test
This commit is contained in:
parent
11d587cf2a
commit
663827023b
2 changed files with 20 additions and 1 deletions
|
@ -78,6 +78,16 @@ is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s
|
|||
```
|
||||
lemma3∙1∙8 : {A : Set} → isSet A → is-1-type A
|
||||
lemma3∙1∙8 {A} A-set x y p q r s =
|
||||
let g = λ q → A-set x y p q in
|
||||
let
|
||||
what : {q' : x ≡ y} (r : q ≡ q') → g q ∙ r ≡ g q'
|
||||
what r =
|
||||
let what3 = apd g r in
|
||||
let what4 = lemma2∙11∙2.i r (g q) in
|
||||
let what5 = {! !} in
|
||||
sym what4 ∙ what3
|
||||
in
|
||||
-- let what2 = what r in
|
||||
{! !}
|
||||
```
|
||||
|
||||
|
|
|
@ -8,8 +8,17 @@ open import HottBook.Chapter3
|
|||
|
||||
## 4.1 Quasi-inverses
|
||||
|
||||
### Lemma 4.1.1
|
||||
|
||||
```
|
||||
-- qinv : {A B : Type} (f : A → B) →
|
||||
lemma4∙1∙1 : {A B : Set}
|
||||
→ (f : A → B)
|
||||
→ qinv f
|
||||
→ qinv f ≃ ((x : A) → x ≡ x)
|
||||
lemma4∙1∙1 f q = {! !}
|
||||
where
|
||||
ff : qinv f → (x : A) → x ≡ x
|
||||
ff
|
||||
```
|
||||
|
||||
### Theorem 4.1.3
|
||||
|
|
Loading…
Reference in a new issue