex[0], newvertex[1]);
|
|
printf("I attempted to split a segment to a smaller size than\n");
|
|
printf(" can be accommodated by the finite precision of\n");
|
|
printf(" floating point arithmetic.\n");
|
|
precisionerror();
|
|
triexit(1);
|
|
}
|
|
/* Insert the splitting vertex. This should always succeed. */
|
|
success = insertvertex(m, b, newvertex, &enctri, ¤tenc,
|
|
1, triflaws);
|
|
if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) {
|
|
printf("Internal error in splitencsegs():\n");
|
|
printf(" Failure to split a segment.\n");
|
|
internalerror();
|
|
}
|
|
if (m->steinerleft > 0) {
|
|
m->steinerleft--;
|
|
}
|
|
/* Check the two new subsegments to see if they're encroached. */
|
|
dummy = checkseg4encroach(m, b, ¤tenc);
|
|
snextself(currentenc);
|
|
dummy = checkseg4encroach(m, b, ¤tenc);
|
|
}
|
|
|
|
badsubsegdealloc(m, encloop);
|
|
encloop = badsubsegtraverse(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* tallyfaces() Test every triangle in the mesh for quality measures. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void tallyfaces(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void tallyfaces(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop;
|
|
|
|
if (b->verbose) {
|
|
printf(" Making a list of bad triangles.\n");
|
|
}
|
|
traversalinit(&m->triangles);
|
|
triangleloop.orient = 0;
|
|
triangleloop.tri = triangletraverse(m);
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
/* If the triangle is bad, enqueue it. */
|
|
testtriangle(m, b, &triangleloop);
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* splittriangle() Inserts a vertex at the circumcenter of a triangle. */
|
|
/* Deletes the newly inserted vertex if it encroaches */
|
|
/* upon a segment. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void splittriangle(struct mesh *m, struct behavior *b,
|
|
struct badtriang *badtri)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void splittriangle(m, b, badtri)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
struct badtriang *badtri;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri badotri;
|
|
vertex borg, bdest, bapex;
|
|
vertex newvertex;
|
|
REAL xi, eta;
|
|
enum insertvertexresult success;
|
|
int errorflag;
|
|
int i;
|
|
|
|
decode(badtri->poortri, badotri);
|
|
org(badotri, borg);
|
|
dest(badotri, bdest);
|
|
apex(badotri, bapex);
|
|
/* Make sure that this triangle is still the same triangle it was */
|
|
/* when it was tested and determined to be of bad quality. */
|
|
/* Subsequent transformations may have made it a different triangle. */
|
|
if (!deadtri(badotri.tri) && (borg == badtri->triangorg) &&
|
|
(bdest == badtri->triangdest) && (bapex == badtri->triangapex)) {
|
|
if (b->verbose > 1) {
|
|
printf(" Splitting this triangle at its circumcenter:\n");
|
|
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
|
|
borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
|
|
}
|
|
|
|
errorflag = 0;
|
|
/* Create a new vertex at the triangle's circumcenter. */
|
|
newvertex = (vertex) poolalloc(&m->vertices);
|
|
findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, 1);
|
|
|
|
/* Check whether the new vertex lies on a triangle vertex. */
|
|
if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) ||
|
|
((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) ||
|
|
((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) {
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: New vertex (%.12g, %.12g) falls on existing vertex.\n",
|
|
newvertex[0], newvertex[1]);
|
|
errorflag = 1;
|
|
}
|
|
vertexdealloc(m, newvertex);
|
|
} else {
|
|
for (i = 2; i < 2 + m->nextras; i++) {
|
|
/* Interpolate the vertex attributes at the circumcenter. */
|
|
newvertex[i] = borg[i] + xi * (bdest[i] - borg[i])
|
|
+ eta * (bapex[i] - borg[i]);
|
|
}
|
|
/* The new vertex must be in the interior, and therefore is a */
|
|
/* free vertex with a marker of zero. */
|
|
setvertexmark(newvertex, 0);
|
|
setvertextype(newvertex, FREEVERTEX);
|
|
|
|
/* Ensure that the handle `badotri' does not represent the longest */
|
|
/* edge of the triangle. This ensures that the circumcenter must */
|
|
/* fall to the left of this edge, so point location will work. */
|
|
/* (If the angle org-apex-dest exceeds 90 degrees, then the */
|
|
/* circumcenter lies outside the org-dest edge, and eta is */
|
|
/* negative. Roundoff error might prevent eta from being */
|
|
/* negative when it should be, so I test eta against xi.) */
|
|
if (eta < xi) {
|
|
lprevself(badotri);
|
|
}
|
|
|
|
/* Insert the circumcenter, searching from the edge of the triangle, */
|
|
/* and maintain the Delaunay property of the triangulation. */
|
|
success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL,
|
|
1, 1);
|
|
if (success == SUCCESSFULVERTEX) {
|
|
if (m->steinerleft > 0) {
|
|
m->steinerleft--;
|
|
}
|
|
} else if (success == ENCROACHINGVERTEX) {
|
|
/* If the newly inserted vertex encroaches upon a subsegment, */
|
|
/* delete the new vertex. */
|
|
undovertex(m, b);
|
|
if (b->verbose > 1) {
|
|
printf(" Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
|
|
}
|
|
vertexdealloc(m, newvertex);
|
|
} else if (success == VIOLATINGVERTEX) {
|
|
/* Failed to insert the new vertex, but some subsegment was */
|
|
/* marked as being encroached. */
|
|
vertexdealloc(m, newvertex);
|
|
} else { /* success == DUPLICATEVERTEX */
|
|
/* Couldn't insert the new vertex because a vertex is already there. */
|
|
if (!b->quiet) {
|
|
printf(
|
|
"Warning: New vertex (%.12g, %.12g) falls on existing vertex.\n",
|
|
newvertex[0], newvertex[1]);
|
|
errorflag = 1;
|
|
}
|
|
vertexdealloc(m, newvertex);
|
|
}
|
|
}
|
|
if (errorflag) {
|
|
if (b->verbose) {
|
|
printf(" The new vertex is at the circumcenter of triangle\n");
|
|
printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
|
|
borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
|
|
}
|
|
printf("This probably means that I am trying to refine triangles\n");
|
|
printf(" to a smaller size than can be accommodated by the finite\n");
|
|
printf(" precision of floating point arithmetic. (You can be\n");
|
|
printf(" sure of this if I fail to terminate.)\n");
|
|
precisionerror();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* enforcequality() Remove all the encroached subsegments and bad */
|
|
/* triangles from the triangulation. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef CDT_ONLY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void enforcequality(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void enforcequality(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct badtriang *badtri;
|
|
int i;
|
|
|
|
if (!b->quiet) {
|
|
printf("Adding Steiner points to enforce quality.\n");
|
|
}
|
|
/* Initialize the pool of encroached subsegments. */
|
|
poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK,
|
|
BADSUBSEGPERBLOCK, 0);
|
|
if (b->verbose) {
|
|
printf(" Looking for encroached subsegments.\n");
|
|
}
|
|
/* Test all segments to see if they're encroached. */
|
|
tallyencs(m, b);
|
|
if (b->verbose && (m->badsubsegs.items > 0)) {
|
|
printf(" Splitting encroached subsegments.\n");
|
|
}
|
|
/* Fix encroached subsegments without noting bad triangles. */
|
|
splitencsegs(m, b, 0);
|
|
/* At this point, if we haven't run out of Steiner points, the */
|
|
/* triangulation should be (conforming) Delaunay. */
|
|
|
|
/* Next, we worry about enforcing triangle quality. */
|
|
if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
|
|
/* Initialize the pool of bad triangles. */
|
|
poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK,
|
|
BADTRIPERBLOCK, 0);
|
|
/* Initialize the queues of bad triangles. */
|
|
for (i = 0; i < 4096; i++) {
|
|
m->queuefront[i] = (struct badtriang *) NULL;
|
|
}
|
|
m->firstnonemptyq = -1;
|
|
/* Test all triangles to see if they're bad. */
|
|
tallyfaces(m, b);
|
|
/* Initialize the pool of recently flipped triangles. */
|
|
poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK,
|
|
FLIPSTACKERPERBLOCK, 0);
|
|
m->checkquality = 1;
|
|
if (b->verbose) {
|
|
printf(" Splitting bad triangles.\n");
|
|
}
|
|
while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) {
|
|
/* Fix one bad triangle by inserting a vertex at its circumcenter. */
|
|
badtri = dequeuebadtriang(m);
|
|
splittriangle(m, b, badtri);
|
|
if (m->badsubsegs.items > 0) {
|
|
/* Put bad triangle back in queue for another try later. */
|
|
enqueuebadtriang(m, b, badtri);
|
|
/* Fix any encroached subsegments that resulted. */
|
|
/* Record any new bad triangles that result. */
|
|
splitencsegs(m, b, 1);
|
|
} else {
|
|
/* Return the bad triangle to the pool. */
|
|
pooldealloc(&m->badtriangles, (VOID *) badtri);
|
|
}
|
|
}
|
|
}
|
|
/* At this point, if the "-D" switch was selected and we haven't run out */
|
|
/* of Steiner points, the triangulation should be (conforming) Delaunay */
|
|
/* and have no low-quality triangles. */
|
|
|
|
/* Might we have run out of Steiner points too soon? */
|
|
if (!b->quiet && b->conformdel && (m->badsubsegs.items > 0) &&
|
|
(m->steinerleft == 0)) {
|
|
printf("\nWarning: I ran out of Steiner points, but the mesh has\n");
|
|
if (m->badsubsegs.items == 1) {
|
|
printf(" one encroached subsegment, and therefore might not be truly\n"
|
|
);
|
|
} else {
|
|
printf(" %ld encroached subsegments, and therefore might not be truly\n"
|
|
, m->badsubsegs.items);
|
|
}
|
|
printf(" Delaunay. If the Delaunay property is important to you,\n");
|
|
printf(" try increasing the number of Steiner points (controlled by\n");
|
|
printf(" the -S switch) slightly and try again.\n\n");
|
|
}
|
|
}
|
|
|
|
#endif /* not CDT_ONLY */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* Mesh quality maintenance ends here *********/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* highorder() Create extra nodes for quadratic subparametric elements. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void highorder(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void highorder(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop, trisym;
|
|
struct osub checkmark;
|
|
vertex newvertex;
|
|
vertex torg, tdest;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
if (!b->quiet) {
|
|
printf("Adding vertices for second-order triangles.\n");
|
|
}
|
|
/* The following line ensures that dead items in the pool of nodes */
|
|
/* cannot be allocated for the extra nodes associated with high */
|
|
/* order elements. This ensures that the primary nodes (at the */
|
|
/* corners of elements) will occur earlier in the output files, and */
|
|
/* have lower indices, than the extra nodes. */
|
|
m->vertices.deaditemstack = (VOID *) NULL;
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
/* To loop over the set of edges, loop over all triangles, and look at */
|
|
/* the three edges of each triangle. If there isn't another triangle */
|
|
/* adjacent to the edge, operate on the edge. If there is another */
|
|
/* adjacent triangle, operate on the edge only if the current triangle */
|
|
/* has a smaller pointer than its neighbor. This way, each edge is */
|
|
/* considered only once. */
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
sym(triangleloop, trisym);
|
|
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
|
|
org(triangleloop, torg);
|
|
dest(triangleloop, tdest);
|
|
/* Create a new node in the middle of the edge. Interpolate */
|
|
/* its attributes. */
|
|
newvertex = (vertex) poolalloc(&m->vertices);
|
|
for (i = 0; i < 2 + m->nextras; i++) {
|
|
newvertex[i] = 0.5 * (torg[i] + tdest[i]);
|
|
}
|
|
/* Set the new node's marker to zero or one, depending on */
|
|
/* whether it lies on a boundary. */
|
|
setvertexmark(newvertex, trisym.tri == m->dummytri);
|
|
setvertextype(newvertex,
|
|
trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
|
|
if (b->usesegments) {
|
|
tspivot(triangleloop, checkmark);
|
|
/* If this edge is a segment, transfer the marker to the new node. */
|
|
if (checkmark.ss != m->dummysub) {
|
|
setvertexmark(newvertex, mark(checkmark));
|
|
setvertextype(newvertex, SEGMENTVERTEX);
|
|
}
|
|
}
|
|
if (b->verbose > 1) {
|
|
printf(" Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
|
|
}
|
|
/* Record the new node in the (one or two) adjacent elements. */
|
|
triangleloop.tri[m->highorderindex + triangleloop.orient] =
|
|
(triangle) newvertex;
|
|
if (trisym.tri != m->dummytri) {
|
|
trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
|
|
}
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
}
|
|
|
|
/********* File I/O routines begin here *********/
|
|
/** **/
|
|
/** **/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* readline() Read a nonempty line from a file. */
|
|
/* */
|
|
/* A line is considered "nonempty" if it contains something that looks like */
|
|
/* a number. Comments (prefaced by `#') are ignored. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
char *readline(char *string, FILE *infile, char *infilename)
|
|
#else /* not ANSI_DECLARATORS */
|
|
char *readline(string, infile, infilename)
|
|
char *string;
|
|
FILE *infile;
|
|
char *infilename;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
char *result;
|
|
|
|
/* Search for something that looks like a number. */
|
|
do {
|
|
result = fgets(string, INPUTLINESIZE, infile);
|
|
if (result == (char *) NULL) {
|
|
printf(" Error: Unexpected end of file in %s.\n", infilename);
|
|
triexit(1);
|
|
}
|
|
/* Skip anything that doesn't look like a number, a comment, */
|
|
/* or the end of a line. */
|
|
while ((*result != '\0') && (*result != '#')
|
|
&& (*result != '.') && (*result != '+') && (*result != '-')
|
|
&& ((*result < '0') || (*result > '9'))) {
|
|
result++;
|
|
}
|
|
/* If it's a comment or end of line, read another line and try again. */
|
|
} while ((*result == '#') || (*result == '\0'));
|
|
return result;
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* findfield() Find the next field of a string. */
|
|
/* */
|
|
/* Jumps past the current field by searching for whitespace, then jumps */
|
|
/* past the whitespace to find the next field. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
char *findfield(char *string)
|
|
#else /* not ANSI_DECLARATORS */
|
|
char *findfield(string)
|
|
char *string;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
char *result;
|
|
|
|
result = string;
|
|
/* Skip the current field. Stop upon reaching whitespace. */
|
|
while ((*result != '\0') && (*result != '#')
|
|
&& (*result != ' ') && (*result != '\t')) {
|
|
result++;
|
|
}
|
|
/* Now skip the whitespace and anything else that doesn't look like a */
|
|
/* number, a comment, or the end of a line. */
|
|
while ((*result != '\0') && (*result != '#')
|
|
&& (*result != '.') && (*result != '+') && (*result != '-')
|
|
&& ((*result < '0') || (*result > '9'))) {
|
|
result++;
|
|
}
|
|
/* Check for a comment (prefixed with `#'). */
|
|
if (*result == '#') {
|
|
*result = '\0';
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* readnodes() Read the vertices from a file, which may be a .node or */
|
|
/* .poly file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void readnodes(struct mesh *m, struct behavior *b, char *nodefilename,
|
|
char *polyfilename, FILE **polyfile)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void readnodes(m, b, nodefilename, polyfilename, polyfile)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *nodefilename;
|
|
char *polyfilename;
|
|
FILE **polyfile;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
FILE *infile;
|
|
vertex vertexloop;
|
|
char inputline[INPUTLINESIZE];
|
|
char *stringptr;
|
|
char *infilename;
|
|
REAL x, y;
|
|
int firstnode;
|
|
int nodemarkers;
|
|
int currentmarker;
|
|
int i, j;
|
|
|
|
if (b->poly) {
|
|
/* Read the vertices from a .poly file. */
|
|
if (!b->quiet) {
|
|
printf("Opening %s.\n", polyfilename);
|
|
}
|
|
*polyfile = fopen(polyfilename, "r");
|
|
if (*polyfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot access file %s.\n", polyfilename);
|
|
triexit(1);
|
|
}
|
|
/* Read number of vertices, number of dimensions, number of vertex */
|
|
/* attributes, and number of boundary markers. */
|
|
stringptr = readline(inputline, *polyfile, polyfilename);
|
|
m->invertices = (int) strtol(stringptr, &stringptr, 0);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
m->mesh_dim = 2;
|
|
} else {
|
|
m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
m->nextras = 0;
|
|
} else {
|
|
m->nextras = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
nodemarkers = 0;
|
|
} else {
|
|
nodemarkers = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
if (m->invertices > 0) {
|
|
infile = *polyfile;
|
|
infilename = polyfilename;
|
|
m->readnodefile = 0;
|
|
} else {
|
|
/* If the .poly file claims there are zero vertices, that means that */
|
|
/* the vertices should be read from a separate .node file. */
|
|
m->readnodefile = 1;
|
|
infilename = nodefilename;
|
|
}
|
|
} else {
|
|
m->readnodefile = 1;
|
|
infilename = nodefilename;
|
|
*polyfile = (FILE *) NULL;
|
|
}
|
|
|
|
if (m->readnodefile) {
|
|
/* Read the vertices from a .node file. */
|
|
if (!b->quiet) {
|
|
printf("Opening %s.\n", nodefilename);
|
|
}
|
|
infile = fopen(nodefilename, "r");
|
|
if (infile == (FILE *) NULL) {
|
|
printf(" Error: Cannot access file %s.\n", nodefilename);
|
|
triexit(1);
|
|
}
|
|
/* Read number of vertices, number of dimensions, number of vertex */
|
|
/* attributes, and number of boundary markers. */
|
|
stringptr = readline(inputline, infile, nodefilename);
|
|
m->invertices = (int) strtol(stringptr, &stringptr, 0);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
m->mesh_dim = 2;
|
|
} else {
|
|
m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
m->nextras = 0;
|
|
} else {
|
|
m->nextras = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
nodemarkers = 0;
|
|
} else {
|
|
nodemarkers = (int) strtol(stringptr, &stringptr, 0);
|
|
}
|
|
}
|
|
|
|
if (m->invertices < 3) {
|
|
printf("Error: Input must have at least three input vertices.\n");
|
|
triexit(1);
|
|
}
|
|
if (m->mesh_dim != 2) {
|
|
printf("Error: Triangle only works with two-dimensional meshes.\n");
|
|
triexit(1);
|
|
}
|
|
if (m->nextras == 0) {
|
|
b->weighted = 0;
|
|
}
|
|
|
|
initializevertexpool(m, b);
|
|
|
|
/* Read the vertices. */
|
|
for (i = 0; i < m->invertices; i++) {
|
|
vertexloop = (vertex) poolalloc(&m->vertices);
|
|
stringptr = readline(inputline, infile, infilename);
|
|
if (i == 0) {
|
|
firstnode = (int) strtol(stringptr, &stringptr, 0);
|
|
if ((firstnode == 0) || (firstnode == 1)) {
|
|
b->firstnumber = firstnode;
|
|
}
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Vertex %d has no x coordinate.\n", b->firstnumber + i);
|
|
triexit(1);
|
|
}
|
|
x = (REAL) strtod(stringptr, &stringptr);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Vertex %d has no y coordinate.\n", b->firstnumber + i);
|
|
triexit(1);
|
|
}
|
|
y = (REAL) strtod(stringptr, &stringptr);
|
|
vertexloop[0] = x;
|
|
vertexloop[1] = y;
|
|
/* Read the vertex attributes. */
|
|
for (j = 2; j < 2 + m->nextras; j++) {
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
vertexloop[j] = 0.0;
|
|
} else {
|
|
vertexloop[j] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
}
|
|
if (nodemarkers) {
|
|
/* Read a vertex marker. */
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
setvertexmark(vertexloop, 0);
|
|
} else {
|
|
currentmarker = (int) strtol(stringptr, &stringptr, 0);
|
|
setvertexmark(vertexloop, currentmarker);
|
|
}
|
|
} else {
|
|
/* If no markers are specified in the file, they default to zero. */
|
|
setvertexmark(vertexloop, 0);
|
|
}
|
|
setvertextype(vertexloop, INPUTVERTEX);
|
|
/* Determine the smallest and largest x and y coordinates. */
|
|
if (i == 0) {
|
|
m->xmin = m->xmax = x;
|
|
m->ymin = m->ymax = y;
|
|
} else {
|
|
m->xmin = (x < m->xmin) ? x : m->xmin;
|
|
m->xmax = (x > m->xmax) ? x : m->xmax;
|
|
m->ymin = (y < m->ymin) ? y : m->ymin;
|
|
m->ymax = (y > m->ymax) ? y : m->ymax;
|
|
}
|
|
}
|
|
if (m->readnodefile) {
|
|
fclose(infile);
|
|
}
|
|
|
|
/* Nonexistent x value used as a flag to mark circle events in sweepline */
|
|
/* Delaunay algorithm. */
|
|
m->xminextreme = 10 * m->xmin - 9 * m->xmax;
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* transfernodes() Read the vertices from memory. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist,
|
|
REAL *pointattriblist, int *pointmarkerlist,
|
|
int numberofpoints, int numberofpointattribs)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist,
|
|
numberofpoints, numberofpointattribs)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
REAL *pointlist;
|
|
REAL *pointattriblist;
|
|
int *pointmarkerlist;
|
|
int numberofpoints;
|
|
int numberofpointattribs;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex vertexloop;
|
|
REAL x, y;
|
|
int i, j;
|
|
int coordindex;
|
|
int attribindex;
|
|
|
|
m->invertices = numberofpoints;
|
|
m->mesh_dim = 2;
|
|
m->nextras = numberofpointattribs;
|
|
m->readnodefile = 0;
|
|
if (m->invertices < 3) {
|
|
printf("Error: Input must have at least three input vertices.\n");
|
|
triexit(1);
|
|
}
|
|
if (m->nextras == 0) {
|
|
b->weighted = 0;
|
|
}
|
|
|
|
initializevertexpool(m, b);
|
|
|
|
/* Read the vertices. */
|
|
coordindex = 0;
|
|
attribindex = 0;
|
|
for (i = 0; i < m->invertices; i++) {
|
|
vertexloop = (vertex) poolalloc(&m->vertices);
|
|
/* Read the vertex coordinates. */
|
|
x = vertexloop[0] = pointlist[coordindex++];
|
|
y = vertexloop[1] = pointlist[coordindex++];
|
|
/* Read the vertex attributes. */
|
|
for (j = 0; j < numberofpointattribs; j++) {
|
|
vertexloop[2 + j] = pointattriblist[attribindex++];
|
|
}
|
|
if (pointmarkerlist != (int *) NULL) {
|
|
/* Read a vertex marker. */
|
|
setvertexmark(vertexloop, pointmarkerlist[i]);
|
|
} else {
|
|
/* If no markers are specified, they default to zero. */
|
|
setvertexmark(vertexloop, 0);
|
|
}
|
|
setvertextype(vertexloop, INPUTVERTEX);
|
|
/* Determine the smallest and largest x and y coordinates. */
|
|
if (i == 0) {
|
|
m->xmin = m->xmax = x;
|
|
m->ymin = m->ymax = y;
|
|
} else {
|
|
m->xmin = (x < m->xmin) ? x : m->xmin;
|
|
m->xmax = (x > m->xmax) ? x : m->xmax;
|
|
m->ymin = (y < m->ymin) ? y : m->ymin;
|
|
m->ymax = (y > m->ymax) ? y : m->ymax;
|
|
}
|
|
}
|
|
|
|
/* Nonexistent x value used as a flag to mark circle events in sweepline */
|
|
/* Delaunay algorithm. */
|
|
m->xminextreme = 10 * m->xmin - 9 * m->xmax;
|
|
}
|
|
|
|
#endif /* TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* readholes() Read the holes, and possibly regional attributes and area */
|
|
/* constraints, from a .poly file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void readholes(struct mesh *m, struct behavior *b,
|
|
FILE *polyfile, char *polyfilename, REAL **hlist, int *holes,
|
|
REAL **rlist, int *regions)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
FILE *polyfile;
|
|
char *polyfilename;
|
|
REAL **hlist;
|
|
int *holes;
|
|
REAL **rlist;
|
|
int *regions;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
REAL *holelist;
|
|
REAL *regionlist;
|
|
char inputline[INPUTLINESIZE];
|
|
char *stringptr;
|
|
int index;
|
|
int i;
|
|
|
|
/* Read the holes. */
|
|
stringptr = readline(inputline, polyfile, polyfilename);
|
|
*holes = (int) strtol(stringptr, &stringptr, 0);
|
|
if (*holes > 0) {
|
|
holelist = (REAL *) trimalloc(2 * *holes * (int) sizeof(REAL));
|
|
*hlist = holelist;
|
|
for (i = 0; i < 2 * *holes; i += 2) {
|
|
stringptr = readline(inputline, polyfile, polyfilename);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Hole %d has no x coordinate.\n",
|
|
b->firstnumber + (i >> 1));
|
|
triexit(1);
|
|
} else {
|
|
holelist[i] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Hole %d has no y coordinate.\n",
|
|
b->firstnumber + (i >> 1));
|
|
triexit(1);
|
|
} else {
|
|
holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
}
|
|
} else {
|
|
*hlist = (REAL *) NULL;
|
|
}
|
|
|
|
#ifndef CDT_ONLY
|
|
if ((b->regionattrib || b->vararea) && !b->refine) {
|
|
/* Read the area constraints. */
|
|
stringptr = readline(inputline, polyfile, polyfilename);
|
|
*regions = (int) strtol(stringptr, &stringptr, 0);
|
|
if (*regions > 0) {
|
|
regionlist = (REAL *) trimalloc(4 * *regions * (int) sizeof(REAL));
|
|
*rlist = regionlist;
|
|
index = 0;
|
|
for (i = 0; i < *regions; i++) {
|
|
stringptr = readline(inputline, polyfile, polyfilename);
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Region %d has no x coordinate.\n",
|
|
b->firstnumber + i);
|
|
triexit(1);
|
|
} else {
|
|
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf("Error: Region %d has no y coordinate.\n",
|
|
b->firstnumber + i);
|
|
triexit(1);
|
|
} else {
|
|
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
printf(
|
|
"Error: Region %d has no region attribute or area constraint.\n",
|
|
b->firstnumber + i);
|
|
triexit(1);
|
|
} else {
|
|
regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
stringptr = findfield(stringptr);
|
|
if (*stringptr == '\0') {
|
|
regionlist[index] = regionlist[index - 1];
|
|
} else {
|
|
regionlist[index] = (REAL) strtod(stringptr, &stringptr);
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
} else {
|
|
/* Set `*regions' to zero to avoid an accidental free() later. */
|
|
*regions = 0;
|
|
*rlist = (REAL *) NULL;
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
|
|
fclose(polyfile);
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* finishfile() Write the command line to the output file so the user */
|
|
/* can remember how the file was generated. Close the file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void finishfile(FILE *outfile, int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void finishfile(outfile, argc, argv)
|
|
FILE *outfile;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
int i;
|
|
|
|
fprintf(outfile, "# Generated by");
|
|
for (i = 0; i < argc; i++) {
|
|
fprintf(outfile, " ");
|
|
fputs(argv[i], outfile);
|
|
}
|
|
fprintf(outfile, "\n");
|
|
fclose(outfile);
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writenodes() Number the vertices and write them to a .node file. */
|
|
/* */
|
|
/* To save memory, the vertex numbers are written over the boundary markers */
|
|
/* after the vertices are written to a file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist,
|
|
REAL **pointattriblist, int **pointmarkerlist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
REAL **pointlist;
|
|
REAL **pointattriblist;
|
|
int **pointmarkerlist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writenodes(struct mesh *m, struct behavior *b, char *nodefilename,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writenodes(m, b, nodefilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *nodefilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
REAL *plist;
|
|
REAL *palist;
|
|
int *pmlist;
|
|
int coordindex;
|
|
int attribindex;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
#endif /* not TRILIBRARY */
|
|
vertex vertexloop;
|
|
long outvertices;
|
|
int vertexnumber;
|
|
int i;
|
|
|
|
if (b->jettison) {
|
|
outvertices = m->vertices.items - m->undeads;
|
|
} else {
|
|
outvertices = m->vertices.items;
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing vertices.\n");
|
|
}
|
|
/* Allocate memory for output vertices if necessary. */
|
|
if (*pointlist == (REAL *) NULL) {
|
|
*pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));
|
|
}
|
|
/* Allocate memory for output vertex attributes if necessary. */
|
|
if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
|
|
*pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras *
|
|
sizeof(REAL)));
|
|
}
|
|
/* Allocate memory for output vertex markers if necessary. */
|
|
if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
|
|
*pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
|
|
}
|
|
plist = *pointlist;
|
|
palist = *pointattriblist;
|
|
pmlist = *pointmarkerlist;
|
|
coordindex = 0;
|
|
attribindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", nodefilename);
|
|
}
|
|
outfile = fopen(nodefilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", nodefilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of vertices, number of dimensions, number of vertex attributes, */
|
|
/* and number of boundary markers (zero or one). */
|
|
fprintf(outfile, "%ld %d %d %d\n", outvertices, m->mesh_dim,
|
|
m->nextras, 1 - b->nobound);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->vertices);
|
|
vertexnumber = b->firstnumber;
|
|
vertexloop = vertextraverse(m);
|
|
while (vertexloop != (vertex) NULL) {
|
|
if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
|
|
#ifdef TRILIBRARY
|
|
/* X and y coordinates. */
|
|
plist[coordindex++] = vertexloop[0];
|
|
plist[coordindex++] = vertexloop[1];
|
|
/* Vertex attributes. */
|
|
for (i = 0; i < m->nextras; i++) {
|
|
palist[attribindex++] = vertexloop[2 + i];
|
|
}
|
|
if (!b->nobound) {
|
|
/* Copy the boundary marker. */
|
|
pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
/* Vertex number, x and y coordinates. */
|
|
fprintf(outfile, "%4d %.17g %.17g", vertexnumber, vertexloop[0],
|
|
vertexloop[1]);
|
|
for (i = 0; i < m->nextras; i++) {
|
|
/* Write an attribute. */
|
|
fprintf(outfile, " %.17g", vertexloop[i + 2]);
|
|
}
|
|
if (b->nobound) {
|
|
fprintf(outfile, "\n");
|
|
} else {
|
|
/* Write the boundary marker. */
|
|
fprintf(outfile, " %d\n", vertexmark(vertexloop));
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
setvertexmark(vertexloop, vertexnumber);
|
|
vertexnumber++;
|
|
}
|
|
vertexloop = vertextraverse(m);
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* numbernodes() Number the vertices. */
|
|
/* */
|
|
/* Each vertex is assigned a marker equal to its number. */
|
|
/* */
|
|
/* Used when writenodes() is not called because no .node file is written. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void numbernodes(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void numbernodes(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
vertex vertexloop;
|
|
int vertexnumber;
|
|
|
|
traversalinit(&m->vertices);
|
|
vertexnumber = b->firstnumber;
|
|
vertexloop = vertextraverse(m);
|
|
while (vertexloop != (vertex) NULL) {
|
|
setvertexmark(vertexloop, vertexnumber);
|
|
if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
|
|
vertexnumber++;
|
|
}
|
|
vertexloop = vertextraverse(m);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writeelements() Write the triangles to an .ele file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeelements(struct mesh *m, struct behavior *b,
|
|
int **trianglelist, REAL **triangleattriblist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeelements(m, b, trianglelist, triangleattriblist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int **trianglelist;
|
|
REAL **triangleattriblist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeelements(struct mesh *m, struct behavior *b, char *elefilename,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeelements(m, b, elefilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *elefilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
int *tlist;
|
|
REAL *talist;
|
|
int vertexindex;
|
|
int attribindex;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
#endif /* not TRILIBRARY */
|
|
struct otri triangleloop;
|
|
vertex p1, p2, p3;
|
|
vertex mid1, mid2, mid3;
|
|
long elementnumber;
|
|
int i;
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing triangles.\n");
|
|
}
|
|
/* Allocate memory for output triangles if necessary. */
|
|
if (*trianglelist == (int *) NULL) {
|
|
*trianglelist = (int *) trimalloc((int) (m->triangles.items *
|
|
((b->order + 1) * (b->order + 2) /
|
|
2) * sizeof(int)));
|
|
}
|
|
/* Allocate memory for output triangle attributes if necessary. */
|
|
if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
|
|
*triangleattriblist = (REAL *) trimalloc((int) (m->triangles.items *
|
|
m->eextras *
|
|
sizeof(REAL)));
|
|
}
|
|
tlist = *trianglelist;
|
|
talist = *triangleattriblist;
|
|
vertexindex = 0;
|
|
attribindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", elefilename);
|
|
}
|
|
outfile = fopen(elefilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", elefilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of triangles, vertices per triangle, attributes per triangle. */
|
|
fprintf(outfile, "%ld %d %d\n", m->triangles.items,
|
|
(b->order + 1) * (b->order + 2) / 2, m->eextras);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
triangleloop.orient = 0;
|
|
elementnumber = b->firstnumber;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
org(triangleloop, p1);
|
|
dest(triangleloop, p2);
|
|
apex(triangleloop, p3);
|
|
if (b->order == 1) {
|
|
#ifdef TRILIBRARY
|
|
tlist[vertexindex++] = vertexmark(p1);
|
|
tlist[vertexindex++] = vertexmark(p2);
|
|
tlist[vertexindex++] = vertexmark(p3);
|
|
#else /* not TRILIBRARY */
|
|
/* Triangle number, indices for three vertices. */
|
|
fprintf(outfile, "%4ld %4d %4d %4d", elementnumber,
|
|
vertexmark(p1), vertexmark(p2), vertexmark(p3));
|
|
#endif /* not TRILIBRARY */
|
|
} else {
|
|
mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
|
|
mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
|
|
mid3 = (vertex) triangleloop.tri[m->highorderindex];
|
|
#ifdef TRILIBRARY
|
|
tlist[vertexindex++] = vertexmark(p1);
|
|
tlist[vertexindex++] = vertexmark(p2);
|
|
tlist[vertexindex++] = vertexmark(p3);
|
|
tlist[vertexindex++] = vertexmark(mid1);
|
|
tlist[vertexindex++] = vertexmark(mid2);
|
|
tlist[vertexindex++] = vertexmark(mid3);
|
|
#else /* not TRILIBRARY */
|
|
/* Triangle number, indices for six vertices. */
|
|
fprintf(outfile, "%4ld %4d %4d %4d %4d %4d %4d", elementnumber,
|
|
vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1),
|
|
vertexmark(mid2), vertexmark(mid3));
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
for (i = 0; i < m->eextras; i++) {
|
|
talist[attribindex++] = elemattribute(triangleloop, i);
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
for (i = 0; i < m->eextras; i++) {
|
|
fprintf(outfile, " %.17g", elemattribute(triangleloop, i));
|
|
}
|
|
fprintf(outfile, "\n");
|
|
#endif /* not TRILIBRARY */
|
|
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber++;
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writepoly() Write the segments and holes to a .poly file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writepoly(struct mesh *m, struct behavior *b,
|
|
int **segmentlist, int **segmentmarkerlist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writepoly(m, b, segmentlist, segmentmarkerlist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int **segmentlist;
|
|
int **segmentmarkerlist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writepoly(struct mesh *m, struct behavior *b, char *polyfilename,
|
|
REAL *holelist, int holes, REAL *regionlist, int regions,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions,
|
|
argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *polyfilename;
|
|
REAL *holelist;
|
|
int holes;
|
|
REAL *regionlist;
|
|
int regions;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
int *slist;
|
|
int *smlist;
|
|
int index;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
long holenumber, regionnumber;
|
|
#endif /* not TRILIBRARY */
|
|
struct osub subsegloop;
|
|
vertex endpoint1, endpoint2;
|
|
long subsegnumber;
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing segments.\n");
|
|
}
|
|
/* Allocate memory for output segments if necessary. */
|
|
if (*segmentlist == (int *) NULL) {
|
|
*segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *
|
|
sizeof(int)));
|
|
}
|
|
/* Allocate memory for output segment markers if necessary. */
|
|
if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
|
|
*segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *
|
|
sizeof(int)));
|
|
}
|
|
slist = *segmentlist;
|
|
smlist = *segmentmarkerlist;
|
|
index = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", polyfilename);
|
|
}
|
|
outfile = fopen(polyfilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", polyfilename);
|
|
triexit(1);
|
|
}
|
|
/* The zero indicates that the vertices are in a separate .node file. */
|
|
/* Followed by number of dimensions, number of vertex attributes, */
|
|
/* and number of boundary markers (zero or one). */
|
|
fprintf(outfile, "%d %d %d %d\n", 0, m->mesh_dim, m->nextras,
|
|
1 - b->nobound);
|
|
/* Number of segments, number of boundary markers (zero or one). */
|
|
fprintf(outfile, "%ld %d\n", m->subsegs.items, 1 - b->nobound);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->subsegs);
|
|
subsegloop.ss = subsegtraverse(m);
|
|
subsegloop.ssorient = 0;
|
|
subsegnumber = b->firstnumber;
|
|
while (subsegloop.ss != (subseg *) NULL) {
|
|
sorg(subsegloop, endpoint1);
|
|
sdest(subsegloop, endpoint2);
|
|
#ifdef TRILIBRARY
|
|
/* Copy indices of the segment's two endpoints. */
|
|
slist[index++] = vertexmark(endpoint1);
|
|
slist[index++] = vertexmark(endpoint2);
|
|
if (!b->nobound) {
|
|
/* Copy the boundary marker. */
|
|
smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
/* Segment number, indices of its two endpoints, and possibly a marker. */
|
|
if (b->nobound) {
|
|
fprintf(outfile, "%4ld %4d %4d\n", subsegnumber,
|
|
vertexmark(endpoint1), vertexmark(endpoint2));
|
|
} else {
|
|
fprintf(outfile, "%4ld %4d %4d %4d\n", subsegnumber,
|
|
vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop));
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
|
|
subsegloop.ss = subsegtraverse(m);
|
|
subsegnumber++;
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
#ifndef CDT_ONLY
|
|
fprintf(outfile, "%d\n", holes);
|
|
if (holes > 0) {
|
|
for (holenumber = 0; holenumber < holes; holenumber++) {
|
|
/* Hole number, x and y coordinates. */
|
|
fprintf(outfile, "%4ld %.17g %.17g\n", b->firstnumber + holenumber,
|
|
holelist[2 * holenumber], holelist[2 * holenumber + 1]);
|
|
}
|
|
}
|
|
if (regions > 0) {
|
|
fprintf(outfile, "%d\n", regions);
|
|
for (regionnumber = 0; regionnumber < regions; regionnumber++) {
|
|
/* Region number, x and y coordinates, attribute, maximum area. */
|
|
fprintf(outfile, "%4ld %.17g %.17g %.17g %.17g\n",
|
|
b->firstnumber + regionnumber,
|
|
regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1],
|
|
regionlist[4 * regionnumber + 2],
|
|
regionlist[4 * regionnumber + 3]);
|
|
}
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writeedges() Write the edges to an .edge file. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeedges(struct mesh *m, struct behavior *b,
|
|
int **edgelist, int **edgemarkerlist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeedges(m, b, edgelist, edgemarkerlist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int **edgelist;
|
|
int **edgemarkerlist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeedges(struct mesh *m, struct behavior *b, char *edgefilename,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeedges(m, b, edgefilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *edgefilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
int *elist;
|
|
int *emlist;
|
|
int index;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
#endif /* not TRILIBRARY */
|
|
struct otri triangleloop, trisym;
|
|
struct osub checkmark;
|
|
vertex p1, p2;
|
|
long edgenumber;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
subseg sptr; /* Temporary variable used by tspivot(). */
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing edges.\n");
|
|
}
|
|
/* Allocate memory for edges if necessary. */
|
|
if (*edgelist == (int *) NULL) {
|
|
*edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
|
|
}
|
|
/* Allocate memory for edge markers if necessary. */
|
|
if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
|
|
*edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
|
|
}
|
|
elist = *edgelist;
|
|
emlist = *edgemarkerlist;
|
|
index = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", edgefilename);
|
|
}
|
|
outfile = fopen(edgefilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", edgefilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of edges, number of boundary markers (zero or one). */
|
|
fprintf(outfile, "%ld %d\n", m->edges, 1 - b->nobound);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
edgenumber = b->firstnumber;
|
|
/* To loop over the set of edges, loop over all triangles, and look at */
|
|
/* the three edges of each triangle. If there isn't another triangle */
|
|
/* adjacent to the edge, operate on the edge. If there is another */
|
|
/* adjacent triangle, operate on the edge only if the current triangle */
|
|
/* has a smaller pointer than its neighbor. This way, each edge is */
|
|
/* considered only once. */
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
sym(triangleloop, trisym);
|
|
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
|
|
org(triangleloop, p1);
|
|
dest(triangleloop, p2);
|
|
#ifdef TRILIBRARY
|
|
elist[index++] = vertexmark(p1);
|
|
elist[index++] = vertexmark(p2);
|
|
#endif /* TRILIBRARY */
|
|
if (b->nobound) {
|
|
#ifndef TRILIBRARY
|
|
/* Edge number, indices of two endpoints. */
|
|
fprintf(outfile, "%4ld %d %d\n", edgenumber,
|
|
vertexmark(p1), vertexmark(p2));
|
|
#endif /* not TRILIBRARY */
|
|
} else {
|
|
/* Edge number, indices of two endpoints, and a boundary marker. */
|
|
/* If there's no subsegment, the boundary marker is zero. */
|
|
if (b->usesegments) {
|
|
tspivot(triangleloop, checkmark);
|
|
if (checkmark.ss == m->dummysub) {
|
|
#ifdef TRILIBRARY
|
|
emlist[edgenumber - b->firstnumber] = 0;
|
|
#else /* not TRILIBRARY */
|
|
fprintf(outfile, "%4ld %d %d %d\n", edgenumber,
|
|
vertexmark(p1), vertexmark(p2), 0);
|
|
#endif /* not TRILIBRARY */
|
|
} else {
|
|
#ifdef TRILIBRARY
|
|
emlist[edgenumber - b->firstnumber] = mark(checkmark);
|
|
#else /* not TRILIBRARY */
|
|
fprintf(outfile, "%4ld %d %d %d\n", edgenumber,
|
|
vertexmark(p1), vertexmark(p2), mark(checkmark));
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
} else {
|
|
#ifdef TRILIBRARY
|
|
emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
|
|
#else /* not TRILIBRARY */
|
|
fprintf(outfile, "%4ld %d %d %d\n", edgenumber,
|
|
vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
}
|
|
edgenumber++;
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writevoronoi() Write the Voronoi diagram to a .v.node and .v.edge */
|
|
/* file. */
|
|
/* */
|
|
/* The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
|
|
/* Hence, the Voronoi vertices are listed by traversing the Delaunay */
|
|
/* triangles, and the Voronoi edges are listed by traversing the Delaunay */
|
|
/* edges. */
|
|
/* */
|
|
/* WARNING: In order to assign numbers to the Voronoi vertices, this */
|
|
/* procedure messes up the subsegments or the extra nodes of every */
|
|
/* element. Hence, you should call this procedure last. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist,
|
|
REAL **vpointattriblist, int **vpointmarkerlist,
|
|
int **vedgelist, int **vedgemarkerlist, REAL **vnormlist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist,
|
|
vedgelist, vedgemarkerlist, vnormlist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
REAL **vpointlist;
|
|
REAL **vpointattriblist;
|
|
int **vpointmarkerlist;
|
|
int **vedgelist;
|
|
int **vedgemarkerlist;
|
|
REAL **vnormlist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename,
|
|
char *vedgefilename, int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *vnodefilename;
|
|
char *vedgefilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
REAL *plist;
|
|
REAL *palist;
|
|
int *elist;
|
|
REAL *normlist;
|
|
int coordindex;
|
|
int attribindex;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
#endif /* not TRILIBRARY */
|
|
struct otri triangleloop, trisym;
|
|
vertex torg, tdest, tapex;
|
|
REAL circumcenter[2];
|
|
REAL xi, eta;
|
|
long vnodenumber, vedgenumber;
|
|
int p1, p2;
|
|
int i;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing Voronoi vertices.\n");
|
|
}
|
|
/* Allocate memory for Voronoi vertices if necessary. */
|
|
if (*vpointlist == (REAL *) NULL) {
|
|
*vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 *
|
|
sizeof(REAL)));
|
|
}
|
|
/* Allocate memory for Voronoi vertex attributes if necessary. */
|
|
if (*vpointattriblist == (REAL *) NULL) {
|
|
*vpointattriblist = (REAL *) trimalloc((int) (m->triangles.items *
|
|
m->nextras * sizeof(REAL)));
|
|
}
|
|
*vpointmarkerlist = (int *) NULL;
|
|
plist = *vpointlist;
|
|
palist = *vpointattriblist;
|
|
coordindex = 0;
|
|
attribindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", vnodefilename);
|
|
}
|
|
outfile = fopen(vnodefilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", vnodefilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of triangles, two dimensions, number of vertex attributes, */
|
|
/* no markers. */
|
|
fprintf(outfile, "%ld %d %d %d\n", m->triangles.items, 2, m->nextras, 0);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
triangleloop.orient = 0;
|
|
vnodenumber = b->firstnumber;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
org(triangleloop, torg);
|
|
dest(triangleloop, tdest);
|
|
apex(triangleloop, tapex);
|
|
findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
|
|
#ifdef TRILIBRARY
|
|
/* X and y coordinates. */
|
|
plist[coordindex++] = circumcenter[0];
|
|
plist[coordindex++] = circumcenter[1];
|
|
for (i = 2; i < 2 + m->nextras; i++) {
|
|
/* Interpolate the vertex attributes at the circumcenter. */
|
|
palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
|
|
+ eta * (tapex[i] - torg[i]);
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
/* Voronoi vertex number, x and y coordinates. */
|
|
fprintf(outfile, "%4ld %.17g %.17g", vnodenumber, circumcenter[0],
|
|
circumcenter[1]);
|
|
for (i = 2; i < 2 + m->nextras; i++) {
|
|
/* Interpolate the vertex attributes at the circumcenter. */
|
|
fprintf(outfile, " %.17g", torg[i] + xi * (tdest[i] - torg[i])
|
|
+ eta * (tapex[i] - torg[i]));
|
|
}
|
|
fprintf(outfile, "\n");
|
|
#endif /* not TRILIBRARY */
|
|
|
|
* (int *) (triangleloop.tri + 6) = (int) vnodenumber;
|
|
triangleloop.tri = triangletraverse(m);
|
|
vnodenumber++;
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing Voronoi edges.\n");
|
|
}
|
|
/* Allocate memory for output Voronoi edges if necessary. */
|
|
if (*vedgelist == (int *) NULL) {
|
|
*vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
|
|
}
|
|
*vedgemarkerlist = (int *) NULL;
|
|
/* Allocate memory for output Voronoi norms if necessary. */
|
|
if (*vnormlist == (REAL *) NULL) {
|
|
*vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));
|
|
}
|
|
elist = *vedgelist;
|
|
normlist = *vnormlist;
|
|
coordindex = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", vedgefilename);
|
|
}
|
|
outfile = fopen(vedgefilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", vedgefilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of edges, zero boundary markers. */
|
|
fprintf(outfile, "%ld %d\n", m->edges, 0);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
vedgenumber = b->firstnumber;
|
|
/* To loop over the set of edges, loop over all triangles, and look at */
|
|
/* the three edges of each triangle. If there isn't another triangle */
|
|
/* adjacent to the edge, operate on the edge. If there is another */
|
|
/* adjacent triangle, operate on the edge only if the current triangle */
|
|
/* has a smaller pointer than its neighbor. This way, each edge is */
|
|
/* considered only once. */
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
for (triangleloop.orient = 0; triangleloop.orient < 3;
|
|
triangleloop.orient++) {
|
|
sym(triangleloop, trisym);
|
|
if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
|
|
/* Find the number of this triangle (and Voronoi vertex). */
|
|
p1 = * (int *) (triangleloop.tri + 6);
|
|
if (trisym.tri == m->dummytri) {
|
|
org(triangleloop, torg);
|
|
dest(triangleloop, tdest);
|
|
#ifdef TRILIBRARY
|
|
/* Copy an infinite ray. Index of one endpoint, and -1. */
|
|
elist[coordindex] = p1;
|
|
normlist[coordindex++] = tdest[1] - torg[1];
|
|
elist[coordindex] = -1;
|
|
normlist[coordindex++] = torg[0] - tdest[0];
|
|
#else /* not TRILIBRARY */
|
|
/* Write an infinite ray. Edge number, index of one endpoint, -1, */
|
|
/* and x and y coordinates of a vector representing the */
|
|
/* direction of the ray. */
|
|
fprintf(outfile, "%4ld %d %d %.17g %.17g\n", vedgenumber,
|
|
p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
|
|
#endif /* not TRILIBRARY */
|
|
} else {
|
|
/* Find the number of the adjacent triangle (and Voronoi vertex). */
|
|
p2 = * (int *) (trisym.tri + 6);
|
|
/* Finite edge. Write indices of two endpoints. */
|
|
#ifdef TRILIBRARY
|
|
elist[coordindex] = p1;
|
|
normlist[coordindex++] = 0.0;
|
|
elist[coordindex] = p2;
|
|
normlist[coordindex++] = 0.0;
|
|
#else /* not TRILIBRARY */
|
|
fprintf(outfile, "%4ld %d %d\n", vedgenumber, p1, p2);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
vedgenumber++;
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeneighbors(m, b, neighborlist)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
int **neighborlist;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeneighbors(m, b, neighborfilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *neighborfilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
#ifdef TRILIBRARY
|
|
int *nlist;
|
|
int index;
|
|
#else /* not TRILIBRARY */
|
|
FILE *outfile;
|
|
#endif /* not TRILIBRARY */
|
|
struct otri triangleloop, trisym;
|
|
long elementnumber;
|
|
int neighbor1, neighbor2, neighbor3;
|
|
triangle ptr; /* Temporary variable used by sym(). */
|
|
|
|
#ifdef TRILIBRARY
|
|
if (!b->quiet) {
|
|
printf("Writing neighbors.\n");
|
|
}
|
|
/* Allocate memory for neighbors if necessary. */
|
|
if (*neighborlist == (int *) NULL) {
|
|
*neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *
|
|
sizeof(int)));
|
|
}
|
|
nlist = *neighborlist;
|
|
index = 0;
|
|
#else /* not TRILIBRARY */
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", neighborfilename);
|
|
}
|
|
outfile = fopen(neighborfilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", neighborfilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of triangles, three neighbors per triangle. */
|
|
fprintf(outfile, "%ld %d\n", m->triangles.items, 3);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
triangleloop.orient = 0;
|
|
elementnumber = b->firstnumber;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
* (int *) (triangleloop.tri + 6) = (int) elementnumber;
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber++;
|
|
}
|
|
* (int *) (m->dummytri + 6) = -1;
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber = b->firstnumber;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
triangleloop.orient = 1;
|
|
sym(triangleloop, trisym);
|
|
neighbor1 = * (int *) (trisym.tri + 6);
|
|
triangleloop.orient = 2;
|
|
sym(triangleloop, trisym);
|
|
neighbor2 = * (int *) (trisym.tri + 6);
|
|
triangleloop.orient = 0;
|
|
sym(triangleloop, trisym);
|
|
neighbor3 = * (int *) (trisym.tri + 6);
|
|
#ifdef TRILIBRARY
|
|
nlist[index++] = neighbor1;
|
|
nlist[index++] = neighbor2;
|
|
nlist[index++] = neighbor3;
|
|
#else /* not TRILIBRARY */
|
|
/* Triangle number, neighboring triangle numbers. */
|
|
fprintf(outfile, "%4ld %d %d %d\n", elementnumber,
|
|
neighbor1, neighbor2, neighbor3);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
triangleloop.tri = triangletraverse(m);
|
|
elementnumber++;
|
|
}
|
|
|
|
#ifndef TRILIBRARY
|
|
finishfile(outfile, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* writeoff() Write the triangulation to an .off file. */
|
|
/* */
|
|
/* OFF stands for the Object File Format, a format used by the Geometry */
|
|
/* Center's Geomview package. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifndef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void writeoff(struct mesh *m, struct behavior *b, char *offfilename,
|
|
int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void writeoff(m, b, offfilename, argc, argv)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
char *offfilename;
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
FILE *outfile;
|
|
struct otri triangleloop;
|
|
vertex vertexloop;
|
|
vertex p1, p2, p3;
|
|
long outvertices;
|
|
|
|
if (!b->quiet) {
|
|
printf("Writing %s.\n", offfilename);
|
|
}
|
|
|
|
if (b->jettison) {
|
|
outvertices = m->vertices.items - m->undeads;
|
|
} else {
|
|
outvertices = m->vertices.items;
|
|
}
|
|
|
|
outfile = fopen(offfilename, "w");
|
|
if (outfile == (FILE *) NULL) {
|
|
printf(" Error: Cannot create file %s.\n", offfilename);
|
|
triexit(1);
|
|
}
|
|
/* Number of vertices, triangles, and edges. */
|
|
fprintf(outfile, "OFF\n%ld %ld %ld\n", outvertices, m->triangles.items,
|
|
m->edges);
|
|
|
|
/* Write the vertices. */
|
|
traversalinit(&m->vertices);
|
|
vertexloop = vertextraverse(m);
|
|
while (vertexloop != (vertex) NULL) {
|
|
if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
|
|
/* The "0.0" is here because the OFF format uses 3D coordinates. */
|
|
fprintf(outfile, " %.17g %.17g %.17g\n", vertexloop[0], vertexloop[1],
|
|
0.0);
|
|
}
|
|
vertexloop = vertextraverse(m);
|
|
}
|
|
|
|
/* Write the triangles. */
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
triangleloop.orient = 0;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
org(triangleloop, p1);
|
|
dest(triangleloop, p2);
|
|
apex(triangleloop, p3);
|
|
/* The "3" means a three-vertex polygon. */
|
|
fprintf(outfile, " 3 %4d %4d %4d\n", vertexmark(p1) - b->firstnumber,
|
|
vertexmark(p2) - b->firstnumber, vertexmark(p3) - b->firstnumber);
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
finishfile(outfile, argc, argv);
|
|
}
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
/** **/
|
|
/** **/
|
|
/********* File I/O routines end here *********/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* quality_statistics() Print statistics about the quality of the mesh. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void quality_statistics(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void quality_statistics(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
struct otri triangleloop;
|
|
vertex p[3];
|
|
REAL cossquaretable[8];
|
|
REAL ratiotable[16];
|
|
REAL dx[3], dy[3];
|
|
REAL edgelength[3];
|
|
REAL dotproduct;
|
|
REAL cossquare;
|
|
REAL triarea;
|
|
REAL shortest, longest;
|
|
REAL trilongest2;
|
|
REAL smallestarea, biggestarea;
|
|
REAL triminaltitude2;
|
|
REAL minaltitude;
|
|
REAL triaspect2;
|
|
REAL worstaspect;
|
|
REAL smallestangle, biggestangle;
|
|
REAL radconst, degconst;
|
|
int angletable[18];
|
|
int aspecttable[16];
|
|
int aspectindex;
|
|
int tendegree;
|
|
int acutebiggest;
|
|
int i, ii, j, k;
|
|
|
|
printf("Mesh quality statistics:\n\n");
|
|
radconst = PI / 18.0;
|
|
degconst = 180.0 / PI;
|
|
for (i = 0; i < 8; i++) {
|
|
cossquaretable[i] = cos(radconst * (REAL) (i + 1));
|
|
cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
|
|
}
|
|
for (i = 0; i < 18; i++) {
|
|
angletable[i] = 0;
|
|
}
|
|
|
|
ratiotable[0] = 1.5; ratiotable[1] = 2.0;
|
|
ratiotable[2] = 2.5; ratiotable[3] = 3.0;
|
|
ratiotable[4] = 4.0; ratiotable[5] = 6.0;
|
|
ratiotable[6] = 10.0; ratiotable[7] = 15.0;
|
|
ratiotable[8] = 25.0; ratiotable[9] = 50.0;
|
|
ratiotable[10] = 100.0; ratiotable[11] = 300.0;
|
|
ratiotable[12] = 1000.0; ratiotable[13] = 10000.0;
|
|
ratiotable[14] = 100000.0; ratiotable[15] = 0.0;
|
|
for (i = 0; i < 16; i++) {
|
|
aspecttable[i] = 0;
|
|
}
|
|
|
|
worstaspect = 0.0;
|
|
minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
|
|
minaltitude = minaltitude * minaltitude;
|
|
shortest = minaltitude;
|
|
longest = 0.0;
|
|
smallestarea = minaltitude;
|
|
biggestarea = 0.0;
|
|
worstaspect = 0.0;
|
|
smallestangle = 0.0;
|
|
biggestangle = 2.0;
|
|
acutebiggest = 1;
|
|
|
|
traversalinit(&m->triangles);
|
|
triangleloop.tri = triangletraverse(m);
|
|
triangleloop.orient = 0;
|
|
while (triangleloop.tri != (triangle *) NULL) {
|
|
org(triangleloop, p[0]);
|
|
dest(triangleloop, p[1]);
|
|
apex(triangleloop, p[2]);
|
|
trilongest2 = 0.0;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
j = plus1mod3[i];
|
|
k = minus1mod3[i];
|
|
dx[i] = p[j][0] - p[k][0];
|
|
dy[i] = p[j][1] - p[k][1];
|
|
edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
|
|
if (edgelength[i] > trilongest2) {
|
|
trilongest2 = edgelength[i];
|
|
}
|
|
if (edgelength[i] > longest) {
|
|
longest = edgelength[i];
|
|
}
|
|
if (edgelength[i] < shortest) {
|
|
shortest = edgelength[i];
|
|
}
|
|
}
|
|
|
|
triarea = counterclockwise(m, b, p[0], p[1], p[2]);
|
|
if (triarea < smallestarea) {
|
|
smallestarea = triarea;
|
|
}
|
|
if (triarea > biggestarea) {
|
|
biggestarea = triarea;
|
|
}
|
|
triminaltitude2 = triarea * triarea / trilongest2;
|
|
if (triminaltitude2 < minaltitude) {
|
|
minaltitude = triminaltitude2;
|
|
}
|
|
triaspect2 = trilongest2 / triminaltitude2;
|
|
if (triaspect2 > worstaspect) {
|
|
worstaspect = triaspect2;
|
|
}
|
|
aspectindex = 0;
|
|
while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
|
|
&& (aspectindex < 15)) {
|
|
aspectindex++;
|
|
}
|
|
aspecttable[aspectindex]++;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
j = plus1mod3[i];
|
|
k = minus1mod3[i];
|
|
dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
|
|
cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
|
|
tendegree = 8;
|
|
for (ii = 7; ii >= 0; ii--) {
|
|
if (cossquare > cossquaretable[ii]) {
|
|
tendegree = ii;
|
|
}
|
|
}
|
|
if (dotproduct <= 0.0) {
|
|
angletable[tendegree]++;
|
|
if (cossquare > smallestangle) {
|
|
smallestangle = cossquare;
|
|
}
|
|
if (acutebiggest && (cossquare < biggestangle)) {
|
|
biggestangle = cossquare;
|
|
}
|
|
} else {
|
|
angletable[17 - tendegree]++;
|
|
if (acutebiggest || (cossquare > biggestangle)) {
|
|
biggestangle = cossquare;
|
|
acutebiggest = 0;
|
|
}
|
|
}
|
|
}
|
|
triangleloop.tri = triangletraverse(m);
|
|
}
|
|
|
|
shortest = sqrt(shortest);
|
|
longest = sqrt(longest);
|
|
minaltitude = sqrt(minaltitude);
|
|
worstaspect = sqrt(worstaspect);
|
|
smallestarea *= 0.5;
|
|
biggestarea *= 0.5;
|
|
if (smallestangle >= 1.0) {
|
|
smallestangle = 0.0;
|
|
} else {
|
|
smallestangle = degconst * acos(sqrt(smallestangle));
|
|
}
|
|
if (biggestangle >= 1.0) {
|
|
biggestangle = 180.0;
|
|
} else {
|
|
if (acutebiggest) {
|
|
biggestangle = degconst * acos(sqrt(biggestangle));
|
|
} else {
|
|
biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
|
|
}
|
|
}
|
|
|
|
printf(" Smallest area: %16.5g | Largest area: %16.5g\n",
|
|
smallestarea, biggestarea);
|
|
printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n",
|
|
shortest, longest);
|
|
printf(" Shortest altitude: %12.5g | Largest aspect ratio: %8.5g\n\n",
|
|
minaltitude, worstaspect);
|
|
|
|
printf(" Triangle aspect ratio histogram:\n");
|
|
printf(" 1.1547 - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n",
|
|
ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
|
|
aspecttable[8]);
|
|
for (i = 1; i < 7; i++) {
|
|
printf(" %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n",
|
|
ratiotable[i - 1], ratiotable[i], aspecttable[i],
|
|
ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
|
|
}
|
|
printf(" %6.6g - %-6.6g : %8d | %6.6g - : %8d\n",
|
|
ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
|
|
aspecttable[15]);
|
|
printf(" (Aspect ratio is longest edge divided by shortest altitude)\n\n");
|
|
|
|
printf(" Smallest angle: %15.5g | Largest angle: %15.5g\n\n",
|
|
smallestangle, biggestangle);
|
|
|
|
printf(" Angle histogram:\n");
|
|
for (i = 0; i < 9; i++) {
|
|
printf(" %3d - %3d degrees: %8d | %3d - %3d degrees: %8d\n",
|
|
i * 10, i * 10 + 10, angletable[i],
|
|
i * 10 + 90, i * 10 + 100, angletable[i + 9]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* statistics() Print all sorts of cool facts. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void statistics(struct mesh *m, struct behavior *b)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void statistics(m, b)
|
|
struct mesh *m;
|
|
struct behavior *b;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
{
|
|
printf("\nStatistics:\n\n");
|
|
printf(" Input vertices: %d\n", m->invertices);
|
|
if (b->refine) {
|
|
printf(" Input triangles: %d\n", m->inelements);
|
|
}
|
|
if (b->poly) {
|
|
printf(" Input segments: %d\n", m->insegments);
|
|
if (!b->refine) {
|
|
printf(" Input holes: %d\n", m->holes);
|
|
}
|
|
}
|
|
|
|
printf("\n Mesh vertices: %ld\n", m->vertices.items - m->undeads);
|
|
printf(" Mesh triangles: %ld\n", m->triangles.items);
|
|
printf(" Mesh edges: %ld\n", m->edges);
|
|
printf(" Mesh exterior boundary edges: %ld\n", m->hullsize);
|
|
if (b->poly || b->refine) {
|
|
printf(" Mesh interior boundary edges: %ld\n",
|
|
m->subsegs.items - m->hullsize);
|
|
printf(" Mesh subsegments (constrained edges): %ld\n",
|
|
m->subsegs.items);
|
|
}
|
|
printf("\n");
|
|
|
|
if (b->verbose) {
|
|
quality_statistics(m, b);
|
|
printf("Memory allocation statistics:\n\n");
|
|
printf(" Maximum number of vertices: %ld\n", m->vertices.maxitems);
|
|
printf(" Maximum number of triangles: %ld\n", m->triangles.maxitems);
|
|
if (m->subsegs.maxitems > 0) {
|
|
printf(" Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
|
|
}
|
|
if (m->viri.maxitems > 0) {
|
|
printf(" Maximum number of viri: %ld\n", m->viri.maxitems);
|
|
}
|
|
if (m->badsubsegs.maxitems > 0) {
|
|
printf(" Maximum number of encroached subsegments: %ld\n",
|
|
m->badsubsegs.maxitems);
|
|
}
|
|
if (m->badtriangles.maxitems > 0) {
|
|
printf(" Maximum number of bad triangles: %ld\n",
|
|
m->badtriangles.maxitems);
|
|
}
|
|
if (m->flipstackers.maxitems > 0) {
|
|
printf(" Maximum number of stacked triangle flips: %ld\n",
|
|
m->flipstackers.maxitems);
|
|
}
|
|
if (m->splaynodes.maxitems > 0) {
|
|
printf(" Maximum number of splay tree nodes: %ld\n",
|
|
m->splaynodes.maxitems);
|
|
}
|
|
printf(" Approximate heap memory use (bytes): %ld\n\n",
|
|
m->vertices.maxitems * m->vertices.itembytes +
|
|
m->triangles.maxitems * m->triangles.itembytes +
|
|
m->subsegs.maxitems * m->subsegs.itembytes +
|
|
m->viri.maxitems * m->viri.itembytes +
|
|
m->badsubsegs.maxitems * m->badsubsegs.itembytes +
|
|
m->badtriangles.maxitems * m->badtriangles.itembytes +
|
|
m->flipstackers.maxitems * m->flipstackers.itembytes +
|
|
m->splaynodes.maxitems * m->splaynodes.itembytes);
|
|
|
|
printf("Algorithmic statistics:\n\n");
|
|
if (!b->weighted) {
|
|
printf(" Number of incircle tests: %ld\n", m->incirclecount);
|
|
} else {
|
|
printf(" Number of 3D orientation tests: %ld\n", m->orient3dcount);
|
|
}
|
|
printf(" Number of 2D orientation tests: %ld\n", m->counterclockcount);
|
|
if (m->hyperbolacount > 0) {
|
|
printf(" Number of right-of-hyperbola tests: %ld\n",
|
|
m->hyperbolacount);
|
|
}
|
|
if (m->circletopcount > 0) {
|
|
printf(" Number of circle top computations: %ld\n",
|
|
m->circletopcount);
|
|
}
|
|
if (m->circumcentercount > 0) {
|
|
printf(" Number of triangle circumcenter computations: %ld\n",
|
|
m->circumcentercount);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* main() or triangulate() Gosh, do everything. */
|
|
/* */
|
|
/* The sequence is roughly as follows. Many of these steps can be skipped, */
|
|
/* depending on the command line switches. */
|
|
/* */
|
|
/* - Initialize constants and parse the command line. */
|
|
/* - Read the vertices from a file and either */
|
|
/* - triangulate them (no -r), or */
|
|
/* - read an old mesh from files and reconstruct it (-r). */
|
|
/* - Insert the PSLG segments (-p), and possibly segments on the convex */
|
|
/* hull (-c). */
|
|
/* - Read the holes (-p), regional attributes (-pA), and regional area */
|
|
/* constraints (-pa). Carve the holes and concavities, and spread the */
|
|
/* regional attributes and area constraints. */
|
|
/* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */
|
|
/* Also enforce the conforming Delaunay property (-q and -a). */
|
|
/* - Compute the number of edges in the resulting mesh. */
|
|
/* - Promote the mesh's linear triangles to higher order elements (-o). */
|
|
/* - Write the output files and print the statistics. */
|
|
/* - Check the consistency and Delaunay property of the mesh (-C). */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#ifdef TRILIBRARY
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
void triangulate(char *triswitches, struct triangulateio *in,
|
|
struct triangulateio *out, struct triangulateio *vorout)
|
|
#else /* not ANSI_DECLARATORS */
|
|
void triangulate(triswitches, in, out, vorout)
|
|
char *triswitches;
|
|
struct triangulateio *in;
|
|
struct triangulateio *out;
|
|
struct triangulateio *vorout;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#else /* not TRILIBRARY */
|
|
|
|
#ifdef ANSI_DECLARATORS
|
|
int main(int argc, char **argv)
|
|
#else /* not ANSI_DECLARATORS */
|
|
int main(argc, argv)
|
|
int argc;
|
|
char **argv;
|
|
#endif /* not ANSI_DECLARATORS */
|
|
|
|
#endif /* not TRILIBRARY */
|
|
|
|
{
|
|
struct mesh m;
|
|
struct behavior b;
|
|
REAL *holearray; /* Array of holes. */
|
|
REAL *regionarray; /* Array of regional attributes and area constraints. */
|
|
#ifndef TRILIBRARY
|
|
FILE *polyfile;
|
|
#endif /* not TRILIBRARY */
|
|
#ifndef NO_TIMER
|
|
/* Variables for timing the performance of Triangle. The types are */
|
|
/* defined in sys/time.h. */
|
|
struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
|
|
struct timezone tz;
|
|
#endif /* not NO_TIMER */
|
|
|
|
#ifndef NO_TIMER
|
|
gettimeofday(&tv0, &tz);
|
|
#endif /* not NO_TIMER */
|
|
|
|
triangleinit(&m);
|
|
#ifdef TRILIBRARY
|
|
parsecommandline(1, &triswitches, &b);
|
|
#else /* not TRILIBRARY */
|
|
parsecommandline(argc, argv, &b);
|
|
#endif /* not TRILIBRARY */
|
|
m.steinerleft = b.steiner;
|
|
|
|
#ifdef TRILIBRARY
|
|
transfernodes(&m, &b, in->pointlist, in->pointattributelist,
|
|
in->pointmarkerlist, in->numberofpoints,
|
|
in->numberofpointattributes);
|
|
#else /* not TRILIBRARY */
|
|
readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile);
|
|
#endif /* not TRILIBRARY */
|
|
|
|
#ifndef NO_TIMER
|
|
if (!b.quiet) {
|
|
gettimeofday(&tv1, &tz);
|
|
}
|
|
#endif /* not NO_TIMER */
|
|
|
|
#ifdef CDT_ONLY
|
|
m.hullsize = delaunay(&m, &b); /* Triangulate the vertices. */
|
|
#else /* not CDT_ONLY */
|
|
if (b.refine) {
|
|
/* Read and reconstruct a mesh. */
|
|
#ifdef TRILIBRARY
|
|
m.hullsize = reconstruct(&m, &b, in->trianglelist,
|
|
in->triangleattributelist, in->trianglearealist,
|
|
in->numberoftriangles, in->numberofcorners,
|
|
in->numberoftriangleattributes,
|
|
in->segmentlist, in->segmentmarkerlist,
|
|
in->numberofsegments);
|
|
#else /* not TRILIBRARY */
|
|
m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename,
|
|
b.inpolyfilename, polyfile);
|
|
#endif /* not TRILIBRARY */
|
|
} else {
|
|
m.hullsize = delaunay(&m, &b); /* Triangulate the vertices. */
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
|
|
#ifndef NO_TIMER
|
|
if (!b.quiet) {
|
|
gettimeofday(&tv2, &tz);
|
|
if (b.refine) {
|
|
printf("Mesh reconstruction");
|
|
} else {
|
|
printf("Delaunay");
|
|
}
|
|
printf(" milliseconds: %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) +
|
|
(tv2.tv_usec - tv1.tv_usec) / 1000l);
|
|
}
|
|
#endif /* not NO_TIMER */
|
|
|
|
/* Ensure that no vertex can be mistaken for a triangular bounding */
|
|
/* box vertex in insertvertex(). */
|
|
m.infvertex1 = (vertex) NULL;
|
|
m.infvertex2 = (vertex) NULL;
|
|
m.infvertex3 = (vertex) NULL;
|
|
|
|
if (b.usesegments) {
|
|
m.checksegments = 1; /* Segments will be introduced next. */
|
|
if (!b.refine) {
|
|
/* Insert PSLG segments and/or convex hull segments. */
|
|
#ifdef TRILIBRARY
|
|
formskeleton(&m, &b, in->segmentlist,
|
|
in->segmentmarkerlist, in->numberofsegments);
|
|
#else /* not TRILIBRARY */
|
|
formskeleton(&m, &b, polyfile, b.inpolyfilename);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
}
|
|
|
|
#ifndef NO_TIMER
|
|
if (!b.quiet) {
|
|
gettimeofday(&tv3, &tz);
|
|
if (b.usesegments && !b.refine) {
|
|
printf("Segment milliseconds: %ld\n",
|
|
1000l * (tv3.tv_sec - tv2.tv_sec) +
|
|
(tv3.tv_usec - tv2.tv_usec) / 1000l);
|
|
}
|
|
}
|
|
#endif /* not NO_TIMER */
|
|
|
|
if (b.poly && (m.triangles.items > 0)) {
|
|
#ifdef TRILIBRARY
|
|
holearray = in->holelist;
|
|
m.holes = in->numberofholes;
|
|
regionarray = in->regionlist;
|
|
m.regions = in->numberofregions;
|
|
#else /* not TRILIBRARY */
|
|
readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes,
|
|
®ionarray, &m.regions);
|
|
#endif /* not TRILIBRARY */
|
|
if (!b.refine) {
|
|
/* Carve out holes and concavities. */
|
|
carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
|
|
}
|
|
} else {
|
|
/* Without a PSLG, there can be no holes or regional attributes */
|
|
/* or area constraints. The following are set to zero to avoid */
|
|
/* an accidental free() later. */
|
|
m.holes = 0;
|
|
m.regions = 0;
|
|
}
|
|
|
|
#ifndef NO_TIMER
|
|
if (!b.quiet) {
|
|
gettimeofday(&tv4, &tz);
|
|
if (b.poly && !b.refine) {
|
|
printf("Hole milliseconds: %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) +
|
|
(tv4.tv_usec - tv3.tv_usec) / 1000l);
|
|
}
|
|
}
|
|
#endif /* not NO_TIMER */
|
|
|
|
#ifndef CDT_ONLY
|
|
if (b.quality && (m.triangles.items > 0)) {
|
|
enforcequality(&m, &b); /* Enforce angle and area constraints. */
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
|
|
#ifndef NO_TIMER
|
|
if (!b.quiet) {
|
|
gettimeofday(&tv5, &tz);
|
|
#ifndef CDT_ONLY
|
|
if (b.quality) {
|
|
printf("Quality milliseconds: %ld\n",
|
|
1000l * (tv5.tv_sec - tv4.tv_sec) +
|
|
(tv5.tv_usec - tv4.tv_usec) / 1000l);
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
}
|
|
#endif /* not NO_TIMER */
|
|
|
|
/* Calculate the number of edges. */
|
|
m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
|
|
|
|
if (b.order > 1) {
|
|
highorder(&m, &b); /* Promote elements to higher polynomial order. */
|
|
}
|
|
if (!b.quiet) {
|
|
printf("\n");
|
|
}
|
|
|
|
#ifdef TRILIBRARY
|
|
if (b.jettison) {
|
|
out->numberofpoints = m.vertices.items - m.undeads;
|
|
} else {
|
|
out->numberofpoints = m.vertices.items;
|
|
}
|
|
out->numberofpointattributes = m.nextras;
|
|
out->numberoftriangles = m.triangles.items;
|
|
out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
|
|
out->numberoftriangleattributes = m.eextras;
|
|
out->numberofedges = m.edges;
|
|
if (b.usesegments) {
|
|
out->numberofsegments = m.subsegs.items;
|
|
} else {
|
|
out->numberofsegments = m.hullsize;
|
|
}
|
|
if (vorout != (struct triangulateio *) NULL) {
|
|
vorout->numberofpoints = m.triangles.items;
|
|
vorout->numberofpointattributes = m.nextras;
|
|
vorout->numberofedges = m.edges;
|
|
}
|
|
#endif /* TRILIBRARY */
|
|
/* If not using iteration numbers, don't write a .node file if one was */
|
|
/* read, because the original one would be overwritten! */
|
|
if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
|
|
if (!b.quiet) {
|
|
#ifdef TRILIBRARY
|
|
printf("NOT writing vertices.\n");
|
|
#else /* not TRILIBRARY */
|
|
printf("NOT writing a .node file.\n");
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
numbernodes(&m, &b); /* We must remember to number the vertices. */
|
|
} else {
|
|
/* writenodes() numbers the vertices too. */
|
|
#ifdef TRILIBRARY
|
|
writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
|
|
&out->pointmarkerlist);
|
|
#else /* not TRILIBRARY */
|
|
writenodes(&m, &b, b.outnodefilename, argc, argv);
|
|
#endif /* TRILIBRARY */
|
|
}
|
|
if (b.noelewritten) {
|
|
if (!b.quiet) {
|
|
#ifdef TRILIBRARY
|
|
printf("NOT writing triangles.\n");
|
|
#else /* not TRILIBRARY */
|
|
printf("NOT writing an .ele file.\n");
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
} else {
|
|
#ifdef TRILIBRARY
|
|
writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
|
|
#else /* not TRILIBRARY */
|
|
writeelements(&m, &b, b.outelefilename, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
/* The -c switch (convex switch) causes a PSLG to be written */
|
|
/* even if none was read. */
|
|
if (b.poly || b.convex) {
|
|
/* If not using iteration numbers, don't overwrite the .poly file. */
|
|
if (b.nopolywritten || b.noiterationnum) {
|
|
if (!b.quiet) {
|
|
#ifdef TRILIBRARY
|
|
printf("NOT writing segments.\n");
|
|
#else /* not TRILIBRARY */
|
|
printf("NOT writing a .poly file.\n");
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
} else {
|
|
#ifdef TRILIBRARY
|
|
writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
|
|
out->numberofholes = m.holes;
|
|
out->numberofregions = m.regions;
|
|
if (b.poly) {
|
|
out->holelist = in->holelist;
|
|
out->regionlist = in->regionlist;
|
|
} else {
|
|
out->holelist = (REAL *) NULL;
|
|
out->regionlist = (REAL *) NULL;
|
|
}
|
|
#else /* not TRILIBRARY */
|
|
writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray,
|
|
m.regions, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
}
|
|
#ifndef TRILIBRARY
|
|
#ifndef CDT_ONLY
|
|
if (m.regions > 0) {
|
|
trifree((VOID *) regionarray);
|
|
}
|
|
#endif /* not CDT_ONLY */
|
|
if (m.holes > 0) {
|
|
trifree((VOID *) holearray);
|
|
}
|
|
if (b.geomview) {
|
|
writeoff(&m, &b, b.offfilename, argc, argv);
|
|
}
|
|
#endif /* not TRILIBRARY */
|
|
if (b.edgesout) {
|
|
#ifdef TRILIBRARY
|
|
writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
|
|
#else /* not TRILIBRARY */
|
|
writeedges(&m, &b, b.edgefilename, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
if (b.voronoi) {
|
|
#ifdef TRILIBRARY
|
|
writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
|
|
&vorout->pointmarkerlist, &vorout->edgelist,
|
|
&vorout->edgemarkerlist, &vorout->normlist);
|
|
#else /* not TRILIBRARY */
|
|
writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
if (b.neighbors) {
|
|
#ifdef TRILIBRARY
|
|
writeneighbors(&m, &b, &out->neighborlist);
|
|
#else /* not TRILIBRARY */
|
|
writeneighbors(&m, &b, b.neighborfilename, argc, argv);
|
|
#endif /* not TRILIBRARY */
|
|
}
|
|
|
|
if (!b.quiet) {
|
|
#ifndef NO_TIMER
|
|
gettimeofday(&tv6, &tz);
|
|
printf("\nOutput milliseconds: %ld\n",
|
|
1000l * (tv6.tv_sec - tv5.tv_sec) +
|
|
(tv6.tv_usec - tv5.tv_usec) / 1000l);
|
|
printf("Total running milliseconds: %ld\n",
|
|
1000l * (tv6.tv_sec - tv0.tv_sec) +
|
|
(tv6.tv_usec - tv0.tv_usec) / 1000l);
|
|
#endif /* not NO_TIMER */
|
|
|
|
statistics(&m, &b);
|
|
}
|
|
|
|
#ifndef REDUCED
|
|
if (b.docheck) {
|
|
checkmesh(&m, &b);
|
|
checkdelaunay(&m, &b);
|
|
}
|
|
#endif /* not REDUCED */
|
|
|
|
triangledeinit(&m, &b);
|
|
#ifndef TRILIBRARY
|
|
return 0;
|
|
#endif /* not TRILIBRARY */
|
|
}
|