From 009304a28d13340837e4c009d9aaaf7fa0445f4b Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Wed, 16 Oct 2024 17:45:16 -0500 Subject: [PATCH] fix incorrect types --- talks/2024-grads/main.tex | 37 ++++++++++++++++++++++--------------- 1 file changed, 22 insertions(+), 15 deletions(-) diff --git a/talks/2024-grads/main.tex b/talks/2024-grads/main.tex index 17a21c9..7053cbe 100644 --- a/talks/2024-grads/main.tex +++ b/talks/2024-grads/main.tex @@ -281,19 +281,6 @@ \end{itemize} \end{frame} -\begin{frame} - \frametitle{Homotopy type theory proof idea} - - \begin{itemize} - \item For $g : \mathbb{Z} \rightarrow \pi_1(S^1)$, we can just add $\mathsf{loop}$s to $\mathsf{refl}$ inductively - \begin{itemize} - \item $g(-1 + n) = \mathsf{loop}^{-1} \cdot g(n)$ - \item $g(0) = \mathsf{refl}$ - \item $g(n + 1) = g(n) \cdot \mathsf{loop}$ - \end{itemize} - \end{itemize} -\end{frame} - \begin{frame} \frametitle{Homotopy type theory proof idea} @@ -304,11 +291,31 @@ \end{itemize} \end{frame} +\begin{frame} + \frametitle{Homotopy type theory proof idea} + + \begin{itemize} + \item For $g : \mathsf{code}(c) \rightarrow \mathsf{base} \equiv_{S^1} c$, + we can iteratively compose $\mathsf{loop}$s to $\mathsf{refl}$ using a function $loop^n$ + \begin{itemize} + \item $loop^{-1 + n} = loop^n \cdot \mathsf{loop}^{-1}$ + \item $loop^0 = \mathsf{refl}$ + \item $loop^{n + 1} = loop^n \cdot \mathsf{loop}$ + \end{itemize} + + \item Then, use this to define $g$ + \begin{itemize} + \item $g(c : \mathsf{code}(\mathsf{base})) = loop^c$ + \item $g(c : \mathsf{code}(\mathsf{loop})) : loop^c \equiv loop^c$ + \end{itemize} + \end{itemize} +\end{frame} + \begin{frame} \frametitle{Homotopy type theory proof} \begin{itemize} - \item The homotopies $g \circ f \equiv_{\pi_1(S^1)} \mathsf{id}$ and $f \circ g \equiv_{\mathbb{N}} \mathsf{id}$ can be proven just by applying groupoid laws of paths: + \item The homotopies $(g \circ f \equiv \mathsf{id}_{(\mathsf{base} \equiv_{S^1} c)})$ and $(f \circ g \equiv \mathsf{id}_{\mathsf{code}(c)})$ can be proven just by applying groupoid laws of paths: \begin{itemize} \item Identity: $(p : x \equiv_A y) \rightarrow p \cdot \mathsf{refl} \equiv p$ \item Identity: $(p : x \equiv_A y) \rightarrow \mathsf{refl} \cdot p \equiv p$ @@ -320,7 +327,7 @@ \end{frame} \begin{frame} - \frametitle{Defining $\mathsf{decode}$ with cubes} + \frametitle{Defining $g$ with cubes} \begin{figure} \centering