agda hangs with 2.6.4.1 on Chapter2
This commit is contained in:
parent
e475a6c685
commit
4af035f713
2 changed files with 44 additions and 32 deletions
6
Makefile
6
Makefile
|
@ -19,8 +19,8 @@ build-to-html:
|
|||
.PHONY: html/src/generated/Progress.md
|
||||
|
||||
html/src/generated/Progress.md:
|
||||
# nu scripts/build-table
|
||||
touch $@
|
||||
nu scripts/build-table
|
||||
# touch $@
|
||||
|
||||
html/book/Progress.html: html/src/generated/Progress.md
|
||||
pandoc \
|
||||
|
@ -43,4 +43,4 @@ deploy: build-book html/book/progress/index.html
|
|||
rsync -azr html/book/ root@veil:/home/blogDeploy/public/research
|
||||
|
||||
.PHONY: build-book build-to-html deploy
|
||||
# -not \( -path src/CubicalHott -prune \) \
|
||||
# -not \( -path src/CubicalHott -prune \) \
|
||||
|
|
|
@ -336,7 +336,33 @@ id-qinv = mkQinv id (λ _ → refl) (λ _ → refl)
|
|||
### Example 2.4.8
|
||||
|
||||
```
|
||||
module example2∙4∙8 where
|
||||
private
|
||||
variable
|
||||
A : Set
|
||||
x y z : A
|
||||
|
||||
i : (p : x ≡ y) → qinv (p ∙_)
|
||||
i p = mkQinv g forward backward
|
||||
where
|
||||
g = (sym p) ∙_
|
||||
forward : (_∙_ p ∘ g) ∼ id
|
||||
forward q = lemma2∙1∙4.iv p (sym p) q ∙ ap (_∙ q) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i2 q)
|
||||
-- backward : (g ∘ (_∙_ p)) ∼ id
|
||||
backward : {y z : A} → (q : {! y ≡ z !}) → {! !} ≡ q
|
||||
-- sym p ∙ (q ∙ p) ≡ q
|
||||
backward q = {! !}
|
||||
|
||||
ii : (p : x ≡ y) → qinv (_∙ p)
|
||||
ii p = mkQinv g forward backward
|
||||
where
|
||||
g = _∙ (sym p)
|
||||
forward : (_∙ p ∘ g) ∼ id
|
||||
-- (q ∙ sym(p)) ∙ p ≡ q
|
||||
forward q = sym (lemma2∙1∙4.iv q (sym p) p) ∙ ap (q ∙_) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i1 q)
|
||||
backward : (g ∘ _∙ p) ∼ id
|
||||
-- (q ∙ p) ∙ (sym p) ≡ q
|
||||
backward q = sym (lemma2∙1∙4.iv q p (sym p)) ∙ ap (q ∙_) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i1 q)
|
||||
```
|
||||
|
||||
### Example 2.4.9
|
||||
|
@ -451,36 +477,22 @@ module lemma2∙4∙12 where
|
|||
### Definition 2.5.1
|
||||
|
||||
```
|
||||
-- definition2∙5∙1 : {B C : Set} {b b' : B} {c c' : C}
|
||||
-- → ((b , c) ≡ (b' , c')) ≃ ((b ≡ b') × (c ≡ c'))
|
||||
-- definition2∙5∙1 {B} {C} {b} {b'} {c} {c'} =
|
||||
-- let
|
||||
-- open Σ
|
||||
definition2∙5∙1 : {B C : Set} {b b' : B} {c c' : C}
|
||||
→ ((b , c) ≡ (b' , c')) ≃ ((b ≡ b') × (c ≡ c'))
|
||||
definition2∙5∙1 {B = B} {C = C} {b = b} {b' = b'} {c = c} {c' = c'} =
|
||||
f , qinv-to-isequiv (mkQinv g forward backward)
|
||||
where
|
||||
f : {b b' : B} {c c' : C} → ((b , c) ≡ (b' , c')) → ((b ≡ b') × (c ≡ c'))
|
||||
f p = ap fst p , ap snd p
|
||||
|
||||
-- f : ((b , c) ≡ (b' , c')) → ((b ≡ b') × (c ≡ c'))
|
||||
-- f p = ap fst p , ap snd p
|
||||
g : {b b' : B} {c c' : C} → ((b ≡ b') × (c ≡ c')) → ((b , c) ≡ (b' , c'))
|
||||
g (refl , refl) = refl
|
||||
|
||||
-- g : ((b ≡ b') × (c ≡ c')) → ((b , c) ≡ (b' , c'))
|
||||
-- g p =
|
||||
-- let (p1 , p2) = p in
|
||||
-- J (λ x1 y1 p1 → (x1 , c) ≡ (y1 , c'))
|
||||
-- (λ x1 → ap (λ p → (x1 , p)) p2) b b' p1
|
||||
|
||||
-- open ≡-Reasoning
|
||||
|
||||
-- forward : (g ∘ f) ∼ id
|
||||
-- forward x =
|
||||
-- J (λ x1 y1 p1 → (g ∘ f) {! !} ≡ id {! !})
|
||||
-- (λ x1 → {! !}) (b , c) (b' , c') x
|
||||
|
||||
-- backward : (f ∘ g) ∼ id
|
||||
-- backward x =
|
||||
-- let (p1 , p2) = x in
|
||||
-- begin
|
||||
-- f (g (p1 , p2)) ≡⟨ {! !} ⟩
|
||||
-- f (J (λ x1 y1 p1 → (x1 , c) ≡ (y1 , c')) (λ x1 → ap (λ p → (x1 , p)) p2) b b' p1) ≡⟨ {! !} ⟩
|
||||
-- id x ∎
|
||||
-- in f , qinv-to-isequiv (mkQinv g backward forward)
|
||||
forward : {b b' : B} {c c' : C} → (f {b} {b'} {c} {c'} ∘ g {b} {b'} {c} {c'}) ∼ id
|
||||
forward (refl , refl) = refl
|
||||
|
||||
backward : {b b' : B} {c c' : C} → (g {b} {b'} {c} {c'} ∘ f {b} {b'} {c} {c'}) ∼ id
|
||||
backward refl = refl
|
||||
```
|
||||
|
||||
## 2.6 Cartesian product types
|
||||
|
@ -1027,4 +1039,4 @@ theorem2∙15∙5 {X = X} {A = A} {B = B} = qinv-to-isequiv (mkQinv g forward ba
|
|||
backward : (f : (x : X) → A x × B x) → g (equation2∙15∙4 f) ≡ f
|
||||
backward f = funext λ x → refl
|
||||
where open axiom2∙9∙3
|
||||
```
|
||||
```
|
Loading…
Reference in a new issue