diff --git a/src/HottBook/Chapter1.lagda.md b/src/HottBook/Chapter1.lagda.md index 612e516..dc4c4e6 100644 --- a/src/HottBook/Chapter1.lagda.md +++ b/src/HottBook/Chapter1.lagda.md @@ -114,7 +114,11 @@ composite : {A B C : Set} → A → C composite f g x = g (f x) -syntax composite f g = g ∘ f +_∘_ : {A B C : Set} + → (g : B → C) + → (f : A → B) + → A → C +_∘_ g f x = g (f x) composite-assoc : {A B C D : Set} → (f : A → B) diff --git a/src/HottBook/Chapter2Exercises.lagda.md b/src/HottBook/Chapter2Exercises.lagda.md index 67659e6..079aa64 100644 --- a/src/HottBook/Chapter2Exercises.lagda.md +++ b/src/HottBook/Chapter2Exercises.lagda.md @@ -51,89 +51,51 @@ main proof: ``` exercise2∙13 : (𝟚 ≃ 𝟚) ≃ 𝟚 -exercise2∙13 = aux1 , equiv1 +exercise2∙13 = f , equiv where - aux1 : 𝟚 ≃ 𝟚 → 𝟚 - aux1 (fst , snd) = fst true - neg : 𝟚 → 𝟚 neg true = false neg false = true - neg-homotopy : (neg ∘ neg) ∼ id - neg-homotopy true = refl - neg-homotopy false = refl + f : 𝟚 ≃ 𝟚 → 𝟚 + f (fst , snd) = fst true - open Σ - open isequiv - - rev : 𝟚 → (𝟚 ≃ 𝟚) - fst (rev true) = id - g (snd (rev true)) = id - g-id (snd (rev true)) x = refl - h (snd (rev true)) = id - h-id (snd (rev true)) x = refl - fst (rev false) = neg - g (snd (rev false)) = neg - g-id (snd (rev false)) = neg-homotopy - h (snd (rev false)) = neg - h-id (snd (rev false)) = neg-homotopy - - equiv1 : isequiv aux1 - g equiv1 = rev - g-id equiv1 true = refl - g-id equiv1 false = refl - h equiv1 = rev - h-id equiv1 e@(f , f-equiv @ (mkIsEquiv g g-id h h-id)) = - -- proving that given any equivalence e, that: - -- ((aux1 ∘ rev) e ≡ id e) - -- (rev (aux1 e) ≡ e) - -- (rev (e.fst true) ≡ e) - -- since e is a pair, decompose it using Σ-≡ and prove separately that: - -- - fst (rev (e.fst true)) ≡ e.fst - -- - left side is a function and right side is a function too - -- - use function extensionality to show they behave the same - -- - somehow use the fact that e.snd.g-id exists - -- - snd (rev (e.fst true)) ≡ e.snd - -- test1 : (x : 𝟚) → fst (aux1 x) ≡ f x - -- test1 x with x , f true - -- test1 _ | true , true = {! !} - -- test1 _ | true , false = {! !} - -- test1 _ | false , y = {! !} - - -- equiv-funcs : (x : 𝟚) → aux1 x ≡ f x - - -- -- if f mapped everything to the same value, then the inverse couldn't exist - -- -- how to state this as a proof? - - -- asdf : (x : 𝟚) → neg (f x) ≡ f (neg x) - -- -- known that (f ∘ g) x ≡ x - -- -- g (f x) ≡ x - -- -- g (f true) ≡ true - -- -- maybe a proof by contradiction? suppose f true ≡ f false. why doesn't this work if f ∘ g ∼ id? - -- -- how to work backwards from the f ∘ g ∼ id? since we have a value `g-id` of that - -- asdf true = {! !} - -- asdf false = {! !} - - -- ft = f true - -- ff = f false - - -- div : ft ≢ ff - -- div p = - -- let - -- id𝟚 : 𝟚 → 𝟚 - -- id𝟚 = id - - -- wtf : ft ≡ ff - -- wtf = p - - -- wtf2 : g ft ≡ g ff - -- wtf2 = ap g wtf - - -- in {! !} - -- in Σ-≡ (funext test1 , {! !}) - {! !} + g : 𝟚 → 𝟚 ≃ 𝟚 + g true = id , mkIsEquiv id (λ _ → refl) id (λ _ → refl) + g false = neg , mkIsEquiv neg neg-id neg neg-id where - test1 : (x : 𝟚 ≃ 𝟚) → aux1 x ≡ {! !} - test1 (x , y) = {! !} + neg-id : (neg ∘ neg) ∼ id + neg-id true = refl + neg-id false = refl + + f∘g∼id : f ∘ g ∼ id + f∘g∼id true = refl + f∘g∼id false = refl + + g∘f∼id : g ∘ f ∼ id + g∘f∼id e' @ (f' , ie' @ (mkIsEquiv g' g-id h' h-id)) = {! !} + where + f-codomain-is-2 : f' true ≢ f' false + f-codomain-is-2 p = {! !} + + f-true-is-true-to-id : f' true ≡ true → f' ≡ id + f-true-is-true-to-id p = funext prf + where + prf : (x : 𝟚) → f' x ≡ id x + prf true = p + prf false with f' false + prf false | true = {! !} + prf false | false = refl + + equivPrf' : (x : 𝟚) → Σ.fst (g (f' true)) x ≡ f' x + equivPrf' x = {! !} + + equivPrf : Σ.fst (g (f' true)) ≡ f' + equivPrf = funext equivPrf' + + attempt : (g ∘ f) e' ≡ id e' + attempt = posEqLemma ((g ∘ f) e') (id e') equivPrf + + equiv : isequiv f + equiv = mkIsEquiv g f∘g∼id g g∘f∼id ```