updates
This commit is contained in:
parent
00f02ba1ca
commit
730eeffd75
5 changed files with 141 additions and 19 deletions
4
Makefile
4
Makefile
|
@ -12,13 +12,15 @@ build-to-html:
|
|||
--allow-unsolved-metas \
|
||||
--html-highlight=auto \
|
||||
--no-load-primitives \
|
||||
--rewriting \
|
||||
|| true
|
||||
# fd --no-ignore "html$$" $(GENDIR) -x rm
|
||||
|
||||
.PHONY: html/src/generated/Progress.md
|
||||
|
||||
html/src/generated/Progress.md:
|
||||
nu scripts/build-table
|
||||
# nu scripts/build-table
|
||||
touch $@
|
||||
|
||||
html/book/Progress.html: html/src/generated/Progress.md
|
||||
pandoc \
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
- [Chapter 3](./generated/HottBook.Chapter3.md)
|
||||
- [Chapter 4](./generated/HottBook.Chapter4.md)
|
||||
- [Chapter 5](./generated/HottBook.Chapter5.md)
|
||||
- [Chapter 6](./generated/HottBook.Chapter6.md)
|
||||
|
||||
# HoTT Book (Cubical formulation)
|
||||
|
||||
|
|
|
@ -125,7 +125,7 @@ example3∙1∙6 {A} Bset f g p q =
|
|||
### Definition 3.1.7
|
||||
|
||||
```
|
||||
is-1-type : (A : Set) → Set
|
||||
is-1-type : (A : Set l) → Set l
|
||||
is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s
|
||||
```
|
||||
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
<details>
|
||||
<summary>Imports</summary>
|
||||
|
||||
```
|
||||
module HottBook.Chapter4 where
|
||||
|
||||
|
@ -13,6 +16,8 @@ private
|
|||
l : Level
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
# Chapter 4 Equivalences
|
||||
|
||||
```
|
||||
|
@ -121,7 +126,7 @@ lemma4∙1∙2 {A} {a} q prop1 g prop3 = (λ x → {! !}) , {! !}
|
|||
There exist types A and B and a function f : A → B such that qinv( f ) is not a mere proposition.
|
||||
|
||||
```
|
||||
theorem4∙1∙3 : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥)))
|
||||
-- theorem4∙1∙3 : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥)))
|
||||
-- theorem4∙1∙3 {l} = goal
|
||||
-- where
|
||||
-- goal : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥)))
|
||||
|
@ -230,14 +235,14 @@ lemma4∙2∙9 f q = ({! !} , {! !}) , ({! !} , {! !})
|
|||
module definition4∙2∙10 where
|
||||
open definition4∙2∙7
|
||||
|
||||
lcoh : ∀ {A} {B} → (f : A → B) → linv f → rinv f → Set
|
||||
-- lcoh : ∀ {A} {B} → (f : A → B) → linv f → rinv f → Set
|
||||
-- lcoh f (g , η) (g , ε) = ?
|
||||
```
|
||||
|
||||
### Theorem 4.2.13
|
||||
|
||||
```
|
||||
theorem4∙2∙13 : {A B : Set} (f : A → B) → isProp (ishae f)
|
||||
-- theorem4∙2∙13 : {A B : Set} (f : A → B) → isProp (ishae f)
|
||||
```
|
||||
|
||||
## 4.3 Bi-invertible maps
|
||||
|
|
|
@ -11,7 +11,7 @@ open import HottBook.CoreUtil
|
|||
|
||||
private
|
||||
variable
|
||||
l : Level
|
||||
l l2 : Level
|
||||
```
|
||||
|
||||
</details>
|
||||
|
@ -94,18 +94,20 @@ lemma6∙3∙2 {A = A} {B = B} {f = f} {g = g} p = apd q seg
|
|||
## 6.4 Circles and sphere
|
||||
|
||||
```
|
||||
postulate
|
||||
S¹ : Set
|
||||
base : S¹
|
||||
loop : base ≡ base
|
||||
module S¹ where
|
||||
postulate
|
||||
S¹ : Set
|
||||
base : S¹
|
||||
loop : base ≡ base
|
||||
|
||||
rec-S¹ : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → ((x : S¹) → P x)
|
||||
rec-S¹-base : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → rec-S¹ {P = P} b l base ≡ b
|
||||
{-# REWRITE rec-S¹-base #-}
|
||||
rec-S¹-loop : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → apd {P = P} (rec-S¹ b l) loop ≡ l
|
||||
rec-S¹ : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → ((x : S¹) → P x)
|
||||
rec-S¹-base : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → rec-S¹ {P = P} b l base ≡ b
|
||||
{-# REWRITE rec-S¹-base #-}
|
||||
rec-S¹-loop : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → apd {P = P} (rec-S¹ b l) loop ≡ l
|
||||
|
||||
-- TODO: Uncommenting this leads to a bug in the definition of z2 in lemma 6.4.1
|
||||
-- {-# REWRITE rec-S¹-loop #-}
|
||||
-- TODO: Uncommenting this leads to a bug in the definition of z2 in lemma 6.4.1
|
||||
-- {-# REWRITE rec-S¹-loop #-}
|
||||
open S¹ hiding (base)
|
||||
```
|
||||
|
||||
### Lemma 6.4.1
|
||||
|
@ -114,6 +116,8 @@ postulate
|
|||
lemma6∙4∙1 : loop ≢ refl
|
||||
lemma6∙4∙1 loop≡refl = goal3
|
||||
where
|
||||
open S¹
|
||||
|
||||
f : ∀ {l} {A : Set l} {x : A} {p : x ≡ x} → S¹ → A
|
||||
f {A = A} {x = x} {p = p} = rec-S¹ {P = λ _ → A} x p
|
||||
|
||||
|
@ -144,8 +148,118 @@ lemma6∙4∙2 = f , g
|
|||
where
|
||||
open axiom2∙9∙3
|
||||
|
||||
f = rec-S¹ loop {! !}
|
||||
f = rec-S¹ loop goal
|
||||
where
|
||||
goal : loop ≡[ (λ x → x ≡ x) , loop ] loop
|
||||
goal2 : sym loop ∙ loop ∙ loop ≡ loop
|
||||
goal = lemma2∙11∙2.iii {a = S¹.base} loop loop ∙ goal2
|
||||
goal3 : sym loop ∙ loop ≡ refl
|
||||
goal4 : refl ∙ loop ≡ loop
|
||||
goal5 : sym loop ∙ loop ∙ loop ≡ (sym loop ∙ loop) ∙ loop
|
||||
goal2 = goal5 ∙ ap (λ c → c ∙ loop) goal3 ∙ goal4
|
||||
goal3 = lemma2∙1∙4.ii1 loop
|
||||
goal4 = sym (lemma2∙1∙4.i2 loop)
|
||||
goal5 = lemma2∙1∙4.iv (sym loop) loop loop
|
||||
|
||||
g : f ≡ (λ x → refl) → ⊥
|
||||
g p = {! !}
|
||||
```
|
||||
g p = lemma6∙4∙1 goal
|
||||
where
|
||||
goal : loop ≡ refl
|
||||
goal = ap (λ s → s S¹.base) p
|
||||
```
|
||||
|
||||
### Corollary 6.4.3
|
||||
|
||||
```
|
||||
-- corollary6∙4∙3 : (l : Level) → ¬ (is-1-type (Set l))
|
||||
-- corollary6∙4∙3 l p = {! !}
|
||||
-- where
|
||||
-- open lemma2∙4∙12
|
||||
|
||||
-- Circle : Set l
|
||||
-- Circle = Lift S¹
|
||||
|
||||
-- self : Set (lsuc l)
|
||||
-- self = Circle ≡ Circle
|
||||
|
||||
-- self-equiv : Set l
|
||||
-- self-equiv = Circle ≃ Circle
|
||||
|
||||
-- goal1 : ¬ isSet self-equiv
|
||||
|
||||
-- goal2 : ¬ isProp (id-equiv Circle ≡ id-equiv Circle)
|
||||
-- goal1 p = goal2 λ p' q' → p (id-equiv Circle) (id-equiv Circle) p' q'
|
||||
|
||||
-- postulate
|
||||
-- equivalence-isProp : isProp self-equiv
|
||||
|
||||
-- goal3 : ¬ isProp (id {A = Circle} ≡ id)
|
||||
-- goal4 : (id {A = Circle} ≡ id) ≡ (id-equiv Circle ≡ id-equiv Circle)
|
||||
|
||||
-- A : Set l
|
||||
-- goal : ⊥
|
||||
```
|
||||
|
||||
### Lemma 6.4.4
|
||||
|
||||
```
|
||||
lemma6∙4∙4 : {A B : Set}
|
||||
→ (f : A → B)
|
||||
→ {x y : A} {p q : x ≡ y}
|
||||
→ (r : p ≡ q)
|
||||
→ ap f p ≡ ap f q
|
||||
lemma6∙4∙4 f refl = refl
|
||||
|
||||
ap² = lemma6∙4∙4
|
||||
```
|
||||
|
||||
### Lemma 6.4.5
|
||||
|
||||
```
|
||||
lemma6∙4∙5 : {A : Set l}
|
||||
→ (P : A → Set l2)
|
||||
→ {x y : A} {p q : x ≡ y}
|
||||
→ (r : p ≡ q)
|
||||
→ (u : P x)
|
||||
→ transport P p u ≡ transport P q u
|
||||
lemma6∙4∙5 P refl u = refl
|
||||
|
||||
transport² = lemma6∙4∙5
|
||||
```
|
||||
|
||||
### Lemma 6.4.6
|
||||
|
||||
```
|
||||
dep-2-path : {l l2 : Level} {A : Set l} {x y : A}
|
||||
→ (P : A → Set l2)
|
||||
→ {p q : x ≡ y}
|
||||
→ (r : p ≡ q)
|
||||
→ {u : P x} → {v : P y}
|
||||
→ (h : u ≡[ P , p ] v)
|
||||
→ (k : u ≡[ P , q ] v)
|
||||
→ Set l2
|
||||
dep-2-path P r {u = u} h k = h ≡ transport² P r u ∙ k
|
||||
|
||||
syntax dep-2-path P r h k = h ≡²[ P , r ] k
|
||||
```
|
||||
|
||||
```
|
||||
lemma6∙4∙6 : {A : Set} {P : A → Set} {x y : A} {p q : x ≡ y}
|
||||
→ (f : (x : A) → P x)
|
||||
→ (r : p ≡ q)
|
||||
→ apd f p ≡²[ P , r ] apd f q
|
||||
lemma6∙4∙6 {p = p} f refl = lemma2∙1∙4.i2 (apd f p)
|
||||
```
|
||||
|
||||
### Sphere
|
||||
|
||||
```
|
||||
module S² where
|
||||
postulate
|
||||
S² : Set
|
||||
base : S²
|
||||
surf : refl {x = base} ≡ refl
|
||||
open S² hiding (base)
|
||||
```
|
||||
|
||||
## 6.5 Suspensions
|
Loading…
Reference in a new issue