agda hangs with 2.6.4.1 on Chapter2

This commit is contained in:
Michael Zhang 2024-07-21 14:12:39 -05:00
parent e475a6c685
commit 4af035f713
2 changed files with 44 additions and 32 deletions

View file

@ -19,8 +19,8 @@ build-to-html:
.PHONY: html/src/generated/Progress.md
html/src/generated/Progress.md:
# nu scripts/build-table
touch $@
nu scripts/build-table
# touch $@
html/book/Progress.html: html/src/generated/Progress.md
pandoc \
@ -43,4 +43,4 @@ deploy: build-book html/book/progress/index.html
rsync -azr html/book/ root@veil:/home/blogDeploy/public/research
.PHONY: build-book build-to-html deploy
# -not \( -path src/CubicalHott -prune \) \
# -not \( -path src/CubicalHott -prune \) \

View file

@ -336,7 +336,33 @@ id-qinv = mkQinv id (λ _ → refl) (λ _ → refl)
### Example 2.4.8
```
module example2∙4∙8 where
private
variable
A : Set
x y z : A
i : (p : x ≡ y) → qinv (p ∙_)
i p = mkQinv g forward backward
where
g = (sym p) ∙_
forward : (_∙_ p ∘ g) id
forward q = lemma2∙1∙4.iv p (sym p) q ∙ ap (_∙ q) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i2 q)
-- backward : (g ∘ (_∙_ p)) id
backward : {y z : A} → (q : {! y ≡ z !}) → {! !} ≡ q
-- sym p ∙ (q ∙ p) ≡ q
backward q = {! !}
ii : (p : x ≡ y) → qinv (_∙ p)
ii p = mkQinv g forward backward
where
g = _∙ (sym p)
forward : (_∙ p ∘ g) id
-- (q ∙ sym(p)) ∙ p ≡ q
forward q = sym (lemma2∙1∙4.iv q (sym p) p) ∙ ap (q ∙_) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i1 q)
backward : (g ∘ _∙ p) id
-- (q ∙ p) ∙ (sym p) ≡ q
backward q = sym (lemma2∙1∙4.iv q p (sym p)) ∙ ap (q ∙_) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i1 q)
```
### Example 2.4.9
@ -451,36 +477,22 @@ module lemma2∙4∙12 where
### Definition 2.5.1
```
-- definition2∙5∙1 : {B C : Set} {b b' : B} {c c' : C}
-- → ((b , c) ≡ (b' , c')) ≃ ((b ≡ b') × (c ≡ c'))
-- definition2∙5∙1 {B} {C} {b} {b'} {c} {c'} =
-- let
-- open Σ
definition2∙5∙1 : {B C : Set} {b b' : B} {c c' : C}
→ ((b , c) ≡ (b' , c')) ≃ ((b ≡ b') × (c ≡ c'))
definition2∙5∙1 {B = B} {C = C} {b = b} {b' = b'} {c = c} {c' = c'} =
f , qinv-to-isequiv (mkQinv g forward backward)
where
f : {b b' : B} {c c' : C} → ((b , c) ≡ (b' , c')) → ((b ≡ b') × (c ≡ c'))
f p = ap fst p , ap snd p
-- f : ((b , c) ≡ (b' , c')) → ((b ≡ b') × (c ≡ c'))
-- f p = ap fst p , ap snd p
g : {b b' : B} {c c' : C} → ((b ≡ b') × (c ≡ c')) → ((b , c) ≡ (b' , c'))
g (refl , refl) = refl
-- g : ((b ≡ b') × (c ≡ c')) → ((b , c) ≡ (b' , c'))
-- g p =
-- let (p1 , p2) = p in
-- J (λ x1 y1 p1 → (x1 , c) ≡ (y1 , c'))
-- (λ x1 → ap (λ p → (x1 , p)) p2) b b' p1
-- open ≡-Reasoning
-- forward : (g ∘ f) id
-- forward x =
-- J (λ x1 y1 p1 → (g ∘ f) {! !} ≡ id {! !})
-- (λ x1 → {! !}) (b , c) (b' , c') x
-- backward : (f ∘ g) id
-- backward x =
-- let (p1 , p2) = x in
-- begin
-- f (g (p1 , p2)) ≡⟨ {! !} ⟩
-- f (J (λ x1 y1 p1 → (x1 , c) ≡ (y1 , c')) (λ x1 → ap (λ p → (x1 , p)) p2) b b' p1) ≡⟨ {! !} ⟩
-- id x ∎
-- in f , qinv-to-isequiv (mkQinv g backward forward)
forward : {b b' : B} {c c' : C} → (f {b} {b'} {c} {c'} ∘ g {b} {b'} {c} {c'}) id
forward (refl , refl) = refl
backward : {b b' : B} {c c' : C} → (g {b} {b'} {c} {c'} ∘ f {b} {b'} {c} {c'}) id
backward refl = refl
```
## 2.6 Cartesian product types
@ -1027,4 +1039,4 @@ theorem2∙15∙5 {X = X} {A = A} {B = B} = qinv-to-isequiv (mkQinv g forward ba
backward : (f : (x : X) → A x × B x) → g (equation2∙15∙4 f) ≡ f
backward f = funext λ x → refl
where open axiom2∙9∙3
```
```