This commit is contained in:
Michael Zhang 2024-06-29 13:25:09 -05:00
parent 11d587cf2a
commit 663827023b
Signed by: michael
GPG key ID: BDA47A31A3C8EE6B
2 changed files with 20 additions and 1 deletions

View file

@ -78,6 +78,16 @@ is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s
```
lemma3∙1∙8 : {A : Set} → isSet A → is-1-type A
lemma3∙1∙8 {A} A-set x y p q r s =
let g = λ q → A-set x y p q in
let
what : {q' : x ≡ y} (r : q ≡ q') → g q ∙ r ≡ g q'
what r =
let what3 = apd g r in
let what4 = lemma2∙11∙2.i r (g q) in
let what5 = {! !} in
sym what4 ∙ what3
in
-- let what2 = what r in
{! !}
```

View file

@ -8,8 +8,17 @@ open import HottBook.Chapter3
## 4.1 Quasi-inverses
### Lemma 4.1.1
```
-- qinv : {A B : Type} (f : A → B) →
lemma4∙1∙1 : {A B : Set}
→ (f : A → B)
→ qinv f
→ qinv f ≃ ((x : A) → x ≡ x)
lemma4∙1∙1 f q = {! !}
where
ff : qinv f → (x : A) → x ≡ x
ff
```
### Theorem 4.1.3