6.3.2
This commit is contained in:
parent
130cda914b
commit
21b96f236c
5 changed files with 98 additions and 31 deletions
|
@ -59,6 +59,14 @@ module ≡-Reasoning where
|
|||
_ ∎ = refl
|
||||
```
|
||||
|
||||
### Lemma 2.1.4
|
||||
|
||||
```
|
||||
module lemma2∙1∙4 {l : Level} {A : Type l} where
|
||||
iii : {x y : A} (p : x ≡ y) → sym (sym p) ≡ p
|
||||
iii {x} {y} p i j = p j
|
||||
```
|
||||
|
||||
### Lemma 2.2.1
|
||||
|
||||
{{#include CubicalHott.Chapter2Lemma221.md:ap}}
|
||||
|
|
|
@ -4,6 +4,10 @@ module CubicalHott.Chapter6 where
|
|||
|
||||
open import CubicalHott.Chapter1
|
||||
open import CubicalHott.Chapter2
|
||||
|
||||
private
|
||||
variable
|
||||
l : Level
|
||||
```
|
||||
|
||||
## 6.3 The interval
|
||||
|
@ -18,7 +22,21 @@ data Iv : Type where
|
|||
### Lemma 6.3.1
|
||||
|
||||
```
|
||||
isContr : (A : Type l) → Type l
|
||||
isContr A = Σ A (λ a → (x : A) → a ≡ x)
|
||||
|
||||
lemma6∙3∙1 : isContr Iv
|
||||
lemma6∙3∙1 = 1I , f
|
||||
where
|
||||
f : (x : Iv) → 1I ≡ x
|
||||
f 0I = sym seg
|
||||
f 1I = refl
|
||||
f (seg i) j = {! !}
|
||||
```
|
||||
|
||||
### Lemma 6.3.2
|
||||
|
||||
```
|
||||
```
|
||||
|
||||
## 6.4 Circles and spheres
|
||||
|
|
|
@ -185,6 +185,8 @@ transportconst : {l₁ l₂ : Level} {A : Set l₁} {x y : A}
|
|||
→ (b : B)
|
||||
→ transport (λ _ → B) p b ≡ b
|
||||
transportconst {l₁} {l₂} {A} {x} {y} B refl b = refl
|
||||
|
||||
{-# REWRITE transportconst #-}
|
||||
```
|
||||
|
||||
### Equation 2.3.6
|
||||
|
|
|
@ -481,7 +481,9 @@ Principle of unique choice
|
|||
-- → ((x : A) → isProp (P x))
|
||||
-- → ((x : A) → ∥ P x ∥)
|
||||
-- → (x : A) → P x
|
||||
-- corollary3∙9∙2 assump1 assump2 x = {! !}
|
||||
-- corollary3∙9∙2 {A = A} {P = P} assump1 assump2 x =
|
||||
-- let rec = trunc-rec A (assump1 x) (λ y → {!assump2 x !}) (∣ x ∣)
|
||||
-- in rec
|
||||
```
|
||||
|
||||
## 3.11 Contractibility
|
||||
|
|
|
@ -31,25 +31,60 @@ syntax dep-path P p u v = u ≡[ P , p ] v
|
|||
## 6.3 The interval
|
||||
|
||||
```
|
||||
postulate
|
||||
module Interval where
|
||||
data #I : Set where
|
||||
#0 : #I
|
||||
#1 : #I
|
||||
|
||||
I : Set
|
||||
I = #I
|
||||
|
||||
0I : I
|
||||
0I = #0
|
||||
|
||||
1I : I
|
||||
seg : 0I ≡ 1I
|
||||
1I = #1
|
||||
|
||||
record I-rec (B : Set) (b0 b1 : B) (s : b0 ≡ b1) : Set where
|
||||
field
|
||||
f : I → B
|
||||
prop1 : f 0I ≡ b0
|
||||
prop2 : f 1I ≡ b1
|
||||
prop3 : apd f seg ≡ {! s !}
|
||||
postulate
|
||||
seg : 0I ≡ 1I
|
||||
|
||||
record I-ind (P : I → Set) (b0 : P 0I) (b1 : P 1I) (s : b0 ≡[ P , seg ] b1) : Set where
|
||||
field
|
||||
f : (x : I) → P x
|
||||
prop1 : f 0I ≡ b0
|
||||
prop2 : f 1I ≡ b1
|
||||
prop3 : apd f seg ≡ {! s !}
|
||||
postulate
|
||||
rec-Interval : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → I → B
|
||||
|
||||
rec-Interval-1 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → rec-Interval b₀ b₁ s 0I ≡ b₀
|
||||
rec-Interval-2 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → rec-Interval b₀ b₁ s 1I ≡ b₁
|
||||
|
||||
{-# REWRITE rec-Interval-1 #-}
|
||||
{-# REWRITE rec-Interval-2 #-}
|
||||
|
||||
postulate
|
||||
rec-Interval-3 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → apd (rec-Interval b₀ b₁ s) seg ≡ s
|
||||
{-# REWRITE rec-Interval-3 #-}
|
||||
open Interval public
|
||||
```
|
||||
|
||||
### Lemma 6.3.1
|
||||
|
||||
```
|
||||
lemma6∙3∙1 : isContr I
|
||||
lemma6∙3∙1 = 1I , f
|
||||
where
|
||||
f : (x : I) → 1I ≡ x
|
||||
f #0 = sym seg
|
||||
f #1 = refl
|
||||
```
|
||||
|
||||
### Lemma 6.3.2
|
||||
|
||||
```
|
||||
lemma6∙3∙2 : {A B : Set} {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g
|
||||
lemma6∙3∙2 {A = A} {B = B} {f = f} {g = g} p = apd q seg
|
||||
where
|
||||
p' : (x : A) → I → B
|
||||
p' x = rec-Interval (f x) (g x) (p x)
|
||||
|
||||
q : I → (A → B)
|
||||
q i x = p' x i
|
||||
```
|
||||
|
||||
## 6.4 Circles and sphere
|
||||
|
@ -72,28 +107,30 @@ S¹-rec : {P : S¹ → Set} → (b : P base) → (l : b ≡[ P , loop ] b) → (
|
|||
S¹-rec b l #base = b
|
||||
|
||||
postulate
|
||||
S¹-rec-loop : {P : S¹ → Set} → (b : P base) → (l : b ≡[ P , loop ] b) → apd (S¹-rec b l) loop ≡ l
|
||||
S¹-rec-loop : {P : S¹ → Set} → (b : P base) → (l : b ≡[ P , loop ] b) → apd {P = P} (S¹-rec b l) loop ≡ l
|
||||
|
||||
{-# REWRITE S¹-rec-loop #-}
|
||||
```
|
||||
|
||||
### Lemma 6.4.1
|
||||
|
||||
```
|
||||
lemma6∙4∙1 : loop ≢ refl
|
||||
lemma6∙4∙1 loop≡refl =
|
||||
{! !}
|
||||
where
|
||||
f : {A : Set} {x : A} {p : x ≡ x} → (S¹ → A)
|
||||
f {A = A} {x = x} {p = p} s =
|
||||
let p' = transportconst A loop x
|
||||
in (S¹-rec x (p' ∙ p)) s
|
||||
f-loop : {A : Set} {x : A} {p : x ≡ x} → apd f loop ≡ p
|
||||
f-loop {x = x} = S¹-rec-loop x ?
|
||||
-- lemma6∙4∙1 : loop ≢ refl
|
||||
-- lemma6∙4∙1 loop≡refl =
|
||||
-- {! !}
|
||||
-- where
|
||||
-- f : {A : Set} {x : A} {p : x ≡ x} → (S¹ → A)
|
||||
-- f {A = A} {x = x} {p = p} s =
|
||||
-- let p' = transportconst A loop x
|
||||
-- in (S¹-rec x (p' ∙ p)) s
|
||||
-- -- f-loop : {A : Set} {x : A} {p : x ≡ x} → apd f loop ≡ p
|
||||
-- -- f-loop {x = x} = S¹-rec-loop x ?
|
||||
|
||||
goal : ⊥
|
||||
-- goal : ⊥
|
||||
|
||||
goal2 : (A : Set l) (a : A) (p : a ≡ a) → isSet A
|
||||
goal = example3∙1∙9 (goal2 {! !} {! !} {! !})
|
||||
-- goal2 : (A : Set l) (a : A) (p : a ≡ a) → isSet A
|
||||
-- goal = example3∙1∙9 (goal2 {! !} {! !} {! !})
|
||||
|
||||
-- goal3 : ∀ (s : S¹) (p : s ≡ s) → p ≡ refl
|
||||
goal2 A a p x y r s = {! !}
|
||||
-- -- goal3 : ∀ (s : S¹) (p : s ≡ s) → p ≡ refl
|
||||
-- goal2 A a p x y r s = {! !}
|
||||
```
|
Loading…
Reference in a new issue