pushing all my code from desktop
This commit is contained in:
parent
1eb6441aa0
commit
26ea102563
9 changed files with 187 additions and 6 deletions
|
@ -3,6 +3,7 @@
|
|||
module CubicalHott.Lemma6-10-2 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Functions.Surjection
|
||||
open import Cubical.HITs.SetQuotients
|
||||
open import Cubical.HITs.PropositionalTruncation
|
||||
|
@ -14,4 +15,9 @@ private
|
|||
lemma : (A : Type l) (R : A → A → Type l)
|
||||
→ (q : A → A / R)
|
||||
→ isSurjection q
|
||||
lemma {l} A R q x = {! !}
|
||||
lemma {l} A R q x = elimProp f1 f2 x where
|
||||
f1 : (z : A / R) → isProp ∥ fiber q x ∥₁
|
||||
f1 z x y = {! !}
|
||||
|
||||
f2 : (a : A) → ∥ fiber q x ∥₁
|
||||
f2 a = ∣ (a , {! !}) ∣₁
|
||||
|
|
13
src/CubicalHott/Lemma7-2-8.agda
Normal file
13
src/CubicalHott/Lemma7-2-8.agda
Normal file
|
@ -0,0 +1,13 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Lemma7-2-8 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Data.Nat
|
||||
|
||||
lemma : {n : ℕ} → {X : Type}
|
||||
→ ((x : X) → isOfHLevel (suc n) X)
|
||||
→ isOfHLevel (suc n) X
|
||||
lemma {zero} {X} f x y = f x x y
|
||||
lemma {suc n} {X} f x y = f x x y
|
|
@ -4,8 +4,13 @@ module CubicalHott.Lemma7-3-1 where
|
|||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Cubical.Data.Unit
|
||||
open import Cubical.HITs.Truncation
|
||||
open import Data.Nat
|
||||
open import Cubical.Data.Nat
|
||||
|
||||
lemma : {A : Type} → (n : ℕ) → isOfHLevel n (∥ A ∥ n)
|
||||
lemma {A} n = {! !}
|
||||
lemma {A} zero = tt* , helper where
|
||||
helper : (y : ∥ A ∥ zero) → tt* ≡ y
|
||||
helper tt* = refl
|
||||
lemma {A} (suc zero) x y = {! !}
|
||||
lemma {A} (suc (suc n)) = {! !}
|
24
src/CubicalHott/Theorem3-2-2.agda
Normal file
24
src/CubicalHott/Theorem3-2-2.agda
Normal file
|
@ -0,0 +1,24 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Theorem3-2-2 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Relation.Nullary
|
||||
open import Cubical.Data.Nat
|
||||
open import Cubical.Data.Bool
|
||||
|
||||
-- Trying to give a cubical interpretation of this
|
||||
|
||||
theorem : ¬ ((A : Type) → (¬ (¬ A) → A))
|
||||
theorem f = {! !} where
|
||||
apdfp : PathP (λ i → ¬ ¬ notEq i → notEq i) (f Bool) (f Bool)
|
||||
apdfp = congP (λ i A → {! ¬ ¬ A → A !}) notEq
|
||||
|
||||
u : ¬ ¬ Bool
|
||||
u = λ p → p true
|
||||
|
||||
-- foranyu : PathP (λ i → {! !}) (fbool u) (fbool u)
|
||||
-- foranyu i = {! apdfp i u !}
|
||||
|
|
@ -73,9 +73,13 @@ lemma zero (A , a , Acontr) (B , b , Bcontr) i =
|
|||
-- in hfill u (inS (a≡b {! j !})) j
|
||||
-- in {! !}
|
||||
|
||||
lemma (suc zero) (A , A-prop) (B , B-prop) p q =
|
||||
let IH = lemma zero in
|
||||
{! !}
|
||||
lemma {l = l} (suc zero) (A , A-prop) (B , B-prop) p q i j = {! !} , {! !} where
|
||||
z1 = let z = lemma {l = l} zero in {! !}
|
||||
-- overall goal is p ≡ q
|
||||
-- p : (A , A-prop) ≡ (B , B-prop) where both are type Σ Type isProp
|
||||
-- q : (A , A-prop) ≡ (B , B-prop)
|
||||
|
||||
-- cong_fst(p) : A ≡ B
|
||||
|
||||
lemma (suc (suc n)) x y p q =
|
||||
let IH = lemma (suc n) in
|
||||
|
|
17
src/CubicalHott/Theorem7-2-7.agda
Normal file
17
src/CubicalHott/Theorem7-2-7.agda
Normal file
|
@ -0,0 +1,17 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Theorem7-2-7 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
open import Data.Nat
|
||||
|
||||
open import CubicalHott.Lemma7-2-8 renaming (lemma to lemma7-2-8)
|
||||
|
||||
theorem : {n : ℕ} → {X : Type}
|
||||
→ ((x : X) → isOfHLevel (suc n) (typ (Ω (X , x))))
|
||||
→ isOfHLevel (suc (suc n)) X
|
||||
theorem {n} {X} f x y =
|
||||
lemma7-2-8 λ p → J (λ y' p' → isOfHLevel (suc n) (x ≡ y')) (f x) p
|
20
src/CubicalHott/Theorem7-2-9.agda
Normal file
20
src/CubicalHott/Theorem7-2-9.agda
Normal file
|
@ -0,0 +1,20 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Theorem7-2-9 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
open import Cubical.Data.Nat
|
||||
|
||||
open import CubicalHott.Exercise3-5 renaming (exercise to exercise3-5)
|
||||
open import CubicalHott.Theorem7-2-1 renaming (forwards to theorem7-2-1)
|
||||
|
||||
theorem : {n : ℕ} → {A : Type}
|
||||
→ ((a : A) → isContr (typ ((Ω^ suc (suc n)) (A , a))))
|
||||
→ isOfHLevel (suc n) A
|
||||
theorem {zero} f = invEq exercise3-5 λ x → x , λ y → {! !}
|
||||
theorem {suc zero} f = theorem7-2-1 (λ x p → let z = snd (f x) in {! !})
|
||||
theorem {suc (suc n)} f x y = {! !}
|
88
src/Misc/FiveLemma.agda
Normal file
88
src/Misc/FiveLemma.agda
Normal file
|
@ -0,0 +1,88 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module Misc.FiveLemma where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical.Data.Sigma
|
||||
open import Cubical.Categories.Abelian
|
||||
open import Cubical.Categories.Additive
|
||||
open import Cubical.Categories.Category
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Functions.Embedding
|
||||
open import Cubical.Functions.Surjection
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' : Level
|
||||
|
||||
-- kernel : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
|
||||
-- kernel {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
|
||||
-- -- all elements of A that map to the base point b of B
|
||||
-- Σ A λ a → f a ≡ b
|
||||
|
||||
-- image : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
|
||||
-- image {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
|
||||
-- -- all elements of B such that
|
||||
-- Σ B (λ b →
|
||||
-- -- there exists some A such that f(a) is b
|
||||
-- Σ A λ a → f a ≡ b
|
||||
-- )
|
||||
|
||||
-- module _ (C : Category ℓ ℓ') where
|
||||
-- open Category C
|
||||
|
||||
-- module _ {x y : ob} where
|
||||
|
||||
-- record IsImage {i : ob} (f : Hom[ x , y ]) (m : Hom[ i , y ]) : Type (ℓ-max ℓ ℓ') where
|
||||
-- field
|
||||
-- e : Hom[ x , i ]
|
||||
-- req1 : f ≡ (_⋆_ e m)
|
||||
-- req2 : (i' : ob) → (e' : Hom[ x , i' ]) → (m' : Hom[ i' , y ]) → f ≡ (_⋆_ e' m')
|
||||
-- → ∃![ v ∈ Hom[ i , i' ] ] (m ≡ (_⋆_ v m'))
|
||||
|
||||
|
||||
-- record Image (f : Hom[ x , y ]) : Type (ℓ-max ℓ ℓ') where
|
||||
-- field
|
||||
-- i : ob
|
||||
-- m : Hom[ i , y ]
|
||||
-- isIm : IsImage f m
|
||||
|
||||
-- im : ∀ {x y : ob} → (f : Hom[ x , y ]) → Image f
|
||||
-- im {x} {y} f = record { i = {! !} ; m = {! !} ; isIm = {! !} }
|
||||
|
||||
module fiveLemma (AC : AbelianCategory ℓ ℓ') where
|
||||
open AbelianCategory AC
|
||||
|
||||
module _
|
||||
(A B C D E A' B' C' D' E' : ob)
|
||||
(f : Hom[ A , B ])
|
||||
(g : Hom[ B , C ])
|
||||
(h : Hom[ C , D ])
|
||||
(j : Hom[ D , E ])
|
||||
(l : Hom[ A , A' ])
|
||||
(m : Hom[ B , B' ])
|
||||
(n : Hom[ C , C' ])
|
||||
(p : Hom[ D , D' ])
|
||||
(q : Hom[ E , E' ])
|
||||
(r : Hom[ A' , B' ])
|
||||
(s : Hom[ B' , C' ])
|
||||
(t : Hom[ C' , D' ])
|
||||
(u : Hom[ D' , E' ])
|
||||
(fgExact : ker g ≃ ?)
|
||||
where
|
||||
z = let z1 = ker f in {! !}
|
||||
-- lemma : isExact f g → isExact g h → isExact h j
|
||||
-- → isExact r s → isExact s t → isExact t u
|
||||
-- → isSurjection (fst l) → isEquiv (fst m) → isEquiv (fst p) → isEmbedding (fst q)
|
||||
-- → isEquiv (fst n)
|
||||
-- lemma fgIsExact ghIsExact hjIsExact rsIsExact stIsExact tuIsExact lIsSurjection mIsEquiv pIsEquiv qIsInjection =
|
||||
-- isEmbedding×isSurjection→isEquiv (nIsEmbedding , nIsSurjection) where
|
||||
-- nIsEmbedding : isEmbedding (fst n)
|
||||
-- nIsEmbedding c1 c2 = {! !}
|
||||
|
||||
-- nIsSurjection : isSurjection (fst n)
|
||||
-- nIsSurjection b = {! !}
|
4
src/Misc/SnakeLemma.agda
Normal file
4
src/Misc/SnakeLemma.agda
Normal file
|
@ -0,0 +1,4 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module Misc.SnakeLemma where
|
||||
|
Loading…
Reference in a new issue