updates
This commit is contained in:
parent
176e908ac8
commit
56394e55aa
2 changed files with 24 additions and 14 deletions
|
@ -72,8 +72,11 @@ postulate
|
|||
|
||||
```
|
||||
lemma3∙9∙1 : {P : Type} → isProp P → P ≃ ∥ P ∥
|
||||
lemma3∙9∙1 {P} prop = ∣_∣ , qinv-to-isequiv (mkQinv inv {! !} {! !})
|
||||
lemma3∙9∙1 {P} Pprop = ∣_∣ , qinv-to-isequiv (mkQinv inv {! !} {! !})
|
||||
where
|
||||
inv : ∥ P ∥ → P
|
||||
inv = {! rec-∥ P ∥ !}
|
||||
inv ∣ a ∣ = a
|
||||
inv (witness p q i) =
|
||||
let what = ap ∥_∥ {! !}
|
||||
in {! !}
|
||||
```
|
|
@ -319,7 +319,9 @@ module section3∙7 where
|
|||
∣_∣ : {A : Set l} → (a : A) → ∥ A ∥
|
||||
witness : {A : Set l} → (x y : ∥ A ∥) → x ≡ y → Set l
|
||||
|
||||
rec-∥_∥ : (A : Set l) → {B : Set l} → isProp B → (f : A → B)
|
||||
rec-∥_∥ : (A : Set l) → {B : Set l}
|
||||
→ isProp B
|
||||
→ (f : A → B)
|
||||
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g (∣ a ∣) ≡ f a)
|
||||
open section3∙7 public
|
||||
```
|
||||
|
@ -365,9 +367,9 @@ open definition3∙8∙1 public
|
|||
### Lemma 3.8.2
|
||||
|
||||
```
|
||||
module lemma3∙8∙2 where
|
||||
definition3∙8∙3 : {X : Set} → (Y : X → Set) → ((x : X) → isSet (Y x)) → ((x : X) → ∥ (Y x) ∥) → ∥ ((x : X) → Y x) ∥
|
||||
definition3∙8∙3 {X} Y allYSet = {! !}
|
||||
-- module lemma3∙8∙2 where
|
||||
-- definition3∙8∙3 : {X : Set} → (Y : X → Set) → ((x : X) → isSet (Y x)) → ((x : X) → ∥ (Y x) ∥) → ∥ ((x : X) → Y x) ∥
|
||||
-- definition3∙8∙3 {X} Y allYSet = {! !}
|
||||
```
|
||||
|
||||
## 3.9 The principle of unique choice
|
||||
|
@ -376,11 +378,14 @@ module lemma3∙8∙2 where
|
|||
|
||||
```
|
||||
lemma3∙9∙1 : {P : Set} → isProp P → P ≃ ∥ P ∥
|
||||
lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 ∣_∣ g
|
||||
lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop prop2 ∣_∣ g
|
||||
where
|
||||
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g ∣ a ∣ ≡ a)
|
||||
thing = rec-∥ P ∥ prop id
|
||||
open Σ
|
||||
|
||||
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g ∣ a ∣ ≡ a)
|
||||
thing = rec-∥ P ∥ Pprop id
|
||||
|
||||
g : ∥ P ∥ → P
|
||||
g = Σ.fst thing
|
||||
|
||||
g-prop : (a : P) → g ∣ a ∣ ≡ a
|
||||
|
@ -390,12 +395,14 @@ lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 ∣_∣ g
|
|||
-- x y : ∥ P ∥
|
||||
prop2 x y =
|
||||
let
|
||||
gx = g x
|
||||
gy = g y
|
||||
eqP = prop gx gy
|
||||
gpx = g-prop gx
|
||||
gx = g x -- : g x
|
||||
gy = g y -- : g y
|
||||
eqP = Pprop gx gy -- : gx ≡ gy
|
||||
gpx = g-prop gx -- : g (∣ gx ∣) ≡ gx
|
||||
what = gpx ∙ eqP
|
||||
prevResult = (lemma3∙9∙1 {P} Pprop) .snd .isequiv.g-id
|
||||
in
|
||||
admit
|
||||
{! !}
|
||||
where
|
||||
postulate
|
||||
-- TODO: Finish this
|
||||
|
|
Loading…
Reference in a new issue