remove existing

This commit is contained in:
Michael Zhang 2024-08-09 04:28:50 -05:00
parent e0f6ba0477
commit 12beca17dc
4 changed files with 0 additions and 128 deletions

View file

@ -1,31 +0,0 @@
```
module VanDoornDissertation.HIT where
open import HottBook.Chapter1
```
# 3 Higher Inductive Types
## 3.1 Propositional Truncation
```
postulate
one-step-truncation : Set → Set
f : {A : Set} → A → one-step-truncation A
e : {A : Set} → (x y : A) → f x ≡ f y
-- data one-step-truncation (A : Set) : Set where
-- f : A → one-step-truncation A
-- e : (x y : A) → f x ≡ f y
weakly-constant : {A B : Set} → (g : A → B) → Set
weakly-constant {A} g = {x y : A} → g x ≡ g y
definition3∙1∙1 : {A : Set} → one-step-truncation A → → Set
definition3∙1∙1 {A} trunc zero = A
definition3∙1∙1 {A} trunc (suc n) = one-step-truncation (definition3∙1∙1 trunc n)
fs : {A : Set} → one-step-truncation A → (n : ) → Set
fs trunc n = (definition3∙1∙1 trunc n) → (definition3∙1∙1 trunc (suc n))
-- lemma3∙1∙3 : {X : Set} → {x : X} → is
```

View file

@ -1,3 +0,0 @@
{-# OPTIONS --cubical #-}
module VanDoornDissertation.HoTT.Sphere2 where

View file

@ -1,93 +0,0 @@
```
{-# OPTIONS --cubical --no-load-primitives #-}
module VanDoornDissertation.Preliminaries where
open import CubicalHott.Chapter1
open import CubicalHott.Chapter2
```
### 2.2.1 Paths
```
```
### 2.2.3 More on paths
#### Pathovers
```
dependent-path : {A : Type}
→ (P : A → Type)
→ {x y : A}
→ (p : x ≡ y)
→ (u : P x) → (v : P y) → Type
dependent-path P p u v = transport P p u ≡ v
syntax dependent-path P p u v = u ≡[ P , p ] v
-- https://git.mzhang.io/school/type-theory/issues/16
apd : ∀ {a b} {A : I → Type a} {B : (i : I) → A i → Type b}
→ (f : (i : I) → (a : A i) → B i a)
→ {x : A i0}
→ {y : A i1}
→ (p : PathP A x y)
→ PathP (λ i → B i (p i)) (f i0 x) (f i1 y)
apd f p i = f i (p i)
```
#### Squares
```
Square : {A : Type} {a00 a10 a01 a11 : A}
→ (p : a00 ≡ a01)
→ (q : a00 ≡ a10)
→ (s : a01 ≡ a11)
→ (r : a10 ≡ a11)
→ Type
Square p q s r = PathP (λ i → p i ≡ r i) q s
```
#### Squareovers and cubes
```
```
#### Paths in type formers
```
```
### 2.2.5 Pointed Types
#### Definition 2.2.6
```
data pointed (A : Type) : Type where
mkPointed : (a₀ : A) → pointed A
1-is-pointed : pointed 𝟙
1-is-pointed = mkPointed tt
2-is-pointed : pointed 𝟚
2-is-pointed = mkPointed false
S⁰ = 2-is-pointed
_×_-is-pointed : {A B : Type} → pointed A → pointed B → pointed (A × B)
_×_-is-pointed {A} {B} (mkPointed a₀) (mkPointed b₀) = mkPointed (a₀ , b₀)
```
### 2.2.6 Higher inductive types
```
data Interval : Type where
0I : Interval
1I : Interval
seg : 0I ≡ 1I
data Quotient (A : Type) (R : A → A → Type) : Type where
x : A → Quotient A R
glue : (a a' : A) → R a a' → x a ≡ x a'
```

View file

@ -1 +0,0 @@
This is an attempt at doing a direct translation.