prove 6.4.1
This commit is contained in:
parent
43cad1c4bd
commit
056d9fd2e8
1 changed files with 17 additions and 1 deletions
|
@ -2,9 +2,25 @@
|
|||
|
||||
module CubicalHott.Lemma6-4-1 where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Relation.Nullary
|
||||
open import Cubical.Data.Empty
|
||||
open import Cubical.HITs.S1
|
||||
open import CubicalHott.Example3-1-9 renaming (lemma to lemma3-1-9)
|
||||
|
||||
loop≢refl : ¬ (loop ≡ refl)
|
||||
loop≢refl p = {! !}
|
||||
loop≢refl loop≡refl = false where
|
||||
f : ∀ {l} → (A : Type l) → (x : A) → (p : x ≡ x) → S¹ → A
|
||||
f A x p base = x
|
||||
f A x p (loop i) = p i
|
||||
|
||||
p-refl : ∀ {l} → (A : Type l) → (x : A) → (p : x ≡ x) → p ≡ refl
|
||||
p-refl A x p i j = f A x p (loop≡refl i j)
|
||||
|
||||
oops : ∀ {l} → (A : Type l) → isSet A
|
||||
oops {l} A x y p q =
|
||||
J (λ y' p' → (q' : x ≡ y') → p' ≡ q') (λ q' → sym (p-refl A x q')) p q
|
||||
|
||||
false : ⊥
|
||||
false = lemma3-1-9 (oops Type)
|
Loading…
Reference in a new issue