closes #33
This commit is contained in:
parent
750e9a218b
commit
4ef8cf0dc2
1 changed files with 55 additions and 0 deletions
55
src/CubicalHott/Theorem2-7-2.agda
Normal file
55
src/CubicalHott/Theorem2-7-2.agda
Normal file
|
@ -0,0 +1,55 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Theorem2-7-2 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Data.Sigma
|
||||
|
||||
theorem : {A : Type} {P : A → Type} {w w' : Σ A P}
|
||||
→ (w ≡ w') ≃ Σ (fst w ≡ fst w') (λ p → PathP (λ i → P (p i)) (snd w) (snd w'))
|
||||
theorem {P = P} {w = w} {w' = w'} =
|
||||
isoToEquiv (iso f g fg gf) where
|
||||
f : w ≡ w' → Σ (fst w ≡ fst w') (λ p → PathP (λ i → P (p i)) (snd w) (snd w'))
|
||||
f x = cong fst x , cong snd x
|
||||
|
||||
g : Σ (fst w ≡ fst w') (λ p → PathP (λ i → P (p i)) (snd w) (snd w')) → w ≡ w'
|
||||
g x i = fst x i , snd x i
|
||||
|
||||
fg : section f g
|
||||
fg b = refl
|
||||
|
||||
gf : retract f g
|
||||
gf b = refl
|
||||
|
||||
|
||||
-- theorem : {A : Type} {P : A → Type} {w w' : Σ A P}
|
||||
-- → (w ≡ w') ≃ Σ (fst w ≡ fst w') (λ p → subst P p (snd w) ≡ snd w')
|
||||
-- theorem {P = P} {w = w} {w' = w'} =
|
||||
-- isoToEquiv (iso f g {! !} {! !}) where
|
||||
-- f : w ≡ w' → Σ (fst w ≡ fst w') (λ p → subst P p (snd w) ≡ snd w')
|
||||
-- f = J (λ y' p' → Σ (fst w ≡ fst y') (λ q → subst P q (snd w) ≡ snd y'))
|
||||
-- (refl , transportRefl (snd w))
|
||||
-- -- subst P (λ _ → fst w) (snd w) ≡ w .snd
|
||||
-- -- x = (λ i → fst (x i)) , J (λ y' p' → {! !}) {! !} x where
|
||||
-- -- subst P (λ i → fst (x i)) (snd w) ≡ snd w'
|
||||
-- -- P (fst w')
|
||||
-- -- ———— Boundary (wanted) —————————————————————————————————————
|
||||
-- -- i = i0 ⊢ transp (λ i₁ → P (fst (x i₁))) i0 (snd w)
|
||||
-- -- i = i1 ⊢ snd w'
|
||||
|
||||
-- g : Σ (fst w ≡ fst w') (λ p → subst P p (snd w) ≡ snd w') → w ≡ w'
|
||||
-- g x i = fst x i , {! !}
|
||||
-- -- helper i where
|
||||
-- -- helper : PathP (λ i → P (fst x i)) (snd w) (snd w')
|
||||
-- -- helper i =
|
||||
-- -- let u = λ j → λ where
|
||||
-- -- (i = i0) → {! !}
|
||||
-- -- (i = i1) → {! !}
|
||||
-- -- -- let u = λ j → λ where
|
||||
-- -- -- (i = i0) → transportRefl (snd w) j
|
||||
-- -- -- (i = i1) → snd w'
|
||||
-- -- in hcomp u {! snd x ? !}
|
||||
|
||||
|
Loading…
Reference in a new issue