diff --git a/src/ThesisWork/Pi3S2/SuccStr.agda b/src/ThesisWork/Pi3S2/SuccStr.agda index ba3ee18..8aab348 100644 --- a/src/ThesisWork/Pi3S2/SuccStr.agda +++ b/src/ThesisWork/Pi3S2/SuccStr.agda @@ -27,8 +27,23 @@ module _ where open import Data.Fin open import Data.Product + inc-k-inv : {k : ℕ} → (ℕ × Fin k) → (ℕ × Fin k) + inc-k-inv {k} (n , zero) = (suc n) , opposite zero + inc-k-inv {k} (n , suc k1) = n , inject₁ k1 + + inc : {k : ℕ} → (ℕ × Fin k) → (ℕ × Fin k) + inc {k} (n , k1) = + let result = inc-k-inv (n , opposite k1) in + (fst result) , opposite (snd result) + + _ : inc {k = 3} (5 , fromℕ 2) ≡ (6 , zero) + _ = refl + + -- _ : inc {k = 3} (5 , inject₁ (fromℕ 1)) ≡ (6 , zero) + -- _ = {! refl !} + + _ : inc {k = 5} (5 , fromℕ 4) ≡ (6 , zero) + _ = refl + ℕ-k-SuccStr : (k : ℕ) → (ℕ × Fin k) → ℕ → (ℕ × Fin k) - ℕ-k-SuccStr k = SuccStr (ℕ × Fin k) inc where - inc : (ℕ × Fin k) → (ℕ × Fin k) - inc (n , k) with suc k - inc (n , k) | x = {! !} \ No newline at end of file + ℕ-k-SuccStr k = SuccStr (ℕ × Fin k) inc \ No newline at end of file