diff --git a/src/ThesisWork/Exactness.agda b/src/ThesisWork/Exactness.agda index 2de5b21..c62be5d 100644 --- a/src/ThesisWork/Exactness.agda +++ b/src/ThesisWork/Exactness.agda @@ -35,4 +35,6 @@ module _ {A B C : Group ℓ} where isExactAt f g = (b : ⟨ B ⟩) → (isInKer g b → isInIm f b) × (isInIm f b → isInKer g b) isWeakExactAtRefl : (f : GroupHom A B) (g : GroupHom B C) → isWeakExactAt f g refl ≡ isExactAt f g - isWeakExactAtRefl f g i = (b : ⟨ B ⟩) → (isInKer g (transportRefl b i) → isInIm f b) × (isInIm f b → isInKer g (transportRefl b i)) \ No newline at end of file + isWeakExactAtRefl f g i = (b : ⟨ B ⟩) → (isInKer g (transportRefl b i) → isInIm f b) × (isInIm f b → isInKer g (transportRefl b i)) + +record ExactSequence : Type where \ No newline at end of file diff --git a/src/ThesisWork/HomotopyGroupLES.agda b/src/ThesisWork/HomotopyGroupLES.agda new file mode 100644 index 0000000..801c743 --- /dev/null +++ b/src/ThesisWork/HomotopyGroupLES.agda @@ -0,0 +1,105 @@ +{-# OPTIONS --cubical #-} + +module ThesisWork.HomotopyGroupLES where + +open import Cubical.Foundations.Prelude +open import Cubical.Foundations.Pointed +open import Cubical.Foundations.Equiv +open import Cubical.Foundations.Function +open import Cubical.HITs.TypeQuotients +open import Cubical.Foundations.Structure +open import Cubical.Data.Sigma +open import Cubical.Data.Fin +open import Cubical.Data.Nat +open import Cubical.Data.Nat.Order +open import Cubical.Data.Empty renaming (rec to ⊥-rec) +open import Cubical.Relation.Nullary +open import Cubical.Structures.Successor +open import Cubical.Algebra.Group +open import Cubical.Algebra.Group.Morphisms +open import Cubical.Homotopy.Group.Base +open import Cubical.Homotopy.Loopspace + +-- The long exact sequence of homotopy groups +-- Except indexed by a successor structure (Cubical.Structures.Successor) +-- Also based off of Axel Ljungstrom's work in Cubical.Homotopy.Group.LES + +private + variable + ℓ ℓ' ℓ'' : Level + +module _ where + open SuccStr + + NFin3 : Type ℓ-zero + NFin3 = ℕ × Fin 3 + + sucNFin3 : NFin3 → NFin3 + sucNFin3 (n , 0 , _) = n , fsuc fzero + sucNFin3 (n , 1 , _) = n , fsuc (fsuc fzero) + sucNFin3 (n , 2 , _) = (suc n) , fzero + sucNFin3 (n , suc (suc (suc _)) , p) = ⊥-rec (¬m+n