remove existing
This commit is contained in:
parent
e0f6ba0477
commit
12beca17dc
4 changed files with 0 additions and 128 deletions
|
@ -1,31 +0,0 @@
|
|||
```
|
||||
module VanDoornDissertation.HIT where
|
||||
|
||||
open import HottBook.Chapter1
|
||||
```
|
||||
|
||||
# 3 Higher Inductive Types
|
||||
|
||||
## 3.1 Propositional Truncation
|
||||
|
||||
```
|
||||
postulate
|
||||
one-step-truncation : Set → Set
|
||||
f : {A : Set} → A → one-step-truncation A
|
||||
e : {A : Set} → (x y : A) → f x ≡ f y
|
||||
-- data one-step-truncation (A : Set) : Set where
|
||||
-- f : A → one-step-truncation A
|
||||
-- e : (x y : A) → f x ≡ f y
|
||||
|
||||
weakly-constant : {A B : Set} → (g : A → B) → Set
|
||||
weakly-constant {A} g = {x y : A} → g x ≡ g y
|
||||
|
||||
definition3∙1∙1 : {A : Set} → one-step-truncation A → ℕ → Set
|
||||
definition3∙1∙1 {A} trunc zero = A
|
||||
definition3∙1∙1 {A} trunc (suc n) = one-step-truncation (definition3∙1∙1 trunc n)
|
||||
|
||||
fs : {A : Set} → one-step-truncation A → (n : ℕ) → Set
|
||||
fs trunc n = (definition3∙1∙1 trunc n) → (definition3∙1∙1 trunc (suc n))
|
||||
|
||||
-- lemma3∙1∙3 : {X : Set} → {x : X} → is
|
||||
```
|
|
@ -1,3 +0,0 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
module VanDoornDissertation.HoTT.Sphere2 where
|
||||
|
|
@ -1,93 +0,0 @@
|
|||
```
|
||||
{-# OPTIONS --cubical --no-load-primitives #-}
|
||||
module VanDoornDissertation.Preliminaries where
|
||||
|
||||
open import CubicalHott.Chapter1
|
||||
open import CubicalHott.Chapter2
|
||||
```
|
||||
|
||||
### 2.2.1 Paths
|
||||
|
||||
```
|
||||
```
|
||||
|
||||
### 2.2.3 More on paths
|
||||
|
||||
#### Pathovers
|
||||
|
||||
```
|
||||
dependent-path : {A : Type}
|
||||
→ (P : A → Type)
|
||||
→ {x y : A}
|
||||
→ (p : x ≡ y)
|
||||
→ (u : P x) → (v : P y) → Type
|
||||
dependent-path P p u v = transport P p u ≡ v
|
||||
|
||||
syntax dependent-path P p u v = u ≡[ P , p ] v
|
||||
|
||||
-- https://git.mzhang.io/school/type-theory/issues/16
|
||||
apd : ∀ {a b} {A : I → Type a} {B : (i : I) → A i → Type b}
|
||||
→ (f : (i : I) → (a : A i) → B i a)
|
||||
→ {x : A i0}
|
||||
→ {y : A i1}
|
||||
→ (p : PathP A x y)
|
||||
→ PathP (λ i → B i (p i)) (f i0 x) (f i1 y)
|
||||
apd f p i = f i (p i)
|
||||
```
|
||||
|
||||
#### Squares
|
||||
|
||||
```
|
||||
Square : {A : Type} {a00 a10 a01 a11 : A}
|
||||
→ (p : a00 ≡ a01)
|
||||
→ (q : a00 ≡ a10)
|
||||
→ (s : a01 ≡ a11)
|
||||
→ (r : a10 ≡ a11)
|
||||
→ Type
|
||||
Square p q s r = PathP (λ i → p i ≡ r i) q s
|
||||
```
|
||||
|
||||
#### Squareovers and cubes
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
#### Paths in type formers
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
### 2.2.5 Pointed Types
|
||||
|
||||
#### Definition 2.2.6
|
||||
|
||||
```
|
||||
data pointed (A : Type) : Type where
|
||||
mkPointed : (a₀ : A) → pointed A
|
||||
|
||||
1-is-pointed : pointed 𝟙
|
||||
1-is-pointed = mkPointed tt
|
||||
|
||||
2-is-pointed : pointed 𝟚
|
||||
2-is-pointed = mkPointed false
|
||||
|
||||
S⁰ = 2-is-pointed
|
||||
|
||||
_×_-is-pointed : {A B : Type} → pointed A → pointed B → pointed (A × B)
|
||||
_×_-is-pointed {A} {B} (mkPointed a₀) (mkPointed b₀) = mkPointed (a₀ , b₀)
|
||||
```
|
||||
|
||||
### 2.2.6 Higher inductive types
|
||||
|
||||
```
|
||||
data Interval : Type where
|
||||
0I : Interval
|
||||
1I : Interval
|
||||
seg : 0I ≡ 1I
|
||||
|
||||
data Quotient (A : Type) (R : A → A → Type) : Type where
|
||||
x : A → Quotient A R
|
||||
glue : (a a' : A) → R a a' → x a ≡ x a'
|
||||
```
|
|
@ -1 +0,0 @@
|
|||
This is an attempt at doing a direct translation.
|
Loading…
Reference in a new issue