solved lemma 3.11.4, closes #41

This commit is contained in:
Michael Zhang 2024-10-20 02:54:06 -05:00
parent d15eefb625
commit 607d75a99a

View file

@ -7,13 +7,29 @@ open import CubicalHott.Example3-6-2 renaming (example to example3-6-2)
lemma : {A : Type} isProp (isContr A)
lemma {A} A-contr-x @ (x , px) (y , py) i =
let A-is-set = isProp→isSet (isContr→isProp A-contr-x) in
px y i , goal i where
A-is-set = isProp→isSet (isContr→isProp A-contr-x)
helper2 : px y i y
helper2 = sym (py (px y i))
helper1 : isProp ((z : A) px y i z)
helper1 = example3-6-2 (λ x isContr→isProp {! !})
helper1 = example3-6-2 (λ z isContr→isProp (helper2 py z , λ q A-is-set (px y i) z (helper2 py z) q))
wtf : (z : A) sym (px z) ∙∙ px y ∙∙ py z refl {x = z}
wtf z = A-is-set z z (sym (px z) ∙∙ px y ∙∙ py z) refl
helper3 : (z : A) PathP (λ i px z i py z i) (px y) (sym (px z) ∙∙ px y ∙∙ py z)
helper3 z = doubleCompPath-filler (sym (px z)) (px y) (py z)
helper5 : (z : A) PathP (λ i px z i py z i) (px y) (refl {x = z})
helper5 z = helper3 z wtf z
goal2 : (z : A) PathP (λ i px y i z) (px z) (py z)
goal2 z i j = helper5 z j i
goal : PathP (λ i (z : A) px y i z) px py
goal i z = {! helper1 !}
goal i z j = funExt (λ z goal2 z i) j z
-- λ y' j → isProp→isSet (isContr→isProp A-contr-x) (px y i) y' {! !} {! !} j i
-- λ y' j → isProp→isSet (isContr→isProp A-contr-x) (px y i) y' {! !} {! !} j i