2.7
This commit is contained in:
parent
044e7382ee
commit
4d7ab55b19
2 changed files with 45 additions and 7 deletions
|
@ -114,7 +114,7 @@ composite : {A B C : Set}
|
|||
→ A → C
|
||||
composite f g x = g (f x)
|
||||
|
||||
_∘_ : {A B C : Set}
|
||||
_∘_ : {l : Level} {A B C : Set l}
|
||||
→ (g : B → C)
|
||||
→ (f : A → B)
|
||||
→ A → C
|
||||
|
|
|
@ -205,7 +205,8 @@ Homotopy forms an equivalence relation:
|
|||
### Definition 2.4.6
|
||||
|
||||
```
|
||||
record qinv {A B : Set} (f : A → B) : Set where
|
||||
record qinv {l : Level} {A B : Set l} (f : A → B) : Set l where
|
||||
constructor mkQinv
|
||||
field
|
||||
g : B → A
|
||||
α : f ∘ g ∼ id
|
||||
|
@ -215,7 +216,7 @@ record qinv {A B : Set} (f : A → B) : Set where
|
|||
### Example 2.4.7
|
||||
|
||||
```
|
||||
id-qinv : {A : Set} → qinv {A} id
|
||||
id-qinv : {l : Level} {A : Set l} → qinv {l} {A} id
|
||||
id-qinv = record
|
||||
{ g = id
|
||||
; α = λ _ → refl
|
||||
|
@ -226,7 +227,7 @@ id-qinv = record
|
|||
### Definition 2.4.10
|
||||
|
||||
```
|
||||
record isequiv {A B : Set} (f : A → B) : Set where
|
||||
record isequiv {l : Level} {A B : Set l} (f : A → B) : Set l where
|
||||
constructor mkIsEquiv
|
||||
field
|
||||
g : B → A
|
||||
|
@ -236,7 +237,7 @@ record isequiv {A B : Set} (f : A → B) : Set where
|
|||
```
|
||||
|
||||
```
|
||||
qinv-to-isequiv : {A B : Set}
|
||||
qinv-to-isequiv : {l : Level} {A B : Set l}
|
||||
→ {f : A → B}
|
||||
→ qinv f
|
||||
→ isequiv f
|
||||
|
@ -251,8 +252,45 @@ qinv-to-isequiv q = record
|
|||
### Definition 2.4.11
|
||||
|
||||
```
|
||||
_≃_ : (A B : Set) → Set
|
||||
A ≃ B = Σ[ f ∈ (A → B) ] isequiv f
|
||||
_≃_ : {l : Level} → (A B : Set l) → Set l
|
||||
A ≃ B = Σ[ f ∈ (A → B) ] (isequiv f)
|
||||
```
|
||||
|
||||
## 2.8 Σ-types
|
||||
|
||||
### Theorem 2.7.2
|
||||
|
||||
_Suppose that P : A → U is a type family over a type A and let w, w′ : ∑(x:A) P(x). Then there is an equivalence_
|
||||
|
||||
```
|
||||
theorem2∙7∙2 : {l : Level} {A : Set l} {P : A → Set l}
|
||||
→ ((w @ (w1 , w2)) (w' @ (w'1 , w'2)) : Σ A P)
|
||||
→ (w ≡ w') ≃ Σ (w1 ≡ w'1) (λ p → transport P p w2 ≡ w'2)
|
||||
theorem2∙7∙2 {l} {A} {P} (w @ (w1 , w2)) (w' @ (w'1 , w'2)) =
|
||||
f , qinv-to-isequiv (mkQinv g forwards backwards)
|
||||
where
|
||||
f : (w ≡ w') → Σ (w1 ≡ w'1) (λ p → transport P p w2 ≡ w'2)
|
||||
f refl = refl , refl
|
||||
|
||||
g : Σ (w1 ≡ w'1) (λ p → transport P p w2 ≡ w'2) → (w ≡ w')
|
||||
g (refl , refl) = refl
|
||||
|
||||
forwards : f ∘ g ∼ id
|
||||
forwards (refl , refl) = refl
|
||||
|
||||
backwards : g ∘ f ∼ id
|
||||
backwards refl = refl
|
||||
```
|
||||
|
||||
### Corollary 2.7.3
|
||||
|
||||
_For z : ∑(x:A) P(x), we have z = (pr1(z), pr2(z))._
|
||||
|
||||
```
|
||||
corollary2∙7∙3 : {A : Set} {P : A → Set}
|
||||
→ (z @ (a , b) : Σ A P)
|
||||
→ z ≡ (a , b)
|
||||
corollary2∙7∙3 z = refl
|
||||
```
|
||||
|
||||
## 2.8 The unit type
|
||||
|
|
Loading…
Reference in a new issue