diff --git a/src/Misc/FiveLemma/FiveLemmaGroup.lagda.md b/src/Misc/FiveLemma/FiveLemmaGroup.lagda.md index ab2b6f9..dc25788 100644 --- a/src/Misc/FiveLemma/FiveLemmaGroup.lagda.md +++ b/src/Misc/FiveLemma/FiveLemmaGroup.lagda.md @@ -53,13 +53,11 @@ module _ where sur : isSurjective' n - -- Let c′ be an element of C′. sur c' = let d' : ⟨ D' ⟩ d' = t .fst c' - -- Since p is surjective, there exists an element d in D with p(d) = t(c′). pGroupIso = BijectionIso'→GroupIso p pIso = pGroupIso .fst pInv = Iso.inv pIso @@ -169,8 +167,14 @@ module _ s[m[b]]≡c'-n[c] : s .fst (m .fun .fst b) ≡ c'-n[c] s[m[b]]≡c'-n[c] = s[m[b]]≡s[b'] ∙ s[b']≡c'-n[c] + g[b] : ⟨ C ⟩ + g[b] = g .fst b + + g[b]+c : ⟨ C ⟩ + g[b]+c = C .snd .GroupStr._·_ g[b] c + n[g[b]] : ⟨ C' ⟩ - n[g[b]] = n .fst (g .fst b) + n[g[b]] = n .fst g[b] n[g[b]]≡s[m[b]] : n[g[b]] ≡ s .fst (m .fun .fst b) n[g[b]]≡s[m[b]] = sym (sq2 b) @@ -182,7 +186,10 @@ module _ n[g[b]]+n[c]≡c' = let open GroupStr (C' .snd) in cong (_· n[c]) n[g[b]]≡c'-n[c] ∙ sym (·Assoc c' (inv n[c]) n[c]) ∙ cong (c' ·_) (·InvL n[c]) ∙ ·IdR c' - in c , {! !} + + n[g[b]+c]≡c' : n .fst g[b]+c ≡ c' + n[g[b]+c]≡c' = n .snd .pres· g[b] c ∙ n[g[b]]+n[c]≡c' + in g[b]+c , n[g[b]+c]≡c' mono : isMono n mono x = {! !}