From 1dd217f750efde7ba143713cd6c5612b069745fa Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Wed, 8 May 2024 19:14:30 -0500 Subject: [PATCH] 2.15.2 --- src/HottBook/Chapter2.lagda.md | 23 ++++++++++++++++++++++- 1 file changed, 22 insertions(+), 1 deletion(-) diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index 19c426a..d6a3eab 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -460,7 +460,7 @@ theorem2∙13∙1 m n = encode m n , equiv -- res : encode (suc m) (suc n) (ap suc (decode m n c)) ≡ c res : transport (λ n → code (suc m) n) (ap suc (decode m n c)) (r (suc m)) ≡ c - res = {! !} + res = in res @@ -471,3 +471,24 @@ theorem2∙13∙1 m n = encode m n , equiv ; h-id = backward m n } ``` + +## 2.15 Universal properties + +Definition 2.15.1 + +``` +definition2∙15∙1 : {X A B : Set} + → (X → A × B) + → (X → A) × (X → B) +definition2∙15∙1 f = Σ.fst ∘ f , Σ.snd ∘ f +``` + +### Theorem 2.15.2 + +``` +theorem2∙15∙2 : {X A B : Set} → isequiv (definition2∙15∙1 {X} {A} {B}) +theorem2∙15∙2 {X} {A} {B} = mkIsEquiv g (λ _ → refl) g (λ _ → refl) + where + g : (X → A) × (X → B) → (X → A × B) + g (f1 , f2) = λ x → (f1 x , f2 x) +``` \ No newline at end of file