diff --git a/src/2024-05-09-perry-meeting.agda b/src/2024-05-09-perry-meeting.agda new file mode 100644 index 0000000..03d74e9 --- /dev/null +++ b/src/2024-05-09-perry-meeting.agda @@ -0,0 +1,29 @@ +open import HottBook.Chapter1 +open import HottBook.Chapter2 +open import HottBook.Util + +test : {A B : Set} + → (equiv @ (f , fIsEquiv) : A ≃ B) + → (x y : A) + → (x ≡ y) ≃ (f x ≡ f y) +test (equiv @ (f , mkIsEquiv g g-id h h-id)) x y = f2 , f2IsEquiv + where + f2 : x ≡ y → f x ≡ f y + f2 p = ap f p + + g2 : f x ≡ f y → x ≡ y + g2 p = + let p1 = ap h p in + let p2 = trans p1 (h-id y) in + let p3 = trans (sym (h-id x)) p2 in + p3 + + forwards : f2 ∘ g2 ∼ id + forwards b = {! !} + where + q = let y = f2 ∘ g2 in {! !} + + backwards : g2 ∘ f2 ∼ id + backwards b = {! !} + + f2IsEquiv = mkIsEquiv g2 forwards g2 backwards \ No newline at end of file diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index 2a0a633..16f3fca 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -1,10 +1,15 @@ -``` -module HottBook.Chapter2 where +
+ Imports -open import Agda.Primitive -open import HottBook.Chapter1 -open import HottBook.Util -``` + ``` + module HottBook.Chapter2 where + + open import Agda.Primitive + open import HottBook.Chapter1 + open import HottBook.Util + ``` + +
## 2.1 Types are higher groupoids @@ -256,7 +261,7 @@ _≃_ : {l : Level} → (A B : Set l) → Set l A ≃ B = Σ[ f ∈ (A → B) ] (isequiv f) ``` -## 2.8 Σ-types +## 2.7 Σ-types ### Theorem 2.7.2 diff --git a/src/HottBook/Chapter3.lagda.md b/src/HottBook/Chapter3.lagda.md index c82ed63..cba8dc2 100644 --- a/src/HottBook/Chapter3.lagda.md +++ b/src/HottBook/Chapter3.lagda.md @@ -53,20 +53,20 @@ isProp P = (x y : P) → x ≡ y ### Lemma 3.3.2 ``` -lemma3∙2∙2 : {P : Set} - → isProp P - → (x₀ : P) - → P ≃ 𝟙 -lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !} - where - f : P → 𝟙 - f x = tt +-- lemma3∙2∙2 : {P : Set} +-- → isProp P +-- → (x₀ : P) +-- → P ≃ 𝟙 +-- lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !} +-- where +-- f : P → 𝟙 +-- f x = tt - g : 𝟙 → P - g u = x₀ +-- g : 𝟙 → P +-- g u = x₀ - forwards : f ∘ g ∼ id - forwards x = {! refl !} +-- forwards : f ∘ g ∼ id +-- forwards x = {! refl !} ``` ## 3.4 Classical vs. intuitionistic logic diff --git a/src/HottBook/Chapter4.lagda.md b/src/HottBook/Chapter4.lagda.md index 2aa85d8..e1e6d35 100644 --- a/src/HottBook/Chapter4.lagda.md +++ b/src/HottBook/Chapter4.lagda.md @@ -1,5 +1,9 @@ ``` module HottBook.Chapter4 where + +open import HottBook.Chapter1 +open import HottBook.Chapter2 +open import HottBook.Chapter3 ``` ## 4.1 Quasi-inverses @@ -7,3 +11,14 @@ module HottBook.Chapter4 where ``` -- qinv : {A B : Type} (f : A → B) → ``` + +### Theorem 4.1.3 + +There exist types A and B and a function f : A → B such that qinv( f ) is not a mere proposition. + +``` +theorem4∙1∙3 : {A B : Set} + → (f : A → B) + → isProp (qinv f) → ⊥ +theorem4∙1∙3 f p = {! !} +``` \ No newline at end of file