wip
This commit is contained in:
parent
604a5045c4
commit
173e6d4bbf
3 changed files with 87 additions and 3 deletions
|
@ -7,7 +7,6 @@ open import Cubical.Data.Sigma
|
|||
open import Cubical.Categories.Abelian
|
||||
open import Cubical.Categories.Additive
|
||||
open import Cubical.Categories.Category
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Prelude
|
||||
|
@ -57,6 +56,22 @@ private
|
|||
module fiveLemma (AC : AbelianCategory ℓ ℓ') where
|
||||
open AbelianCategory AC
|
||||
|
||||
-- image is defined as kernel (cokernel f)
|
||||
image : {x y : ob} (f : Hom[ x , y ]) → Σ ob (λ i → Hom[ i , y ])
|
||||
image f =
|
||||
let z1 = coker f in
|
||||
let z2 = ker z1 in
|
||||
hasKernels (coker f) .Kernel.k , z2
|
||||
|
||||
isExact : {x y z : ob} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Type ℓ'
|
||||
isExact {y = y} f g =
|
||||
let g-ker = hasKernels g in
|
||||
let f-im = image f in
|
||||
let k = g-ker .Kernel.k in
|
||||
let ker = g-ker .Kernel.ker in
|
||||
let i = fst f-im in
|
||||
Σ (Hom[ k , i ]) λ m → isIso cat m
|
||||
|
||||
module _
|
||||
(A B C D E A' B' C' D' E' : ob)
|
||||
(f : Hom[ A , B ])
|
||||
|
@ -72,9 +87,10 @@ module fiveLemma (AC : AbelianCategory ℓ ℓ') where
|
|||
(s : Hom[ B' , C' ])
|
||||
(t : Hom[ C' , D' ])
|
||||
(u : Hom[ D' , E' ])
|
||||
(fgExact : ker g ≃ ?)
|
||||
(fgExact : {! ker g !} ≃ {! !})
|
||||
where
|
||||
z = let z1 = ker f in {! !}
|
||||
x = isEmbedding×isSurjection→isEquiv
|
||||
-- lemma : isExact f g → isExact g h → isExact h j
|
||||
-- → isExact r s → isExact s t → isExact t u
|
||||
-- → isSurjection (fst l) → isEquiv (fst m) → isEquiv (fst p) → isEmbedding (fst q)
|
||||
|
@ -85,4 +101,4 @@ module fiveLemma (AC : AbelianCategory ℓ ℓ') where
|
|||
-- nIsEmbedding c1 c2 = {! !}
|
||||
|
||||
-- nIsSurjection : isSurjection (fst n)
|
||||
-- nIsSurjection b = {! !}
|
||||
-- nIsSurjection b = {! !}
|
60
src/Misc/FiveLemmaGroup.agda
Normal file
60
src/Misc/FiveLemmaGroup.agda
Normal file
|
@ -0,0 +1,60 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module Misc.FiveLemmaGroup where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
|
||||
open import Cubical.Data.Unit
|
||||
|
||||
open import Cubical.Algebra.Group.Base
|
||||
open import Cubical.Algebra.Group.Morphisms
|
||||
open import Cubical.Algebra.Group.MorphismProperties
|
||||
open import Cubical.Algebra.Group.GroupPath
|
||||
open import Cubical.Algebra.Group.Instances.Unit
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' : Level
|
||||
|
||||
isExact : {A B C : Group ℓ} → (f : GroupHom A B) → (g : GroupHom B C) → Type ℓ
|
||||
isExact f g = Ker g ≃ Im f
|
||||
|
||||
module _
|
||||
(A B C D E A' B' C' D' E' : Group ℓ)
|
||||
(f : GroupHom A B)
|
||||
(g : GroupHom B C)
|
||||
(h : GroupHom C D)
|
||||
(j : GroupHom D E)
|
||||
(l : GroupHom A A')
|
||||
(m : GroupHom B B')
|
||||
(n : GroupHom C C')
|
||||
(p : GroupHom D D')
|
||||
(q : GroupHom E E')
|
||||
(r : GroupHom A' B')
|
||||
(s : GroupHom B' C')
|
||||
(t : GroupHom C' D')
|
||||
(u : GroupHom D' E')
|
||||
(fg : isExact f g)
|
||||
(gh : isExact g h)
|
||||
(hj : isExact h j)
|
||||
(rs : isExact r s)
|
||||
(st : isExact s t)
|
||||
(tu : isExact t u)
|
||||
(lEpi : isSurjective l)
|
||||
(mIso : isIso (m .fst))
|
||||
(pIso : isIso (p .fst))
|
||||
(q : isMono p)
|
||||
where
|
||||
|
||||
sur : isSurjective n
|
||||
|
||||
mono : isMono n
|
||||
|
||||
lemma : isIso (n .fst)
|
||||
lemma = gg , {! !} , {! !} where
|
||||
gg : C' .fst → C .fst
|
||||
gg = {! !}
|
||||
|
8
src/Sorry.agda
Normal file
8
src/Sorry.agda
Normal file
|
@ -0,0 +1,8 @@
|
|||
{-# OPTIONS --cubical-compatible #-}
|
||||
|
||||
module Sorry where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
||||
postulate
|
||||
sorry : {l : Level} → {A : Set l} → A
|
Loading…
Reference in a new issue