diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index 841d9dc..ef0ab04 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -405,7 +405,9 @@ theorem2∙13∙1 m n = encode m n , equiv let IH = backward m n c what : code m n - what = encode (suc m) (suc n) (ap suc (decode m n c)) + -- what = encode (suc m) (suc n) (ap suc (decode m n c)) + -- what = transport (λ n → code (suc m) n) (ap suc (decode m n c)) (r (suc m)) + what = transport (λ n → code (suc m) (suc n)) (decode m n c) (r (suc m)) res : what ≡ c res = {! !} in {! !}