exercise 2.5
This commit is contained in:
parent
282be4abed
commit
36e3186b0f
4 changed files with 60 additions and 10 deletions
|
@ -3,7 +3,7 @@ authors = ["Michael Zhang"]
|
|||
language = "en"
|
||||
multilingual = false
|
||||
src = "src"
|
||||
title = "HoTT Book"
|
||||
title = "Research"
|
||||
|
||||
[preprocessor.katex]
|
||||
macros = "./macros.txt"
|
||||
|
|
|
@ -24,4 +24,5 @@
|
|||
|
||||
# Van Doorn Dissertation
|
||||
|
||||
- [Preliminaries](./generated/VanDoornDissertation.Preliminaries.md)
|
||||
- [Preliminaries](./generated/VanDoornDissertation.Preliminaries.md)
|
||||
- [HIT](./generated/VanDoornDissertation.HIT.md)
|
|
@ -118,11 +118,15 @@ record pointed (l : Level) : Set (lsuc l) where
|
|||
|
||||
### Theorem 2.1.6 (Eckmann-Hilton)
|
||||
|
||||
TODO
|
||||
|
||||
```
|
||||
Ω² : {l : Level} → pointed l → pointed l
|
||||
Ω² p = Ω (Ω p)
|
||||
module theorem2∙1∙6 where
|
||||
open pointed
|
||||
|
||||
Ω² : {l : Level} → pointed l → pointed l
|
||||
Ω² p = Ω (Ω p)
|
||||
|
||||
-- compose : {l : Level} → (p : pointed l) → Ω² p
|
||||
-- compose a b = ?
|
||||
```
|
||||
|
||||
## 2.2 Functions are functors
|
||||
|
@ -222,6 +226,24 @@ transportconst {l₁} {l₂} {A} {x} {y} B p b =
|
|||
J (λ x y p → transport (λ _ → B) p b ≡ b) (λ x → refl) x y p
|
||||
```
|
||||
|
||||
### Equation 2.3.6
|
||||
|
||||
```
|
||||
equation2∙3∙6 : {A B : Set} {x y : A} {p : x ≡ y} {f : A → B}
|
||||
→ f x ≡ f y
|
||||
→ transport (λ _ → B) p (f x) ≡ f y
|
||||
equation2∙3∙6 {A} {B} {x} {y} {p} {f} q = transportconst B p (f x) ∙ q
|
||||
```
|
||||
|
||||
### Equation 2.3.7
|
||||
|
||||
```
|
||||
equation2∙3∙7 : {A B : Set} {x y : A} {p : x ≡ y} {f : A → B}
|
||||
→ transport (λ _ → B) p (f x) ≡ f y
|
||||
→ f x ≡ f y
|
||||
equation2∙3∙7 {A} {B} {x} {y} {p} {f} q = sym (transportconst B p (f x)) ∙ q
|
||||
```
|
||||
|
||||
### Lemma 2.3.8
|
||||
|
||||
```
|
||||
|
@ -333,10 +355,10 @@ lemma2∙4∙3 {A} {B} {f} {g} H {x} {y} p = let
|
|||
### Corollary 2.4.4
|
||||
|
||||
```
|
||||
-- lemma2∙4∙4 : {A : Set} {f : A → A} {H : f ∼ id}
|
||||
-- corollary2∙4∙4 : {A : Set} {f : A → A} {H : f ∼ id}
|
||||
-- → (x : A)
|
||||
-- → H (f x) ≡ ap f (H x)
|
||||
-- lemma2∙4∙4 {A} {f} {H} x =
|
||||
-- corollary2∙4∙4 {A} {f} {H} x =
|
||||
-- let g p = H x in
|
||||
-- {! !}
|
||||
```
|
||||
|
@ -996,4 +1018,4 @@ theorem2∙15∙2 {X} {A} {B} = mkIsEquiv g (λ _ → refl) g (λ _ → refl)
|
|||
where
|
||||
g : (X → A) × (X → B) → (X → A × B)
|
||||
g (f1 , f2) = λ x → (f1 x , f2 x)
|
||||
```
|
||||
```
|
|
@ -63,7 +63,11 @@ $A$, simultaneously with the type of boundaries for such paths._
|
|||
[6]: https://git.mzhang.io/school/type-theory/issues/6
|
||||
|
||||
```
|
||||
|
||||
data n-dimensional-path {A : Set} : (n : ℕ) → Set where
|
||||
z : (x y : A) → x ≡ y → n-dimensional-path zero
|
||||
s : (n : ℕ) → (d : n-dimensional-path {A} n) → n-dimensional-path (suc n)
|
||||
-- n-dimensional-path {A} zero = (x y : A) → x ≡ y
|
||||
-- n-dimensional-path {A} (suc n) = {! !}
|
||||
```
|
||||
|
||||
## Exercise 2.5
|
||||
|
@ -73,6 +77,29 @@ Prove that the functions [2.3.6] and [2.3.7] are inverse equivalences.
|
|||
[2.3.6]: https://hott.github.io/book/hott-ebook-1357-gbe0b8e2.pdf#equation.2.3.6
|
||||
[2.3.7]: https://hott.github.io/book/hott-ebook-1357-gbe0b8e2.pdf#equation.2.3.7
|
||||
|
||||
```
|
||||
module exercise2∙5 {A B : Set} {x y : A} {p : x ≡ y} {f : A → B} where
|
||||
p1 = transportconst B p (f x)
|
||||
|
||||
forward : (q : f x ≡ f y) → equation2∙3∙7 {p = p} (equation2∙3∙6 {p = p} q) ≡ q
|
||||
forward q =
|
||||
let
|
||||
z1 = lemma2∙1∙4.ii1 p1
|
||||
z = ap (λ r → r ∙ q) z1
|
||||
z2 = lemma2∙1∙4.iv (sym p1) p1 q
|
||||
z3 = sym (lemma2∙1∙4.i2 q)
|
||||
in z2 ∙ z ∙ z3
|
||||
|
||||
backward : (q : transport (λ _ → B) p (f x) ≡ f y) → equation2∙3∙6 {p = p} (equation2∙3∙7 {p = p} q) ≡ q
|
||||
backward q =
|
||||
let
|
||||
z1 = lemma2∙1∙4.ii2 p1
|
||||
z2 = ap (λ r → r ∙ q) z1
|
||||
z3 = lemma2∙1∙4.iv p1 (sym p1) q
|
||||
z4 = sym (lemma2∙1∙4.i2 q)
|
||||
in z3 ∙ z2 ∙ z4
|
||||
```
|
||||
|
||||
## Exercise 2.9
|
||||
|
||||
Prove that coproducts have the expected universal property,
|
||||
|
|
Loading…
Reference in a new issue