lemma 3.11.3
This commit is contained in:
parent
83c80001e5
commit
3807a5759a
1 changed files with 10 additions and 4 deletions
|
@ -401,17 +401,23 @@ module lemma3∙11∙3 where
|
|||
iii : {A : Set} → A ≃ 𝟙 → properties A
|
||||
iii Aeqv @ (f , mkIsEquiv g g* h h*) = mkProperties p1 p2 p3
|
||||
where
|
||||
p1 = g tt , λ x → {! ap g ? !}
|
||||
p2 = g tt , λ x y → {! !}
|
||||
p3 = Aeqv
|
||||
alltt : (a b : 𝟙) → a ≡ b
|
||||
alltt tt tt = refl
|
||||
|
||||
p1 = h tt , λ x → ap h (alltt tt (f x)) ∙ h* x
|
||||
p2 = h tt , λ x y → sym (h* x) ∙ ap h (alltt (f x) (f y)) ∙ h* y
|
||||
p3 = Aeqv
|
||||
```
|
||||
|
||||
### Lemma 3.11.6
|
||||
|
||||
```
|
||||
lemma3∙11∙6 : {A : Set} {P : A → Set} → ((a : A) → isContr (P a)) → isContr ((x : A) → P x)
|
||||
lemma3∙11∙6 {A} {P} allContr = {! !}
|
||||
lemma3∙11∙6 {A} {P} allContr =
|
||||
let
|
||||
Pa-isProp : isProp ((x : A) → P x)
|
||||
Pa-isProp = example3∙6∙2 λ x → Σ.snd (lemma3∙11∙3.properties.ii (lemma3∙11∙3.i (allContr x)))
|
||||
in {! !} , {! !}
|
||||
```
|
||||
|
||||
### Lemma 3.11.8
|
||||
|
|
Loading…
Reference in a new issue