waht
This commit is contained in:
parent
39e38719bf
commit
47a3a63375
7 changed files with 139 additions and 0 deletions
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"editor.unicodeHighlight.ambiguousCharacters": false
|
||||
}
|
13
src/2023-11-27-asdf.agda
Normal file
13
src/2023-11-27-asdf.agda
Normal file
|
@ -0,0 +1,13 @@
|
|||
module 2023-11-27-asdf where
|
||||
|
||||
open import Relation.Binary.Core
|
||||
open import Relation.Binary.Definitions
|
||||
open import Relation.Binary.PropositionalEquality as Eq
|
||||
|
||||
postulate
|
||||
S1 : Set
|
||||
base : S1
|
||||
loop : base ≡ base
|
||||
|
||||
asdf : (c : S1)
|
||||
→ ((x : A) → x ≡ c)
|
15
src/2023-12-21-some-group-theory-shit.agda
Normal file
15
src/2023-12-21-some-group-theory-shit.agda
Normal file
|
@ -0,0 +1,15 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
-- http://jesse.jaksin14.angelfire.com/Proofs/Group_Theory.pdf
|
||||
|
||||
open import Agda.Primitive hiding (Prop)
|
||||
|
||||
open import Cubical.Core.Everything
|
||||
|
||||
is-Semigroup : (l : Level) → (S : Type l) → Type l
|
||||
is-Semigroup l S = Σ[ mul ∈ (S → S → S) ] ((x y z : S) → mul (mul x y) z ≡ mul x (mul y z))
|
||||
|
||||
Semigroup : (l : Level) → Type (lsuc l)
|
||||
Semigroup l = Σ[ G ∈ Type l ] (is-Semigroup l G)
|
||||
|
||||
is-Group : (l : Level) → (S : Semigroup l) → Type l
|
||||
is-Group l S = {! !}
|
0
src/CubicalHott/Chapter1.lagda.md
Normal file
0
src/CubicalHott/Chapter1.lagda.md
Normal file
31
src/CubicalHott/Chapter1Exercises.agda
Normal file
31
src/CubicalHott/Chapter1Exercises.agda
Normal file
|
@ -0,0 +1,31 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Chapter1Exercises where
|
||||
|
||||
open import Cubical.Core.Everything
|
||||
open import Cubical.Core.Primitives public
|
||||
open import Data.Empty
|
||||
|
||||
refl : {ℓ : Level} {A : Set ℓ} {x : A} → Path A x x
|
||||
refl {x = x} = λ i → x
|
||||
|
||||
-- Exercise 1.1. Given functions f : A → B and g : B → C, define their composite g ◦ f : A → C. Show that we have h ◦ (g ◦ f ) ≡ (h ◦ g) ◦ f .
|
||||
infix 10 _∘_
|
||||
_∘_ : {A B C : Set} → (g : B → C) → (f : A → B) → A → C
|
||||
(g ∘ f) a = g (f a)
|
||||
|
||||
exercise-1-1 : {A B C D : Set}
|
||||
→ (f : A → B)
|
||||
→ (g : B → C)
|
||||
→ (h : C → D)
|
||||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
exercise-1-1 f g h = refl {x = h ∘ (g ∘ f)}
|
||||
|
||||
-- TODO: Explain how this works
|
||||
|
||||
-- Exercise 1.11. Show that for any type A, we have ¬¬¬A → ¬A.
|
||||
¬_ : (A : Set) → Set
|
||||
¬ A = ⊥
|
||||
|
||||
exercise-1-11 : {A : Set} → ¬ (¬ (¬ A)) → ¬ A
|
||||
exercise-1-11 ()
|
69
src/CubicalHott/Chapter2.lagda.md
Normal file
69
src/CubicalHott/Chapter2.lagda.md
Normal file
|
@ -0,0 +1,69 @@
|
|||
```
|
||||
{-# OPTIONS --cubical #-}
|
||||
module CubicalHott.Chapter2 where
|
||||
open import Cubical.Core.Everything
|
||||
```
|
||||
|
||||
# 2.1 Types are higher groupoids
|
||||
|
||||
```
|
||||
lemma-2-1-2 : {A : Set}
|
||||
→ {x y z : A}
|
||||
→ x ≡ y
|
||||
→ y ≡ z
|
||||
→ x ≡ z
|
||||
lemma-2-1-2 {A} {x} p q i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i)
|
||||
|
||||
_∙_ = lemma-2-1-2
|
||||
```
|
||||
|
||||
# 2.2 Functions are functors
|
||||
|
||||
```
|
||||
lemma-2-2-1 : {A B : Set} {x y : A}
|
||||
→ (f : A → B)
|
||||
→ x ≡ y
|
||||
→ f x ≡ f y
|
||||
lemma-2-2-1 f p i = f (p i)
|
||||
|
||||
ap = lemma-2-2-1
|
||||
```
|
||||
|
||||
# 2.4 Homotopies and equivalences
|
||||
|
||||
```
|
||||
definition-2-4-1 : {A : Set} {P : A → Set}
|
||||
→ (f g : (x : A) → P x)
|
||||
→ Set
|
||||
definition-2-4-1 {A} f g = (x : A) → f x ≡ g x
|
||||
|
||||
_∼_ = definition-2-4-1
|
||||
|
||||
lemma-2-4-2-1 : {A : Set} {P : A → Set}
|
||||
→ (f : (x : A) → P x)
|
||||
→ f ∼ f
|
||||
lemma-2-4-2-1 f x i = f x
|
||||
|
||||
lemma-2-4-2-2 : {A : Set} {P : A → Set}
|
||||
→ (f g : (x : A) → P x)
|
||||
→ (f∼g : f ∼ g)
|
||||
→ g ∼ f
|
||||
lemma-2-4-2-2 f g f∼g x i = f∼g x (~ i)
|
||||
|
||||
lemma-2-4-2-3 : {A : Set} {P : A → Set}
|
||||
→ (f g h : (x : A) → P x)
|
||||
→ (f∼g : f ∼ g)
|
||||
→ (g∼h : g ∼ h)
|
||||
→ f ∼ h
|
||||
lemma-2-4-2-3 {A} f g h f∼g g∼h x = (f∼g x) ∙ (g∼h x)
|
||||
-- TODO: Wtf how does this work?
|
||||
|
||||
lemma-2-4-3 : {A B : Set}
|
||||
→ (f g : A → B)
|
||||
→ (H : f ∼ g)
|
||||
→ {x y : A}
|
||||
→ (p : x ≡ y)
|
||||
→ (H x ∙ ap g p) ≡ (ap f p ∙ H y)
|
||||
lemma-2-4-3 f g H {x} {y} p i =
|
||||
{! !}
|
||||
```
|
8
src/CubicalHott/Chapter2Exercises.agda
Normal file
8
src/CubicalHott/Chapter2Exercises.agda
Normal file
|
@ -0,0 +1,8 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Chapter2Exercises where
|
||||
|
||||
-- Exercise 2.4. Define, by induction on n, a general notion of n-dimensional
|
||||
-- path in a type A, simultaneously with the type of boundaries for such paths.
|
||||
|
||||
-- Exercise 2.13. Show that (2 ≃ 2) ≃ 2.
|
Loading…
Reference in a new issue