diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index 4abf69e..6c2b9a7 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -367,6 +367,8 @@ code (suc x) (suc y) = code x y ### Theorem 2.13.1 +_For all $m, n : N$ we have (m = n) \simeq \texttt{code}(m, n)._ + ``` theorem2∙13∙1 : (m n : ℕ) → (m ≡ n) ≃ code m n theorem2∙13∙1 m n = encode m n , equiv