This commit is contained in:
Michael Zhang 2024-07-11 02:07:11 -05:00
parent 176e908ac8
commit 56394e55aa
2 changed files with 24 additions and 14 deletions

View file

@ -72,8 +72,11 @@ postulate
```
lemma3∙9∙1 : {P : Type} → isProp P → P ≃ ∥ P ∥
lemma3∙9∙1 {P} prop = _ , qinv-to-isequiv (mkQinv inv {! !} {! !})
lemma3∙9∙1 {P} Pprop = _ , qinv-to-isequiv (mkQinv inv {! !} {! !})
where
inv : ∥ P ∥ → P
inv = {! rec-∥ P ∥ !}
inv a = a
inv (witness p q i) =
let what = ap ∥_∥ {! !}
in {! !}
```

View file

@ -319,7 +319,9 @@ module section3∙7 where
_ : {A : Set l} → (a : A) → ∥ A ∥
witness : {A : Set l} → (x y : ∥ A ∥) → x ≡ y → Set l
rec-∥_∥ : (A : Set l) → {B : Set l} → isProp B → (f : A → B)
rec-∥_∥ : (A : Set l) → {B : Set l}
→ isProp B
→ (f : A → B)
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g ( a ) ≡ f a)
open section3∙7 public
```
@ -365,9 +367,9 @@ open definition3∙8∙1 public
### Lemma 3.8.2
```
module lemma3∙8∙2 where
definition3∙8∙3 : {X : Set} → (Y : X → Set) → ((x : X) → isSet (Y x)) → ((x : X) → ∥ (Y x) ∥) → ∥ ((x : X) → Y x) ∥
definition3∙8∙3 {X} Y allYSet = {! !}
-- module lemma3∙8∙2 where
-- definition3∙8∙3 : {X : Set} → (Y : X → Set) → ((x : X) → isSet (Y x)) → ((x : X) → ∥ (Y x) ∥) → ∥ ((x : X) → Y x) ∥
-- definition3∙8∙3 {X} Y allYSet = {! !}
```
## 3.9 The principle of unique choice
@ -376,11 +378,14 @@ module lemma3∙8∙2 where
```
lemma3∙9∙1 : {P : Set} → isProp P → P ≃ ∥ P ∥
lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 _ g
lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop prop2 _ g
where
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g a ≡ a)
thing = rec-∥ P ∥ prop id
open Σ
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g a ≡ a)
thing = rec-∥ P ∥ Pprop id
g : ∥ P ∥ → P
g = Σ.fst thing
g-prop : (a : P) → g a ≡ a
@ -390,12 +395,14 @@ lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 _ g
-- x y : ∥ P ∥
prop2 x y =
let
gx = g x
gy = g y
eqP = prop gx gy
gpx = g-prop gx
gx = g x -- : g x
gy = g y -- : g y
eqP = Pprop gx gy -- : gx ≡ gy
gpx = g-prop gx -- : g ( gx ) ≡ gx
what = gpx ∙ eqP
prevResult = (lemma3∙9∙1 {P} Pprop) .snd .isequiv.g-id
in
admit
{! !}
where
postulate
-- TODO: Finish this