wip
This commit is contained in:
parent
a2dbafb324
commit
50d8ce8453
3 changed files with 152 additions and 38 deletions
|
@ -89,14 +89,14 @@ module lemma2∙1∙4 {l : Level} {A : Set l} where
|
|||
This comes first, since it is needed to define Theorem 2.1.6.
|
||||
|
||||
```
|
||||
pointed : {l : Level} → Set (lsuc l)
|
||||
pointed {l} = Σ (Set l) (λ A → A)
|
||||
pointed : (l : Level) → Set (lsuc l)
|
||||
pointed l = Σ (Set l) (λ A → A)
|
||||
```
|
||||
|
||||
### Definition 2.1.8 (loop space)
|
||||
|
||||
```
|
||||
Ω : {l : Level} → pointed {l} → pointed {l}
|
||||
Ω : {l : Level} → pointed l → pointed l
|
||||
Ω (A , a) = (a ≡ a) , refl
|
||||
```
|
||||
|
||||
|
@ -104,7 +104,7 @@ pointed {l} = Σ (Set l) (λ A → A)
|
|||
|
||||
```
|
||||
module theorem2∙1∙6 where
|
||||
Ω² : {l : Level} → pointed {l} → pointed {l}
|
||||
Ω² : {l : Level} → pointed l → pointed l
|
||||
Ω² p = Ω (Ω p)
|
||||
|
||||
-- compose : {l : Level} {p : pointed {l}} → (Ω² p) × (Ω² p) → Ω² p
|
||||
|
|
|
@ -193,33 +193,38 @@ lemma6∙4∙2 = f , g
|
|||
### Corollary 6.4.3
|
||||
|
||||
```
|
||||
-- corollary6∙4∙3 : (l : Level) → ¬ (is-1-type (Set l))
|
||||
-- corollary6∙4∙3 l p = {! !}
|
||||
-- where
|
||||
-- open lemma2∙4∙12
|
||||
corollary6∙4∙3 : (l : Level) → ¬ (is-1-type (Set l))
|
||||
corollary6∙4∙3 l p = {! !}
|
||||
where
|
||||
open lemma2∙4∙12
|
||||
|
||||
-- Circle : Set l
|
||||
-- Circle = Lift S¹
|
||||
Circle : Set l
|
||||
Circle = Lift S¹
|
||||
|
||||
-- self : Set (lsuc l)
|
||||
-- self = Circle ≡ Circle
|
||||
self : Set (lsuc l)
|
||||
self = Circle ≡ Circle
|
||||
|
||||
-- self-equiv : Set l
|
||||
-- self-equiv = Circle ≃ Circle
|
||||
self-equiv : Set l
|
||||
self-equiv = Circle ≃ Circle
|
||||
|
||||
-- goal1 : ¬ isSet self-equiv
|
||||
goal1 : ¬ isSet self-equiv
|
||||
|
||||
-- goal2 : ¬ isProp (id-equiv Circle ≡ id-equiv Circle)
|
||||
-- goal1 p = goal2 λ p' q' → p (id-equiv Circle) (id-equiv Circle) p' q'
|
||||
goal2 : ¬ isProp (id-equiv Circle ≡ id-equiv Circle)
|
||||
goal1 p = goal2 λ p' q' → p (id-equiv Circle) (id-equiv Circle) p' q'
|
||||
|
||||
-- postulate
|
||||
-- equivalence-isProp : isProp self-equiv
|
||||
goal2 = {! !}
|
||||
|
||||
-- goal3 : ¬ isProp (id {A = Circle} ≡ id)
|
||||
-- goal4 : (id {A = Circle} ≡ id) ≡ (id-equiv Circle ≡ id-equiv Circle)
|
||||
-- postulate
|
||||
-- equivalence-isProp : isProp self-equiv
|
||||
|
||||
-- A : Set l
|
||||
-- goal : ⊥
|
||||
-- goal3 : ¬ isProp (id {A = Circle} ≡ id)
|
||||
-- goal2 prop = goal3 λ x y → {! !}
|
||||
|
||||
-- goal4 : (id {A = Circle} ≡ id) ≃ (id-equiv Circle ≡ id-equiv Circle)
|
||||
-- goal4 = f , {! !}
|
||||
-- where
|
||||
-- f : (id {A = Circle} ≡ id) → (id-equiv Circle ≡ id-equiv Circle)
|
||||
-- f p = ap (λ z → z , {! mkIsEquiv id (λ _ → refl) id (λ _ → refl) !}) p
|
||||
```
|
||||
|
||||
### Lemma 6.4.4
|
||||
|
@ -307,30 +312,115 @@ module Suspension where
|
|||
{-# REWRITE rec-Susp-S #-}
|
||||
|
||||
rec-Susp-merid : {B : Set l} (n s : B) → (m : A → n ≡ s) → (a : A) → ap (rec-Susp n s m) (merid a) ≡ m a
|
||||
|
||||
ind-Susp : {P : Susp A → Set l} → (n : P N) → (s : P S) → (m : (a : A) → n ≡[ P , merid a ] s) → (x : Susp A) → P x
|
||||
ind-Susp-N : {P : Susp A → Set l} → (n : P N) → (s : P S) → (m : (a : A) → n ≡[ P , merid a ] s) → ind-Susp {P = P} n s m N ≡ n
|
||||
ind-Susp-S : {P : Susp A → Set l} → (n : P N) → (s : P S) → (m : (a : A) → n ≡[ P , merid a ] s) → ind-Susp {P = P} n s m S ≡ s
|
||||
{-# REWRITE ind-Susp-N #-}
|
||||
{-# REWRITE ind-Susp-S #-}
|
||||
|
||||
ind-Susp-merid : {P : Susp A → Set l} → (n : P N) → (s : P S) → (m : (a : A) → n ≡[ P , merid a ] s) → (a : A) → apd (ind-Susp {P = P} n s m) (merid a) ≡ m a
|
||||
open Suspension public
|
||||
```
|
||||
|
||||
### Lemma 6.5.1
|
||||
|
||||
```
|
||||
-- lemma6∙5∙1 : Susp 𝟚 ≃ S¹
|
||||
-- lemma6∙5∙1 = f , qinv-to-isequiv (mkQinv g forward backward)
|
||||
-- where
|
||||
-- open S¹
|
||||
lemma6∙5∙1 : Susp 𝟚 ≃ S¹
|
||||
lemma6∙5∙1 = f , qinv-to-isequiv (mkQinv g forward backward)
|
||||
where
|
||||
open S¹
|
||||
|
||||
-- m : 𝟚 → base ≡ base
|
||||
-- m true = refl
|
||||
-- m false = loop
|
||||
m : 𝟚 → base ≡ base
|
||||
m true = refl
|
||||
m false = loop
|
||||
|
||||
-- f : Susp 𝟚 → S¹
|
||||
-- f s = rec-Susp base base m s
|
||||
f : Susp 𝟚 → S¹
|
||||
f s = rec-Susp base base m s
|
||||
|
||||
-- g : S¹ → Susp 𝟚
|
||||
-- g s = rec-S¹ N (merid false ∙ sym (merid true)) s
|
||||
g : S¹ → Susp 𝟚
|
||||
g s = rec-S¹ N (merid false ∙ sym (merid true)) s
|
||||
-- g : S¹ → Susp 𝟚
|
||||
-- g base = N
|
||||
-- g loop = (merid false ∙ sym (merid true))
|
||||
|
||||
-- forward : (f ∘ g) ∼ id
|
||||
-- forward x = rec-S¹ {P = λ x → f (g x) ≡ x} refl {! refl !} x
|
||||
forward : (f ∘ g) ∼ id
|
||||
forward x = rec-S¹ {P = λ x → f (g x) ≡ x} refl p x
|
||||
where
|
||||
p : refl ≡[ (λ x → f (g x) ≡ x) , loop ] refl
|
||||
p = {! merid true !}
|
||||
|
||||
-- backward : (g ∘ f) ∼ id
|
||||
-- backward x = {! !}
|
||||
backward : (g ∘ f) ∼ id
|
||||
backward x = ind-Susp {P = λ y → g (f y) ≡ y} refl (merid true) goal x
|
||||
where
|
||||
goal : (y : 𝟚) → transport (λ z → g (f z) ≡ z) (merid y) refl ≡ merid true
|
||||
|
||||
goal2 : (y : 𝟚) → {! !} ∙ refl ∙ {! !} ≡ merid true
|
||||
goal y = {! !}
|
||||
|
||||
```
|
||||
|
||||
### Definition 6.5.2
|
||||
|
||||
```
|
||||
module definition6∙5∙2 where
|
||||
S[_] : ℕ → Set
|
||||
S[ zero ] = 𝟚
|
||||
S[ suc n ] = Susp (S[ n ])
|
||||
```
|
||||
|
||||
### Lemma 6.5.3
|
||||
|
||||
```
|
||||
Map* : {l : Level} → (A B : pointed l) → Set l
|
||||
Map* (A , a₀) (B , b₀) = Σ (A → B) (λ f → f a₀ ≡ b₀)
|
||||
```
|
||||
|
||||
Adjoining a disjoint basepoint
|
||||
|
||||
```
|
||||
module lol where
|
||||
_₊ : {l : Level} → Set l → pointed l
|
||||
A ₊ = A + Lift 𝟙 , inr (lift tt)
|
||||
```
|
||||
|
||||
```
|
||||
open lol
|
||||
lemma6∙5∙3 : {l : Level} (A : Set l) → (B* @ (B , b₀) : pointed l)
|
||||
→ (Map* (A ₊) B*) ≃ (A → B)
|
||||
lemma6∙5∙3 A B* @ (B , b₀) = f , qinv-to-isequiv (mkQinv g forward {! !})
|
||||
where
|
||||
f : Map* (A ₊) (B , b₀) → A → B
|
||||
f (h , p) a = h (inl a)
|
||||
|
||||
g : (A → B) → Map* (A ₊) (B , b₀)
|
||||
g h = p1 , refl
|
||||
where
|
||||
p1 : fst (A ₊) → B
|
||||
p1 (inl x) = h x
|
||||
p1 (inr x) = b₀
|
||||
|
||||
open axiom2∙9∙3
|
||||
|
||||
forward : (f ∘ g) ∼ id
|
||||
forward f' = funext λ x → {! !}
|
||||
-- (x : A) (f' : A → B)
|
||||
-- f (g (f' x)) ≡ f' x
|
||||
-- f forgets the proof :(
|
||||
-- g (f' x) gives us b₀
|
||||
```
|
||||
|
||||
## 6.6 Cell complexes
|
||||
|
||||
```
|
||||
```
|
||||
|
||||
## 6.8 Pushouts
|
||||
|
||||
```
|
||||
module Pushout where
|
||||
postulate
|
||||
Pushout : {A B C : Set} → (f : C → A) → (g : C → B) → Set
|
||||
|
||||
syntax Pushout A B C = A ⊔[ C ] B
|
||||
```
|
|
@ -2,6 +2,8 @@
|
|||
<summary>Imports</summary>
|
||||
|
||||
```
|
||||
{-# OPTIONS --rewriting #-}
|
||||
|
||||
module HottBook.Chapter7 where
|
||||
|
||||
open import HottBook.Chapter1
|
||||
|
@ -16,3 +18,25 @@ private
|
|||
|
||||
</details>
|
||||
|
||||
## 7.1 Definition of $n$-types
|
||||
|
||||
### Definition 7.1.1
|
||||
|
||||
```
|
||||
data ℕ' : Set where
|
||||
negtwo : ℕ'
|
||||
suc : ℕ' → ℕ'
|
||||
|
||||
is_type : (n : ℕ') → Set → Set
|
||||
is negtwo type X = isContr X
|
||||
is suc n type X = (x y : X) → is n type (x ≡ y)
|
||||
```
|
||||
|
||||
### Theorem 7.1.4
|
||||
|
||||
```
|
||||
theorem7∙1∙4 : {X Y : Set}
|
||||
→ (f : X → Y) → (n : ℕ') → is n type X → is n type Y
|
||||
theorem7∙1∙4 {X} {Y} f negtwo q = f (fst q) , λ y → {! !}
|
||||
theorem7∙1∙4 {X} {Y} f (suc n) q = {! !}
|
||||
```
|
Loading…
Reference in a new issue