From 45fa777765f55635090d45223281515f144cc022 Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Mon, 14 Oct 2024 23:53:52 -0500 Subject: [PATCH] closes #31 --- src/CubicalHott/Theorem7-1-8.agda | 35 +++++++++++++++++++++---------- 1 file changed, 24 insertions(+), 11 deletions(-) diff --git a/src/CubicalHott/Theorem7-1-8.agda b/src/CubicalHott/Theorem7-1-8.agda index c0a2c3f..166bf35 100644 --- a/src/CubicalHott/Theorem7-1-8.agda +++ b/src/CubicalHott/Theorem7-1-8.agda @@ -3,10 +3,15 @@ module CubicalHott.Theorem7-1-8 where open import Cubical.Foundations.Prelude +open import Cubical.Foundations.Equiv +open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Data.Nat +open import CubicalHott.Theorem2-7-2 renaming (theorem to theorem2-7-2) +open import CubicalHott.Corollary7-1-5 renaming (corollary to corollary7-1-5) + theorem : {A : Type} {B : A → Type} {n : ℕ} → isOfHLevel n A → ((a : A) → isOfHLevel n (B a)) @@ -25,16 +30,24 @@ theorem {A} {B} {suc zero} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) = let helper = J (λ a' p' → (ba' : B a') → PathP (λ i' → B (p' i')) xb ba') (λ ba' i' → B-n-type xa xb ba' i') (A-n-type xa ya) yb in helper i theorem {A} {B} {2+ n} A-n-type B-n-type x @ (xa , xb) y @ (ya , yb) = - -- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb)) - {! !} where - goal : (p : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (p i)) xb yb) - goal p = {! !} + let eqv = theorem2-7-2 {w = x} {w' = y} in + let eqv2 = (fst invEquivEquiv) eqv in + let + IH = theorem (A-n-type xa ya) + -- (a : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (a i)) xb yb) + λ p → J (λ a' p' → (yb' : B a') → isOfHLevel (suc n) (PathP (λ i → B (p' i)) xb yb')) (λ yb' → B-n-type xa xb yb') p yb + in corollary7-1-5 (suc n) eqv2 IH - IH = theorem - {A = xa ≡ ya} - {B = λ p → {! !}} - {n = suc n} - (A-n-type xa ya) - {! !} + -- -- isOfHLevel (suc n) ((xa , xb) ≡ (ya , yb)) + -- {! !} where + -- goal : (p : xa ≡ ya) → isOfHLevel (suc n) (PathP (λ i → B (p i)) xb yb) + -- goal p = {! !} - IH' = subst (λ x₁ → {! !}) {! !} IH \ No newline at end of file + -- IH = theorem + -- {A = xa ≡ ya} + -- {B = λ p → {! !}} + -- {n = suc n} + -- (A-n-type xa ya) + -- {! !} + + -- IH' = subst (λ x₁ → {! !}) {! !} IH \ No newline at end of file