From 7599cebbf8955ca8ee087f8dc3fdb892ea3dbae8 Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Thu, 23 May 2024 09:38:54 -0500 Subject: [PATCH] concise course in algebraic topology --- .gitattributes | 1 + resources/MayConcise/ConciseRevised.pdf | Bin 0 -> 1131684 bytes resources/MayConcise/ConciseRevised.tex | 12340 ++++++++++++++++++++++ resources/MayConcise/lacromay.sty | 263 + src/HottBook/Chapter2.lagda.md | 74 +- src/HottBook/Chapter6.lagda.md | 31 +- 6 files changed, 12673 insertions(+), 36 deletions(-) create mode 100644 .gitattributes create mode 100644 resources/MayConcise/ConciseRevised.pdf create mode 100644 resources/MayConcise/ConciseRevised.tex create mode 100644 resources/MayConcise/lacromay.sty diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..c2a5a1c --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +resources/* linguist-vendored diff --git a/resources/MayConcise/ConciseRevised.pdf b/resources/MayConcise/ConciseRevised.pdf new file mode 100644 index 0000000000000000000000000000000000000000..34946b5475a3886e1103d7a81940ac6cef963cac GIT binary patch literal 1131684 zcmce+L$qkylC`_6y=>dIZS7^-wr$(CZQHhO+s1#gwO6>=ZWd1I)n+Z`h{D%D}5(pVPivEBV#&gV;fT^GkivR zMqXYhM<)kkeQPMU4ei+J2p|UN(c4dCcmMMfPmMTS5R{jexlA`Z?3G0D-Cu(X_5dl( z1>)YX#6BDddf5Ikdj#6nyPA90I_tY`GW@>m6Acx++J%L1a& zc)6GS`qA*tu)a`}VYsqwiZ4Z|1A%s5xz}AYm15ciVm=qrOA`u0sli9)Bs{BxwL2vU z!_IMCYqSg=Jk7ake|c4j5|rYy^yQ?;g}*dp3iFTS4tIu%PD*dM3Ql>Yjd#12U15BB zas4hN#h{FBjQ+nz{qyxdU0`7RH|=0z`p<4Ck}J_G(E|tyfjSc5Gs=n2fIckvuW1v+ z{Q=Ou1cUqUB8*J`rU(Ng2kU>9nO5gY++>Bnd8AUifLZ`Roy8CnF*%qjk}9CIhf?Tp zJSP0@h1`KdBpzGL_A<1TDFV2<3EjTcjNA6bxrzG;XCzTxHS`nE(<|uQ`gxCn$3QSZC-C3`URc#402$IY^qn4m-<`bm zP+ut*upcN_ZyHsC7KDoE)S;sUm0zHf+zt>90*zyExVeUTD6rjn+8zHEmw4(^0|Wy` z%L5kjVL6$4Jx|58Q+4*+qB(#-)k zt>6@)HY9iDZEk|VWC_*Zz8)3we8t|W(l#iRrD(Id1&B}sjf#73g@csvE_W`9el+!s z*xe>81tQ=9La~xbhp`HAAixkJGSt>5wg*D48tfWuIzn_uj$o&@_PH{N-tNGQ=@j-P zkXg>^#-n}aesz%*OMBy*BOAN1)e)M-!h`(>ZoIJ(2hcu-{q*2fB*#pZNq7<-=EJ3R z%*vdrKFpB@Y9j(j2?3P5G^ho=*t#VJ1Wx?q1(cKNW^pvn(kF8GK+vbzw?WulTEb%d zYg73RO)Xjz0wKQ zg1-Z3!6dj3&wD&2p1E4`Mf}WDZu9Vv9|{q-+v`)2gi4kVtM3sckFr}PeKly-B!rcy za`GF?asWI4Ttsf|=&$NBEnXW4;gebn#$C%gFJ3x8WnU~yn>0l1()lfBMw&bl`}7#< z1h=vjs~$`bA+ag0F53}y`M`NbId%T)Upd)6d5e~aU0G@9gK7L(?nElSy})?*jPkmc zA}_Q1RS~l%?J~E)&5D>B%f+0tGFo@zK&}mwsU&iGIdlj`2R<|hw6bKi^a})T({xMn zp}YkxYLNar>PSN(q(+c;Y3~%NWhSD$M4{196@w|vC{#v%1un(ys+Qq(9RNNltQ{Kj zzjD-u&pMXH1B;dsvuaV%@l*OSuH8WC2VvyQ8C?~*bJTOHmTo&vHdkvFAsI;Oh&dZ-1!~Kw2!-lb;B}OkyY+m$LhlV5RHlW(_wEUw%BE`6N}a zO?KSwcBr24m>^?@d3wg%or6IJLEP5m9_?k{yE8LF6Uy5)L@dFTr6XPDJlLu$?^>XO zsDT;`*<9b)T41R=V>KjRc-F&aH@$E4+crmo)o-kyp=oxq+?#z+htJLJ)FF%A8Jq3$z>hIyLv_B8Yc*D$jcQX}<-)71OgY6-w3DFQ(X(L0J^>te2&Q+6 zu6eAY*7wiEa9DBCe4JG`@7ZFBHLooq_5+7)(uN}sOX<+jYGFL6@A%XC^?G2T!t{JH zOmLWvSEXJ@Wq*NLk;du%52~{ME2=Uv)Bh(`mo<1|4_V=_AE}f`gPp%fL8-Ms#z4i< z`n2N)G-?$|_mw~T_Yns=!^YlI1&}ye8B85eUE}jH!PM96 zVZAV8oBRQfny{NQfJ2t359-MsMPB{MOd@&mj$t){rxs`0A~V@}(362{ZQo;fGa<<> zH0NL)<8HO1pE5>rRkn-}vH04Qx+jNm_lMLx<5|9wOd*HI6UqB)T$N)4M980>pxuLOk9^MmS^ki96 zO^e z`ST@_`JVW=pn}Sp{O&LHP^cl0ve3neuG+^#@!dPH;HPo2>&v2{_0EfL#`o!yjz5Xos zhC{3~nFWeZZFBEkII?K2(6O5PLwdw|WcuCKQDk+w#f6 zOYV9Kkb=gyR1VEju5^qeSK;}$eaUA4 z@AtiYfh74mFVugO#X6~d$KrDxe^rEf2^uG0g~$GGiXq!oM`nS5dgKOurHAZBYCa+N zbX$XHLZKHh=~dWH+lGIMc+~QbTuTlW#otnk8TndqFu|GHa9{F|-KJ{pUEtw_bMuj` zx{|yUScp+AMp;bzJmqRL7?CD|Ea*P6mBN#3v)+jK#MeWbl*E}&ad7EZ~vw5{0<+S*%m+}9W?QHG6ZtcCg zEWHVJd_ATz%qAAiKk4Aw<$_WmkYglLReJ>XoNtDIR+;9hdRV z@x4g{G-v`eOnpsE$^^J!fqr{Xb_zjtM|fL~aE+90dpX=vygF2DQXsz>71FK2@BgLTTCDu#u3Gz? zU6_m^4;KXGrWoD5j!oSk1$OvbRL_U&hiEQ#K42x|&|14^vs*_Q{rTthno%M3Sx3#Z zLm+vFZjZFnbZ%FbFXDP?Pe+F2m3K-uQ`E2{IrLSJ*@k&}eZ}7u-=eSjsXF zc165}Q;i#gAPuT8tAQ#)!&8hvd8hrXTHvLL00p|3j3Q1uu?NN`7n^FR%( zRspb>gqiyRsU?fr!Y7Nwi}K~wfvF&fKJLiHv^2_7Wc@I#{7Uh5dC_~5-$EbuBJDdA zeD(>#KiwzLSN`?M3E&#F?Y+2rkgbeVPnm^>sKl(TN=Jefn7K`Lb}>Bplx8lU`h1RF zu=(Vy*n^{2gFm;>T^h*N64)-*Xtb*ff>SD?-TKFcQnv7 zwe(F?zZ<>wV8#lUM-%khc7r;2K--7>von5>gFMK){9DiI<0Wf(5LoFxfA1Md4_t&t zQckX^rf|+66=GrQW<*U`WrvQ**NLnFkRC4XjG;_q!|e2YjuG}x4?~Uhv`!XsEc;@> zmriJOf23|!aF^oxa(~i$aN}AvK6#=dKQCd`$=7?%R)a2RvD!G<3p*ULVdzu=Tt+%r z`h1i@Oz}oGgIKNk3obUjo|phN;FW3jo}=n-kg5!63BfRi3Zi#VNFHO>?n+*R>g1BYl03Zuf;>hkP954+eIez>G_(k-n+U`A=hvc%#D~~ zl;tGnQe|RV#1>y}u%mgRZ-8=_(Vu(XMrWgoE$XlzMsX}P*>j8UHfo}bX!D@H0!Br# zU;kmN)^%$Qvx}ZN56krl2fZ*cbct{>rj!QY5a@7lI%=rdwD&%0)dgJR!8gL}tgP&G zC4|g{KtMGELyx^LzJA;W%{C^-bZ?jV1$)Z(*X{uaC1%DF$VL!03XSLOg6HE+sp>c3 z0+dm;PoKgu9XN8G9$y~%a)n?HjTDIij#f~Uv_}mpA+bwbq@A=95U1e{FRi2-W7VBG zn=tB&?fhUvqNq{$p4btRneL{hza?3pDTU_MZ<7wjv@{WL%cgWs0&8^f+At z!!rsN4;8Iomw@hVd)aA8yThOzNI2v8JOs-Ws$R`h(Q#dLRe#5yy1nGM>~wfjEv>4N za0`@9TXU5rCXO0MUb_-4BR^9>U0GD4)O+spl57`8)lei6gRPtDD4H3NAU8@yq}Y)2 zV^{$v7@hTZ8!Ii>09Q!EtxT;1CZpqksNCGxC7+v*0Y_Fe1WkASb`H@f`?0qxKt1B$ zc62WP-s8kDEqm1Mc!f67xIr7CH9Zn9daNR3-g`=SM&&veN~`_8cYlV4JKO=+$Di|6 zhyF7317_0hk@ovnuBAaP)ruxX2gphJ&>vW-^!`=V;Dp`kU(eJsd7K6|vmP$WI}snP z_AR*U@4gD9zVFIm%{YB(!jUa&?$t$bgA&o30bJBQSd(bwO}6)^o5-=G3^cMlR)GWa zkUb54-!=e=x?c1UY40WIbW%{i!JFN--Tek{_3KIgKV<3O1p^Ky_WvzQQvb*jbkD2m z8#~7kRk(-2A~uwhW|LVY5XZAUx~++ah5yg5)U%Iz%axHy-C{NjB3VOGY|&V3QK&CC zH~v3>{Ab|8?DeCm`(3QN3$v>g0+&mV`&RZ()DN9}>^mC+ozIQ+6O9V{d3X5!4vOQ4 zkVn)x<)h<+PD|(FkmJe362?U^FxfK=Y7>UA`?NpT)4AC@7n4R&664QBc z-40pdJ#57&f#d1Bc#&?D?zUVFH8KD<)Ch9;Te=Pg^okhQUYaO211^doW(oMKnje$k zq0RtU!VV{bPo;?=3AML%tBlNz>LZLhtS0!r%SF#KQOQe}QiwY=E#}WYGh{@Y+2%9dA+En zKq5Dz1jsQjG;VOdz2L(VSg7+6MbW;I6(8kO^A)0B|w!b5%haRk99 zND#)r%IrY-KvpQKKJpw5zi-1G6qul9V;Xfvj%2|WqQ{#oYxHax7kXGkm>%RBCL}V} z!b#>;SpOOQIYd zM)hTJteJ|wlazHIRnZ^p))S7_k%U-bec4$&AMQ2=M!Z5%YW`pXUv6y7$3AjUP=paP zJ|A`<&o?)A16tf4^S_br;uOQwTaN6^ZN3b*6c$iOoEF9642w$Fj`|c}%|QfB4*ub; z#8Fc(R3W`K#3n9;@iIr~L~IcASP#EiVOX+T9rPU6P>oR`BgyEt$&Ax4GcLx3SXo`%>Upd>`g)V69tV{eDT13udRObQ8#NAxlX8HL&TS(<=Ar7tRLYXjz!{ug3S<%MHUn+lkskZZFF*vp^ z*lri?q_=8Xpbovd^*ab1)oQ_7bX&B;Mvr=eG@X1_hRg8j*(J>OB zXN{CUh1&dwuCC=-_^Gm2;4u_)Q~RXDmcsZKu;^bu9rSsWm&h%5u7%@Bn3oij&@5Dh zg*~ZK9EAxAia&G~3@&Jo(=~LMiq^O9TI}t#89VcWDK2@42VcPpN0F&9W&g|$aD?|_@#34z`>I&2N#j|&F>XP~JN`p22CL`BV8AoHv$z4~`6|2)MR-yy~6-3vV zp{ZDW{ZKwgEF;2n$13F&0$$Iv>dv2M5yOt_XD$E|WC9fBS##HT3YEcqB>O%lF99uh z>s}NQ@MNq8LSsQ7S`IQQ#L5bm&qEL{?d?N0Hr7v_q8yS5u{IX0r=6s65e&e(d#RsMJnNA_zv@`%X{*Fd!yVUse^>BrjLX0nD%PpvD5rYUU$W2P4C4>T|Xe36CrAE3=a-(yUxr z^rFLmQrayeu;!D1zKGL4WRy_)H@YwZb4!=+M1E1-eoRN*(ZL+2-Qj>w5J2c=X@ zmu@5cB)Cf|6Ed*gD{#2mg)?fSjOK(oBcaUu2NQ<7E}1Ve9XTb{cEJL$*sTwZ2I(bb z*FJ*qD?mI|<{LJ#+bxv&^iASCEmA1!>}=bGgK5uioD}PN$b{bNPxoCP&r>sw_O~x$JBX2*V=nNF}_pHj6PXL7r1fVFmhKVp)tJm-Svb}vE z@G+VXI)TkeCzIM=InH>$6~g(kq|#eXIPfRnLLJjInHU$s5{vC~+a%^zw5?kuJAQMexMYZDssI!>B} zC`Nc(Pr6x@{~+3jjXRj16`X?~)=P4rKU`4^%2!6Oqat$A!7ojsHz)2uz2b=HEkSYP z_6X85GeEnI6cZF;_a|jQAd4og3f4wm=G%lT9Cg&3YNAb{R=NrA|#MTXx9OTo(uKr7odVfNGQ27-+C{uxMf0STfbNl zy~_XusUfIUyztPmP{~kO?}+PyO?b>nWJjPxv+x~dJg62KmR}PeRX)AchpnK~$tgv$ z#L^b?tqX!)Uu@}kW&&T3WI?@}aRm*NNb1j_yGWucTJ`=0qEmkIJRJDLYD~0b!B;zD z3q>-^7BrAW(Q<9>r$g9Si-{|6+ODje?@i-=TU=8X+b%)`q3%}fBsI<^k!3vQEiAZG z%zDKhrr8%Fi&8mhR*%GR!DEV45`)uFJ9HO(H+Lq(jYvx#mo(Paz=`oaMPdaBsB&QYG~@TT_iGTLsvWlvN5~pnZ-M4GR>YgG zE!YP7v|V94|E9loC@DQ%X|)t9Yioi@KISSYitp38fc+SZzh3ZWLuNOQli+=*Z#M|` z7YQdVCKpp^jaW+#thnse!&hyJ?L_^hT(wR)co!u>GYX?PVXbd5Y4#3H8%^Km&|JbJ zU)?}+rdDAtQ)Vr-k|`n0UbNP9&14xRYjw)Gp5vk-{0oG7VH{!87W?6Vq#nDoaXDjv zLH@r@F!dQAN(V$7$OtXZRRHzy zeo5On{&!axQ6fIUD%H|&Z)c>*nuk1sn>cnU_Luib==k@EDDA7)-#?S zb~N|51aHGzf_V!e0^r`&~`T9^u^An>`hR1D^~Q$xCO@pY`8MNnNzK{fB8hGSR|Qk4*di?O0qGPW76WG1-aVy z>@K|uQcC{KR0H*|r#b5eE<<|1_cUP!G1=rMQHmT0b%2KB4@sJau-%T;K`OTLv|Izt*=7CGG6l}9nx8o_DS8i8Aa=!mUObx=mZ zh5128_}M&n9t?g_{&pqT>bRl{RL+>d*i=3fgj^GkWOPejk(z_+UbH|U9G@ByKJ{6` z7J|#K@VybDGWJ(Cf3!<$TG(Sb20nEggl_!J`0cgm=1YlPd#buRLviz_cz%l}?*!75 zq@*b@1*1PzRKjI0bAre^4xy?DzmTUTmtjG2n62y@@qqXil+*4*v4ui**`_sJ)>yQR zQ8jAIzFhJ!lobrS>Kc%@taLI!NJjklz#@tfz=Y)dO`x!L?&9B;3dtvL&>pzTn*ODO zI2h?y83Hptb<{A-K#~pA0{L{)HOHdO<6;{$Ez39goUgsYFPxwks=~$~Br`E4IcRiI z3U8ldx^*QX!N0W2eew(o_HIfV7@($u31jqIJ6bk|c$mj}Y;yZsSk$n=`$Y9f%6Bw0 zIUpGA$t#N;6Pk@J!UTNkQN+ldm7%=JxBJrtX0Hh`uFC!zV6NAhP)c2=L+nml%Cbii{OA60eICPjP0elLJ z{ygx1PptQ?$tDz8gikgUym1|8ilzZh6?U)u#gxTQ^lPaBhE~u?X<%O2AdHYz> zE-*_o#J&~^A)?s=JRD^>OZ3O_CEFv420|4hEFT^Ci}h8MFS8oE(^f^P01O3L zqN^bFpydD?GUzn3)lQ(qC91S5>fv?;9ZNba8`o6S4`B`_Tyf*8NtRG;t)AKLN4|^1 zFBT+Zr}tM@)U=!pZlM=rx;0@(eb~DXND+$+o|$Cie(Xf^6tJ>W?|muJ_*v7ZP?flUp%maqtH4`}44^tZM*HB;ziF1#kp#!5^r z(3Z`^EhRrCmZQ5-KuLfG7|Q3>77P+3r=8~n(anki`lDK^khMFZt!7BA-YYT9CchxmGQ~E zD1O27i^8N#$goZ8x%lnX2DOa7wB)c?)EOjMmnnf$Y}nkrF51-wK`}>TA3>3(5`Mo%Aa9MR zR#Bhu+oarOx>}?9^25mm^? zWJ$HvcA%>jaD}tU<$aifqM8IKew2^{%pEO<=Q*(?izY0UfmBYeZ~q^e$E$^KR)0In zE$-)maRu4o_`FeQ514#_Eivc)X_1gt%OMqXimr%(BVX0{=7Vr}1zg0*Z$A}7+Fci0 zH2RdJGRmW2B*t;V*eMLcV`zr&-^-E5$FO?QBAgLk#G`csP_uNVjZVj6^x<=VEJg#Q z@R`Tz>#07677&`T;6Lf0p5m^&cPdg>6mvD`jKcLJNQj`tZ4x0(mEc^tX?@wL*%%&UEi$TK#%N* ziV+`N=c}!;&)Ap z-JDeZbbA6>_<~0%?iBk&TDy+rfV%8O9c4=chSaNXe2bbtUbfrn!dV4P*dDYtR4jVjVQg4Wo(&u$=7kcQ6 zAiEHKj|Z%_JsT?1zL2&iOrOp!sl6uU0#6rSvyP!{ZzFw61~sfK?P{1D#R0rQ$HjKl zlU%qXQFtm-z{&n@`{{}+OvhE7iep(8=Q%~DU^t!6ieX=k(wEFp}Ut!#U zi*D}i(pN7f#u%F1bKUJ<2#LKvCvw@sYYZ2gJ>@5LI894eVUAw-`rs1Dz$kUay3)Kw zBueIKL^dG}uJRI-P0mCR%~Nwf6O+ifH=faC+BTZHeku%J18Hx3X`_bI_#GY9?ZW1Bw2%$y|;1!vu<@UF8dmHc;yPvRAu^dUn5hJIeR_#5d(IEAZb5frb9x zn0ID+=Kq!GtFb$4s9URNRjtyIJ6ApdsbvuGVdIoUZP1GDww@)B&}tq&F~SK&Bs0=^ zB=qpMw0S5ZY!y5|uS;w#er0zH)_+x7Z+mZcf7*Y)-(N;;Tk(9BK2UKvHjWmqH&3TK z#llQ}y;?8wlh-?YyMKO^D6Q~*-(FHPUGDQ6UyYT|>^y!yd*H++-)G?}Us!9C7<;d* zJv-kqJ|@~0ZhBUOectAGABez_wANpD(0Z^w$28PeS?OO6Z4Q3=Gh#azZGMY-Q)OHH zj9+@SG+vT*Klfzcu%SS5y}x=|1A7+^S(?(XfmL=)-=FN^%A;C(lMv>Rrb8v1Z@(Ka zaxXt>y}dQ_$DF|ilJtjRZFzwHR^uP;0YyZ!&$0L!kkgbjfv~HAoBihK6+5VPHqQc~ zui^HA&{N|Yi1{<&*!%lgbtX;9e|n#ZwMU1o*6L}j*Z4)LLDQ)XX!Q8IUUxZ%nRA)E zwKlb*$@D*J0&?+(Rj;n9imF&)^sx3qm{Ft&sloFlYdLU5T&!Jrrfy#BzC54DY}Aw^ ziCdYGTXRV$=Y+>v{e41G*q+5n2QbvfU9>@dEw5u?r}`?t$%f(vDCKN(wtRLh%IRJ{ zBB9xPYk+%M>fGRrk=%@NZXq*>60OQBZG7HTfw3K{;va<&@-M5?@p?&~JO}FERb3eC zgIW2gtw`&|E5K!MQLyNpVkbnT1NZoQd;}IJfI5Urc&P^Pzy~bAu}B9qSMX$N244O+ z^IB*)aHB~?%_AsB=K)Ni#4+ndi1RQWH0ht5ecn(GA&3V>S#Yxj0p8b~RiezNzqs;a zVR=HtF@W9$?eZz{ccuy)16CulXjfjx&-^NU2W0>RbW-RGD*&-v?mtnb)Cy-6k9&_x~U0SGSU3Bdd=iyT5_Vmhy3fZg1oUag`WTs z*~VYV|1#+@PDK7@qdl3_rA+set;m#0qoU2hWQeuN&bs~pBJ@PVUwp2w@;ppd%Ti1k zZ9B%CGsyYUvmY0Y5i*RhK9EJZv(?0Y3#^JkN^o*)$(iQNGA{u%yqmn_Gu}RUObtOi zaUrm{^wL5nO1^ZRSU?D43@DYO`iwV7@1e1cMQ)%g>$+f;SU2^WJUG}SMKPI8s_ zy2H9D>580aNu2EJW9ZCeFkgh6diw5y5jUo9w0%_%e4@uvBtQlH{EgGQda!1CG_P~4 zLVSE5@+wLc1w(f(a4P*!{JHse4zax3s0>3(U!v3bO1QI*uMmk|(5yHbBd~-DoLRkX zU2|CaetB1>`vR_N0A@G&Ttmd!cAY;;^$b+-x=F{L?!- z(gLw%`QnNdG<{lHtZ-cCha?iWjj(M))$Q>Y_S)nK^t}e4{Bx zP`qGcRD?E;@22jdqlikdfwJH#>q~{bH$I?L5eYIkIPZs-t5Y2Fr4d*HJQz?jk!IR^5Pdctk*lZp`D$3}RKsY1`et<^ zyK%8sBvg}##hiL4EJuvzCtavnr7s~RmoRXwV_Xj6Tbq~o0IKLcjtpgFHlC^-if@VmP+7r7q$&vX+}m6 z^bo9GWvb);4rz0JffsU}-m3{h$wJ5YhjhpIgWz2pq(w|f?f8wy#x312G0shO;_^)E zHka6Af=xDpRE6Gi!xIhRX0XYz_wn7QTQy9iHu~uGS~qn?@uBzDsGMfdKQlJi(*YeO z-8!eUHK|%pC(+J|`VMcAv#AM}|$A%W40ypTZXE=o?d3vJC?c8q+R{qo0)HvlsAF=`K_kR9U@O zO+k+$)E#y*z~=$Fi~@qyki}NILnslK*|SJ^LKkwxVn`!PKGyXXjfFmlLNI*Z#C%>E zgJF;SV~jPJ@ZCpJ=3aIt0sr)d?>4^Q4iCqm;6j;0F~^x{T)E*UQ+jp~<%03Ht}pC$ z^g(*J$I#crXjtLlz8}|$2+c6H)X)RkgDvT6DOx@8w6`+Y%*__#7(5KYG*VTmWJahm zaY|s_#pXLaCe-6_-Qo6lw`0WBMq8a=OwG@*!t-+M^0eLTOPmdinm2}Ci2I&!gXk%d zZ}Nz}uohtqZ=vOsJQL`ySVSE81;04*SCHlf6(r|bkWmSc3SV%ri>i^3avGvCm`Z`KY=YDs8Les-d(zn|zY9rQnr(1V66&Wy||@Go7R^@4s} z^d?ElGJM)lajZlsgB>=(fF0@mUWP;=Ggw~DKm_R{RcZl;D_74g`KZc>pG8u%c0mG{ zpaIPzgg-e2QmRRiy@3YgP(KN1dU9oxLe;58SAA2Cb_du!2l<$`V*Ok18F=NLoA)`#I7g;EpMY-O3ai zB7Vk}iKVCm#^CDlmrG|6+CR^;mT-@8K9xeAGeE6^qc+f2uLwyf7?wM8mHIY%2L2$N~;!b4S0y!Yx^WVcdLJD3js67D0yKN1zf)YVQbN}?;1Nw{D2pkV6vPM4mHNIgR zO5#Z{JM#A7ZY6mkc3Cau^1^h$38e|jy|JhGy^W&*iEsS9le-|^?UEy_Ti|GQhN(Iv zw}#pMwVY?jJ<%Jf|Dss*Y`Xxq)C)7MSWis72V)LQ3E+{jC}F^`XXOWC!GG*)$1fnpiJa`}^7Zqrd-o6dJ?Ysk2ZEJ4lAy!R6%vVqFo-hUOaN?=0OE=uEO@rYy>CQq%8- zP!ag^M;oZHq))eL`t7`u{Upcm25ZDy8|P5kNCgs<-`0JcN~hlOi=F*`%4W>NG16^0@Am>TMmtbA z&@lUx!hG;3za+5_L1bqYsR4b>2Pj$?*06iY3m&QGksgs@H|J6v&iOA*RlG_;rZMt zG-=As_O(1_T;OqE!akKj90h$MDASmY*bZyV*5wAnzn^?CV>lOD`?NUxM5I)6=4pjk zS2NqM0%;U0h2mzA*Y(nIWDcfXEZR-@rc?6&dvoUQ*uYJeNSY&Vn|w!hA910VOws>U zV9Jwt+vjV?U!qC7l3S=Ty3wR+(m^-s5Do&%L@}eQ427jb$+@pb*g43#MpPN0JbpmH zF{FfGad%vdb}R9XWe>zfzmH5-cJ{m2x@p@QIz7JoGwl;RWcoP9aP0Q^T+-~xo?5j( z{oC<<{j&H_DqY|Xava^g9msgxDs6xsx%yhU<4!|a{Wo1-s{Hfk-Ug4-Qq~`SadKw^ zn3PfIJYMM&6yePT8fRrrQ|9Mkw=m7NH-aB;gJpm+^Q#_e%=0eH@Y{qE(CQJGuGMQV zc%mi)ZBtoi=r5Rmr!-v0V$qd-|4jBB9-e^d>1aUqYmH??&y=#g^2h-t(#S!TiQzHX zBY9s?GhWgnU)4bIvx;&X21>&|0k4iaeGgHd7#nr*aoZ3^1tB3XqOpL~=pnJ>&j|4H zqwmAyAv&==gdFQud?)hWsqch1^)*AMv@+%JW;P-$;hv9Q@<&I$WX}X;eA76jKAFwi z;Ewk z_;>3(M*9DCx|jUVMLBUh%*;0xXH(!!qA-uYC^(oGxR!|?<7WTL(~Ah&)~_see1Uj* zg@=p%YF`pA^6;sc1)Z<<)$r2q6-oO?Z@brzdhbtJ?=J1{SKHS^Wpk<<6=cI~YV7JT zhUX-MZjGMJN*m|r{nzX^y6xrdVp>`>WG#3aCu$VKjVDg!;SJVwv$OS1C>A+6@-n`I8> zGDOFA4Noe9wV@8m=;P7l%_R}w@70(*c~t$(zcspj^8(iyO%ck%x__YuFd5}c8xVbw zbPD%a5e&v+Eveh^%v!3Q_znDMDLEVGEp)5eCT{ntC^M<&0$2sWe@?ty_)9)se^-`& z+3A-Z8h6M8S6b%jI-jMa3u`PntevV|hDY3}r|7Ra@)y|KIpNsG+8G-vDBnh#ckk?* zwdc(obSB#`D)EkC)XzRM8Q#)3Y@vS$ zp2r%?#jo-`!9_=FMAu;3zSL2i{J~LiyxX5I*nu{3)Xnq}H^yfS^W)(yD6NozNW`u~ z8+;WwW0(Q+R1e;>I^_B@dxn#GVq7Q}?Itz}o1FG;60(|F&443K1y`jz<(Mgm++kVA z*Io*ZX`nc0mB68E z^XIHV!W6ck8Pdw2juDw*>^8WAy~`MV@db`ZP`9FY%)L|EeN#2;yigX1p)tmiT=x;e z$UC+#UOGRw$07(Kf=jm9HnE!=sJ2@1K&ewn7DaX6QhBS6T_(;Qipd?##4cz6``!`z z;zF&tY|qI8%T*Bban&p2+N^0DEZV55pKIYq+JT-DDDU0abL`PiPsD4!GrkgbF8R;7 ziB^M+8PZ@GOQnub+vNAUFh@oo#7n*@P88ug?VMD}_)N#b$i0}F8#b&dIRp_^6~t&` zx&S)_hSpZoWL;g68v4^mb6eA$O*`dVpq^+Uk-`y%$BnEaJ&5HI1N`^S^4JRr&$I+cg2D)Od$2Cj-M|6hfSw>g7 zY!ruAR=x(5SOpb+MbLY6VGoIwGwPINh6cTQ>_|einR@Ck4a=A8Jm`t;v`22^-3IZh z+;o&*8(tx9`>e#G0fY~xVYcP-XDtNBh9*~-2IAJ9MzE1;MaF{kBEM~g23&aqHY_zT zWX@X$G*6+bsdiM1F(4xg_>#WgU;>%3g}*WPO3g2KYHo%N05RP=;x(dM^eW~IDvxSr zb!JX)rq_BJ{pm#)_x^3#bP&REvl7NBzXoD>$>*#Gc!#?)*$#PsmnJ0%54GJFLpp?& z+4k1jIUI0n%Z-}v<9esUyImSYmSvi3YtD#^Wct1IwAm5(>`Ay!gm8CLl|G{8v(ym^ zdltw61yx`jUEW~hLc7kiOl8NdOX<@)EfP|iu0q#??bM>K|MZ*@6VMuOYBaIdZQn*-{?5*1LNR%;xw1aOk^;eEDU{z4bfmrY<(#Is=RWW(7LO* z1l|Cvs|}POJL@PXD9Gkg1Wdw+bFmLyOJ;-jNw^3qwMwK*j%>KxWE_iErqjszw#81( z^OUc^i)6XvYe&Q|kTIpfq!KE+?3$YjIOECkd!0RBexK-B@KB zO5TSuZ6*}!@vT#raycBAq^g#MBHa=dz*toHmG3$UY|YBA?M#;p&h+uGIi$c7*MR>= z+BrRU0&LMbwr$(CZQHgpv2EM7J+XfiJDJ$FjXRI`)VU9*>iz-!(zUy*d#$~{1#ImN zYUEnHC%jLs64mm+~9A1IEdM*8edzX8%xvem-SFRoooA36OG2|c)V zbyEw(@|p>d+p8mxnt?O-l^&l0125(XYf$giw4I@p%IlPyG~` z6K9yZrd;ihe}62X((@!0s>U(VVm(SG&;9mR&I_+if$qbK_!G(R3`9dH$r!9m<{|Jd z_^-EbxHmB?SmE6T2bUan=Z`53D9P8w!TnAD7a`R_#qj^*mGeI_IQ~DO6CD2&bb^(g zkb|I3>g>tM~e}txnw_(lrf+Ee7!%M0Utp>-@fm|8;dtTrHTfgA>j&+hKf{a zwOJ~y9#Q4}bK@vm_pAoZ)6E+0O>5_(}WZ$CS;M)%;vYE($eD&3_SH9~Z z8kic-@T6Ff(&cQJ9xlcq8d8YG9Hj8Cg^Jcf2?VUu~w62RL$dY^h_%A2mz^+e%+5)aHL0&TOmb zvNCBdwNbg8@$f{C^C85;iVtqb8jGV@I$R5j#X9QZ4RRYCckG^Qrtz#-gWN-;FE$+1 zp6#0+kVX2$&Jg->iP>&a?`9`G`zjWtsT4kC7yQH`FwXo?+Ss%@(eskjN#iRX@SiX8 z5S1j@ERFOoP-?gQH4l@j*2aGtTvD1H_E;hN{+QF6^WpWRz;BN-&0#Z1|F%gS@FGoW zB4sA*kS-ExHe`&rVrGVk_jM5wa%mVxtTy>nTe_Y2$^^C+O~SiU-KW8V9Y(i8(sr2b z%sPMg-Fd=!h2C@dLxV|KiGfEbuI;qdb7tQAK14%7hD0zln4WUB3QDwh5^lH2vC6(r z4RgA0f>cW)p9Z`T6#Emp&m_;12$UC9msQ4F!^6_S?Ns%+oQch9ck>U2@RnHHdMLH> zhRJpGTp?%}4wgD~(_cNQC1wDR`DU?R{5CDNQ&|?Q#S~)eZn)`*lj_rC9#-|dFh%3P zL(EA9tQ5G#;+68|cbuN;s264OuaGpmq+bTjo=YD$$kRlaQxQ1efy>_zFW4tq3@|TO zE=lvaB;v`I%G9gmut*I}i^kf6fQ!StuoQ{;V;*}0WqqJ+Xi{^FXR5!N9=&v5#XVhr zyX?ub-Iw3Yn&Tidz*07Uaj}m{ZzaXvgGy7N9=e!5FW@e~Ok299AHPdn{FdBmW0Dd0 zD(m)ILo*BSH0_dv14Z30gl_iUZb~0rqy|IagY)LlQbM~Q89u6jp9OJWQY12hejI~8 z;!o#XBE=MExNg~RWV@+w(F)#hA5_2%@0=g#Rd7&cpKA#5So9LJuvRSh@qVR=VcQ*t za!ez|EXPh~6q`%|_fnac5$qXv)kjPO!vXUHM#4iUzlPNe9iZHl0v zI{FC(ED+!eVoIX{$~7l~ZLU``0+Np$UKq$rsne^y7(LIr3*#+V`}itUuPXt=jRGk5!2t;(t#OYy|Vp4MbFz%?Xcx#NL%$(n_pH^qXKKE zow))!b}mHba`jv4?5}w1vl^hp^1#UD&lH3Uw?zBYU>3?D8hx@rNJyGTWszU=m#Ii$ z^ofijkFZSou;wH$jZD5N5NyYObP=}h8L&fGakhTufo4Um`Y1!MG{>cvH8MAn1R{lE znxvc-=?06HEZAsjHT6WrWZjI}qX>>>n0l}m9Ksbsmjcu1GP@l&+0!V~Q;-fJ3w%`8 z%+@vxn`=e4g+dHTs)ubYX}xhNKt-SCBgQL2-B5wT5C*;$>0G>uoKta8AdB=f$>BmE zS{?(C+@d?HNKGBtWBBF|sq!Kfq57hAPFyZ~005J5Pg#KTwRefmIOa>`svYc%%gra@ zpe<-SgA<+Z#QZajDd+7-J=n<$nwddAe2x1QNc>~#A3d4%z?7juO4B3&$+VZ@;rHD^ z(P4mN?;^ubIgry*Zc|)q7L!7#{R}tm;$yJLK8*#7d3Wh^teS8euP0>N7&vyhl)EnRxtg8kit_$BQ$J(&G!*jN z32Qouc1EI}0b#252*SmGAEKJQmgI)s)!EuZC56gZni{0;##q^0fAlV%R6_Fs*sxyT zrP(uL`^y_VlpnmTt#j{h3iImz7ywYW2_A6)Hu5fl)0I{!z9EiMLWAug?^QNp{MDZ{ zw&c^^^buL-Yt{g_%wq~9(+Fw1TwxM8uiO+HtNE^FGX&cX!A^Lu z%=BXcKjL$-Thi#z!b}Tce8PRGo0=25`J>KbMWjg-b{hHSmyPX(mcgV$5FFn z-S4J9hh4QynOHACZd-3==4fVC{wiGUCRPzbf1YCZtS5xWZhP zq0mv-Y}+#S2Gf6~OJz+8(&-GBp~f6rQ>*-uz@7AEOo^Z&)#mRP#&_PeO9QNA_ZPlX zoH|hS;sTl&jmS7>G)^z&JJ*KuHqdOzF1qi3ULWB-aK8&mRzIx0CnML5a&ty8f6SPE_ zotx#IK+N_kGP=%Ua_B4D_(wr!jobQqtVu__Ah_BIQC+Z>l~p16hdq)fkb2PRN;VfI zk(MnpJhmpM)KTTGM>2!cuG1nH)T*X@-yI`M$;@IHnz?~pXQqlCeg^&siKpUI2CsZ! zpIwRi*SyN)sXwje5&?<=V!_Rlc4KGJ?bl!rdPF+KONGfeFqO~ZOLO;lRN2j_a;S#H z7oVV|`!bP~so+aYZ*3VXd+=N1c23ow{6_9$(=a(y-lmjk(>Z3I6R!%Nc#~gbrJv4n{vk8id|qdkyOE`Uy&U73zg# zcLlV;2V}<&ondQ2SboGjhT3D-6k-JWh;zPjf0gbjJngGFZuMBEW8JpJC+VP-PV(g? zO0ecxiwOo|O`c%1=jnOe{Hdn9pz>v~FBbQhwB}OoO*7zpbr8^DYKdGw#wz|STIr(t zDDO!-EuB%y+1iV}{62Uz7JW+fbL$4o3=+QC?@G{q`%S(Xix-PG+h60);Hlf|V*_}{ z&69XZJB_nB$|+5>$i3&2F^1QV`C2D#-E{m`A+}&w%}5v3!wx=g#Y#xy2WxA4yLt`d z4-Of8P@35~>kaB#BS{9d9i&IwzeWt|0B@$~KuwrZoX>}V6p|@RMI(2Y>vEAgI0Ixw zsofdo`d%O*t#Rb%1X;9|LYEBw=`zcqsV#G}!pX!moE;iD4IAlhVN8$Ukg<9fCuPez zo}Q|Oxwd%ngZ1t)V~82+*4E>NW!P+#p}stQ$I}L5tMHl0D8TlV)qU$49fP7rcvmLC z)mCG@Z!F0Vy~Jovf1r{KXXI+8!*1|OQp^XjuiV|yI8Nib8b$=zY>eRwJWD=_I({lu zwnRK6BiiJQWauw-8H%MLIUeNaWE|~kErSjetH$Tp?+2}sp?ig?I$FE7|B|SavY2Q_;*!;xWVLYa$6ws>%@`LTqs*`bY-_1lYzGZMDb4CJ#|VHEU4F)pSnPq)swJdYwN9h{qB=3|SuBqb*>k1p-t z)|Hg1BV0$bH@*tt4mVdsix4887&{e8zOr)>=hk}|x?DuL7oiiVRNokEE2%bHq{s)^Y3JIa%S4DY|9_>8MTk(I9vn4gf1#*{FzU)%jkls&+NJqCAaW;!}rT| zP1wsiqBa|M29V}?4Kg2(m|dF@biMjD0DxUtDS=<fQKHIo{ z=#76R&)_*WoBLID)s27Z%!tZl`FiKYl(bma8Y95D8>7=?aplrg=Hm_r8g3#IuvBwCLEx znkQIed|l6ar&<#MfD`Q3-q-??RQxQNH+yeY_wTa|sEEp9QA;tEcr;IZL`gDq;gl*6 zGj4X%)v1yed+@gDL`+CZJ(|$KA`P|%#m7cvn5yH-XoehQ^Y>n z{avW|j`fY!@}x$&a!Orfy6-)Qh-gfYkjfN~@RI_^ruR|};U~N;qp`R7cL?dX{rm&K zPOi7nuZL|SfZ^8fhb&)Et2MY$wMx7uG|gd@1SuQeL@Uku%;PpEvjg(yLk4JoFddU^ zSQ3h@9=JC6HgZ6}HOBf1lHz1OtgP-9GDG=HQP6Qllq&r)m0>4}IAdlh!Ox04qY=e> z6Gj`~TK-bn5>_K~9wdS zDVTp~DadK}N~T)3WO_xTLgrobn3;#~54-#ac*MtQ4KxzP35^SaUyC|2&_)a#i5OsH z?kK^haRTlw&MCz3_KRLeNSSLx1*6kAvwHMG4;xjO#m~0smN4F_5zL(JX~#q55EmQ9$e~VC?H2&t40NbwZMIjwS z*)^fdTn-XvA9sM}Wyf%v6^l{8#$Dah9!tKMx0hX^nQv&|?aa9fRJ#p7&n*xvnBQ|k z^Mhx8-}vxR!27bI3X!)AAfwdJQ<8VUJkeesW5Sqwy`Bv^l{kl;H4{2$Jsp}} z<8N?f0+(W>&QvaAPP+d7dtjmAxC)U=euVi+7$hT6xV*F_wb(?)7Bwgt-3hCj)Q{DT z<0y}_QIO7$^B_Gb==Wvdvji|>l$OM%gPppudl~7@q4flq7Lr^sqPLwHwvM0*6GwxgmsP`6q&tdDAAKRH5dRqXgSJUo=mR`U1iG3_c6P=L`H&oHlKz2B zymMcAZBe!r4$dcif)Q=nq|{yJ{gp+)lEZm|IeKmb3-gBm{X_)MitUZikilI&DUqp) z{fWBTxP2_qShb0|t*BcM{1HMz&V*z%KY*F1bs^5@nU~yw&;^CR40E zKasvmU8P8A_-@5fuxd|@224+ZMMEXt8xGaUT)x(E{He-yoZc2r2c``Z3-oF>!41c5 z$*5Js%}m3p&J9BFR!jGJT>p&QEH`k*DcMoEu(i|P!#|0=Ec&T+{kCiUzDXRJq20&; z2nTl0g(s>H-Ccio?3fb_p=6rI=`d+tVxzJZv+Cl^c+17Txn0N*kuZt0A#jzAW6`ub#^d7i3OVqZ=mTv))Ln?O8Q$vFbR@1Cmy9q8dYt@gmCd`x7Dh0^ zyCY}iyIa_M1Z(DOc^=rW$^l)F@5;1XQWf~Uj|pUm)Lf9iPm~)=TCs;pL?=Y)o9j@3 ziBW2?lNH{UlGr&b;bQzj1mHqMS}>+z3p~wCDE*22AoAi6LLxw$oPn~4Me!dzuhQqG zjBP(Z5=&bF&7mmAs(x-84@t_W(~^9#_D7EFEa3WXlhB_|6$-af{M7qs_^B=W7Qdr6 zh{*WuVs1p$i@+0*@SWTiZ{j5dpzS4SBB(mryY_1+$WiA=$U?4X;O*JGiHAP99Z0N% z&UmxZUd*{X;mtdN!n2x@{;f>x;lJUo-J(^d0_QNfF^Rkbr(cjW-AIFZarH8} zY#H2sRWZ<2+L8)^IOmt7Pa$)6j*>Djp?4;JSC1h>tx24Gl%`cnJKt7oVntU@61YjP zr|-xeI3!=m&}C9;sCk?|SVPwKO1^~aYM)S5G>m6kT+VJ})04BVH0nOnpl|6HZ$AA! ze-S^3L4dn3P3nDzsI#Hw(N?L{*(@y!x>kP9x{K-8}uLOmTTb z>OxnT(CnVm*B}k7YLD4v4hx^85vieYU z?xKCi3=<-wxY%X=p5ytVHl*4M&s=?{)`k9RK8g^oy{ivFRQAF#Lmy6(uq&Y7KGh0e zz~$5sa%W;H{p{GXa{o_(%%FmUQRS!e#^RRhdwczIbofs3De2 zSMxfu(lv0Isx%3>LJ9UNf47`WQ}Tkw^^vQz{EGGI$o*f=hysLY6DGZd zuc0#fn!u!<&r4#WMUx{!e>1^_=-wH`;U9s|huehvji@9^r%F7ROV)6eaZ%C1S#_1` zA`=aa7P6#M8}ff9Xmax>WLWXh7(JE?nwL0sLNNi*~guJ zRwr%(X_V`D&HT5i+ek{Td0mu2yDXhsBxuPA5gs1+Z|IPoQt<%yVBE+eA;E_f{D|LP zhzdOAbQPG555^(*4CuMI32+V}rmgy2S39fRwJAAKD_l7@`HmT1VuHrk3=sd7aV6pV=wTK&O-ndf4rVPOIkkfa#`re^&h(7h2Lt}zB0j2 zWNSWCELg#B-7ev1)DlCQ*VG{oAD7kXP47G+yw#DJ`d&!f5Oqcg3#@%0+z7?!kpK=& z8_o#eb~EeK8~LHku(wH(L^^x3!G@-iER_4g+kdZ~JWi8ujOlUq40|xka4bOhkZ>=E zfH$u>t|Ht8L$dQuHz!bKg#QSsKe} zP2PfMJPP|WRhaYW81SYlXa`wbq6AgJ&s}zeH;|`4#(FfFO}`3$KN`0A=P&;EXN!~V zf0=4xXZ}z8*prQ&NpPp?;u<4;t;kIVZB zW<^8a^7~==DR-um_nqg$wqm^cuL@j^6phdeMgoIvno(tH+-rwgi??UcKI*cmi_gDd zpMRTGw)YvzoHFKLUm!FIZ`hDw9{C--rZ5j%^vL*vpSEf+f80q{QYwt-)-!g_<+^T{ zJD$-hPRFpVkKlD#J9kO)93m?!(Q`UQY>@J==ddW=d?g8v47QYiPn)~M5gbECT!qBt z^ehV;zX#VfQo=?5M#I|gU^VF6AZ1QkV^qoO(>6){|4j-2}pA{SS_>}JEM%$?zD$B^M zO)GecoZc++PEs%5>jAwB82cOBujgKpOIWz4D2y;gMa;**_db{7h;gmq7<+o8{Wh(` zV)-QnH{60#pY!ZR8uR17$J#YQ6R7)l-s^6Ojq>4+G~=G_IfyAJQ1`EcS3~)9ZyZ*| zvTm7JKdByCQ(q(aO!1FuGCNs*j$n>Dd$(!XpK{y*lgo1g8__`~1v`!+-yK@8J(Ef+ zY<-H^?j@#~MwUGQNq%uyUgcP{>(Y--`h+z==0|PKy+TUE4pYTI zFGG?~j5=+){I<>Xmi)QdxmdLdyKlWg7q$BIrjl3PFKvVLP?O(Umk}xrIE{MuV)|QH zyE3vNIjdGIESsu_NP7GoI)3omx`r1QjQoD1BljB1&&N5}Y|1Ii3SlkBMI8A*TRz72 z<_6W<-Jgf@x1(}DXK!)t^*g>+1llb+7c*ihZ}#+Orn1_-Io2+K4X3O-7F2HMn41HD zP14qDl!@8^=B-tB9(Q^cM~e9cJzzl#|ME$M_Z%)Z_sc1xM{9o?lyN@nd+}bfw=1`P zV#(v{zM`r5RMT|%<6TH2I}q5k5iS$l7);WebpV3^srtx*KK$sy=Aj?a6umskD5@=p0szpPv53L6$o)6@G)TE2qLVewpxdJS~ zZ(Wu(3QSYj&Gd2nCuAke$akyD@V!?eXI1hyPjEpzh2DZCKXF&&(}%tvWnhl>{+;F4 zA7dsGGu1}r7hyK=BUqESZ?Aq>w7D%Pr$A)+Ck7$TMDZD6{RoG30U&f+LM-O;ys=O$ zPQNv35GBXkAhA#@sL*j%l<2{`cD4&)b?(q{thkv38c=!C=k4WV>1JYYHC!g*Lk_jagp)n1Ez-Xv)(l{H`-LfJLgM8!B+gN3L`dz=j4kHT_t4Te0 zY%t{|%PMHYB-zRx_-r&IU15%@P0&FS_by7*EA45R(d3H!Dykz;>n+wFaVD91!Y3!T zwyT1&bpuMVv;JgEuxZT(ZQju)mUsQi_R!6uTO%D+t5IpV%i#*xN4il(s}D+xNN6rZ z8!&LA0#@w*{6QY^aNVFHE~MC*!uB8q?!WE0WrO4RArt=1G?gp$g6=|izp-G8@y$Eukg#}jSKz)yn*mq@LZ(b&v%$jt{T zg`COggGC0zTQ$HlL#$Wrg9SPZb)Az!@I6Ee6#p#*Xy{RK$Y5+iv=u1^w%D6X&j7Q; z(ufw3+#FLx%crsf9@^N^qU)^VV4~@r4x|ipn9?fRkEq(W-;;V;k@0GDy{z9hD;*m+ z)F!G{|Lwz!1Z#Glj(lw(?)o|qv&^ED5e$v_ltXyYDy{};6!j_Er3EcB+J{lN6F70t zpq&+YxCzlOK@~OdvU`~}6j5iPLY8J)ndU+7zxHV>QIH@h;smy9oZ;fpC1K48Hlh{9 zZS{3=rzAM$l5NiL4e|E&u%Za1g4OVOAT!179K)#}#^#l1j}xtFK{0pVK|O52&^J_U z;ow--B4`s1YPi3(vh>Z3utvSf7)MZEt#rM>p$lpkO4jEpk$$IP216Id8A-GisnqJE zR3ghURVRew4T?RM;tUrf%QX^K!vsT!-4y*RoH&Z>v6>7pBt;Ctj$Te7!cu=1ld|3W^m=2fGavAQFJn8+BbP_xmmyTDJ($u_awQmD{x|=O%Kc zZgbf)X3S|NbidQ?g?b$K1R4p;HFhx)dC(QwhVS1njyN4FzwavFI{n(}y7;gSX*`!> zdDo;B4Nz)J&&_%IKnOiR_=TGx-}^R~)u5ejnAYcg9Ds7?n~!6Ic$7@7=0!b396L%o z(hLR_u1`$n<%j86E&%NA03{ZMwwMiRSpNgV|lJptjuqA ztln4QGt@5rMeYAbZE)Y=ABO5D=hOKDPv-Q8oLt1eDRA%X4P?P z!J4>FXIsU>2Y(OWynQMG&998BJBu)(#gU3^G4rRG)N3Uw>mS}#-Er0(U6`=tz*AmP zyeG2X@u4qxh?Smf?GtcVl8(aqLTViMVV~#n6Y=O`N@~OG4e`1ld%|(u*p#au@Y>Ng z$P_twP;npOlE9#GUzKDBqL(qaMie=}?3^Yr`5qE4F_C zoB_^HCDTL`z)xf##{kvgXshwy_yIgXL7b=MYML2mSd1&?+az+ zI1s`{GSglADzirio6s@;8kZ=Si;YDIW62`9IBfZTAxzle6L5F>+DJI}#wBc%U3%m3 zU(jjMTS@c#XLfjlhSEa+i>jV$)dnhjiVfclCc`OlO~tka-ckh`uXDK&PvxoH7$J{a0=U zly!E8ibctch$r_XJCp4TM|#ZPc;LFyfD!o(ojhe6DWgVkcvh{3k>7tvuVRGHYVsf7 zsX)d^pS8t+u-&wH!+I#RLgLAp=G<|yPEi~%F;krkY3Kx@?rydXRhbAniK3Uw*TJIWRVVHUU;HQ_Q!9dgwd7Q-JB#wt2{cux)|=? z!TXMt=rpT}3v{A8ASsNyB*T4oV->6_vj0j28z8pDf}ULIG~P7h$aw^_P4yf> zk1hYgxG#77(lV8Z#q-%9ThxN8&MM#(W4~n|8rNB9f8jq$S_aZ-F2Nkg-a#;mQ@L}| zdI<2-0?m{w3TB^6b04P*5JLS9{kn4T=_%Cv>c)S=+Lx3l(D?byfMf6CC&w1&;;w#;h`w-( zmT)Wne!y=@ov3KKX*Av+gZ<6#gntWrZYOqWCTrsa`q%g`+^-#1rf_*%2apSZm(dc* z-!fpYnn(L)(d>c1iNgAGu59vo#NjOIr^~ztuTI!&7Y3HOCvy z%=1aZ5DtpkAZcMRlRS^0EL{j&X{d@pG6M%XahHLGa!&}-)+pcODgN*BOS7~&jv~>s5Y)}0lyDAxtc0)$v zr;Hm4Bof_&A%^D(QMal#M^?nhWTgB64&ZX8&fba;g=~wbrksw;#0sS?g&>kE%e&+R z*Y2Z<%PbDB-DZ(aI!~UiUFbM;p)=w9mI^F8N~+Ha8Lt5eIJ4-_uUF zoCVooFVFA|3Qu-j_t{|zVR_vZMK2$(2tM}B_V}gqH(yRH@48O|(HZ5p5#2}4W-Nv= zZ1H~5)N172+9bD>+OxAVyArL$s~aQw7Vpz5<_;0vqJs%%#VkGHZc#PVP7?g$^$Id_ z5V3_tp$>L>5Lc430Ae9^j&J{zs>W#nFn;7&+})Xb3OTLHhOJ!WbX+;pH3DkaGq8|yuU(=1UtwXTTXvW2b>0`SU zq>trnS;wg&Z25?lIR@=HjyL?QMt3iw$v`O27bx56Ltml2Ki6+@ZDlWhSCFN5Ia^$q ze2;-Dz2kN!NQmx+b7q(}gP9J%zl<>tZ_(aq|9}mtsU5tkA+zpA=419Er7N!w@8kl! z$GiP`bUNX3a#aG-XvQ!+uL`)PFk4trJ**`?uBc-&O7fpAPO9EbH}GjRu7EqMG#VG) zzmiL}bJw3ebvj02C$B7{h5=Pabk_y%w(lr~1SZMD5;L+cwg(6-aVUzDoiLV%ad*(} z#-6@gf_A9;47D+qKkF~{FwcCMu+s&>0LXhy*J^HO9>a#u7;v#rQdDBttLCfWR@N*2 zI`KuR_$CToM|HYe5V5J{(3sB2c}=$a`=ywd6R>OH!np-SvQGWf-F^b2YO3e7phF;{ zhAX7A%CTQftYinXHX(KsDXt;yEuMRCbOX-3m&>Kl$M?iJFXf}q7|~CV%@*yOXInND zjKIVXNEJ3>q$>x+4@|whQeoaCuH3N4-6i92NEOo`Oaeb8h-!7)wOuc&+z1#ujDS!5 z0B?|!!l!E|Z+CyU!Zm=~p=@GJES$@R;{yhl?Mws#X(2k+H)U&Lddm<*mnD7Yckd$ypMH`7s-)Di|v+)?=quqV! z5auR%6tVT&8_C37xkqJVSu8D?aB?ge*YAKeO_L9J#0;**Bq)$YV-v|&@4v%+5nZR>#UYs&-dRXg54 zULVFc9UPu-;xR6|j{BMVO~Lk zr1HCUeB++2g^pSgP0$|e^Bx$`LOGCEj~b@oG?gM9Z5YKa_6w9h-)d*scYwk@kc)2r zA#?UWirecgus~bV#>b`BYm_`c{?lu8sbLycj#KER6_o#gUT{fWxfiAR_nTFQv-!NE zBJ8_P%Oqg@cs~wv-;ll&WNGdVIkL1Z7w#Vloj)}qCtfnJE?*BZi-zBOKfv*7EZP69 zD{}o$JXJOpcJBWhb$X;Hn?lxx-1kpcWE_#>(xFmy_W+4}fLw&R!!%(& z!M+b}l(6K3AEzsSUd?kG)F~ov-qR2mY#klHlJJL}e6lGlh(+BxjA}T;<(qhc|3eJl zv3s2T*{%?G>hHn&qf)W+>Z=`V|93xC2{>>GCim7TWRG2+zs$Z{VOqZ-yfjR}$+aj% zL!f;|zT19IWTSAi$o}>5+?xrKyk~KVCHmo<@vr1a&5j}AU{}qJBxwky22KCi&-vNY z0#swp`MhUQWlYI94YBpg-I!jlPIgHV_kw7cb(auHOGF9OXR$bp$`K$BqOlQfIw3m* zIl7$}KChz2Y(s|ub-JMVT96+mN}zJ}*v+m4970kzNW{zWso^yxMW0nd%1J240!+(h zi~agV4%&9$a)U($hv$kd!vD|q+GdkSIIsKCFN9z1Z2PCAdy%XDH176pAj2*+NIhyR^%(Zj?$( zs5EsJVU}?Ij)a<05GD>7xO$Lo`y@xe7ON30f zOD;;dIL!l9rraIui&b6~nJcjy+*`^?tav?Ym1dCGB-x+ce+6!w${_nmW!rx~inPz1 zyaqdF+xUFmQF1qi?s+?bHo&Y!T}Wh!?5jrx&p+Bp~*tejt4U@w4Kpo|)TQU7S1I94!a zi4BFt-O&7Kh*;(rMr^CWW)O@&z6CQW;aCR04C#g@raIb|u)n7D8gpn@{q11EzFE zJHe=wc-#Rs))s;ea`^anvO1wzjSx@_h`74tQB&u1F_bK>Uc55Q=|aDD5nD&b-s2qI z*Ztx<;O>J_Y4_OA+TX=9Qxn--d+~WtLUe&*F^B#24Xg?(o5!BTOAWI}GcUe=P#mU6 zqpJ@`N!h7Bn*Yt8CAliR>9kV2iibYu%Ogtz-Gk>XJiaMyz*W+?jgj(a!G1t0YU&Cc zJewnQzj|j|TB|_iW<1|b(s&rDX_6Hat2nDl60B+#hXg$r!O`epeT2`U~# z6yrDk0lLrA7Lx(-0ak2%5P%(6-{a}~32Pn{ny3HcqRE0=ezM!h+XwB}EDhz5$wtr0 zL!5ED*-@BS38Mgej9_&8pL`Hy!+D6#yrc$=!>}q?H*(yQxi!g^_(3kPQPDLk?Y3b5 zxA8_R=)M}40RwpiENttt87-!T7NdVnhzHb9dv~NZP+F|%f{DAU2K?6$137jB7uvfZ z+nt8b5V3Uh!s?7}ZLP>NTdwX$?i93imR^6glS`_SP?-ROIa&!@;m>QHpeTi#4OYY2 z)W#yBeg;f6`Ya)m>1%7^eVi)sB`Q>K#O(TZmE+9A59F{|7#!kN`oO8>RBNx3p-r+u z06X$LZ>}}~>8OM-Fz)UIOoLj4+YUd6cqguyO|Mzh-+2y8=8a48?d8VU04R2^ZGxVY zxS`yi9z#dntud)hbAy>}%aq0*2?jACyX>*qH>LI{T-O^Z4;s6 zMER9IXd^|`?7}L_uCWMKaZ}|dcYl0daB1N0sv<$?yRrz>boabFGjq#Z5ewK0V(XDdc&PSZ!KzHsKX6~_p#M&PP)8${5mYMF><46+Eo1u_pK=N{_vr`$z^Z|VvHv5H7!V;i18MSOPl7N;>Z&`xY zuR5rXS^SQ(%9~v0Fg*z_iRHJg{Oy7u-5F_?0HYV$U!X13o*qYx<{N?evZZDR~Sb+BEe}4zzo&h??af?;!E6VG9%Tv6hZ+(eL z%uIM5Bm1b?9?)aG_l%MZ@`v2B(K5yMkh(H6);fdKwA}KB2U&evjtseg z8R85}cxUlJb)tllVBBNfZZK`8INivLxjH|GXqFV{4og$-8>!QJtSv(=nSTwDm?w|a z^cuprr1wj))`S2Fsl!J|CJzG$9vOpo&ZWf4~8DrtwibVhTHCojcHfo=!cO6F7M6h)c=D=Y7_ksuAT;Wzc`o2ZGro}*vJtxjpoMwX&|w{G1T zvsOtxQOTIVww^f_dQ)80z`v66h(7VudCgCna3-*L6Zg=Jl$bC^tf7Tqz9<5BsQR=fK$LW(wVT}Niuw=U8 z7>`;oQm|b{<~5P|H@Ae{y3v|0L26|<6}?g&;?Rt%fAjA7b)6(-k{&OM3Khy#FOq(? zKiQFU|LRT^JFhh*pTx1~UFgS$BC)mC{$e%v=7RJZ4vwjwat`hOb&Xuv&a*OkM+-6e z??|D!Z~3(1SzJLqLW?ZlPfNFQ$<&a1HKMjRa*Xkl34^c8?P=d>NVnfZKUT;(-+^rIGco_IeG`yQzNuL|V`o%s0C7~VJ0Xrzx;be#?q+K4v2pv2xU^AI!Zh|LpSQAt?* z2b4r;@Ce&VPRYb_tH^Kf$ql)uX~$S?x2rWcSCw?TIz3a@X$jFX)`ZCJ9OKsLYOj?^ zn07^AH`I*7@=yOvMbCL?TYz{xqp^c?`($!NWCjcsB+$3I>UwIk3t2LL$W9)*LF-z(YK#cOKC+}&kwe$~ z>7;3GF+=0JgYl2KhW0hYSRpSlRxiVg)rsm%NT+%v<#e2pT$gLCVWkTs_dT|x6Vhq| z3Pl?_w%*NFhS@fDoTf5tP!B77tD<5l(FT3{yC_W|B0bcahU(aiqsy|R+1i@3&Z25# zORO6gp)Z~_kw_4p44HLXe42`XTU@V4|f z5G^DqqYskMRGAb%*=UG7IleRO6r!2Le&exZ$kTSDq4l|G;?ItT+XpH3f}x+A55viW z?bxdYG-U<&YVz=hw~PD|mu|yo{PhSq4~j>c3(okj6kb<$^g322n+aHK?|)&aZGL4_ zC~}Fyb&MyS+9WL?iroF|Ys5nFp0BcnWHYIh8tdCP7?(Npm)~5OQsEis zE5AIJ;VWEY_IYj=(;RjT1!jw0u%J*-*vl_BUk*h7MQv8}2?87WI?}?v^qWpd%*VK- z?8LFcZ&#~)zrPSt)K73*Erj>}-tS;KYW#FK97rX-g$-K^&O@*}El-y_IuBRS{^8*h zn?6dYbJ^qCs|?ZE;mU=Y;-1oetRbXmNJF49PV8(ub@tHeY+d z^f-D{PnoKT65iBgo*hj+bs3x-My!K}qU0Qm(Fer7FBqQrwAnz*eMUnpar%)PwJF&= zrNJR6QS8t>V6)x{DShZdb3$2oFhL>3I=6dkmR zk2WS)U^O~>H?P#Ple`7G9=9A26LZ>KOuKBmYAN0@cDxNw)IR>~Qr+Bd-NtOk3xo;K zhgcoO3b)Sb25iH4b%FAl)`f)*L(pv2`NY{3sD6rDfqxHj%|;GJpyIGlipqL_xZt>C zJrAD(jGJ>Dxs8NP5!p~lhkQf6MWit_a>9Rt2id1DQ|=AovLr-bsf6l+KFP`PFV{+k z5o}N>b{K~YkN*#8=MW@V*lpRgZD*xz+p4r}+qP}nwr$(CZM&oj*`lbV3U*b1<8yO(J!Jj@ z3PR}@{trRNf8=juVg9c{$F;U*EOD!|&uncPw>z4ksvB+B`k@HIAIPj$_D>Xb_#514 zBS5q)@!9uljxMxu17+3QnX0V5y5RGh3WNC2(}!&A*Zp3+J%RDxz5aqPT^_HmMz2qq zpU>4$-;cXH_+OwqJv7_#de67J2Y@Pc(&FpE;3XiaV(;>pCxT#uwd9}JFE1Z>)^9&ZH9@L% zTKlI@mG|c|9VNXFULM8fy5{OH1NQqZ_`A|2#lfUIwOzrp``)}>9ukI|r*}Jd?Nf-n zDY7^qm^-?2s91Magd<}ig|6;|bdEFo!|K>g!B)|x4xfoHgd%y{LXL-j^Ts~`jSi_} zrPd!a)T4-+1{}edpBLu3w`nFc@Y5T1FwaEHZL88{1YUr6=1k-IofFB z$Ks4B5AGJN=;c91CiSXS7?pcIoY~bw$BcSjHz_ELxgBcANN&oZZ2`HIoe93*O7VR& z;_;;7_|wn%Kh31dFrYmort~OBPi*yt)iX4*QmWA?p>@q*S!0okFG%b;KkjgJkToA! z8eS$&!5;H^x_Qj~9;)$a!#prZAzroq0@%&NaT^(Y)yPG0=Id~CYSVP0j(H~wOFqp^YaRiW#FX5Apx$G+||1$el&JDd+<2K1CyS?o3XdI-t;5aa(gl2-_Sc1%`q87j(p#AqQ#|&a6geTUZ-<&|VzmO@Qf3 z^@jD>9KE|6FOQ8?a9ibq&EsF&9bd^52ed@~`z!kyaSbLJFl42o*UC6)B`$za;0f(J zn2y*enjs0zslZO2=|A5G@P>y|1z<$-b+RgW1b_!b150`wcVp>Jw>?^2;U*K28Uckr z8e@S2dOU&FuM#abSMZW1G_v>ucDcqKShTQUtIqkb2=1ipBCn&a3h7yYbKm;=c2h8& zH8Iw2S}!+lrFr79tCv?whkuSkE(}al^mDwupWyf~>0aM0$3U z={G_D9>J{JV+OIg_9?6GJ1aOaF@kRUQTc8sngw$$7U*oi!6a|?N=K0uwBCd!E7!OK z;c2Oh+~}-ASiifJ=zlTJZ!#V6l+i2TZf?V1+{P;QM(!9CVe-RV7&KO-Pmc2K+%pWn zq8-H*bwl+G7uTpX{0j#0RB%?`7tD%9A3_?13bEJ-I<*~KM0fMdbEB$wl9J)^H9Z3| z-ytZ75NZ;#W~aYjIP%}N>c9$$+>V&A^iHzT(<>}H!aT!+8E+wm z&DGzfK&=o!9*eF%uawC!KSs>kTF+wf`T6eEZ^>N!hd9jwG(PgQDILM5li@E@Kbo{G zSS0P+Bu=rK=Jjoi1fr9{=-88)!cpN%FTYklNbB}G*P*$A)!+y&q9`4d#n3ZLp`qEe zjFZ&bzcKf_*A7AuV=BGRLKA0}(u0OF&KY(_m`=6YPNF7zVMH`VPomxb&9F&aOKg*a zW#4=JR?>o|+ZOFXM%9GimfO@ig4C7Cw*Nk0?+JHiAhy@t6%vN8IaF^5InU!()uGZm zs9dBgZjb*~utyI_IkCp}5Vjv!q3~g4S?2^5eG{|0^ep&6QQqWoY*;n=<49wK~n z!-X22A^WW3Xs>=5bX?VzXrDhcVi?lQJ?Q4ut}`|PzohjUdoSVGI#zIHK2bY1lRU6T zU+VJn?dTC0KoOf=iE>t?WzPO`-E<*Fc<9`DzxH28bDj_JW24VUoEWe7r!VVoe>k-F zswvBTWwI4jL}xeWn!M$Lek*2GTd3)Rv06kIdal|fL4kQfu9n*jN!lSA!fXv$2Y19b(X-7#c|}9+4?*=G|$|bQ-i4NAoWPE;lGvZ6#4b(P-2=x-S%h4R_|!jp(H0 z>?Ti93BF|x4)~i#ycNrj)K*N{%iLR3PW5@CARl>g)M_~20FAfcU(d(rph`edch5@9 zT3m8JVVoZK0}dS@Ko-V^?}sN$NNz_wtyubDVi^!{R$=im6h{>sqNv@f zJ?jWtM?6n<@39dHK*nZ<%vU;&F8-nM9$@94YW(oCBa5=&<#LW%x|%S#vZN`m^c-ql zqvsJoj**h>9l(29G}AuD>bK>$&(P5E%Gsc9SloVvjL((~W3rSL@;XN8_`c01u63P( zm6(ZMCAZ2Cm78~B?-y=J!lLHIij7U+H$YCRc5c#z{A=HoI)UV77Uf8l7h_z8>ER%? z-%1hVUY0&ALa4eVqP=A{2O6910Dp7lJFBL=xM~51N8K4A%*PW>rnIo}@=k_b-(pUL zu}-!pO(91(lSVpD+=)4g;6V$u+Vy*TGF)+_t!bv^9KNH3(XuGsB4KrdP^5npJ}guz zVi-QY+3Z$1Tp*p2wc#XN1#p6S&RbGhvtAfQu;e6+d9RkGQd1~Z$gy9(6gRhc z5mc+3YH36%om$IOC@O26W>2Ekz$ou;FhNvYoU<%#?S2jud{S>aI$+cZ;a$DroBkLF z*JAZ7R3kmdW((HLQghHA<{0jyfzu4xqIu!++2k=p(0_k}QgB4Og5@)B9bUCu*co)~ z&4iOslhsdfJ~P|muWsEzSe1WnP+dX2&&o7;m;%H)plsEE1;tg=V(%&S!+-ZFasu)5YL>C4SESvL{myFkbT&B$DbXa-lkq*xq3&n1 zs|s_{CDmj)+e(pJd@<`+9#U^wGS=~)^hKC`fk8vUUviDCKdd1mbvJ43VKyPT&)5u~ zrT3Zw%a_f8yggBGnya9$-mH6mk8^FElX_8KXTiF=F1LnHizR2JU;f!=rOD^=w}T=F zEi6Id)YdbdNet?uE-`slT!IEF6r@6`XEfSaqR>Zv+)sTE-iP!Lq z>z?mP2yP>TM@0SOM}=yzG#;lxfV|znoJk91&EI-h?$?ARrU*}I6slb54o+3~Mo>&o zMSqst&UG+Tz-ynPQA)Os1F?T2oUSQHMqT~)Qd7-rsLYTBZIMR(WYv@aiEi*qa`1i zv;=sTy5r@W3ihws2|r8d#tf02wHdr?Z-Yi_$lIrXGRG293oZyM+0v=Q-EL!i!`jN`2y2+jOi;bK(mj>^Ykfgo$W#r*&i^49W({F4j-RtAn4>DI@395?zHlxA z3leLm`)+}Cd2x^~bzXtpiF?p_L)5sMo=ZtOyGRuz4!jsgEm=EJTYew)+;bN6kx;a) zn06kM@ix7Ck?2FiOZkmTS{}VHdHeiw6fALJF&pl#!{lkssckoS+b-Jp+47H_mYP@X zVu~}@<|;PaeSZNa=)P-^_hvneE3KU5DpWkYBeg2u@pt7!T6<#SbMrxgwO}=fO%d~P zMfxcpx{MXmC+iagM2_J;-S2ny5zhSDnrD!pg|*Tl0efvPQ2jNsQ@FnE^t9bHk3LIK zu9VN#YZ33;T~^$&`rFGZhmNqRVgA>7V=%R}8}qQHxU>cjZpc$DA9XTGYYo+=dItQ; zuopHB(Z54`^d2^i^|tei!O<>6lpSspnGD{Yy@lJNR;c&oy6vcq)9ra#fRjYz=c+n} z*_^97C6P)N7cKWvvbrs$`Ij3utZ6_6PE?K*-&JEyeEw!VFhlhiQ-#Iz(SGLnKwYEL z8HXj?_@?86BabD&czNl@&Y3mu?*>bAs9LNnW%GQ}Zmup3DHH_WC%gRN3utWrXz}`aIrVce8DLjc4EqJp>P7 ze(@n}^+dS2Y+zP^yVtd%BA0V>K~;JNR{kOI2Dx~6r8W~6G>J|k#qM>Q=kdAi=Yp~= zj#{X$?B*RqQ0BqC-5Hw02wGg!x~;Y>;5rCGScV~Bq4FOK3meVoji7Ef{HeV#9XGCBO9?ymH(&?u=B~aQ~{=y zY8Ux*GQmbcSv8)&2O`m#Wx%^ZYq#@My*!U(?4~o@rHvo zneo`zLM*Etf!Y7Wh^vVnt~1n(H7Q-Uc!8zOT-kfigs>kfi1?i)nMGWz8qn0tP+#`! z3fr8TN@>hCl8`JVReG)yq)qwip13kX%GM(M9j|v@(kzw!8e-~?K^KV^O7cfqVJh;o z@LZ+t=D=;wa!L5IM)H=Jz?DB5M&5hvjoM?Z8xF^8rr$T2+jDo;JnjCjp};;v>_i1z zoRJQA=a6cDck__XN<>Fk#p;IA3Ky;|kVelJiD6tb=Vw@FTf-{`(zPC!tBH_vEH#6e zWtnF_29T}kCqh*!V6na96V|pDsX_A0lv$=Or_NdT*mb*Bu4Jf`PRye(QoC7`Rc+8q zgE(V@o5R0_{#s=&oK)NC$IW5X=;y%GnTcD;@Tfc|-*1Reol!Eb!2E?KJc(&1%}=P2 zS-~|!evD(^$H&RIzi*k9?*N7hi6H z=zhHoUCMM}@OdLMVcua^*S=%3(SSDX0|-({&N7{KnX*zuHpXI$r?hH_siz-vDk9r4rd@~=A^Efap}%dUSyN0 ztEr>o=u$sVDh%Fm5mGFS;K<*?Gh6)_$(a3z8UW*TvG{jAsQ=|LHmUoPM#F;PWQ1~( zm#x>_3Ir9 zrHE6(31182eS1>LRbRQrI=X{5^nOD2H7z?*BlcYl*k8}yu(qv0q53PqdQZn`W-j7< zUgE}7Ugi69cX#Xi+Is{#9Q;27v;PrBh?$*(;s3or`#-@f8>-K#DzoeqM6+S;Ar;J{ zUmL`ZpLc*?6Hg;DQoOjZIEW9=>6=Q+r1CZoS7RrCLQ_fS#BoFH>@gQQS7nbN;{R zH@{yet^fA|?Sgo_QRlCh7{0SFv%&&ulhd=nUuk?d*H|y(wX79tzE&mctPFDjV_qmXVg)gl1o=e4?2y;^h zr>3$Ab8Z||X{i2mZd6iP9EGvj^%sug-~|CwowoO3Yl}n9l7|6+>RrHKWiV?i$ks%8 zH-hu!lr&rO@uh-iaMx5wGiSC=kK_3AxH80YgxUeco&ly-cQB~UR8Ewb9gUJZC$97o zw07V4xw;F8y>ZX7{>VK$&9 zD38BSHhU^=vfIwWy=Gs(J8rd3P+w2o!27|AGq7|&S!V3m#R`G}iow(t8-~47x>IUZ zmJX@KDAw~x{_4T$;Ly9lorERfy=jF@LJ4H1l8ZxzOpx|EY6-fD;Lo8H^Hp^@Mm0nk z8SuKBel{covCIggP=28)A?m_@Pk)KHtFW4OkW^U+c8^?%wpwn^QQ3Fj3~O{WEHsKl_+>CLn~mFvrUtt&-_WtqQuuQOi?ACkYJ%s!Kd_VDUa zzCe$9^Ur&kpuTU|th&7`ubOjb$ro@t1p7zoC0zm{hF6X!=gKTW1}PS&8sh;j5u_jX zi$4o+WYgu9DNQe52?$Mhiz{Nl5^h0K=YLA^E2{$hf=MP)r-j{EM!%3r(hSSp^KNf6 zyL^Fjl2lj{Z7;-|STq&(LqXut*Hg;{EM*r&$Y&$26u2B;t|*mJw~!5tv2Y$==&I;d z{AKe{=iIK1=`)Y;MbrKrjGV(XB6bXBbNi;310hX+(I$lR61cO>Fo7# zeEamD%PtMa`;mAUUrFwA)<6ynn7i4(1diK0py5cF9PY*av3t{w@O|=0Cj7YMM=mT0 zaY9i0+yz(C$p%M(?LGFhEydxdgAvf40DQ`GSm|Yh_S?S)#pFc0JK{lFUk0V#V_Ap! zrLgZ4TLtnif`}^B-FZw3j2rQr{oA9KeL?$ADrJEm5qiYruqXhhp*z~ADO?-rT*l8V z=6vuN6t0L6#a)~y1qam9v%H}D3+Dcg?Qlso{nv+*=q4Op^a(YjUV-!h-;|gX*s>3_ zS8cX5$h;C9t+Yj|9AI58^xC7f-X1y@p-2vZph_!Tu!@9Hq8Hj}lYViAj+|)V#wc3W zn@*~N1*EJG_ul5k(&8iX-IT8cgptx?fS23yUy;cGG(7SF^B$|t2oqU-0~{dB4ezwD zECYSDeYl;;1ocwd26xL;ek=xG#;{w>pc@-b1JpUQUgyL5loqEzuRYyw9q-X2UrO!3 zn379r%8>y#mfNS5D%6>w+YRFeFF+L=6o-1=P#-^p|sYgtfzf zB$;sAKq-7t!$*`UZ#gem!SnWvH1oPPreDA<^(lIi!68d@U>?~- zOYm)XhCuv~%_q*8!ox5kCy;)p7aRdQpt4Djx>+cW*l4ocURa_`wY|p87-kU_Sj)hJ zp+{?~+i(X0alU5y8!4)Abt5UnYU{Gp+({JD6sRJ#Ai`Z`aXEEb_H@*GZq-Ux&L>YWF)%UX#v0C*`REH=X z@s_$~IxN@SvGJ8SyBozA<#uUcBVN5LS47u3#J`lHIMQ2SxzLg{G^m*nhL6DPFYw9f*@)M6Y6k{R;q*_r1bzoePE z+hh>Epns1xBtn@;V_+1Og{%KkBqilc#zdyp;Cs89 zu6*|lh<)|hg?1b=Aorh_jtn6U{P-1`uMauMt$rXDAqi4d#V5`?7+%gZkuXb^imj~1 zu!VQVw(qr}hvn~S*Pni%UYR$(WU?DmXN91RvGF?9zCua8>uZ(fFpD{S2D{-yjAd=8 zxnnouH2$Dhsh?>n;(q#St*{GCPu#mt>YccL0zNH!hzuM(<_%{l`V+gZRjJ8H2X^wN zeIN6pGVcj@KDy}9VV}NsBBv@6%u-)(fb#VK^F^JVsYCGv^gKUYNz*al71A$T#)0_d zU8RumhlB&yNZLOsYX(qx<8f;0F*ZOT$`h1RPE#48eyC8t=7o}gBTEZ=t=PB(Wg926 zjy;4&qNI@Q2Y)wkrWzdsQw(=z+Wc$TEv0U>+rnzOf9qJkW*?Uyk%LsA@eO!$Vd?!5 zmzRK15r7x-fbHT9>TII9#3m2BwExK*@`opeyrCs_3R$7a-OQoe7pGUO9ZJ_4$P)kA-OZJIL8fSOx1RpvembcMLA%XP0%)Bxyjza3WhDGMOV>ZhNeYtKytCU^j>wY@ zgV1}jrPEduc-={I~Zpqo~@&7d2fPi zhs#N)O9b|QDToXw2>dwoT6JMKG%V{u@(q}m-)De65S(qBbtF?mzkHVMb-YZv-+p!t zQ_y(Kx3g5DKT)4zJ|#F8=$=$P*yVK5+v*5(H&d`QW-ELqEorVw*5e?pq!@zHx&c>K z<=>P>N9kzRG#T$jH7w{_?j6t@3hvb(2eZC{0A>>V(n5@DEi56LSYNqyu5`%Nf#h4} zXCxzw4y7gByt0*}A}G6hJCoG3{=psRslaBwWI`pG>@@yYN@0LL-29Nwwnrp^IyH*6 z=`HF9$9)Z*&#nH}Us+SovM2SfLao~2O9G9@FMk?pj#~^?YjE*i7QWRS;|+|TIn z4%Ep=BNR>3V0xO)Vsok*=w8w3R$v*Vk6qBWT<%G~%x8{PR}s#D+?#=Jgm054Kb~?l zV5aNDQ$=tHQ@8>!v&fEM-lQo& ztzWG$bZ%X8Rz26U<=doHy$d0tiQIkig?!)yyI=zbuvM0?Yen}95kK3?-F7G&vlDm7 zUNLT`lN*RxS6wT&Dck5!VcT2302@M;wN_=bQf;{8XRi3PrmHbpt+68B;f53tK)AZp zQVRLe2==2Z9?u+juw{j#7r3-mUHv(9@5c0{q5i2$UX`yG^d_Bu$r9G(LpBas1)tlY z9p-fq`T?wZ77}(}!<(W6DpA4&R;5ut%cd+onP5xpnI_uI5yyX-iAhKHHohWN@`Xi` zR+*DhwcD%vL)F@|LOp2Fhy_b~13>~RQCTNkonZ(fRUR{635&>})bJ)+^(zPEQW@=p3!bIk z4${nw$i{wMdSlO=T$(c5GNB$WsFSD{rQublJrc;K-B8G*4)_&JMnxW=p@wXYKNx3k zzBqF5@^2=tna>pSbJ`E4<{@GjNtShOWNI612LwTKS_SUHUme!GeNK1gD1}g{v~C&q zv9UsJMPdC$l}e#1kczM|LId5IqIPfG=qsQKHvX%w2YIpLXM^lUOD=hX#^!?pcob;H*rmZr^=ffqe=^}H}^uoL9_Vl9Mg<40T*nu^!AP6k)l?*PbYl7={?O=lx`lTe#UpbAckjm(+o+RJC zF${G0?>>+?I)z@Vt5Ct&-l8)LgDIxmMkLxk??oy@Ftla6fLqe44u8Exo~XMoIaI)x zlZ$uVyw_^bv?*dyuI_-QUq)uw0xPfRma~j$GrUQ8@1+&l95cz|`&zhcwNq?C-*k+f ze*~E{4km4-W&6G*Aq8ns#dVtYvEz_tIe5Q|*Rv&iE8)UOaj@7Ar|V$++gP-m2v+gZ z&18JRp->HPEN;N3z6+#`ckdH@@{ywFWWx}tczNF#ZO0KeHyt-|jr2d(JV9B70$scN33)BCD&eWhizlWlJwFJCW6PXbTSq{BsJ!h(c;tBT zyUW1)Kkbw;iAO5h!}AU^Q4uR3#>w08>K-U3+2ky*g_t@&dSU8FPF z#l%zZQNo;ISJYS1ES9k(GrExXlWd{8-+O%71B0jkJz(Sbk1C#w%7lN>B z_^hz0D*1ZT%e7|y1I`uurF)C#dsKS+{^;_W8oI5z3v`tgkrM#f8M+8JMqxJ}yq(ho z6#ex%c(3cK!ByA{`|1guloPP>G=#s$rtygF@bw~ZIf(DoQThZ2_w~gqpZrR@C6@H6 zBihpL20ERqhd2KI z@{io?Rs3$w8y$%vQPN(`%+C|AIO8XEXtH?rahSQugTlXnR&fKt$r$^e$z;{=9F<==;AsT>t`MjfZG z*}n(ifAl?Jf^x1m{f|*SIjU(=nb*f=*5Z2%Q%oeqjDbb<_iPs-yCX2F$U{vRTKBf5 z@l7A=`@tcM_|j8ZaxjKVt}*5OijSI$D}0J76xftu1_40*PEick<`_aO=Zyz?GHkK5z)Hcq;m$5V5Ni&xD?IXR$@CdUKd{m268rnSulI%(SvS zC&xP0{iA&$>maf9=9Dt#xucVkn81i<)p=6Adzi%!rWyS1mLBgz^s_=dO-ui5?1kU7026sW9Ru z!Q&iANuMnQIPXIX(lQarj-1ZCHNn~_1Ts|6-jL5R@x%~ZN&w7LLMgA|9LJ7r9?&?7 zQm#n9k*kQ+ip&nWu)<|^C}AKORmnPhd*bP&lZe_gz+|?Q`MJdKrDfGcl;_KdFN}>J z@tBso=3UCDm>`mf^7>7(WXdLKB%3bx@Vny3BSbItQ9jp5ympNh2r+c_Q~Qbd8zD5O zjqEE=njBFe#qX@Qg0!OHE!{A6s9Bz_A`LvIlI*a)S{P&uG8cojGmk?7k@%{X8Bgd? zOf0V7(EET_b;I4oE%6GM?Ho5DwI0urM=P;THvIJe9!I3SUO0UW*Eqt-Y(D2 zrV1bM&Owc8ocO(Q5wYh+8KqtN$98&b6LmU&a7zTBYl%O%g&gRqhRL962ROZblv4%z z1;r&uT|e+*Oe9R*|8(BBT6kUkqgdE~rq{ttZEX@ucCrI3G|il?!+KyonU;+e-5UgO z*di4-G27+|4YCR21WD|%Z)!JyTW(s#iL``Rl2te%8l}-(N$J$qS)b09NnJaQ#vYYx zll%}`3RaeVCEK`$6$%_#x9+^DIdb8%!i9nk`@op)q9wx_V@04sU)$m*ernY!Vnl_U7NOt>p%Q|FX(nW3?7C6?>>!?wN9O zj{$)OSt#{>m|&pbxb3=`8N4UmCAE0~BS5z;4llUh`BioIIgjoV9nWYMn{IZbdHYNa z$&LW-iSwGbeBfi|c;VdHJhTp0%K3IPDq=81F-ze1WFLx#bCDI{hLer`M2jsluQ5CU z1S3qlK_Q1!kO~Pe%=BNTRKAF3Z(LHDB?Zj2hzc8!J1cd#-rKPhLqm+Kg%R}L4=UN7xG%;(DH>nxOm&?I<=E{{FGEJo}PST#a(pcpX=s?ZL#%{8Jl_x!| zWM$BlK(K{lJmwVmhhY1&jZ~11oM$mQyQIc~V1!(VBM(=@$-VjqX^kdYGlG{>yyO^3{nTu-9 zyGk*Lu6Ln|PrI}g&cny(5U>MQk@V3fl>0Fyv{zI*TUMk&nB6ZeaGE=!_@8{@>^XF`Z0sB!(L*ZO& z8b@(?bKk~?i*#-Cp}NHJ+y+u}X-jfPSNRXfoTQl-*D(}326lTwT{(gkN{dw&c1D?D zahzkoU`q>WX5oCkvzjD+rS$eQmi3v%c+VJZueioZ2%Fo+N8BVLnMY~^E6Lshvxe%=6{z_`>9ltY zk8IP#qSef2PW=dFM-78wNc%rJw|O7Ub8Z!xx`BH|tKx=-J6e`*9AU9Moqib8HB*Qs zZixKNa?;6a4MJVEfCas&iLvUlQ2&=y1xR^Iz9k$h6PM=&8~se!`G=URr6n)LsUImd z!D)h!s!Wzu-Q$q?Ea~_pX(YDegUnlHUJ#k39Z z%8#sbqyha$PxG92+nG(?u^DZO=oEHCOD8?)oodU9Eo1B7 zuZ}h<+Yz+eNHIi4D~|WO1xsy@_)baQQo8k6rMg#FB(lI+L^X}ew!bh!7r2S~P;$(f~0=;%UL zA}?EPZ66T`<_?UK&o9?@PsH0!{nwONy}VaH_o2D~gLT6b|HJV2AGy!}Kdqn~|CxG} zk>kHWM5g~iL=Id2_k>B_njMJY#Fi7ot<2?eRk5YDo^^nuQaLtGkbLy3yWqwLp|IfQ zvT7`wUc{d_A6u)N2mi~}CveASM?dx(F<9#RxJ~!Uu}>HMI2K28#|lInI_ z3;9^a4OIIsp|-yf!*HN(hE`hZmaFr(+cmU&-eu_Cc@0EdXm-G|u%qmKpX?C2dpZ9KHwKj(wu z@fJ^(bmZ2aRaWb<6$#v8&tL?$;Wsj0>4=LZ&1#yWdsZZNlwlIJCLEW^cs|dx={VCJ zhB6C*cplUhL>+tapUQpmCuYwDXtB|Na9#xWZ!73n$A1{!w5u<+6RFyLhGZ1m9irPC9vOA(3IvH z`b+71GGiqGns@?QK5xIY1H6IloOKTsO-tLl4AUJ~1g0l=PAjd2=@r3Nlw!fC@OmtV*EKI3M~M-CJ3lH4?2c8$0O{N zQLk4qKD`yHLXs*0s=3kE_zD~&1tr@QaEd8kKowu<^Oq4|P!Y8sYiYzoU!B}*n+Z)^n=q?b z6%7n%WV_u#s1_J7u684h#yyK=LpF-26}E~n3VA+`t;G6xO>@Z(jKI77P!kfkf1M>B zK)BC_F&h?0X^_H(64Z(kjS35n>X&5B)!t$rcU_2ir=L>kNK9DVEw8 z-~z~`89=tZdsaP?M(&;0uy~}x{zNoS zFWrspk;7`xiA<}?T#`EhdX!*AsV|@bdNC=h4R^(zMDM>GhYKCJN?4XUeh?yIh!k$T zV81+*M5edprnhQ}j;7vW+hG#Da}Oz93@7H^y)N?jX;Z5yn|EZsYfP_v=xjf>giF> z*{uq@&?PWMk_2$dL)=i1CBzbh#R!Nylvtx7wCx4~x!b`#I9ACg9HI%0a+3q(;Z^#Z zKYwm{NKF^11K@ZrDBs_>{7JrdXxY>3&ea|z@Q3RVYu&jwGgm)@mw{NQf`*PhkxVy85!Z3S!=)`As++FZnt2&wFD0I}9T7*X&b6i1v?mh8FBrcf7uTD!r#4 za{NkUA~EN5@xn!}`)mIUN0oPQz!4K3G?OXI_~bYKi#<2wX0kFcdQmbT@d3kLSmt-4&O1P4NrmdOL2kq(XwepZ z<Kg%gJV}xq_VG8?6u#-FG1A_a zgIjJ<3^F`<5hq|K9#l-Pn(ATfVT#fu%=3ZDMXq z>Tkxtm}5zTkFfT4YNU4fm>A||R!tmg%7w9RFs4`V%Xs3vpvQ?co4ANra9+|aUPm~< z^XRglKUy_jm-)rSlD%ay04eXM48ct7i|mU4q9f}6D9C3yC{I>y+VRZWY&6wL~4 zNEqqMJszr+{E}=etfULjsQ`IXQf$})C7jtz9Y&B>GM6z92wFfwU#oCTJg8j{F#Pq0 z!{y7x+{7+xBU@1$BTN-T2c|;z&Fl$6#Q9?A}z5ed*Me4^@DYqB6p0mGnJ%>eU=czv1aAo1|4{6?rz-2uP)<{}`!tHsU z6mz)~+3jg9pDP&nu7`DkKuH^Ju^jIi$YZ=J19>!P0(Kjrix_v*BA~_EL^(I-47&^S z>+<-LN}5y-51!1f7ufblPu5y@ssp1$yE;z8gB3cbpaOiBZHXTf~TcO<= zkQuh-o`&{32-Cme0hD{eRjV+lieV1+|1lsdATN>peZL*~VXwT;Wn?x~4Q+TlQTf3$ zM;x;2f&^yFb`^6R#gyl>`s$GJcbx#VD4yMR^sScBj4p)or+A3EVF6S4(1SPx+j)A5+F5rS_~-#l8CU zIrOU0vs$RDF>(%#R@rrvip}AT+a9Xzwz>D9CSXWx(%C;FN@<0&3T8XrdGX=Vy)Gz5 z-bUy2cc_t{kG|bE2-Rj5sZE<+*l`CI*?u42kL;m_&ve}C{$es| zcX%LCnTTckIArmJOIO0&%;uJJu;Ra|a;o&~_*GspsnyWaL_}-**GmgI?vgq;2&%7E zD)PfEAJXmI>CQ80P3m=qd)&D~9o4_IPS$Oiwoz;I(qLQv$`EiWB_GNrG~=8E@Rnb; zTPyqeh15Iy{{DQ;N@d_5+_zugk$%9w+> z+l$JczRN9xao(%%_9ts0KuwA&i{+Cb84>y*w%H&w%uVzGq!De z#YN+qOEk)$#6gclLhP#rg?#GpgzxA54EEG%6F*#Z~;B_5AWW;!p3fBJ>Yx z^)A&$AO&?wClD*Xcq^XHBi4~WVA3i1b#bn!Av~i~GXWFZrN4Hj2dT@-}GF| zP+Q+gpR9|l1Vd~^R;9zQ+DS-D5?IOi;o7Y+92lTaW!PS6V=fN)2&bdj$khG%(FM(k0uj(#9;zAu^Yo~WM z;S6S?UhLa-&S%qIrN07*J*2g=1^NP|s!aqzB`s;1VIlD>fP4zU$*@Z zBEvn9i3-Jen3uu*8}E6Hq7_()i3mdS@ph|97|}pP{UCF8eUnS?*9-kPG~xG}3-=p! zL6e9zYxNJU-Tf|IUiBQRMcap7>J7c$6t?evB2<3@GA}xlMZ%G_tHtjwrV(>!$&O^B zJY*i+O2Tr3+>v5bZm9kA*94H-$*ybrdY8T~-SL=Ne-laN42{#OJA>|Rleqv{uEr*< zo3gzO*?J_sG){EaNWRi0-$piUnF>|6!{lQBbW1SWU-|2vy=GWF!0UnJ0P4EeSDANx zU~|_J$Ca?#>op&x9eAh~-JG37os-b}g?>QrdfX6g4{pEOPM^TCHM@XN=AHB=0x2yB zng}Si{roHwo(Mcc`jgriG6Fr7G? z293HT@Dx3t;xhg~7Xc99(hzJ1^6)P>rO?SedtP}^5&(M++U{?PI1+6}`tUFS%?vp~ zMv(bo`v)M*wT=d5XTeAps)aJpqq-m+)By$pKu2EHLtw0t&Q~?YWIjV~gDC0v;8Ykr zNbOHSz>GhI7I2&JiF7cGVp*SuMVx(No15BHH#eNrGGDMUF*q1772oL!NkTB*QPF2r znE0#68T?GiqAYk_l*5dp>`kBL)Pfy-vkIMHP=X-#tm018A5gJ#c|ks9EOYLieP@CI z$J*Ce2Rr5b|G!J?MxF8==1neLB%niK!HoQe)NFDPp4GXM zvJex331fhtCTt$+P<#v*x&TdDvqDY)5^k|?lp{+Z??DSrS^T<2 z?IUn};FzOgj2vTyQ0m;0CNWr$G^}dKB#T#?0q;%=E&JoDSegR;WkFg4wc~ozsVUYua=f(BTcy)+_+!3d!ifQu3Axh>0W3N>7C1nYgi-5{C>`3Oj_yYx&IFWWHKen10mEQ&0RaEQmB@ZDe38obic`w6e)klXl3T;*Zp2HfbZPmUy zJ;%rDt%9*DYZ+IovQ-$S6KiqXn|Tl_D!akA$4Jd0Ab+ zde=GlH3%d%y!JL07~h3AvLYOGkFkfmq!K`m5>-X00wnoYj0=;Y?!pV*W@5W`Hv6do zf56m}?PU!2!LQcCz9I zhT(FHI1}=F>_qYwSKf{_6W5vT@;Km+rE<&f%5F*t(YL1aa2QvL?QCUxpPqVWW)c0= zjWn*wlpLfNI2+~E>EvKZCfA*2aSrf;r%htdVMF`_r#Z8S5s#Z8Bn;rOn?fv%^h`C0 z%x0X4yp8vLG4tFLL=R%N1U*-hPyiQ-?0AZSV*Dsorp9|Q8zTiTiZg(3p3gj+X7h7v z4G6LAy~+eOSfW(9f%UYRol)DkfiI$x2_G51v7b#ybQbR_L~YXm0AMnCEp2@-4pjH~ zP;bS`A2m_=HMZLPNHlG|c;Us5p)M3Q0bMenP-A-OY7Gr%AkA`xyP72aYH8wQCC)gSPmXycf`nI)O-|>hnO^q(1-HA85aR%waW3ak` zNM?lc;VaupCd9yx4yNW&4^~O%Wb{wl)x2gCmbde%Nlp}Dco@K(7)3hyeonf4Xrg%G$Vzq>)Y7GT_t&+hd=^rqIWfkLbjww zVX@m*hjGI7Q@re09Bw3`Pyh&8< z3amk)W4QXt#3bzBA0Z`+fXrpT0^lh**SnZp$|7Fv3TN@GW1?PiM@)FT@08C%T}tacr; zz`-6W?z2IJW$WzHrHnEUil`y){oF{zlPdN-)+Wa-^a`4u?gLv{N~(7ZDM#nD&%$VK zrn^(x*Ey0tFve{(nh%g`kb^s0DbA#+9xh?I?&lC_Q;Z|cNG!I<4kZvM8Q8k zIVEHu_zVq7=gzy)q^plI^knRZeA(=G;&BUsx5~Vb=E@>|7u@t>7FB!X?b#6q8Fpu% z&M_j9>Jq|6w9;-yVQ}-*68Ku5e=U`Y+qs+D&PEdl>iD5%S8^Jj?|6 z(?KI5B@L~{GaVeRht*kb_t97~$p&N z^+4riC;>bM{hR{z(772HZ@F4ch{R?SuQY+vXlooVu;Q5HLoie45WS!r%k(Td;&&x= zpxW;ChK?JKW*{g@ z$NSPRk2_l#eD3pX9(4T1-?l7015wp*6VvCAg?z9;j&aXh;ab2o6+y=rCv1i{hE)lF zf?LnNz_)n3tQ;>pNTbbCymyr$`7ymhtxVeLU{tPLI75s5^Zb$m=wnbywndaXA1gBll8V!i3 z3aJJwT!&+$)`AeuZh{R5ySb%~xyouG-{&uun)Rv(^7LY(ueB`aKXZTY`7-YN1)=4q z{fPJs0RG%X0cC()v%-yfSgznM(;Q7QyK>IzOkGj{Idyu`;TNm~C5u4pphW`=0`JPh z*QG#KlI?Fm3Il%dQU-Ez$VBQri}`CmiLp|oaLhZ%^x>VPgl0rSSJ4=lJo{EkT{Yyr zy*D?zAQPPbZpmSA7lH9Tlc+8WUSPt`hq(5jsypYw`-5{Kpj0PxGf{O_PfYe`N{QL<;O+6uiyH&3RKoKVEg!5GPwGD%ZAfUv~SO;Xv^)a zni`#=8AU!Yb3p~ZPK99p{O9}Vc$lwT?3BW`_%P$`e4i}d2VK}TMYFbeGq`YE(b4n_ zT`OfzMz!(WtPt58A^%AZ^%lb}5pNmbnhi;8W(9W~4tR68ac^!EJA1L7N9xQc zAEVRi;1ENq1Osrw$r867e1akzGl}#SOalPq_&^7nCtv=nkDq}pm>s#w^_AqEactFQ z0z0m#e;3jy=(HH$-4thP@%itgA7Ef8GQp`z~KoLd!~2yEfM^jyr6^ zIJY?ce$hoNC%|l{f&ELUL%>ZX7P*ajOhy(8XwfiK$Bg$mSu{8mt*F{oKJ?-hD6NPH$}+q%hNzokB(E?AqA-RcM>d zg4fC$&}JRTyyxsVHCV!oZ5xDa`nC+=$YaW*JgYs(N@wy_*!z8H8%-6dM@=9drYzPE z=5s4eaj(gA%7GO;PcrYOO%q8hUeK3{rUND6#ISahiqi{{h#Q~e^tWE!phG2zpTpt zkKTx*^gPgHpfQKinTd$?Off9f1f%fzH%Vxu1$vEk3x$F08-9C{?8Z)1)a2+)LaslL z>8JuIlIdCWB<$W1-4YOgI8D3l!U=wa?($0eA<=n%R@-6R zSiN5|?6M!p+UD2XA@rbmDl&ahKzDzBZma(y(`af=aldzvg8gh77@X}9@p6n@EE}&q zpe3gpvFwKvZ0A5uxYych#+-%zVjtqS7}z(Iueg%v5JgR(3Pfd3=BaZnZ@0}1)Iu(9 ztbZL09bGHQ#A7f3EYdW;emE?|00}f$OP+5L5-(7ieE&XG2?s$S z2TMnPzi|L*+{}&1=_gK@ac6&e^CiMWdFA?zTNUB!?0+{)FBP5K#?1E=n^7^=pOSBz zbZnN22+Ueeb(`5rFq6|Ps)D6;tz1~YSvnkMRqXdKSSCNv^z#tQ44$U`1RupZ809W( ziA?>$lMRAdik?P`@kx>lGZYc|IQwC@&v=K5MO(Z|(zQ~0kE#`#@`0!4NE0|4j6l00 zpKfgpj)VIaf4V6&UFjkFmL4>WUnhfMr zS7m^!tfylBIxBmBIslf-Y+odGcrxbYO+5*eD%0I*W;r)7SVYS19D`W7j+P>2dM}6( zo+LsPb-o%mzn#4%HS3T3)XuVB+3wFnQie?zE%>Jp6qxJaC$S?i6zci ztQ0A6g1zh?B2fTI%+02zCQTftqj=?NcBVCl#fJk&o*kBaYE&8_VoQqehUlY_*`}vn z;z~fmixK%9=*4mt+P=k<;PS|&{1PcGrO7b5ELLe*fcWT|tu%IT2u!+RbRjy+TU7fJeQy`;~lZk)diQ1H{nl zMZtUT2(=csG*=`9CVn$hfh}=JEjG$1u!ySNiB|OoME&KGB{DguyeE~zhaW#!a)|1^GJy%YHzJ`6pONS3 zlSKSXj{Cs*mjyZ->C*FoH_2T&GXKRPKp6WThFH4zsuAGx&zP)h+CYbs8V}kT3G1yC zwrT8q*IAA=B1%(vMR5D3JZz*KN{S(DH2JY66`ED7Q%t;{jS#{Z)20=XP3T0njXa&r zD2@u*>E>A7HTvvQ|L_Ir(_t5X^|L=QI5iP@)@Pb`W_ywag@DO`yb}FwM%}~^52tkb z{6H%>LUvzO=vT3n{b_}XtldOAy3`}IN_kvz0ytzNT!*uAiM83_qp4^A%n)axn^V!4 zuHTXsC{w@ zNi=LD2(BoAjs%!vfT38&c zT>8}#+Z@G*VXofJ*yo$>pEJlC;abHCBP1BXAa<)r5)cCxqejnFMH(=!BjFfM?84G2_2GHnLs_aLtr{c>{M+d|HlZ4^Yjc&eWb>ONMO4VPs?wxg0!^;LRQD$45S zkR{1`EL2Id8@$*)y9=&y-N|~HX&&XSP2f2Cx#zA*&x-xbzkP5&B#XzT_9FM7ltqkI z#9`X$qQ$#X&T3_JxuqAm(*NljnE!-RGAMgEbGktqk2@t=$^NUnk@omi%*vz7HsGnL z`g0qXXySohpxv7Ds73H|jHRr=PfnwZ)4-vZqF(n%rS$II$Zq~Gd#XmGMC2#m~OU|n)GJ~Bk~3JUQrEn~i(%NYaeuLtd6Uto7{ovlrO3LS?`wY&-Mo|n$ZsIQK^(y! zNh9{DaJSn9&0dN7DBf<}5w#uLrxhyxJGTh|k#38nVqhj*WTTe+ktr8dPg}Q6v^Aw< z8wSlw_=;GEL(sToAVJDcEI=3jRKXqIc-Oc$js>2tECR}2ny7(*z-R?Rp99O}11`x9 zai*d3I8QWCsu`97oj|N)nyqtyOcR30u$iXgQR^;!YeISCPPQ401>w1WU?55m+q^ua z2+!QVuwzQt*W!}eC68@!kP|?z(r+f|s&_B6Qe;!OlXWLpiWwPn5hYKo22WFmyEu4e zOr`!=MLJ3los$ru5rHy)rL6lSZZm8rfHWV(a}ytT+RUR>I35qtq=PI*qM!1ed6THK za!$y`^-W~}sl~ht++M1N`NSp)r7*_!op?KX<})u-jsW9$)K(97$YI*e3YKga=9clJ zqPmYB0O38Zg^|eT;MIt7isDnoX(g?+< zsr`>TYr(pEYfH{O{j<}V(yq69l|KY{n;yFcwdRx@>qDX3*~p*n+a$q|(|>0!y*2b! zFv4(lhbt!wPP_bRbCSiWrY1fN+i6av{q$O9U&(BliVJrlqAPG{E+#@)f|9z5-Hi{P znjgtEy7$sdDTs33h~@}F72)s(mPt-Z^u^N1F=kAbZvYXxD20?3Mg7iV`+PW-)@*LD z4oA^;vf1HjmvrRrhP(xo%Mna&EU+DbV;xSugsfKXfKqFdo3df{ka8}@UL05YzD=#p zP@$?C1SGAwojG~w7jyNA-RR&KmL#A2Fv0QXQ3(3ZZ-U#re|YXu{OSc zKADlx%MT+?u85HEt*^I&ozaJqZ&pPJ^mMgmD2?4Q8etFJs;Y1M>u%nSrka4WKDO<+ z!7?4IIDU0RCfwZ^tf-twY&z!ltFs6ExaKNzYn7|Vq7(~g6B{(PEzRsJ-D_7nrStLJ z6X4xELjXiQS8&NcR(kXxk8?J;6{aE*&6X>GVpW@SDcD* zMXHL4v*=ZZ2*xl`?O{{-v<1=>1^2gMh=M z;>pYzzLdLBP(Kto#-|EWC}wiL=%XO~Z=zosLhH4bZvPUj8L6PqV&{6}*d{@oUgrB3 zNZ%EXoSCkEGMz}u%OGXLKn+GWqK&$KF=HZ6dY3e->Q(Ba`qnaq#avy!iU?5=kU{L61|w) z=q2~UxOB14W=#o5cn6zGb@#yq2* z=h=(ax&>)wuNIdWf3jGWD^xM#^RK0&)<)a3T`8-zWz$Ydg9|?6%)3}>_#5RY>U6Jw zrf#QAmyYV1Pf5*It;vho1g%J~Kih??N+j(DrVvoN0~>{St*93c{jGR;S%vs;1caLr zC24X>JGnoVm{gvGrab=TPUy^X(d#SddRqP1KK)2z!$|0>w!~iO(@D^-rS@S(@cMbR zqgUZj!78S?gPE}f%Z@bM$Wc(i^k^Cg9I&XnfR>un!9S5d{yRh+C9qHWW1E&Wsc}Iz z`>AfRgH^bpXDn}{msx^4HlY9SPx{;~eWFoEBf>8Z{;`4E@G48TlOy8?w~X>V4Lm^i zjAT#xjT-Zi8528#)w-Fi!X9~~WT&bQ+UKKE;HtK{YHQ(qF@giEmtxk!hWs3aJ1+U$h+BtoQY!D}R>AXR6I=%EJX4#}Y zq=gUhEsYhz6n7MM(0`7WqXzgxG3FPHC9J+B&(d0qPp}1Jrl$O_^fFlf z*UCEMO*Y!g4A1g#>VC3$9oL)^E~E+?Zr8vH-aedqMHQP#_$o{&W2p=1C2ta(6ge2` z2OX_>vk`+SP)pOy5TEKb&4}RM!=>A5W%lbwVv^;)lI4gLe$!I@{ZFlP_vItpGG4I+ ztCf~r%c(qPyyxy`;I8eJSC^BQa{N%;>XNeyv*N#TC?wUrtrhMwg{@JVtpCuFa?Hva zX^q#3uuKII>?*L0pGP~;2xq6wJ<#_{0E5y9JYwp;|8PYS>g`Kk;uiBjlmZ#MoAxzA z%AqII$i9hAEO?WvNu<)do8aceN36p@vDKVT8MgaaP&;%z-lAxrdoNhaDj2xe958ff zxTuA9pY5I)6xPy7ldn@1W;+Z&;3#mUKbY%?Op6ml-OhutUv0%OO$>Uc(Pme%bsf4e zJ$)IEv|h#VY1BM?zBSZ>?cu9wcY?i$2`n||bazF(+VSweJ{?_ro|i;i|8#>5AQ@^* zYS(iQ-_*s)hvU+^qPLy(Y5e0gEn)(i5z&S!a3 zNC>jB%Vi+Asr`tE32Gx(kE*X4liCf(#lY>HBmXdWSngPzBzRRpNw)Cg!$i&Pnpt2r#`yQr; zn&1PggkclL?@TQDt0))n6vYNtnD25f?=p;5k-XRQ+fa>%F^BPbmd)(S3bCQ$5`!I< zqC^co;3pm;;V9Z4qSsHgT;&uGkN~ydhb0b8k8=5kQH_?D>nPybGw$DB&Z_*+7cAOp zxNwMMCuHYS{Gbd1PD0Oh>Wo;sT_5bQbc1s1T|a()j%DvdveH7qs5B7;-V$v~4B*z3 zsWy8-80oE63fK*V@1}v-8kZ=4$rXpAlG%q86m=)IDDLR2^T*fr*=+9{J(yj&`+uTD z?EjU_yZ0M3%`o-PTw-t6r#)kn2GqxUgylT!-{;LuBEn>*yd+k6KkxU8$a(1>2k`O<*ZnV2 zXD6k3udPo~`Nw|V)0AH?f>aA8@ZYZT>acr?zDG1S3+C^1GXdv}pV4n;6U;m{h5rJy zP+~hl4)o_&LMJio zVKj+N-T?eo-oVT`(J6qZ+;_A8cmE;=@5Fr?Vh1CDXaeJpgP87l>1=Uunk#{NHEpfP zq*9X>D5#y7W<(eM!QiW)>{a3h{b5*cq}I!AZ7oHkm4?hM_R7_8DGkRuMm|ZKMDRz0 zke9AQku>G43H)KDP$(@7b9M^Om931QTIJ*{F$z{0RZ|+RlV1Z6qVQ;n_$$4K&GXpu$KaPyFF$5QeDT$4PvG#hS4}B6hsZY1AQtXT&cl=)&K%3DUHU=xjDC3O1PyF^Ij`I<%~ zUVc%sQgR_9X?TBtFhJF~khXOhK8$4*INZev6zwWh1H()`U#Tt`i5uH249CiD3*SR3 zJd1SVa@UMbitHu1TbC#=mGSF@#HrWiWYlZy26;B!;KF|%xw)PmBr16Wjckm0%%k&F z*ZFtnrUC++G}DdJ9cjC+Cnr?)|E2a0D?&jglhe@dpe=4lu6(Km1<>o4JSmEql!%04 zstbBN%|=gN+E{D!d0EL#agz*obK}^h@p&E7VbfHz^oQ;*Klm+2IE%pi^WqXhaO;*+ zQdMR|ne%ca=CnKQ6N~?=`pyUKY>CP6^YVIqFzN40iKqK^5)_52go(&jn37Gw^Lcd_ z48fVG3u;dNc7EMHYK75q!xyx{G@5hAxlH4pz_8XSla0{w_z_MsF4DBsFGIj%=5)8G zJFefZLYo?OE*|LCwL4aJH|IWSy@IR$!rlH!HHst3J;3a+B)0C-F{4IuUH@w*y#Z=( z3*+P@Rs-bnJ!?64Afn+~t?2+GK$Ta`flg4M;Z^aKKRLwzvx!prTEPd%htg~dP(sc9 zlPXZKTKF-fK%EEyQ%*R6?`!vG-&gagaMp_I@s*&uT0 ztT2$(H3-vwG zTNYj$b=IXf6~uMXd5-NTBd0yudDE* z7zn#$?ryMZz=l!%1HAK0(TsAL#2ruBQbpJuz3Bj%HtDYfkL3}7b?kba&*3jlSJsN& zu3s`-b3)*PWU&N6qSGs8GJ<6p0dp^HV-d+iB*xwz<|qx{Vf{u{-KT1%7dD!a+AnIr z1TsbrZ#h3wV~4>yj#82ae9*;{b8QNxpZWL@%7=ga%-&sf@MHazJ(yN5sO8ncTkSOB zUeI(n7%egCt%XPH)ig`fIwReBQtN&0k%S)7X>sz*ym4Vs_N0t9ODu!BJ zety@GeTp-x5c1k&>e-Ynd#rIacTn!-n9w>__~kL-X-adT-KmpuHVq>#n)kk>K9qCo ztCu`d1?^mZz&eb(JRK6UtQu_%?vS*sg~TCE2Wviq;v`gUy~^UnkajF$qBLQF?f{A{ef`NpsysklwSn?d3O>TlN{~28J{=x5 z=^z#bUy>0e(OQi*4i=OCsxLppuBbB7F0V{>-#&rOfu+(8h?^%%yCy?;(QwmS1XsnDP6zetZHdKpe|0PrQf zdc1w0grbKWGc6M%_eX>Lgf%@|!F=80TMfqKN79lu(q?Ja)@H}5s7;NCaH_=1MQP1GgH+IGK69T{Q1sx7ZdcnW@K5>mu;nSQ_pCq0% zf^31#w3n!K!K-HYLNtbl*BKiHl1Dc}K%Q<;a^HmTOZ-(QAeAoGN*@Y%d}zL!9cD+! z@RL@cMGn3$TY)YeswLwBG&m70D2PiaCk0~e!?3CJ`%V^PWqYNg4T++WA-fdCy&eG*6 z!x_*8uFR)T^LNg69WAe>JwMN-R&K5k7xC@avg$>M&+x(RfH|^xv_q_S`q9qRQ*8jls{_O%|FaAPY5n~JoH<=k%BnFH&ky5vCzWi2% z((FY*UzV4JunilNkJEd4G@%(PUM9SK0c3GOCt{9gy4v~pT#1IzfrLzsaVFhecomKB zt6ly9-Po>cKNa8Q$%Z{$9Mh!zDJ!tPv+a7}p{y60KClkZX%4DgfR4DO+{SuogZ**s z=B?(g?)hl3ueLj`3n7;o&C;-sl^j7Y>ha;@jxlC?zZ}i9QbjC4&Cn4Y(JQR?3B_3} zAp%`bIp5ym3TxdeZ6e5+DI&qMF<*C!jfb)6O3JWxEKI&fuA|dpiq~=C*mx3rWpdr} zO%J#7a#MKlm;ezK9}X!Cb)o|x$5%y^9vA|bR0nIj__k+uatVpX?ik*{mvu=YW7d0+ zS=hc5)@X5NXfnIlm6`i7iR?mUbR;vz_0e4-y04eeVE=^Z=ONl-S>xy8m9E^I4+*!H zoh*n=uC}on2-ufEMwy617KfN6mGW>%#W~kk z{@o9&-7R#Qsz>5He1*gT1Mpr>J`Nd|#sj$P%fB2Qd9Cdg3h#OcwYcz7bPPV+0@b0I z(tvyw+65SM)xdGzo|eGX6cT?+`K;u-lhOqvyE>p#6({DbUHf~T9M8Uoy4dn@2oviW zUCg_bra%PmDaHeLE`Hc_#r8TCT&(y({#kGBFo|W$&zUr%=khRyTM-0S$DKqJhTn4p zHx)XIExb3ari_k|q&ZKPGbyzfI}08sgKtUZ?$)RnceQlm1}^loi=_D(MWq|3#L7;3 zNd$}6R66gU(%6MhV>$?dH4+AZ1;{}Qsp^reDqF`l&D=xOBHZ(6YLx4nl7POuxN@Af z(LHI9O-x%mtAdYRw{z=|raK>3p-ejNc=p$JPUi}(;#eGt?g37Y;AZy*8Kg8I8b%C{6#rM}bZgs48*Fzy))OBLs8^TiFHS>c`Oq)N8wOp4 zwHw$rMYDW>c+yi!p~ac4q`+$8+Mk$ItR>V<>v!wVw0#JyJcU~x`MUsSgxNwqr6iQD z%*brQk>JtV{VpxE0`h6iSe|V@pT>;T;{koX@u8+VDhDs|-?d?dqz$6Bx0h&C;IcK? z(tBktffqbBwm3QJf#}UPGQaIslH`Um;;Su!U+OS!%&atRXLGb}=t=Gz=6%dWYU2AN zL>*;i*@Uyzo~6ZDy35W-Ze_#YOd>p)I=r(BNRL|XxyR|V`*=C8;4wcUW4LRZ$6p;z zl)+QPSP7-rB;B=?N1n^S&4p!NDYjlzGH+3?E9wtRnJco6@S}cM#%&d3N$r~{fgXQW z(gY!|uxOmh<{VLKX%4vC&DC5!mI>qPanoCgBre{wN z$iLG{9|k8e7x!~K>CmnEWg%sO#o{w;+oHyZdJpZuFkv?Gv;J{VrZ27=cVc{zO6)YT z#n&Oml4iz+-l3WYht#CgJ>?sX6GYJIC&8ga6{GGOvh^Ef5U_8ulqF-bQ)@A%rH7W z{_pgQn)gdLM)N_rtC7UP>;Tn4tdRs3rq8)6N6=D>pfLd~!&PfsL_N`t{5q*=c?4}& zwDXdC-i$^(D4P!T6RS|g%{!U$XAa@Jkmt8U*hxY5b)zgr1)3Q*TvmBVj3mqH4PnJz$D_|&n@E9wEFw(+As9gwl_;S9xOYq z#~#n_E;GO8!C)g(BB({wzN3a=Kw&hJGHRE%QYhf#q#$~^y%n8h#z#u<`wprg7`7b& zLa+Fs#gTdi%CS3Fn|}A8Em-EPzE#gy(4;2zK|PD>TG85$`ZWSsGCzM>BMPx(BqfAM&8nrPtzCK(Fi z3EIcMBr5gbPl%_L>m8YU@d)C#+5bl?{CoR6%x?GV@r(V}To|szkc=8FEt$;yBz;d) zDP;ke8S1{7P4O-D&*MB%6(zg@9+Ek5>|WN@*2Wc2cPV*z5~GDQ=~wn>`%jxMO{ucD zE~@W=XfciCJ*=&yy)h~b@ZU}?w1-DnH<&aEu-~pLt-}>aVZRS42a0*7%R&%9!xB25 zTk|H(+q(SarR|%3mYs4*?ovoREA`kh7n!U8Q3>g$S70bFG9QaQxP{B~Q4_*lU!8y@ zGfm*jg zZ@rvze{fSy3jXdDhx$DyqXXp923ya~*3cY*Ve@G{5hdweT?^@HnrQA3d!pPfSp~D+ zxkVOb!|0}E=+4VPEXBaqOdIUf+AwpOqA=zJM+ULhYGovwm;zDIPpLX4VqCjQ>KZlH zwvIczTxx`|SiEt1QECY_SVA%o3&<-d+6`(rMNZv=k%~}uHQu0D+*|(``3=JM^%M}^ zwObwEhETP2O40LF=bvfZcq#KVTFpxi$f8QO_2+H70GBNE6|VA(n84-%XCZ2{^SadC z8-J#WkQ0IKU65jzq2653r%DV;dhaMDCkcrS$u{-6ev&8JrK7G7afoXQo__J4G>$-0 zeZ}mIW)zSIXl7Sm5}lzQFNuMU0H{OQlWIq;>4LD$NoQ@H9re>f?|Tyy8cNQJ)`E*M zI?lD#)hG)-pxv^CRHOr@4!}VraIfkC$a($oREWh_O-V zj1OiPVY5XCX=pAQWtwvNH|GP$5GkbwkQ^06dO0<;&ZLt z*4RE~XJ5%LSmV8?{9sfIZEq7_p7K&F@n-LXc0{V(sTlp7c?IV`V~TQi-kWl!&`jv4 zkwd6QH;}nrJ~piD-;VXQdDmo#_WWmBY&fy4_zsr;q$(BW+)vigS#pC&yb9^X$2dM(p(rD8ej~fcyGD+>$NNjT6o~t!x0b(_l(Gi`bADuZ@3Y_9g&0Cb#MBS)hfItOtLR4S<=F2Jm zY0Grplq%CdF7U16i+d6&H<_I5mVp?wO>VE}3SP5$Y?uuJGjJ(~6_M)wS_|j!1P6-GWtz@lPT%Q9}&riy0Zu|4fx!AlW`-LC0+pR9^ktz}GEv zork||ERqY4e&jtPHtS&K-+V!lvU-T9glplJ3GX~Rs?*tXSV?Y}iFwK_>n~5fcwr*L zT(#PfNISohUovmc4wyTBqHV}o@C-LppgMLrrc%v04cXIODOLKrG3~W4Q)sqMDQ|jL zb-{}~>ve8UT%BI1S-0YA0;JDU`E+fwpR%xStiSVEE&P$DtdE0iA}-03pYKTzv(Q+F zP(Ftv(ij#mLWT$446_x{@#DCf)qC8D=kVEIO<1inZwh$%SSU2LG;twk{qxF zhj}f#<5?09QtSUrcj>GTnbxkg%gdoTyc5Urntb~ScZH>iZ@9UpjpPJ0BM$Rb5e!C+ z&J}nw7MZZdeph1M!OE)J$tYWoFQuaw7ua+V|4a-lA{Z2s>Cf0f5q~ig}{RLHTC*Q(N^RQ)#@ew83e+EMT}LGLlMPN#@SW@dr++bB{gZI6=?Pv9nt!2L8swf&C;=@lj%jn zq7(Ic`uiuVp9kEr&nZSyxtN)Gr?T1W3NtVN^xe=J>H(C~=u?f!eBuZKA+H45=Ew?& z?`QbQb$njC-=^a$*-9#0sG^t*w1i7#kSribOzv<~I!%&p<%lW3sti^iXKK1Xp0*q6 zf`4=?hT8h0qs;kL82NSt1;!-X23O08`TT&cPq|5QqUZN*J*WrAXtH_gVzynGv`fWv zR-?3%kYedDW9dCbwm6TnAh8;}kT6T3t+O1%s2d1(b4s~};h5wV@wL}X@QQo6&P+Ao zRfMt0%E^vq@Cex0pyPzpNI z!4ak-GEk=Rgj31_v1t(Iji&t*v@qXB6xZij#lsy~06mb;2=Af>P`_o6St^s&R+$== z8+JT0=734$Ir%sq^!vV|-<`K+aP|lJSI+|SN9Yc$aPZV@(|{piKua}Y%QWlKudmc zhK4neJz$-6CG_MwW2nZD^DOrgj%U*WLIr(e1-8-YzuOmCv3}@VyPM-+hQPqDcwu;F zvw}VlZ$#gLH5;`ss1;s|91=wJe)N=!%m{|A`UTWy{V~tSpnGK`g@T<<3FVl(O}+W| z5+r7$%sPHVDk7GG<@#BE!JHQZM>$t|GZ#k&Fk|(5YhApN(@ULE>~wfQ#xLqeEk7;B zxjN`DlW-?uzi1Y(iH|o5vA*Q(iXYg`2(iU%KssuVr|KotU)s4dz>rz*w6wqk)mH4V zkL~qp=!O>wBa0z7M;ncapyD!^+f4`ko$6P^vJG@MF*M6$RTc+n^RItk$!I5K#ZRC= z9C&H5AM)`?vbQ-kv<21~Aw6=#NC;F^C`8T! zKffB0QCo+8NCq;;|?Pn30>{*9rt1FR~y!1ZVa7~S{0a1b=xo7Tx@Dg%Y2ZdZMpRq_r_V+Q+}?wB9P&$ zY&CoHtt-kF>|Z7B8Usizn}Cl74Jn(aV6%%bil(;M#&Jz>oowGCTjMj<;%6la-()!o zDA%RfwGGVDK6A3DX>b8f1Z_vBQb0Fq;ea`6SG}ejVo|1p8k`q5N+f}_`M~R8v2tFa zKJsD;!%rux!V1^41A~G2Rw*$t@?Uo@b-I^~{3y#%+AC4vbwc^Ko>n|M4NMdGzE;_n z(4Y_9$R~ZbbB*-i{rMAvL1Z4wQH(uD>>R$DUz)vZ150YyB;)y0>N+;%@atY!BGXYq z4K;7RpJcNdlH8%-_FvnGg0Uxe*Ei&$Wmm1ze7~v!oRfiZ$z1nQZp_z$-p2E8PUN@0 zT7r71jpCBGKE9HyPiCVUR^9QcFq|aPPidDw)ODTNPoFsLDmJk`a2!ndD$U@xxtxP# zUmlonDRBYl zTcOV8w8XC7VmZ5ShA(wlzbKW*GIDZl@n_=PCF*5DYigfx)1nz5T46>B1&5r?CBhEA zs16}?i9eAZoVZcH%w*pDy^SUrfBBmb=Ib#E=6G5h%!S03K*WB4-OPY!c;pR!XLJ1R zXEMT?;^s6UJHTViCc_7p5xHj?H3NRmdb9>xNeG9%nboBmK>0xa=Z~72zBks+NkgMXi{;5g+v9_TCh=g& zHW@duuZf#n(_1y_8VXf>Wnt7$>X5f6!62@`w%sT_-EhU5HmujC9DvN|Q^}RN7){ZS zvXve{OQL>rW+(S{PJ^B`0Z;tl{@6Y!qem_7bX~1jc$Nq+KNCa_i83 z;+COndvJofWmQ15ciqSaFxHF7nm1=x!~g`!e(lXxo0dc=fdFI;&bH@ zJPp_LLJY`pY2@|CyJ;m~<(K$p^~W7?jW70{AJPqUu^??BqvDV`8cn3sMrZkbGN<|e z7&7DlC~oTvpW8#n@m;3g;upqJJ4XWNMsX(1jkY1-@xZy=r&qkE&y z!OSt%F^y*E^_v@K0rZZ8+1J8NP+73iyQv0U!T`l?M9EL{Oqu#Rr}r}wWfkVXmPGlx zic(CUhD0-J8$@vIfS%C#4m1AD+0h8G_km99XuqtA&7vRtd#rwFY%K3*#WKlJw3OOJ z5l&ppmUnUu<3!o?bIg_Yv##(N>|PFs^QXDIu^A|(PEEB88+O+#9t%L9k)9A9DKSLF zQ&5$6J)dqRQDL=(I{(`wbmIdZkNSuD|~~!>H5)U4Z?VxoR0PMsMJWSf+VjdkCtL}9stB*J!8on zQFI`j5;>f_8!UK{3CJr{`*1;!Wlm;+YUEDsani24+mX@kibS&pv7kdAQAjBRCCm9- zQL=7!meu}LzqC{uc%uSb4G3{-dqsRtk{y=FA*`L3ly`G$RTNQspmnH}bTjFvD@x~e_-GzQvhjP?0jC^lpf$Tubk3tVzyKtuOqp%#vC=vvNE=7 z(Xoh|0#%bYm{R;zN)z=19k~Lc?-b?znS z2dkdde!FuILeEihl)9W(XdL=+%H|;L<{67ZEBY|@6X-IjGI1%S>7OMWysHV+Ftt^3 zrOVD_d*`%#u-!*yCX4eub#0JVXHXUWsLIa-c99<8qel5JHOV)cQMH$svlN}_$Fe;$ z`g40UYS?`CrE7Cz3pI$hi~E`zkUmvD-9TF*eum(=y@mfCROBUi%&Ar(O2EYHysu|N z_klA`!jW$3NU?2-E~V%kJ#wDb5_0IS;OQZw@$D<3d|I|9@(l>3=JeTD zj*g^9S8f_kEFO0DkjZa;{JDp4UL18TZ1-n|- zZFk%IxtJWyecSAP*o9B^eY1bN&SpR_Eg0qBzu!MIl;D8>e2dV;g#CO79p&4xuo18t z`tbd@JsieD?f00>KHA-r)65M0Fn?`?-kQ0^=WERP$!Q`}+PF3I^)1G@Ia+)^GP1qm zEzy$p_{nfAg(%LMv$-RK(vDO5xU4=`7KP(-sUKMZ1WLjI^l{U@Y z>qP`~1i*Lde#T=RJkWS*VXY(x%uEbw`5Pnw?`_f{YyW7{^ zR42drcBPij6Vv&hBk@Y=ZN**JB3!r3;J^86%`C+OVK-Y52UTZ>dw1pqh(I@EDvh33 zd!o0hY5#;kM$jLj?|klGRVW2gA~;V1Q+MBI1XRVW#^;Q6XeV_i>IHe-#`(tUB!N!g z_nOJP+gR!JthO$Eb3e-!Rm%@$tmFnVhJMC)4cPivu+}NW-(y(dZJO4)9$9iz^54Mt z8qe3Qyf$(9QgsFnUYqYY5^S{~?9{NXlbe!xb*Cmd`?QW zm&>#~rh`^ftF;aCoZLZ|isQpgur8s&o8X;UOl_r^sgF>|xq~&FSJtay{%)BScIE(1 z_Nbc5CQ?fgl1p{>8ZP*5_UKWR%k^-i=p!ZGC?h_8O=i_i*$|I65^EXUhtc7*Es|2rM@@9Lg$pC!NigaF*ukYR%J#;| zi*CD_GEj1u6jBM^e>591MA)c>B^suO5_Tmq5$I2s6cS;9F{L zP0}(!I@x`%e?W?qo#Jsd)bZFlQiGtrCu>OZ2rS9atQ9eRXk}U#%81sxFfgx;l${A8 z2>}P0x%tO_LD6KOEAJ7&D_21+sd+@B^|zJ{h7#5q=IP|mh&p!h7X)v+MpzV2bOAZJ zkY;KLa1WsfZ9(rNtglBS3iNOPZEm%`Syw~5miupK^)g>?H`Zx|Q>a7$Oxng{X{%HT zt|;n`S5;;?*Ws_ql!>lN8cEYvjrBE+08W&Nyg~n*yg1cgX~9!u7dp3dV>6xARo372 zSp=%6TGv>?qZT4RCjE%rJ3wY9Vup?@Mc@`IAYWI zYs1{E^M!YhZj|lXqccZsE%JyYV|{zF9s|Mdm> zkS}V7*Jem|h%BX;HCaZ(`u@-c%I_3(oa@LSEF_jkSD z_xOCN^ZIKT`n!=heQivrZ|nICcFnCB&trC5mQIWh3YF5T^z5nzhj_j`3t!(fS(%18 zaM01|kgf|R3T-Y&nmab30Ic;iRC?4AvzZ?#MB)YEZmkrY+0_g|NET~;s*F|T8Uk-` z*pt++Ae=XgT;oZ^TPzT9MsO;jH36I*Gd1tQJwfT5Qav$`2!-a)`PdOVm1gzhn1sqW z`hQFWU{#J(eU$ZNnlEaOg)B5~TgVX=q-A7KnRh&VbQxR}LW)^d;=OT8ryX~K%?3Vz zm%HxM;Kv+6!J$~{z*!yRh4I`|#V7&l4*e7XR4jK;9MN& zI3_Zl zVQN&(=QRt`9dQUL!D-P+>*UAmD46W-L)rSN#di%uu557ZOi(vM-DoSULJS~$X~v2Q z5GD8cE2?XD=B1TV%YcpI0)OfSB;GTg4)9!P{Q{QXM=Cg8O)&MRCk-PBb|imIbL2T? zx94+;a)W}g0eSndS9?d#CpA&YW#!bE`mo8kwwu`H1?oMxtOG^f2%d7x4* z88?G~wP#)E!jvKr;atGR!jXtvBFTA;Ab{?j92`dNy==s!l|;-Rog?m2L4;N0`3*o0 zhgg-=S;eOuid0o%+|EgJn)m4Ds@n1tf5f+z*z$$S{8T`IS;Thtb2j3kW&+zFz|q|p z1wffgbAs5>;1;ge!VX!Cz|QEDCpW@Qxd(ct+PTb+1X*+B#V`8NU42qu)_$sq3O$Go zWG;i4`gU=`D4lrs%Bkmem~Lj{}oiVSAA-5h#@nSunvtn6kd&4W(9 z;35ZPGt1b(Beajm&z{*bs;PFuQZSWGr6x=ddCH@O!K+nfbfB$UA&?9umS?7Z=uz&o zPI8);Br-1wfhJmF;knkSa3+Ua8HcJVw#4Rv>{$%p`?2uYjr?m=2$cmMo1=UpfGz(h zI8XI+a)>vN+ryjF7@7!FXPKVQ&-#&=#rg_@t>`P&TlU^jCO$k-y=-U(4tE_i;Y!m( zZ9gqYc*2FyAcAODag-}<%ZLk)iUfDU#YqS2K(+clKiBwCR=)Sf(wt7DG(E@`Na0@0 zbmK;a8K=Lyb$@!%nIQR-Kr{Y1NX1*VP>477j|p*&lo?RwJXVQkD+%!f&7i(kyP_!H z=0_d?@w(dO*RSS>Y>a@G-4T2CGSvuQkB-n~0(eA)p8Npp6>)?y3MqLunKUydHc7_p zZsiS9`Bj=D3RH+6hVszbNJR%jYOcQ4mZIBug$fbRwE|T}e~hHq`@M)WT!$K+dMg44 zSX~Y4$GbUKp?(qEMo4Mtf?mP83Th?!tCnX*X=y}*vpRR-lA=Q=J%fiT*TH%n(msR% z(e-EpK|zhZE(viO1L@!>p!>}&$Q1Lz5C`GebpU#+w6Ik73)lz)@8$b-gwkDQRt0kPfGUYQTcN`loY`?Xt6gBH)s!Vc=MV4s8LyL~!mUyzJT>yw;6O2s z-DUw1d3%e;sdJ_`>OOA@CuVH2E&nm*#XM69pghhswoG8OIuMvxi9leHIORt$;41t? zK4Mm0Weu(8@u7ATN$^^BEfBv( z%k;A~rf#sRoSF(;jf1!Ve#K7DaLnoRIYng?f+`YHgNb>`G}C3ffDa7Ye)UEJ zJhRIesdn&m{A{%y(APh`ebcIV^g8xD8^94)E0{ho&B$$S(I!*6{-83kB_R2I zegP+2!#w*j{?Q&Ft5WPnV1jPFfS#<z;Z6X0@w}vEdN(r)@B%|RKAMl|bfn*;Y7vS(&LiNG#Owv` zQ@dpNVeUFhb>1BqcS%Zvj2-7ShMy76GEs}eT?lvyCoVOl$7a(r zL+cZU3T*CXOuXx4N1u7EB)Q-{vKDA*B(*7hI|*MLimYKQ##5XS#XRFCszM!kiwpeA z5y!UBc8!Z{yn?AG1HhJm`m4}Fpo+Rslk{1jetk%gJ%y zabwB*w-Z(AQggXZv3l0&Nh@ONge?XN`(CS>zbq*b4%#c7JE|l}82xVHrFhZ9M%9Mk z5(#wgE4|os8%KJ&vX@uE9xiJOwiNF2dQKp0WZ-(Pf97clq@#E&59udw%nwvs44bcd zOy4B}L%)s_+p08{D4J}A;KQn`pCS)o9et?rK7>AZc4RJD-OGZTYLW#}O~Q|eO+J>! zMj;4wea>$9g)YkPajiY|gu!wywR8Z%Q#<%2P&JPf&d0>6e=cr{EsHp34~MbCplR6A zG;73j{UaTj--u@DmCcK>FXe!DNmiZ*G1KdD1d?AUCo=w_W&3a@CkE2WNgBC5P0&_0 zZq3DyF0~_vEgBa@&LyBv#d*-HE=P^lT=|mT2IEzw4Gk50(r>W^G$)#A1kZXi%%$K& zLKrM^u>}`U%fLj=7Th{gBA6XL!CLN-H%~POvSzHBSLljhmL5x~R^3hGDi1dh&pKWP zr&%I|oD948uZ5Xtxy|GTIS1Wo>y;U`SENH(u*vC42b-xB6qYYdJtv|F;~)zO3*qc$ zLw}ESN`ja8Py~&BmJf@Z+c}nr^wlwp0`EJkS-+-v7gv-)4v4VFhKcwU?T;B-p$0AF zn7^B=lFO1fL#wUo1B<e%AA`_#8U_I zepez5tkLY2-=kGE5V!aNtrU{mxj)uXRf)m<=GDK}UHZxfvPJv@?OSP{rtz)}%J?Zx z+U#p+iBZmXZ3~|SJMOidA|2~L9i1d6NUrb7%*vC{y!l01_ireD*~`}q2q?g>RFvCB zSt4v;^ihT{BUvdmSm69^VA9bg^N;53<<~<-5S4B3l!C+~{H-SQ!!`bq=={jiYk&JT?JAz7XAY}(F1@?zpH7OK zN`pu>n~>1iU0-(;2pf!t#!pcRjXHN&_6naZZ5?^_LeI$cSPwl}{j(zzmxwmsgka!H ziS5^6nAhW1^TjEQomW)yeo%d08@zESbQ7CgN|9S2b(#Ojs^(Hu#**Q*;;Z+t_7V}( zawvG{?tpcZu!c%J&WT(j7c72U5*m1cQ>cWL09on~b^yNdjWq1hB1P8Z$hC;FnQY{| z@O0$*Ga`?hzCjboZj~FVmchXlB`~ScU5An4Yj9RK!>a^$5eVw)H8wy05AYZZpMPZz z2*I|-$N8k}eHmA^w_{bcmke*h7%z6O*6t-i@~mQZx7M+I414&8tJ|DD0@vv=$^Zbr z6IRZ>(+gCHy)!Un8@n(%=D|6PIUklalb$g91w5(LFP^N8VSKb^!j#}J?%ipy->$W6 zAzNxKFaTqoN2x%v|GZxJ<6jCZ#cutwmY1&+^~%bHLWvcgP+b!{4;~ur5Q(L%1+cN4 z7+PFVr4g$VwMBIoqdYZ06H8lhe>B_Nnim!Z#;C(yBf%pF;f&+j0 z{&o97{&|o8d3(P7Xbr8^m2l4+#x$A7+tGznOc&uK-P$i3A_D!ri}mG#%uhnt$cfdY z{E>n(cn$YL0NTC7{CNTZQ+L_K{0%1Yswozj-iP;?ak1 z>Z#U00C`Uk?c)0Ry2^#)PjS^RKI9omw%SYO3rf}NUI1@p2NLYvEL<>TSlAduTskO{ zPwNqYzrFKPo}iPvn>q3%^g|bk`3YgegU_4Mf33~uUg=fyk%$|eBmM!ts|^ikiIS1S zoItDsAH^r)J9-0~f?=hQD+4x?K!LG+=NJj}tv*b51wsSz@jRuVpX@ z(}eK{Isr06X1)1#!v~jGj$w=ht|W|p%Sm;i3%~a9^IuD;@&i^9uZ^=B$MI_LX3_e$|NV=&R$&%3H>FeS$2g+=@!J4 z#QN}LJs5>!HN*=?&|aU=r-ih6wCdE1IUGSvDMiq>=^Hn4xrZ zOR!2C4>;qW$(?}Ag*V^E(dfQ&vbq9%dw}G|$qk7GK&19jO1VH8Jq*JhRY;AU`IwY} zW&vZ2^hHVx%hfFwi3$*6(L->!7E*6#`brC6#(JdXGG#&8$<}95m*Ibu1)@ zk&kv<79$PWbx&_*J!WH^fXezMg#F9(mqJ4O$BlB;rJ&$?f&8^u&_BPNgpoyB!a>Ji zNssyp<5*ojNpKe#2za|MC7fkfw*y}jJgXlML3amL!%$ zj#Wpin<$WM>If!#>JDxgS1lje1@?7(5Aj9qip&KMSxjB^glbOvN!R;bcUX)RsO9DG z7=Ap&p@kJhjjC={(MLh+qxAs_p%98AnEAq~S%bRmb>%^qq!yR?35Md>soV()2oT?& z8(;5N3P*0I%W>X61b~m98b?a-_Y~1+8e#ghLmmpo(K3O$cH(rHSnOX)mc(mncwIOp zAzdZh5b0M2gjcP(&m^V*pi)xJ2S}}lX8ll>p#*SKwGElFG zYWX}Qe*zjHqgj~9Uq=x-tWx25fD@d|kf00>_AaKC9U+J^C9Kp(5p67VuQ*@gavTUL zYbnrEi{*;booy{cC(gprDO2db_agZ#A9{HGo6Oxv)hSI(+&y6}|6?UD##=qZIsWH9 z4U*Y_mOE%dR06nx(Qp1CLaw2&uNbVd8XQBcU#J#PnYfdpoZUA5Wh^L}Np)lEhAj1^+1s$mlpn#bgqGB>D4-+gC8MR$(lG&!UkG5!q+8cq(A+RNVr6UgO1Reiyr* z&yl{S&Lw%>R6V{2XkWF%NH}tZcEu#ZpG3SAr0l3-Yk!%zR*g~fXR+?=e&6tHK zl;__SkK3guP%?_G%(|(EK8rNP6DYKJ{}jVUlKv=R5|YbeGn1yJws^Rl+(bEecRXG* z7io)@%kB1;!bLR?#EDIvM#8S`r2vIk+hmNXfgObLXiWMT>DfxVl(g`fZ1fSBq^$!T z__JWX2h>AD^Lj<|upjZE*+{RncATYVNtRi)KO~K>Xc6l=RE?v1tMxyM#@=k?Me>+q zGG}^a+N8&BkO?I{cFc*TdqI_q{`TNrBgeXX1SOfNPx_@1EIyoO_U7KByy?Y65QP*Q2S&{MB^9dFO#HCq<_^- za8_z~%VeHabxkZ}-PIfiz)b(SWPG}aVym@}dF|5AtLFwPl1+{tJfh``)=OUaiwBLl zQk2EOUCrcGbY6O#w+S?nD*yc%1{!L{+~qY;ZARRyR8<5@gXuV2DO}o6&R5*!jIyjhxM=eTLP9{kXHEuQ;U>(<14^W^AxQ&A(@%z3RfOJEh3d4d zK~pnMyEsn)T+0CboZEe2EkCq&VA}R*<%NOisG3npyOVpS?Hk*tGb4VocWWNC+&b(u zp^j|7@+W1Lv9mo>4=gv=xE!-iQSDtiT+0&T2-8fz;G5N|Q^s2FO@)9E6ml{|DXslS zB~@aV;^vGBFdc+~vknih1ZC1ovxz+=*O?-*Ipqc+6C&}2jj$wPY5c&Nwl66z4S+lc zNxDhw_pSoN!`{P%rvRVv$3cbJKkCXU`tt<*wOsJG*fC4_WrEIJV1ch$&&m_tT)iZ#V_?%1 z#@z61{beaI&E;mxDspA4#LLLFX+z)YY!gg2hatEj+6HNBaG4LizFz>TiuC#OjOWSy zeX>#NHCMbT`y`>E-0RG6&}0Fq{9I`9|4%8nHoO$4#TuGM3<|Ag#9;=#9N znIXb%yJ3BS)mQP+$L~py>`|pH z`s&ZpzMsY={|?hS`(euG#(W^xD!<0s50Tr#kS%Kas3)s10?~GyuwfBdnj+(EIX*zj z$d%Nx~oVL`^RMM$RwS>qmhy{Z$Q4_B{t?_JpT}%@xcZY1Zl(4i|TXCMe zy;$BsAh$eP`$@ev4Pel+C98WQUHY&k6ARAUb9ef2DSV#pQf)*mjyP{V0Q zs(Z1Qux83hDoc22%2~XAdv)N^QKMV#;??=e`r-2TglCsFx~xa%_JsP~E2O}}pF}yP zCI_^AzFA4nE0nHh(Cpv7440+qmHdSg0k|Guslr;9H|u1%-qe(H2NmJAT0(79|7PoD z+~~W?)(Vv)7n7R-O6cQAw0U5-bN-lb)tQHg9aH&dn?h4)qoHx*K8C@ zM5~UWYTIH3a9HjJq!DU+rH~5-mA@@CyD}MdaqMj+9nU0` zukK}$w~ol8GoSOhvaFgH&8Z2Ux2qCY3*$<~M3u7I!4^kUiKPL1UK6an{euhgA`Us8 zY`@H=*3&@4##YlEq+E<#ECOUPi_Td=Qq9)koZF&Juh8YYrQ989Id&xJhMsTX6Wud` zH-m%zN2D+NHxgmu#VqjOHM)1}DNJKWm2nKC)&UjMxSEIa%K%lut8P(8xM~lb?G`%} z#-5Jjk<7myZ8$YZp3D{9F{J%Z;I^0NP|&H^HiR+I{wG2oEjc<9Z&^-#Wvc0;@hI5z zL_-M-9Y?5rgY9P{Q-D|P%q%6`BA?#la}Tl=Xy#&T1-lpIe6ifl(L#lNz?+Vh21y_~ zQO?27)o1#8aDQ_P`Y%yITZZ9UHI??{HL0LZ?Q7H*J(~NcJUT@P^DLrHYWkZZSpkeH z!L|A3Zw;>1DHO3pr+0K+QwE|~;gFbdP{^w_16;i6fOS1JKA8S_4BmHQNK4Ng#!QVU zq$h%w%gxXKWUaFK3H9Eki6bLO-&j9Pv%RtF`E%)}i)D~=-81(}@H4AHL?ynWage+J zz&qL@p#nG$V?tSk)o3aHt9fgM{3jOl2Mo(_X6@E`h)6;1+GR6ZB)O2PzRbb25`#JC zLGhcYJORP8dmfKiL*m&csXnk>75s3Zqj1jv@fbsGZtyp6{aqK+1l5}x5u6dp)z~;% zZtBlG5gxV#9eO7_XSLB1uM}J55$iZ)vYmVX6Kt}WYAFupYst_P!{|Pmw4Yh^kng(5 z{(`~Ux8W%N7$fZ-$ddgK;~ua*kX7sqqxN{9s5iCXB9if60;j)*{5({%Nl5U&A{Id2 zOh8SNX9wl6H}wpv*oBDTD#TW^X_r}mB&}5-i(GG+x#w;PWb#-Rl{CAN?HP=#$7((X zcb=giC~iG>WUwkD>d|e?*c&KM^jgwdq7tuJlwljLXER(18s_X>nH7cn_Kd14rUwCBDJ`M1Jb!=zc}|er5CZ@_ro*pS_6z{2}flE!{dBK9ry` zpuT@$k^n?{dyWjHvn^(RQPlK(Sw-*Vu|U9UUfz=E2-TB>d~wAS2o`ylc}9v z;;54I5$&7O_K8x5iMI*Dk!36w{QGvzSPOb!j%Z3g7)^a+(dZ(+?gCd4-yms@j63+H z82(Twasj-nVzr(J(Ic`ELXOuSy4F^zH}$>z!b?1NZPeQmzn5?3LgnRH(k;fi=oz!> zHi%lyOdoO)%Q~KCH>HfeapbWI@DGZ)y#z^acbkOGCBdd@-qKc15TFcM%h1-sQ}y;SMGoeRs zS*gKq6FYU#lxbjyW7Kv7Z64ZG<_@J*+S|}(YOQ>UjSa}myTFYaL zU?c3S-KvV{kpOz%BFMn7K&;+Lt0Bi>9=Wfj$Ngzc)H$3EpWpmf8>MgHP}KXJ7Gr1# zZ%WuhSgBrL;DiX(l*qrBiM6Jw{r0qVy_kjmP}K?y+$?bt+Yo8~&|Hm!n%Kq`=Zgyr zLCLpeuxH%CQ5mS^p1JF?vT73ZQ`~1pADq0@T11ugw4sm4`t>w}V~22o5LB>2ni zk!{8RJq#p*11zHB)J9H`=qIV)r|$Qr)~5_=WZ+X1#oug_=G~xxIS&w3IeR7D5>hxm z!372#J^3(wAAGa^zI@UHoL=tEnrTrMy$;g|e~8|Q`Sy=U?+DGTTM`y*f$AJhMFO>U z#ieD?>;-&Ez9eq*#k&bFahtYxprYEc5_CDmCQiF zJN*lECA5^XP}%s$+eq1slb-5H%^k@sX;t~Ph3qT8mfvYyjX-mp*d_(L_R*6JDYMQ^ zvUUQ7vt3GNqz0>(!Y-9sd6rL*?V>j7Y_hd!Z|_T?b$MW}86G1VhaOKcXgMgpy|Kkr z&I!f2W3izufP|2<<4QvN#57 zOEb*8vPYX_@Zdjiy=5t?gk+|Pc5di=OxDJrNCCf!J|2x-B$OIEkSn3<@WNE<4T*46 z5O46Q@c7qlBxe3?h?^yMl7XY%(;7D*5RacAi%M>SXX}%r0zEH&pYe|gCkzNBnwa8$ zo3r9>tdb97+kLGqH(5`;#d?ydF$R+Raqq1NM|~VziX%`4XGSB!A*wGM-E|jehLEv$ zVjDB7ki9->viOx+4-^M=`Xdp)0=fz#paK4wf1{{yLecqjg2c?Smwglbq+9Vv6sqCx zRVRDAh}(4O*7HuJ83MML%YAGlA1kR|%fstm zL8o_}hzkD)^B{6-3=U3AY=r3@MdBY$L6y!z_TFn!nB*e;x=w{=NxR&?`Up>CrKh+< zt_>)D5iM+8X0@e|m+<3ZnaVxF5%@**W4kELTh63QAsopWR&5DwP9KY$<8{N{05DlO zr&8I6Yk67o5rLDnLt?_@v#rKRyxb@9CkCbX=JfiedNYd&&kzd4V+$A=`$2vl32z(> z&e@#OSvYyvLf=@`y~Sp$Ih$`D{4ppZ`i?jLd$1_?=f&kT!k$6A?gSTls%`Mh7}Bt%}k% z3slRfl$6c5piea_UaHR2MIYZY{_ny1l0|`Rp%Y5tRHnlSI2-mY4_!27&NnW9M-mS) zk<~$qL8u(AXbV-w@}eJr?XwlCAm3szQu4$^|) z+i@Sfo?6G&&#s#p*WXbWvM{R)s?){~2q-oFRaTnlu81F$9I`fLIiNnt3l{!GW{MR1 zB1M+1o<;Ox|4mtRlCD|w!c`AHBvh52?zRsr);N^1qjS0e@n^I3yv0jZZ-ipmVMW4G zp-c{QAX7*MRB9mJ0E!C{o?t?vvbTELd2gVP3&#nvvb>nxyc+IsQ_=esQ4l!kCkMsu3MfE6-ld z+5wD(g!$R6(J492K)!tp@-nmv_d!XD3^;%TF&Ry8c~bd;grO@n!>HF;nJZpf!0N06 zH1jYRpbg6?<0_kv9d8MiG#>JL2P$`2=bwBT*kcS)!ta-X=vd&yjf$fXS;#-~s6_$V z)~*bI>lNT7;cQQY5BK)A`(}wrHI={DRnj!is=ah7yPy&?paf%mgJ9f-L|Lo(h2TJJ zDr=IWoPnrl;+rPJihAz;K4UFU&n@}klC`0-qwqv!)wf95>5`vhCVS(rDVBkLXj4M7L;qDf$|dvzL*k5`MZ; zn#iYLzI?8~u%q113H3TJ;{sym%3)c&siw8f*6T}gEfphTzTHmAQ&R)9q*G5Aue)BK z{XVK-^8}6*VwcQXCHjkFzmx&T9~;nmnm0T{PFA$lJZ}sIl@(rk*VkJJ*Kgi!F3fjY zYDl0D4^;sxv$AZa>$1@$PofAZ`sfKyoJy#q-+k?7B67UzV#X^lyk}1wVNKM{`@rDF zG$*%lulQ~=J%Fp{nGr5ciMGUm?y4h$#u;EJi*h+jJ$C#za9JYQ;7 zB;Ro7xE{Gei-xQ$YhjkM~qxTYWtjpvkowjWGVsp;krj!T5@`}6V(W4?Mrekj8r7z38w7TNNC&O7L`hp^5>vO#=%G{L zB;{OOI_*uQ8p*hKSk1elVj+BrbW| zi6mJd?fRkk@?LSt^Yu|AoA9IX2k2WZr|0Jn-&fzy*Z1S`#hIF3dLsHxz;fy8CL{?I zU4Q%HdScz)=h@Sh9XiE67sXv-(m7?Z07dno*>JBNof$D{Y~616=hqW_R~{z?jl9;e zjru)|>aBg>Z)u&nn9{)#?a@!4c?3=Q%?DIVQoQu(`!zDVn#z;_ckzH-m>zKBe!>zP z)OFf7q#;2J(52c%3MICuvy-qCIoLKmsS(&-G<~VHR@HO&`IXXxk=$drc8eyuW-Ht( z>796btKD#H1L$7d_#krHg1Y2Rx+4y*KM@T=__$?HH?b^ zCtZ*VO*UT%ipgh^n(CP3lLSyyT+rnnp`wscGfskt(qbpaXjNvr^7|!85~|?eMf9Y* z87_>6c`27s@K*(c($f?h3MrLJ;sq>R7d=Irh%8+i1GOhZilOmdS-g*0pifxW3qPmU z#F#Op_(;3t8p~#i=4eIWjm?p{Z`dPV9o>s+(w&ZBbjd4 zzDZ}M+<>%(1Elz!ry*Da!r50HgIG7TF8Qzxk0}swLwr`7srFaFEgPuKHv(xAwdy|B zD(4<`H5%kr6+eL?OXQA{{Yx)oJL#t&q+$l2H6X88Mqa;)OfxO>t4~2c{KZxHfJpWZf4PbE4O2v9!UQlw9H3PDM_QO;HgvZ9%$@>>;{XxLNJ zbrANND1%eTw>huzBx>>%MPAPjvU zRT3kLiPGS%yiG%ak%|J8RbJ>Z5l8^AlhQJOOjE0DJYxDd{-O|CH)C)CL42exSF}Yu zl%{Lc;WxmkPK8yZ*DcSQ2;ouyj7wavqQq2n-Ub*Ru@bhY#8}N_=qqBt_)RmKnpXrP zchr>%g@(MH{*0Vdt7izeuC=4p+5}RxV@5Y}l0;~721U)^D*2i6_UT%4&Uo}gxnUhQ z8BT% z_5Ej3d>_G(V*o4K9cHSoI{~Q7V9uxk4-0x(B_s%Y7mdQaEITh~i(aVBFm>45KWh$V z?rXw6fK=@W-FFDVJ`-vbf}Ym#aXN{ZG>WVmyUG@HK#^Zk{WMDl!b3eKk~S9a!jd6j zzM)qoFw(iZTa&UlkS0xvj=FZFoBg0pxpE5XUfk51ieybo;~ws#CVFtJhbBRwEeV%x+qP}nwr$(CZQJUyZQHh8UDIzj6ETaoyT9N@WS-3Y@TvhwY)rly zj46c&L`3i|k)y&z2`j<{?^iJZK#6VZId+2i^;jrBq zB4y``45PHhFO3K3ZdtbRLtY@Dz`ODOvMV6B4)IOkAT-kFbRcm8NUFsU#z( z!669^rTKd58rvTBST`D!HmZ?DFZ$4oFp&vBNENk$qQI;?sdx2UtzfwK*RZ5eK@7y%jJmM2 z9Ii%X-;q5uC1kN_^H&?#mbBy^LDjG+aw{sNhf$`^77NMhEMIqe6aggx?TX)(PUKr= zvSx9DQ5rL});NG4g5obb$s{F&lC67vXhR~_H2wi2W?d!oBKM-g=@X8t@+PTBd7Tr) z<*0Zx^3t8Wgd?s{g|>u3rvbN^e|HG0Z?&&YBDcT#_ggVz{X_VyFfdvxd5H6+CCKBK z->6cK2T$$(eI7yid>|;Up@}?T8}iF?SJK#={mrd29%?kheTx5J%5u!sqG>)i!aC9h z!&-DpnT;4hgfBPm&d%#Wxi)G^&P`qPBj&Eo%4Nh(@1$X7xizyeP1X0Wl5k|G(OCH13nna&-4o@xP zJD^Zyu8QxD0C%^Ft*+cwlAeX8uECN~irOx1)UMJn+(}eYwgVY%{kI7R^9>HtnMxBV zkN@_ekmMRwbkU9?`V#R4?T%@VK?pgtANL`xJpMo8V4Ao;qWxfrsY2DCMZIAhQ?z!a z5}>*QMGe#WwhYFuK_k$BT8op}9aOmPp&)R&dY|oxNCTHx(>Z5~F@z`w+`N9fEVOyu z?}}Iki4}N0o6Kl6A;7?(=6@ftBHNCW89t~MqYAtx3HJiklQfpD&$2>C3RRV=30jH zoqvle`YtQ;0p2$ts8IS%s8BYMI|-?>*VWmWqqF-Krp>vLZpUTRFg?rHRY2B@UiU&) zQ8q{+EDRUted4N{dk8tKz^xEC{9dNg{FKd=2F^VW< z;{T$UdL^D+T-92k@KQLpV3`^_jF|s69fYoiY9sc9SH>FDw}uU%hx?pa^*(_QTM}qx zWf^_CQUL)2M5Fx@U0TKgm{`Pk@y{AIoH$u^BlIp1+_&MS^U(E~GFsGv_CT0{v%J?q z`RM<^x}(MZ(zt7+Chc>+(Rt{ZcCaq-%a!W6`08K!X5B9Ko)2=ul z=ev53#h+i1OF(>6hHPLNIWlQ{)dAw_&dN$U7TaK2)AIaL<`eMzf}8!f%3ojee7hXh zzp*I*D`!%NfjcK4uTWYE>D=KxhrYtK%-G@AO!?1e%*W+mHGUC#?L=9uZn*YE~mbkxTZ@wN5V4K}nU&?kV`Vl$Dl_tt;-wS}ZlO zmJ(yGv8s6I?(JH6O7qK~0$07kp5z>q?YpjaL0PZDqfl>ZFf@g$a@@C5BWX?+ZoLuy zHMQg|dz(cyCbJznVs`>HGa=Xwp~QoL^Os9{1{)0;+rI}d&u9AI@b~H~P5+-RWc_b+ zAqzV*%m3DeH#(B(B<=qhb!d^l=0pjJ=(lS965v~GlhZmiSprA%_Hs$g^GW``!qq?) z0MgXtWnMPobJ9~cEn*7P=+y`e|Md(2pZFaJ7X7Qw_x%q3_cihNXKQHf4&Uzqw?7zh zH%a;S;O8n>ZBXNQ4m}Bo{`ZBX^iP=o+&>Me4qs5xppfu8uZZH+y&-Xo?=QgX?-o5pZ^8PpmzK>cxRr+Y6jQhaZ z159^o4|BqQNC`!Mr2Kx}W#PSr%=%Hwr5z<2C^e}YrC|_ROE+y%22Zs>B}2eNG$#Q% zKYt;N+?b!zY*pFIJqP&Iw2LGCn+Emno*fqg6)iSp?DKic<0dO|VC|tbS6s8MGp*VX z&9FBz;A8@A31^Awu$v)3gaf3HY)8(0NeiFuAc*A_H*arJhRoWR$Dh?pflE zNT2OdA0T86%LehpTG;9%rjCi7dAS`%l(;2TL=qX#|BEgb&7x>=u{_YWD%d!%2^x+y`0%P9fP{M;9k%Khl!9+8=JyBlLGA23+Fw!5& zMdSO5Of=DnNjWiNG!;oBtes{Y-U6KLgQ8^G3L-IuN5>W?Hvw=QB4rkx>)W!8i#{N| zoC*eYg#s&Auc>nM2{bQhc9oMX(;j_zn!XtufQbHKQ$pF#Bxxy)<-l%UVYQgT9zx2Z zob?8T?s82UGuPi!cFq_#av7RAVlC4?<^HtO()8UGgfu2+2IG>;$?otr_`1O-wnNz? zdCw>JAl(V5hwczhVtC%#Pp6=Ug*hcweT`zOkKtcPunkBGdwW+m4JudaQEDK$dML#= z?i}IcsJv;kij=pXz^cx_s+Eub`9a?-sydX+w3&g=k6RpwGG;ALju4RJpkFaCwtjC$ z4Z9&UW~*WlD+&#B$4a%>r z-4kY3?IP65f?vM`nFgh{3-OFYnYk=fVYP6ta^t~DgFBO?YWjJIeoq%jpD*R&9L_Ir z{dYmj{hhiT#h{X*q5ycGIpn>L2Nrx^eet|tRLFBgX?J1wZGP^U@w5^l@(!|B-gOb3tRJpyqXLKZPM(+*C+QP4;hVSx6tRe z5kV|o?#O(Fw-$9X^(Rx){cmKYm~E#PEl=0vil#@(UZ3~acVql7mn(Wqg1}_F)w%e+ z5y(1$qrjd)8`9D#p7SSYSBt3%Tk?hWa5}dJ9FoUur^M$N=Qfvh%qMlz_ZI3DD%Nsp z%E%s^9w4gr9d6&+5L|FnUrO%jpEvQa%R&BGP>^FYq1)tmcxWF{wP)FIZw1_oW6^>x zyqXgU4-w()Twvzx9MpYkce(KamrxsJR*Va<+)MR!$`vfI;5EwHw6BJO{e46g%Tvzs`Js4f%cy-< z<%}}FrM)y1#AfK+Hrg z{@jzeQ?WSEjK)G-Z=vNrb71BfxJFL{_}v%!@QrL~uZrxGqwAGnfP!(g(hiF+j9?ON z(&bo2R%(fnJ9p(C78pT;y`nV#krDry==69_p>8@fd(E90yN6))x@EMbG!)yw@JC5q z=gXJU5`%UT+3{KsUv*B?@;dN5SV$GFn$Jw9hbM67#%7ZjsIalV( z`>ayIFqR(?cJ3aW;h-O^_^i!qX_SyZbKp@&Jk}P^G+wW0YerdHkGx*eMCD_LLM|>& zc!ZM_ZLL7W?3%PpTyx0h2@|TLeg`ocQe=Y)vl7X2ny-F?luLZM4ieCtR&#!8`T2O{ zrT4RJP>mCZlAOnir0dWlXx8~oE1)ly1+|Zkf)l%St#*etb=3Ltha}I{Fl=Qvj>T?@!k=3iz$Zr+p@iMO1E=rpx^*PmJK?uLte@+0yG+E$k z9V!vYR+6J|eV7k5%Kzk&F@kL-U{znHJ~g$@lANjsGCx^wOuVfwJI@~h6V6A~+U70^ zk0lH|)f!Mn43+J)1Ft(s=di4^`m`tdy7XF#p1fR)zq2isn0q$?tj|S9H+Z8D#$zi; zKif=2Xqxx(ZDyklhq<{sV^yNPAzzz{5zxnta7?X6=9$ZeCl9jdt;zs=QXv0L+M zj?#h&T}@lmb*xG}qI1(zHzd=V;qUnKtqGE#y{__jevq@3U|M{IEu)@g$KGLCP{3+MaNW;vv1Kwky=h?FH>gR;m)Oq8+#kl=^|2e+zwVnfnMz z(V}h@?hsFp04h9j*=a_SP$~$4Nr{_bc|>m5Xd)b6+xUikasCFDAl`lz%lePXC!@Yy z2^P3tp&bqiQO!8dD@JLFi~H(*Ou2pjwqAysX(46Dcxwb4U`bn~L@^bCYJ<^Kmh9x~PaDTk6V5InG`Ru_7b=`&s zit)Gg5fGLB+gQq_9NZna2vuE5<($pp4thhf>{bI*{JG-fjq#!vWaD8h=pa=B@N@ZU%P5(u_-S7bxA0h z-aB^<=>>KvNm;$sD}vqpp86g#jKaj zagD8QvsYK134ivq(#AJ1ed)8e;SPAz+Zg>~q0n8TbOnNim40b=XuTk`U>)Z-+1p)q zaW`h0B_q3hL~nT0W#ul<%R-jyIO;>QiUi)dxPng*kI;09+MOG&HMNp?OIV4h&DSX( z;$sII-RuZcbC5t~4PE%S3sOM0cK)_fIvfj3dTX!3=w0~qIUxqcwlAAibC-L<54IBT z)_-`r;Wt~qZfdliG(yK9)$!=V2C=!Uw^L06j5y6>xJi=X{Wz);D786CD9Uf_tVKBV zdhT%(tQak!u#wtMEbrAinD`s?yk&e z14*jt{=Mo{xf5%WKoDA_}y}k0^NDD`+Pq|Ame?pEPXUTp_4*g9=A-T!sWByW;>x1x3&MK zLuX$hMJU~!xYy0)Mz)(fisWR4%|FCtFb`MBW$GUZ-`i zaKeSD_y;+AP^Xzg-J9^ZoAO8NGS15B9sNSrqUNQ^Y@WQRdfSRMi&&RU`}%v_%;%#e z@=7l_YJ(QVMc#DDmUE%3J3T86r?btvG6>hd*`{-$iW~Ci_(2mHY1UJb-P4>_VDp%A z&eTXe8bp+!g6&tqLtl#^$g^7@D-=AOmx`ENABa zeTK;QT+uV99V3bIX7vIYPMhzXYu^vgf4O;I!JI}NrX95#uY%*w93=!y0=ZEu9Ji_@sfcn;D44Q7Y4xNR$OyI0=94G9$j zPk(mhOU9h($1{;e5$s;px70rqJQ0j%y8ZK+2@&JArB8ZZcA1y+cysQ-I1h54plotr z4>@-uDp5gzqg`8ER|{sy#iLj8`ise<+oW8^7F3g#)5SK2PXNq#n_3WaVi$J2tAKRCYjwxJVHh04eoT#4>r|Hi5 zz{?^)#TVId=Fs9jX4{#{rPa$l%KMY&?Qc_pozQ#CA}*>Hx0BV%1s|v)iju9)r)Q4NYeMs(O3$pyT@|@Ji%Gq96sRs7u?hk~U*QyoIpQ(#ejF z$%+lMu&W>*x-5{*h9H61Cg%Q-uE(1_;T8%?s?R84D}@>IzMQ@huW(2Pn%8OuPA z-k&H4^Fm%UD?EHmHr^_`driSg#tO$py+UaV6m=&m+GYx~!u#FvErKe=G`!lE#(>S0 zAq=&#EJcZx?O{kYhmSDh$D*iN<@$)S*FxN!?b>qN4ih&ejtNQ~4ZK0e88LZeUe*K^ zDqJI8FobrjoD?(z6JDcx>1;nOLlhO#jEk(v?moDM$QgV#WMhCKXE%ARDjdlxTDcv4^{x zc^s%+xSoLH90dRMAy-fk5OjT!nd7qw?P1)}RYggtr^he3{p(tOOY$qfgLwaYvNQL) zZ;$`6hkw`m`>&lIFSS#6Uy|$Sj-PjjLMeEh(!*^@nF7-L_u!)bu4K4R+H&V;f@)@u zz$ZCgD~x(h$!cWpqyC`p)co)4nj&vr%-h{y?l<&fvr>=r+O@M6n~q@b-sLkV4}9OS z`S0t2yn8{bKxyhJB>fUcc;#^P-nYeF_dSHg;Ih0{FhO|I8Jv~}X{#n)6HiOv^V}m( z3!F8>u=9cbJpB-*a(sC#!#Uzo^_{;5Mz=C$AlO3sMW7!KV5q2&N9=+8<=Hpn5X$TU z`roU;J|EF=)rUt~di?zN`UAu5u4my4R-W=5b}|?|H;U<;ceN*#J{VqqZ#%!hXKN42 z$!}{6^`#~|n=}zE3GJR zPY%t_-?vAxH5q9r2d9nmul!qluwu)Daf?f`+cM<7-wVSQ4kUuq(WZ_L7|v~Kgnsu! zhtFx*SQA=k4obuBg*wA3vp5PCiacZAqinhkOfp60ZP&$BsIeLYk3}gDYgALpXG86b zQwrv#uIcB8@-TQsTAvPyEvLD`;Hj7US{Re*LDn-C6rs2I2n?uDW8R=0w}!`z+cAE8 zu_XHt_o&pdxP9)zRB{VYfJ!aTl=h}of+0ijMPIvS;m3YB(3M0FMv91M7d&>IY#XI6 zHq#t|CNW(F>l!}GRC}!y^DGzMgPO*{5};NOPT)KQGY&w#c^B^Ml zJG$oJgQh@`M#T%Xn=%q!G6#PT4$9%ieagJnrgOCk;~{~!Jzf~sI)$_uyWaGf3k}8w zRN543=Id!S<`I0cdTaI0E{M^8I$mc!eX=^rAuDQDhsM@A^?7)|lsfe6sGUMoUh@Da zC2)Xa3-kIs8xj2J-`dn{Uqt8tu`%SMwx||ya*$jNZ-89Hh=y|6(^ug?-dvB%l@HOq zM^%htId->zrHNU?UAQq&d}Sb6#MmLs*)VlO!W_ze)8#uTDb2qYjff(ks0@^$>)9)7 zyrUKgKKfP*Rn+_C(|iO6(k7xw!NZk?azo3fjd?F_RG}%XmY63$i>M6VRbd44+zlbb z;T=9%iz42QYl~!3B4<>fg;GUKXAGMK`!)s%I{KnXQw-@JjrNd|!nE!P4)o-C>_-Rl zf^n!s!lmbn0F%}F$_&mv4LTD&8$q(S*Nq_kw8Tg9dFWu6vK|?yVU}wT4u=>FxdM=8 zf-ZUGQ$t~qUDxg{@XK&DfKhfB=Wxt(ZK&=|!N}_OVyJqSo4WcFnX@INzHa*`4$5F4!!|zU5xwLV;oa z^z%en5S?{pfL+FuZ@eWCJ%hUq#&SEI(Ge<^q5?x}Widk_Vhn(exdPz0;8#M&Sb!!A zEJ7x-FjF0}gXt=Z8SX#2tk&6C3y+<`IWeAos&f~1mmNqNL5~qu-GE_?HW0rnz0qvGZ!K@AFV#MCZVz5VGH1`eJy<$hC2;7XnEtW7C^QT^ z>~%7DEA?8WT@#8!IZrbCI+>U6GT1%RLoNcHGN6~CWBP>fIRo-e?^KxqhvlSMg2Eb^ zkxD#9xTfGt5>3%EMyNqrqzzc=A8-top>2<$r_(qZDob^qf6!XxdHJ5*Vn_9Wid-)P*4(1xjhpg|M7vwb^q3kRd2^}j%L z9Z|x==^wfM!S&Rcf?S8*NIMcKusHR3Nc-bI@Qt2+I zgJ2OVh6{0uYWzfv+T&o4nIctde`xe!r7`bW%no-ganXMtQJ<1ovj&u0GcPm5tY?P3 z$mCs`?=!c?TEw6f)|ex~j;{G~MfIHtOhq}CPD>+njNrEgmUi8y@1nX|RD)a-Zde7& z9&EQjkTrR_frnKKtYnSw;UI$q#RR)bcjvvcjTgx#9jCIm-xe8ITmP7% zxsl3=W!RoPMA}o%B$|x!JzaZ9QJ6@I%mC4b%?NTC8&E@u>TXH5sc(jxK5(cWK(fui z+(QsIHE)j#HCJ|9oxA%H-Ztiq#oDY>e9Y>%mI)Nb5l>3 z@zpYnVm!VV>THMl$Y~kYplytWy$*MhC@j$xiZSNI?y%b#$zAx)w0G$7UbTm*e(_WT z<(8|`E!7{j^Le$ms@I0oj}s!c*SX1mYoQ!Vz0Ip_O(ui)8&S>PswPh=IsKnVpn%rZ+{_=ZnBb(1^ZWJb84<8rHRqVAb z_!|cOC&QOZL9%(MDI;)^4thy~fu0&QR#!pz=(><*Arh{0?m(yEXcPC7gVQu0RDmuKG?Xq>2vfExh?Pf&84?e4?oY}^+ zppqw5J&q-F7MeLx@{o@3T8_&cRSj|64AqhhR>~U~Z)cC3F|g;8_F2rCtKAH$=X{Bv zqc#@t1=Pec92oDSh1GfJv&PVUr7^X^NqC0Db(|OIKmpU*RQO3AJ_JA?#6H5uK;rui`{gd+mzKj zj2Q|xP%C8dNnOt&1Jd`-^?8eK7@}KTKq6hJzH}B0)o&;v=sfIAU8yO<)(aj7+nq>q zLYxpDg-J>5BPnV`$<9|<2R6!m>Tf6v3BU;#ONwqR3Tr9l=Jl6U0$Q?Ow3zEEc4G(N zL_H{C#VBf6mf^WBagS6bynkG%idbtklaZk?+tNQK{a#dx)v;N zoeqtBC{!tgnmLJ!*>$rNmIfyG{yu+pECd;cg_1R+4K;@fp+mLE(;yc+{5Vk+mc6Bl zSEjZMHaZ)>&XyK6Y`Wro)&Qgj_R{Cl#Nn0Vg*^{6h;`9|<8o1W@$|i0O?7G?YhhWz za@o5`I-3>R1YbDal^f0{u}`ALe|s7s#5i?%VjSN*V105u%+?OiD_&~YaNSEqCf5PK z=4le`i_XPB9!XT~vUVxR!&P;J)$g095t0@3(DL)gvl@je5%XIUk3B<)BlV+A{}eqo z$8~I4OWQJc5|jANY?w4i!?Q_no0ux#&@kfFY#xD~36bp&3qKC^c#Apl&UIv2j4$+* zLurU*Zn@JZ_&QXV{)KtQhhJW{$GfpZz_{p=M2dt|0eNX9Oi2vpJ!k1qjR^);DOQ3+ zC%A|`#eyOl8q@4HKRlH`;tk(Sl!g0&ed4)>rHV&?tO1)pNVH;C6-Vn$f$-TERtSUmkR5x|kr9-N_|ag#h<8S1X+4V!)lDabLKk836-wS~65y zrPaT%JUu$)jz$idr;Ttg{q>{>8;$(C` z)WQpA4BadXQ@dGugDKN6TYH1KZU2RZ%Gjl6bSrcu7CCx*GbYSmw!XSeZctTSik8Ls zF4PA)T1UFeMvd4+*M5BGkK4aG8Ss|| zAUm}vAJ8U5vW-V8z{3?^IUEenjrQwHi;;C6MY*{K-PQ#_WV>3D3}nNVT{9Ffd_qrx ztZ_p;t|hO1Poe!rt5&==O5yHMb{R&0b^GfpGOe{tsc9>3v*E%W z$QX$edO)O^66q$P()@G@`Nf}7n`z?qecqEhNJZJPg_E{AWgPo^fVe7(cno!z#aqIiDUE?FJH& zFpPhDbz;pnSE)YiNSE~SN%Jp7`I(RUX zw>0!cs3>GQ*Pmsl$rUYo)4Hl4GfTD9z4S^v4cFT2shTXm%!W%Qp^Y)6!W=%_!eNV$ zA298YOux5wR{txD6*};&aY6PxblcCXtjX?6gpKtKDdj3av-u70N=JNd<`PQZ&N4=Y zP^5UUjv+wIAI=75sQW4$n)l%V%}q#yQ&NEocTebUocG7c02kRL`Ka_n4LWm=4HR8G zeq0N_+1*5(pEHi>O%3}np3?&nH~iEkdzA5A9A@d5r?wlbdQ14twa*-x5NNk8QHIp- z?tj+F+1?NOm)XCIwyB+ovx}3dq3wTO_C{7vjLeMxjm^W##QcBeCU$r?;&8?i@BT(T zY~2@1XCfx1yR*Q9sFAGpV}(In4{gF@#fuFCkr|x-2F7;BPuA4o#mNpNK)AV^o*-hr zjdb~MPjCl{Sn@mjK=4Br4iiK1--m)r{hjqk{+0DVy5r~78|VC8 z<{uCz|7iB{63N_swYR`5`@IEEaJO^DV)>xeP1$5AU~@j3(v8OSSVSYAWJRyePqr)_XBt7`JK&n zgColwpA^5(kNp7QC$et1S&h;FIX&EG3ytkk_WNe~5Jat%RGy6SuEQ zBV-xnI|_RcY@#$d9(YKYZmn(;OBF(-o-sG>e*zS+g_@$RX@EaEgz%PFy&+ak3wE`H13ojnh8wq$cH5}*FY z|C_biwzD}NPU-&k^9*%K7&Dh1<7-WJ?_Ka+(7xbFE(9>Y_|Q|osl~Y z=PDrtj7ZaG;xrltZOUSl0ougQ6%SX86uG$cmljoQGOv0X0CE~Gh7pwZ*1TbO28*iW zQ+kwsN;&H#?t(*?#?EP+6Oi&H59qSNZ(h$ z`z7EEz*~@&A7rW6abHZs<$aXhGEirLV=ko#VMYU4)B>Tnc?P2X91<&Fqd5^Ti`vbk zAFmOv$1+;Ma>&|dQ>gx>WJPz5EFlv(X;t~67I_MmNS>#PCZRj$r6pKI6lJB{+OZ^( zG*;inU~&E+)bLnvHHzMec+6`oYY)Q=Yr5htE3kGPBr_DsL*w7B6zTnjnWQbvdvk-9 zZ9kUjie6r5sdgDkyMhK6p2R(#U<^A_$OO}sX&B*f234Y%(-7&y?_N-%h43TSgTy+@ z9uZCxK$@8nw0Fd}4W#AScEerZh4j>>WO?@e$!sQE0h33`rOC1tWGKZsp1kB4Ajjgw zV2_fu-!n+5Bl7fnfiYGl2L^nKk3~dd`fu7sHfpDE*@xnXS%7>|EoR9V|JkCO&O!y= zNzd>z58?gb0w4AXk1-VtyPbH}VwTr)q(9jw1owiC%d z_4~Sm31H1vtIzcd_!+cPmIGB=5+=w30CQ~NPR=Fs@C&`j8t(#o`IsJ72)W0%n; zC^j9QaitdPIh-mz|0sVCKDkX-D~(10Pf;6N398L+XFs>@yA3*AW-6qTIEM_-aF)qD zMe~4-s?^VUXJBlU+wOY|k#)T{j0Ce6N#GoXUkhP1lIOw@Ftt3@16631sn0!Cne5Df z*cgFQHfz+IT!#VKyzR_HE&S9d9$h{b^ldH(n}WLYh`i4%7HLC;$E<2;ZqqB-A?2&N znoqGpKtS3X2$>{uze#(OH=At_zs_{;2{0AFDR_sN4LZ}C&%Z~{1mj`ARDayNA=Ygl z`rH1c8uwxpvk^NnxXPd31da*Bz!L(hcctjFAe&wNe-FMc4l*gPW)iYH+@n)5J;Zx= zb|raqGfF#BHeFrV!n+Mk=(WtOb(O++kkA-iNs5}TGmMz;&AVspj1re{S=SXu?wkDsUf}X(XO>%c>xCS65g-a5<>GMiB66B$YNakE%QoQ%| zo5r7>57~1}J%TnvHP^`A|LlmPB^3x&gNwtmI^xx%zh{rnT~PKlmI+p`BN2YFRv-}j zd7-a4N!Es8y=xvp9FcHj&z!gRZ3ov4C1M#a^D1X-6ou7tNM62_`{s0gZrrMjuzmX( z;sQZKFiGV*IBTBvM~Rx>onBsZRa5J!JdJ?Wc*ijgo19J?lY`}^spF*b0M4U|;^RbY z+0{0-6Kx{@gH40Jz2d20!|7>xa`fn`oqE>&q4!8}7`zybM(4=F*#Xr!4DvSP52dm- zV0ppTAONnGjtkfaVY;uWnT#J#U?rq9SP~27X-S*701GSv?}{{Z?+nAQ#q-k5$V=LH zA29N(47BvH3YzxS;ilh`v@%CC+~8=d5T-k7_s6?C!)l+h&YIx)c&ks&iJpJUc0|hC zk#uSI`ny4NuWg2khDQ|*Amv5xzi6(z&=VA7`X*o; z90xtWF(awTvEbi4K)vlVmIq&45=PkbF9jKlkEc!ypnV-1KyxHQ7IO)~>X}Xy&leQF z8&L)72G`q?QpjhcVuTFM8jaZodQ?WllE*GQ#AAN8L9{*HmXqqFpmzHkP8i>oQyPE8 zSZzctwYz^oi|z^N%CEkmXqQ*NuzysZg4qgPVN8%@LUj5?wvPF2c}#R-(&>7~UyLMx zC9ptDXh)#6r)J<V!!-LqVOT>6MQSxMf(zN-qnShJ(;fa^|+{&dx=ka)n)q22vb6nBDEY z;uT?^X2T$=nG+&UUITt=&T*RBQSC>Q{4~vTWyq;(T-!h-`6x+4@`74AD_JjtL+!c> zS*iEuBCS}20N2^h$aH$LsLfZ$w7Q_{Fu;iJSjLd99&!OD!mGmF6F$Xhmr3VJms$)q z${j@X2k%{^584c+1mvcNvEo`%8zJxUyy%RI`|{60`cQu_*3&eL<`%|vu)i5o1rI-xGdSgDQl;NPjmj+x`?S^ zd!gGZ?qjDqX62w}3p?VA6kLJ)uF%1<92|&ryz2S&WrVoBnUXOOA-15app4!+nN$-x zC`e~S5Ph^ny4rM19Rp`dXT+tj?*eqq;4ro`y_1DGrsnhwilD3n2=CTz zsABK%-0o$9_$R~>IC66%uQ0k(9YPtgdi(MX2vd4`p7OX;m%m|1MtLh|4HZ#yNHmhP z!fW@zlo8+2tEW@2p^*Zo=isyrN`C=X{Wft)>_Dow3A*8~0tI0oW5}sZhM~yn zJay7TH-~P7YZqpv%bm&xllv7#n?H^KK7AYW7DnvVy?Qt7UnsPw&9r+dXKrDc1Wk!# zMdyq|6Vij5+cO22#XtE&k;WnpH98t3Lx2X!oW4j4dg(@+XQ4Ym2+%47XbK^2dC15D z3)$+c=lSxmVQ4GzDWal%Ck54@3H$!eC_P7p7Fw^a) z?eVONXZmt9=Im_*X!scpb`VWiU-O%c6Ih|4XSl6QUd!sE*LM`coh5eqB8cMIb`55? z#m;HVJvrul9|4B>F@x`{;+{R8_Fdkfw!K_qb7Aq9B60fh>(vF_i*aRfU6fZu22abv zCooq~p=cxBe2Me!CG_6*v8l1~jPFN6xW)BS)4KuJ_fm0bp2K)GJ!F9%cR}*r!SWC7 zC2DRY$IHTBOVN!>WuFkc*P+ zmDSczgkvIS${#@G(RA3wc&7Ei?;PF%0GL+3Da8JSQH zo6Va(gHESsQCcsnUmSNdg4H2xXS?9frQ5Bu7cSfN@55bQE6pK^+b^6Tc79gM*!8C* z&5A^+si)M=JY~y&Fr_DP%2gWS4nr=NJkIP$50FD~*6X3@#|tZj=yYIVQj7?;_sy!= z|J+|&kyiZ*9d3V<)=E8`;G5Y9*`oDN;F@^63OJgh!%~mCQ2sK%I^1Ugp}IQZvCF;l?Cg4s-xklsu}2M^&!BO$ocPk+4k|7 z>it3hb1gAIjHVM(WlSTjlzs{o1S41FdiOwaRBIK$H1d)Qa&4XqeWq5JjU-Z-AEiy3 zw76BTDz_O~bx~3tbCX}Q`Xk!cXLk}OS}1e<`r6sbXoj`Kp6Y=%(9IJgk$%ASs57Q+ z0#rSE^lUVA6XAU5RcZu+sX@Luao#8eGey9-pY8|102^1}7nx#3fCC;Y~#BiSSB zMqeUstnHD%2Il=~e7KbCI_$g^gR`RUqiB!3@c?rq3ddfD_Om1~%t8RH;W2u?K#JPZdw+aUqBafRdL+wF7n>CuNrZYP{`M7UI_|zrTF?QrcX)!);lsY zGIFz`GJTVDZb_F}N>Rqo2-HDioAwyjX0Y!8#EXezJW1quX1~yKMp$s+*K80besDEN zHW0RJ=sxK*FrDe7&!H~aNPF3GY1XYq2hrVDQ%emil`8%4G)9J!wwcz32{#pL7%D(9 zFXB)_EAw4r~G2M;2 z^pAiRDba>jFKS3#(7kT6j3P2}F6DKrz^t%dNxvjS4_6okFSni$wLb4GMTNip3^JbJ zR7gGzZ5xu}$_*)CSUx2y|6~9^Ei_GdMAE-a-DH118%oe9*vCfM%#qSdT$HH z$=x;((*NV!b|o9cP2g@|AuHX45^Vy>xX&-t()Q%KI^fq^@L$yp@pcC99*-~{KAUZ@ z?6zNFOll~_e;Jv(@8mvcpvb%Wl&Ok~GVsp)1a~)*@t^lwA2?5=rgaXyL34`B?Wd~f z-)u#t>$&8kolFDOSaa32%HHbkHT1fnUnIHHxc>QaDKQTz7bjh>+3|+$rkZrZ!#$MV z0gvz!cwK${3Ki2n@W|h6;;mi6T0#Ada}&FJ&KKQ)C@dw$JIL;$^oXYJP>X3?F4*nI z7-(llC|lO%r`@bn`JUc1?e8J}8TY``)XMA4KVwchI%zEswZ75ZHAFMR++DvE_#ej3 zsYwuEVY2O>wr$(CZQHhO+qP}n)3$Bf*3K6j8?n1_AMQi_hpJPVC)p=^WolQ_E-bHq zVWNCqSAAxVTF7UZO^3EZWpFqHYi{d;k(mFo`n;!rn{Q$hFz4b0BaLdZ3<-hj+X|!c zUGVX3f4{r^!g*|rRQ)Gt$^73yOJ-({|2Lb4Gii&{=CWJYzO4~88Gnl1t0)o$AQ5mA z>4}hkO~}?5O$*e_kEZjy=_L-EH*)BgDv?9{t3(F%mB;=4 zK&97nn#Y&h>*w`xB32?R>K+xlb$-1lK|vPXyplUZ9+KEUyUY9YtSjlPX!&Zt0{K31 zhthk9H|$n?#C6w{Y+Ry@=3BV{cMq5O#KoPq;K#sDGJ|Tem<^KZ&etO?jN>&vo%|%@(WXgwp=-1W?gC~S1K$zD8civBMe^x8 z*6o`t#^cHBB7^{>v+glQUtiYTI20jWgM4%0hP$YgKIxcvV>Eg{C<8=O2Bd*~zh3c< z5x+{IZaeHO5F`;L9uefMKEMCco~#+zxK)ky32YWQyeR}Sj2#_v9zI@6z415D{w78+ zcOSvIjEQE)74AhZQAFCZG(h^3k1m%UC@#bykR3@ZjNBQoP|j#b6}KAj>x1)t7X}e% zgu!(oq>I9|`}iMJ0?MKtX^Xf)4MDE>9qYuOX}p`6fF#-`l$?6%Ud}pqHlZe@G4U7B zNuDJfrV_4t`GHw`0bTY}>z&^?4AC>@dIaJaQopdlxQ%x4lcPCG}I!qEq(AA8cXme7RiRm;;nB2+E zn%o|eS^l-XM`*ZZOBU;?)hobTE{ zkFst{2`9YEqaRi^P`FfKZiEe&t-=$WCVBKMW+^?err2j14x0_Lt=%X+HqUBDe8NSx@^z>2nPlTd zzqq$gZ3p^O8eJ0Fpc(Anim1UAurB~<$9zy_y!cWNy${z`NeY-LlkO?Z<|IlP;h1<$ z`BSWxE>>OL(C^uF}(QSp&Uq=Y2GEk7Bb@n$YK_oxxC@#lY|#N<>nS_z3=$ zL%FR6S2&GpD#|cOh(gjZs|r;FA}qOc-!nwOyM+W9z2*auAOW6iZ$ewLTZWCc# z&6O~W`8D_Z_Z>by9vsMhbmes?~e-;>7+PG$()S2e24zhgOf*W ze6>K! zij=iR%W1drTZWdaJ!t>2+qW3KVFn}bTTDf$Uju&ok~5 zITVhp7Gr5`C9a_*hH?hxwaf^mw{3jcoWTjHV{%;09R#tFF2g`&P3tt+ykvC*pg7TS zQm~FMJcM!^eS;uCb5w?aKoRv`luedmGt!P6d6X_zYh|4V_VBai+XEyHpx2(JguejF zR;z{|G=Vjw9@{^k5kXkLP1{VLiel0S#X=_-e?L`y-A|M-@akqp<0c{!5{+~C64~>B z3Fviy=N{vNgnAh5^Qr} z%Lo->`0}Ll&H!Jh!*GSaMU^>?_9kkgk&nyK7Vk13kHqA{WRO8(MABS_l7)C_t6I{U zKn)t11HQuKxUkaPowvCW=^Mi}u-y5iZQ6p;xdgLO8XG0|Ub5zyk!r1Vk@`m0 z0=O1&D&Mv~;ph&Y3yF9U%1Y>a)~r!fWltg#-d2X8`uJ2beuid1W)>#0nMP`3 zWcmg#w!8~(H;degD{<>@bL_ss={Czhtv%sZVZ<7u%9g`!jMv<~dzp50%pz}rvt4c! zkY+O09Xl+5d%iVQuQS@nFVpQ_6C1KO4}DS?mL9{`I9v|j^hO82DjKo%GXSZ3iVIHF z_7L4T$y7Ng`Me#HW7y<0DNzE{Gj7NCu+KnL%68I3b?xEw(9=v7XnVhNV=;ar}~f0 z`VFw~^lRA-GsJN-Ojk-bmc{qHwwXRS&s!Xo09X(UUgcExG`|PT=(|&&LA}~0Pcv^c z#)p;S=VB#h?RNFQW9zaoCjYsrzCpDuwGoe2-SovQVqjI_^x!_TA8qrpO3jlsTy;H& zL&^Bp-hWL`kV__RcT4VZ|LnR1$KMR>4{NOr0B+WXSStX&$q!zo4^OIN$F0hCnfa2< z)J*w6xfR$5Kt7NU`2{X+Eu0jH@I9zJ*zh4Ajh`>=j$^5zVMEarCspBw+N7@lnU*ory2``z87>ifw`r%V3Kc@1KvL z+iQ#X2(~4&ylmuf^$Wk>HJTBE7 z)DU83;6`;}A9NOqtyR~iw`3+uR;|2cLK!}0`*@83{+1#rw(+W()D}H{O{L4K%XPu^p`Ef_maz4CbRohHl!=T6dILM~?qfr(|!Q?S$DHFh)^ zb#ZPy);;&C>4P@T3ViAcm^V3#bq8YDTYG5Gb)d-zb7P4SSuG4Eo-hn0YB*8X!%~6H zN(pk{JOE;jH?0u!wMkp^my-F67UeIVX@?{NbjyO7r<1Ig!wGx8e~GTWbY{osFb!6= z&2*OX;xss}Pqu-Z<%*>7{*YnnM)tJzKEwB(0+;V0mHVh72|J}t$K(c9DcpkpksB7j zDQxhywr;xVNRa;o#)EUUYcNE z&N%wwiCCJ~HoPM7jLLejY?86s1O_I_b{_FtPNplTkf69G1=n+_s&rJFS{u;C3b2Y! zn898Jo;eg7UdXu!V5>pwXsO6C_%MLR;^bJ8q2wrij_$4tJN~G-X8%z{7g>E!2?a&y zy+i?2R8^qcMYAC4K6c09BCKY^kvXDR9BHLdG{7-|bylI@q`vW- zN==Sl?CL zw?cP0Vy0VI)z!=IGg8spm5YK-*|5+oe)PC)3&h*bC2t1}atLB-mnmmReIabQcR@5Z zUFIomn@A94KjHP}O?WOJ2zuOswjP$sXw~6pcuhHyFg)owibxA|PZBB`MLRaZfqgYf zx_p)cm+@E*V~V&k4@m^sm>YVDXv73QJ&q735BVVZJH!s1r*}@uEnn^Dp*&?=y}q0* z#P0fV4Ppc2tG*aG&4adDZ6RbZL|zl&R9Tej!ix{)u_L6gO}} zwu+@mJ^C+zy4b{cRutOyXPP6423J_Z<|gc&kl)`|umtSHN`3AD!`i=Q?Y3pl=Rp8r8Qz(Imkt^Wz>u>Chk zhlT$Cn^V@2io@k67B z&M;P0ty)T~zE?ln)Blun6&r1XB_`aC(HL6v)gm($Cusf^AGEI`6uaS z6Hr~BUq4EWi(nnCnju2{IjY;`{eIW|^F8*vG^Drlvk#(3Eh>I(7OQt4CrEzJKM3cI z8tA|Ks5kC+Jp1)i7S`lE<9FFt01p0ziHrAVVfhCV#^A%QSIo;XYO%aTZvg`y&8Yuk z5yQd(U;N~=_mC>#7o!*MH%0Eg&h@@7@GYa!!c;}BIv{UOQVll<&6(8dE#;^TRJT3x zTu?_(+!2BQzOn1o?jYQB+La-7tdyWnLWrNWO|KZlVj=yXd#Z92fDR#KCde0Aup6-E z_Q#E#sC_seu{KYUMa%lFSF;0&1{3+5Ub!1%-fTWHjGn5R=$1%f+*oqI==TWl+lmNx zZfBHc-f$c7p*!e3()l}{*i?XwVexu%zS1AnG&SXQ&^K*--|Ux?I?zLqZy5AV#54D< zZN;#;Wa>3?7`RhL<+_w}Xfc(`D%!1o^zH5G>bBAqb!ED`!H7M?>;sMGBkSXe}>?F z(F3&S<O#eW4=T9?DN-5#Fr@4vy#id~C* z8gd;X9K)42)*1y`3olP?NR}<;`_|9w3C}j{>w$0zse79^5(%o#DP|&bp4V(^Es^2k*uHAT3RXHjuI2i^4 zMCnoL4u7m5nsVsJ={v%hFeh{;Ejz(Xx2z}&YEowBPKH-Sfn%g8Ijau#ka=n?x6izFSV1pY#A?_ux7v2{{YAvM)|hr- zNWPrlXRpXH*eGYYyMY_HK$Nkw8~psMztlI_UA*6!yYHC215|5YwsqCf+% zah^J9xX4qNrn_wcejQI-)Na-U>au9ZYTCLo)wT2pT1g5o3|WYWKej6LZ~Hd}Up2l( z!5OcWazQYaD0(mxs@t>LrPn7NFlbeqhMLeaFjBEs6O~wxk6(Djs2E%Q zbQ2#3dq%46Dz37h^TQH-mvDyNi~P$5cLs>vTBI>}vlFwf@bIE;HF70h)6ZVBzH9Tu z3rjNaZa%XOTZm5r^Bf3YxT}A}Bx1FQL(waGJ-%Z$D3&Ydx<#Q%k;wD86FaJPXB_*& zX59>!DD)>V(5V{>F{KC&Acf{DJ+nH5*q(ePLCFOjk)f$}qnT7z-6!5m4DFff(+#tr zU2oP%ZWZ73w(3l6o1;?^;L5^c*db-JecST}pa*L@5u^RFQ;RW6q{$|e(7F?NjXLoi zpyRxK)qgMsGtCJ+Jx5EJ>?r21*-_oL7!F~Gjd#7J#5HR@<-YtF;x=4g(w|Je@25@~dv9bB%Uwsy4jp_qFF0@`7b=r1_el zX1#Uyuo$+4Dj=FG2Ag@X+SR1@%?1&ZZJOg{%!j1)Wwq^=hz|qWXZKN$ zC>6=^*n{mCjKiy5ot_wbU&F3S4px9iP$)^UK627JLmF^e{Rw9QJxK#7>`CHM1J%*4 z2x-0|VAW!2<#w!Uu_yIer<$U#;94Wp3QROtz01|2e1k#5%eSIoAc?|)nP?R~!K%lLWSMBAf4yaFBg zi-%d;5`b1UiB#fxE-GuW2~wy*8u>&{N%!AbXX*z{BDhPg2$1>&k{aa7*bU>{f*5P7 z7wz7WGgOb9qCBVPC6MlClT*;oL7U9mOr3l&z$vR8qTr`0L;eJ_q|sZPqI~UJ5*!y_ zv324>dw%K2rKkZ3}%!azH>T39OxRA zSd-K*-V$NoE?lqN&?$Twr@;1Noyx-2x-zV#u6Ctq+tf(7;h2_Ts)LXxqN1IEW8B3k zc)GUt&=WO^+karmv5U`Fq~^ymcA&|SQm9ZkbnL*TFAJeg`~nkw%j6;pmLLAupP;sCupAwu9Kea^c&ngCEMfvf z8o4eCGh3>Laj)qNqVtu(&`V&v!7o(+jXV)YfCBloJrrryaFdf82xwuPb}13= zzloxgwPNp0BPHm(>tV%2hs{AQwq{}#t`dwsYItWx#|PAcGyUsWj27QM0NW+ssOUBR zGhPmquaR2q?a~0`KJY0!IlT)?hlI~lIH0}?f4Z&@Q8<7Yyf*)11c!&*D5om?!Sg9W z*_fz-*I`1UUqa~09bH)X3W_<@M*oh3DZyKIT$Mh?2{yAfHD5b)(Rm5jIjO9OL5z6>RC_#pZw@3_E{Z5D3xqQA;z>olNSmc`emV8i%fIV3 zc&n6B;L34m?aUOpWqsUz-e@bon*o7cMj6`8(tc+JTz}uVvpjAu2b;Y$p*v=Dyg@=h zQ72J)-wLL!n+S7fyc)|qquOL(O=;=im7I}RhG+#BLC8|i<=r+mTXkLgN&!vhl&47h{3&=zEv*z}3$AgRMlt<)ub&mrMoPKVe zX-~_&XUrB&N{zvh=jw33(^3E%SXrH0!4NCQPF+JhcU6lIdPnTSla#9*nPkTV$%4(< znf=1Kxjl8U>d@Mi44udq3c(xAqq6Azwyv27nF@A2tXN=;9l{7M11})UEb)^3I2=<) zgVy`?tf=wlH{^cnW-pp8x-qajp}IX z#iM|MA=E<_kXNt*%Aj-}CxwB=0+^YJ=E68je&Ts8wA?kOdg&Gv9j}Nomj^{`qf5$| z{<8ZVb+m-Vp-YQNn-~pJ@m6w=`TN|>OR!;@M2;~}I1N$pu}irKrZuxn8BiresvN*+nA7BqH|YGKfi^JnC4%5pRltsDh`WXYts5t% zAwK9GAw>U%?JEZpgk`z;*d>5O7U-N$ASi;LFbyf%@I0f9*}M?+2f* z^HGCD;gtRkD067Q8o0JVohKQ-WOu91fZ}kDfRAaR!wOvOw_Xt~6c#sbKGw77tA6<^ zkW^{kA_&(NaeKPA=(QRQ6WU*QzkIg`#l0xhE84g`9|~(>*=QUyA1|*ad-(Ag!5pTO z!98OEov;`JJD<3O8P=F~;5<|Wn^Fu76Ox-tv5#TK>BXJAhT75)-wmR%@tD zRGp|WKP<75+-a+WCh9qCrrGR3jF`=*TpL9%9OpaxD7dB_vUsRfVxMu(+z+iV)c75& z3AvW|K2<64IszKST&B!c!$sQ-6$|2JZL+?WZ@9-G2wEh!uA0d|a|e7R*4)gzbAeLZ zEcX+g^}yHKwamGN)9cUS`X$cpR4J!rOJZ=17+PAKIJ?Y@a8Gmf%SsLky=jj16RVxf87+IwoOi-(9$mx`Ek&dm!rV05B?It!KCvABK>U20 zs$X{o;}U$Sg`FU<9hK9and^}yUR?p*yg0_#oWr7&6*1}8$)?t?1sq;p_;mP!yLs_o z&z5q>jV(#9M()X38E3C^A3KdIFhW4J)hJy2U4C)NThZ)}giuXL#VSzlBCL7oLDVCp zme=`wsvE#Vi|g@KCb?UFj)#vrsn`-wf12uzyG_Q*6m3eozD)0pcDk$U@7yfUZwO_wP~0^=+A;FEo%zx;%VrBbGV{BDPxfLBl{o*R_ zQKQZ`C!MZgbL&d^^p{0-8~UNa`WvB^-&>wKH2=x%Yb{)E_dxkWcavrh$#@~TyC^FB z()>Je2uhykt-4m=0O(L7&5!7$!(x8Bn7}J;vrU;?W19i`2o*@Ii#`6-K)6^7P{8%R zvGSB3UTI0!*xnFN#KOu>IR+KKsdsX4O_9*5xN~+(y)hm4E<)N^ndhfHMrFZ911!wWbhLc@+>Hrkkn|Y6j#i}#dQ4wEM7$wR=<8DsFq3y zuzy&nRZr)*W#j0?#YNqY?r`L%akglsdlb7mNf5_KZ%4SE?ZS@Rf(~0ixQoMKF|So38X9W_ zc2tBm6*sU~*%Mv#sPJurh6dw!yhluAX6f}l81poaiKM6>ft1=>eE3Cqqrq3V19Zi= zBly>ciz<2h)`(6)tLI=(hki9R1ef*-ox8s;RK66WNNwU1$J@N_as^j!*0;;&v?xv#9v3zP5+`ZMCQ$!VxVb*FC3dWQ5!1?8=gmVL<8X~NOnnY(Tayfh6YczLUzyu`Jb!9?E&2g8EW7z; zHvg0gL;Y`(TvDz-c9Z4ScSyj##=)KX&nO=j<3Q`K5-*ma8BBt}a+!2~sNVsR%?81# zg&=7BwH?ky>|lrk0uPO*lYpS-2mblBKkDuFmSWM$E-)7dc3qxKlQK4@ z))O|?`8fqb8~6>168PzB|GL}#Iv4wSy*{prOXKqfwx5q;T1f2i_U-^^ANB|7)-F-! z$LITf`_hXOG$#pelv4v;@M{ztlly{u!yB{Y>q}OYi%)nac2u#8;bW!R?F37vlE&aKB4uzFZgsI$bOd z)qT$g3HN&!)7d_3v2+ySm?BB9Qr)AiKnojO`~-VPSiIzG{>uti^tF)p-q%64{X+a) zI4^+$?(=#*WX$XjTJ0=P7TO@y%~NnM)bl2g;&<>x#s~BJYRz8=3Ln4Vk5>wOAPBON z3^)!K?qT8*6M2E@;iJ~<%i7y;CnL?J#z7)+6W*6#%Blz7%uW@8LkeAKq}29@th#GV zBq))S8KtRZ-!S`Nr&dO4)_B%q(4dA^u3FDS!$=))#IH9(59b}p-(-8{pKlZXh4>~F zK`uhpW0g=~Xs@l^O=&_K!9YN9%q+oUkOGuc?iW=Q>mzRIl7kLi+h;RG4bB zl_82n(@gcu{_3=gJE zK5Q&VE)Sx#J(qkT)+}xC#>IHRU1MA>l34p!3|@5Z2m*)bQ;}afYEAC*ezeYW9PQ1n6QzOE9*sN?MZ(9q zWb!RhxYIGCb z`^A*8QYDFfF4M|8Jvj}ci}8oglULoH3$A-C?~2HHVGMf-=)8X3MRcfWGJYLEK%9gHw(y<0l0BcyIV4Uk zV?Jpb7r9a5>|=o!SzA!94|<=r>C3hC@kAD0oz9p0i?r!pv@(;U=Hv1Ar=$Hz_laz` z_VDaFZxc1%{1UYL&>J~>Lv<10!09B1k2q z$Agx2+a1N+&yPxH1W-S|PHToJBYRfn25lA&i5-y#Bo2xVjd!v&Q4*@WA|J$u6ZOkh zFoP5Ak)~Eey-DYidzAsMCHdY#gFZ7xI8|PKsFapnFHBRm#=htO0@b2z2E{okh?pA@ z)t;;=oS&Z6T<6oqG*}R_jnfO08?sV{eHbZAKXw+8HbwYWX4Y&@BDGJ`Bc;=*(^V__ zOhi9qc#;-XdHY~M8dNdYGg&J;;bk&tp)iO>Dh%d+xi43!#v}Rvz9Fq7L8AogEr&Bx zR3muX+7~Q8NmfNO0w$ai@~;Tjxt#UV#p8RZO(m??5*8;gvxZyKpUJwjz$LlZ3&hh! zXyTA(7C+x#ntqQ#KDmP0S-Li7QyCiv7rQp?&`h?3rzk$tU7t97H#hQr=);nZXYNrG;kQtrnGtEqMG}k+8+SP?)+f>ZP({l;-0`XHnLwjNVzc554rNH z4dpeedd=9Ge9yhy|J!)~8d%inB8iBguHDHKWa!Y4&!UTYoe$D8M!kJddJ-nVOhKJV zb-Ln)zId^ZdwWXt;N-YYN4wI*+lUyQIQ_xNfJf`|zw=Rjr2Ui?`C&nikvNLs@8>rp z(?oP3N~D>U8{jiRy6$+KIa$SV}2hEzHp_$O|7&nqcs%cQ>o8`B zkD1Z=x_E(KVw;YiM1hO%FliMe`CWZ)RfS-N#|PegmBh z`@N)VAuMtDcxrrH7V`JE)ed}pYg#!~V`WdMiOK+L2!%5 zbf5G{JNfeud)t^`YO7;#omY|MKA`|J_(sr*Ry}!K#-189zjml;6MT%#6Rk66QuxX{ zyC&?NjeE5z!Wrg3Q%%8ov2j3|Js!8n%7J1#24^a&0-JRt15nq|%ug@DNCs#4o#$j! z3{$o{ITSuLt>!T~9F=hy<>W31(-f*VC<*sMRrh!m8a>c?v)7~T#ZGj65&UBV) zXq_=p{9rbiD4OKYX!cruauFB6ydB#?;Ias({T{0zt0mWgnxN+JM%I1zz0~{(OSWYj zhfC0JEwwQ!xN$x`KP+|}YiJ_PAw>nI9I5X_prlDPsmHU(C8~@L109K0N~xeRyI4sh z-=ZPE2DKUyF)rp0r~1rC#h4skW!&~@gh|z3tnPb>7O_Q$E){WGJZ+(2JZuf@q1T?| z;t=_XjwPIUIo@zwh%WHACr%9vHgyCCHrc-~rUJCimJAC}FT7*Vk0T7MBEh>zqI^VZ zFR-_t7Vaft4Z3c=ZbC0v4#I$vtN2bFte|I*5%BwUsU1x$$prP@^pOUr+&dX5@OfKi zB<}2M5&<54yf%9-EXK zlc$|4JqUE7^^=|7xMd<4q7+$VKQra$>KQV{m~4p6hZI9Xa*XP$t}*i6PtXA_t}fuE zgU$}+QV?j1Z6wS+RhFuu0+G6uiSKdMOSU&0_owjOT%9}shc2Qaw zH{73ecGO&F0huerR1jvHpJio_pAScI)M*|I&9Zc-!pSRdOUcyg9tHx`J*@p2p~+>- z`f<}*Y*WQ8m4s*E7{r*|spo5Sahw4&DDsCZQFU9#ud&!3j9cpWaX|#ja;~zth&QDR zFiF&I+KZoVpQH9(JynuSWr}P$#@tbCoGpnqt2(a`tK256SmPJ!hBJC9*0B4FUq3{8 zG{G3f2};AWa;9yA1~7}RJJ!xba_2yT-@3#F|A^e4X!Lvv{u00QZFl@!3)ZidKd`J3 zZT2_zSY}n3=1=)5!@-VqJd}U3)%C(FDDO--tXON?H{gOb*j!1@Mn(~9%Yym*f@Tv| zrhaP!jj8~NtL~u@`jBv=@!wMzt7D&yIq0k1PS=-)4{mbh=Uw4{dF^`}gR?(>+lLpFchTvvrEsNf7=VjT%9a zp!t3?I>&Rl?^cJFA+&KM(0Jh?n~*+mDnRHM`iY663WV4?;mYOBT%nb^v;7{CIMOWb za?5Ncigu+|rJ=BmpJJlt0ug+Ot;2BS#RIpX5!E zKX2@2vE~Yg63N}@&uXpp{r&{=0Ik38)h;xu&>6;8NPTAzG6;jIQbejzY~!OHupMI$ z2ah40hu-%91VmwTW>)<%>`?43Ik${vJIAT5fn7JY7e-$VV={rreR=nt){LCHa@k8qX|khN23uByQD*GB4MW> z`L!^7){J?G|6BemJ_chOE~iUCF%Z_Vw(04lz>)H&mr(4VqkhRi<5;M+YO1$=MBWJT z=fdgBl2ihs8C#{abQCE=xL_F~fOJh&jGFbf%%cR&a^2V+HKO!by6~I^H#VtLtba#QmLP*vmCY2MK=DpBNX|p9>q(KRRCDx|v!u9dD~gDac)s$OcT_iF9U*%3 z)06A)u^(&*(5>|OcLESj0)PFMX*Q*H9|W*j;>tg$k3I^R9-^A6ep@51X0S$YIs(*x zz^@W!HvWqBH4pRf1ljb*SJ!_kHH-qBMMHvEEQ>thdZjeZIKGvt0wBG2o%5u|D?!qK zNcT-i7GE~JV3`yb6k%XoM9eH0Zg4^j^9lQP=8l2_y z%Ahbe(of={VVc3NaY8(H2YdXG^53(@jwU-aNYG`Nvo8*a_&(EYy()w|Pc?kl&as&r zY^oAZOod|lFU-KZ#Fxg_FGEJ0CUy(+VQn4*tjlwJA1q|Q5x6=*E@G$$ z?>eYb!AWeGI++TC`Z$zS&PD{cdX@v1#Z7B-ekn`Z=!zGe+NolbLlUe!&K#MO0nUxa znQ=Jw3yp${sg%0J?6Jn` zPL``XQ-t2U1jL(EKO3Y;*ZWRsijWAQn%P5tZ=c2S+|n^3edon~mQTJ>xeArfl0OYI z^eSQRvuCzzbIRnlz^_e-oOPcXD3!M>QD8?EB&+-&wrzVGV>aty4>T|o1U?VN6k5Gn zKeg~BF$6bOCQ^Otd#(7)X%MAPJTI8cla^5p7!~MRXKrP^mLxZ921hI5gAJ?%EgrrZ zk|p*eML}03K-LlPuV}S?Ff9fI*gIj;D8k3GhwP}w#2BT7q=NJu%&m?(`D&;Q$&S`b z$6b`9kP~qV$8`^IWa7yEGMMDa7%Uu`;Y{t7L#nCU zb%gLMfn2qO{Jhc+)+hmW(*7zV%^Nf6wEI9F&I(8xOBb=ouS^l8PH~zajkb%W>kT8D z;#7|u5F$R`V>HWMx2%Ju<|LInh^);n6ie;|^@38i?O<-lKlEl}GoKwu01HZAW!HB@ zL(76W{@5S^lq<5p&Cw*n-Fu0$&)Zu9W>uNg(zHsvcbFhigp~a2SPtVpXOk&^LuFss z-Y67k!KAl6bLX8ngEt*Xp2$S7xQrV|;XiUFWWDx^mY#nmO2~4Bu}a8xjH?rl>4*$Z zi)+Hy_CZGhSZ?nhmvW;y=r;gem&<5iRUQpKh@sp0L?SoOhyO4dExEG`6b%dHJ1F81 zT{F+V%t%nEO2Sem@J31Vcab1X4cfM}o|*tj85t~dztSaGHx5yVc!*2|y{#(yM~VC? z(}NqXIiR=#Fsd_cJ;bMOjMQnuP;gkg@JHg=ZiwVkxk$H{G(HOF!gctP4@>;=^5e;t zzr5Us70R5s2KMqcl;`B0;KVN`y~H0H#o&Qkp1kf+m|2$G^B4i=LP*t}RsHz0zfG?d z4NkE!(E{T;zo53`=L&UI26HGyE6L0@;j>@$mIAwFePt~cGF1_n2KGWdr}nmVQ1UKY z>z~Eh7MJ`YUfa}kdDDrYdaQ56nA%sW?!kA6muToUW0^IIvXfc$=s2i8RhM>4s`ojiS!%jwNy+-hd(Qusm9*0YMhhB!FE~U z`U>Trx6y{|`H}`-k&$O~6FtFvF!#F+P=V+fQds7Vn5RP5Xr^yGM_Y+f5o(4c=Svh3F)HE}!OpXj?a=j&Qt!Q&#Kj|!_9y`gx?gFj z_KhYTj&qM;(I#gENjVgUZawyA{*!D4mQRJMQZGJRD|V7<{U^_`sp=wD+#_}86Q#r= z?uIZqk>wNvsjlz}y)A-jK-Mlsx5J`XN4~J&FO|wqq2_k5TH*2Q^XO#W&+#t+aG6Q+ zf8x4K{|(n==3wCXzq#(Vwp1K(+yBmN%HTy35(U!P*#P6}6Az&c-HoB@f95Mzg@97? z^VWb;e{JG;^Cf2JEMt0zLU}POWk{1^+z)f5m-Xc>Nj&^6jRXDa<@Ubk`uU9d^|JT) z_eey^N-9tN@KkyV{l0R}aX zr_Q0tyA#DtWMc84>wt50L(k_Qp7u*>dNhq^5*^F88aW zJ)Csvwi$_BJPwESaB)$m)Fj#I_ox;Sk+8gQXW`i~$}!6=^gGeT@y2j-n-~KK8mOZI zrtZY0_eS~I!!(&LlJ7LBwDMK+4=|~`_z4b58hE}TjnMs%(TXuPC>N>?SRDOR$ zLlBPN@1(-ExtF)ieJEy6mw9+ba>`ixq2`LZ3&ok!4E_M8C8OXDfO)D1kCL(>YGF?EWl$$l03$__4TB0(5)*%s-qyU^4`MziIF`K`7%1IQoBt#0>CW|uh zdxsK}1F6Q_7@J~mG(P2r5fpw3V~(X)q7-}oN&Lv0#0a1PL>EE=6|1b@o?F?NIQTPJ|9L8ybXP@BH&+Vmhs>Ki z1z*v<3z>H-YBq)}gBRe26Ve!l3j9zF6Y{zVP2X48w<@SXjr?vH_cfALxc%c*0^kwt zh{@~Y(`9&YHz+07MR>Co;RU}Y3tCHW6U=HWw4{*@RQ3&!t?xf?_@(mm9C&rAFg!=L zjZnK#0tj^3y$@;iYfK*QY1FV0A^5@#;F1tV#zc z4tlJ%=JBDn6kn4HI6J8`iPv}vf}~2?QxdGA`A(`+pNx(BPxQ#XL4C&v98GA@!2F!l_au>{cvVZ697KLQI@Bio({TO|Fz4lz})_9aD>fU!}Zz zWK8#bn~&}KL{}vRR$QC)=TE`9NpL^fCIR#Pm2U7%wksPEbCD9pz)X_lp7WWGMzai@ zu(;0Z089jc;hR2f2K0x@`8rt@Y`aTRso5-wCoF+QYL`p;G=U+^jhPIuiJe?tDYnY7kND|B}i0w1S*9 ziJ?Oe{NLokG@x2XWB2mdGKl5ZxcceLF84pW;1r&SZiRVFtkq_c0?@@o^3_$?>85s2 z5Y6Isl)`qwY+{9-vb`Z<>laZjOhs`^^?{4uy8vn0xA-Qik4zs| z6myo|`$Um1D80w$ZB~I;558IiM@tZX;WlxrqE{5vB`HjoI3zCC9j09Tu_6H6vL};J zVu_}{^i$FFqH8G`F5@_T5?%Ep#^-L{Qj+;`0 zrY`%7M@O=nW)$@mrLJrxKDUSF$K{0?`9^bv*}lJSx+BRx;t(!WX&dePXI_lZ%6E-6%2#T`4x{PQ?O~XntM|(JM>{; zENAR76yQOL$A(vsWDuj0q+UpAO4hf-Xz&e!%)PAS%tvk$I^vRWiA)2P5!)&6!_k(& zD#3}F$t5Ct=!O5L4-gI6!dz7vLv_}F$BmE5Ok#AR#6xcP3|X+6ItvoENQroNnNu4N zB+=L{IynuAqTw{PayZz^#Jb1qF9Kg=9)`rKIC{3P*MdnSqp>QpX^Lf+6R!KYElR!k zIqfOnU!<&$B+R^tmR8n2CmgrCRs18|B!;um6k}uv9#_u{%0-LL8%vQDV>W|Z&G{p^ zolftiihg3Y=icYkPGY05kj{Lrby|xc58W%PctfJXW)`(6;XNIpK+3<~*4pEesGD1e zQP;Hk@>De%?8b`Mqp;nU*CZD^na>rU*`XJzI<4Adv*o(G?klqs_$Aa$cpw-^yo-y< z<<_XYh$GSC`5ZHrKmYH69f!u)J60UqL&dYQFbeJC-CDKD>9FE%IWjj1i0rt1P- zx~otuJ@c>gG-sT}>B&{Dor}W!jeB-0*Ez6^v;P*QmqE4W*Zz%ktI6bW>58bb9bt}Dh9qx)Ys&!iySJW6SY(b*Ugmk+W>iHk28}Ah> zYRr`LAVrwBo#MUnT)J+XR=cEUn}|;m1DR>5S3rV#J&(yQVR7WCfErRrTIt%rbMK-? z5$%THK;63+RxaofKR;x##|4Y}^6K=rJS0xNQ1egQ>|fszw3ZC{j|V^&LG>*r)7bD! z3}T7wFiXC_405Aaw5OJk}!Lhu5t3|2eN2cpKB-0p;Q{9fZhnPg(!Xl6oiVV?+msEFWL zOOYUx+6ZT`+fV~Y#s~hsPkZuLTP^8hF-5L>x74_GK$=tdY2@gDNOvuCqlfl6A&5Hl z-~HPA8k68hh~y|{jc(#*PaI{Z&Qbi{gH25 z|GM5>BKc?4oVio1!eL)G>OlcqIN|T74SC-&vh?DkLWKi`?JrS}Z>vdcLc)&3kGhO0 zm2MH@N26t0tNCk+6GghvVhc#(?%wEq8C=gR*?~B~%#%NFIg7S7&V?IffD5yY&@XaW zUT;3Hxnjv$887QVttJzWif(Zh|GLe%X@R^<2R*mgswd5>+tD@=FDY7rTAyk9E`GSo zB3Y5)WDC~ckiM$}{%d2tZ9#+(R@)B;BggTob-6pb2dLVE=qU-i?=KiZA!2PF|>{djpn6cc>A;XkU7^ww03NBr5=$AGr(= zM~W@7&YrZqbKiR_?D24=X*T~1Za5{>*%lppx?*`Kl-BXFak|^K>m=}ypH}8j^MQG$)BkK3{p+ku*J^No&v9;<{-l&N zN;XA|KKOPlcMG(rhVD(*YPJA~|LNP}%&OTy?PCqa>6b-7{) z3FdA>0kR_+O6Ts~#Zd*^GkBROS$bNH=c}s-y6NQ91e(C=Zyv6Fn59zoK2 z^%*5sseAtk#E3(UmF;w`6FGVQV|eZ9anmBC3~x<6ejf&^ZCp&h-e?Xi=WnA?C!283 z=Tc4If7}#SJN~g-9Zz7fZ0V@RIy$ju(l5|h#4v?l={%O*RP{+Uv=e}<=^x*w*S7uU zhEk?EG~vJR?^_s~9hmmf$NQH^98gzYD^Qm~i22)Pw)xv})=JgD;$3SU!Ld5EZoiJ! z9PLsKFpgucA+u?zd64H;6Xx!8;4R>X(aT0$UX>kBPHu108cpQaU6>YvYr~td`n+0< z=VmcA`4C<0jK;i*O*Kc@OUF17em4HHq(3|DezW2S(Koe=_qpM}L6l71{uGE+gD?c> zr9uU?QmoSYVC25pldZ|Kl88~D{%~R@9aIohO?%WR>%#SUFEAkv6O!+=jE+%{*0<_P z9XOPk>apYOZ80hBD+LO%dZ~u(Vx4r6s7`*$l~Rd7KCNvltK8Xsk_qrSL2a|0yIxE& z_%8y&Tu`}yO8pochX8`+z3&B`sqp(u?{@GFi|Rdt_l_YgXKyA#yRJxLWyuWHi_3ChGLsEpBywQ7zfDv zm&CL4wHHf~e&=xAg~Q9S@jBS%Vd!>qW#G>vJi!FnuZ<^2YE)9-o}_FsyMq6Vt#vE> zx_#S3@M-2gS^cLUlwUBz99}$dbsUsrc|{p7x*4CEX?;SsP{9`>m;`+H2X0BE-%o-D za(sa{FUYU3=S_dA7S>afTJlV0qX$%om%y`x&M3kQH*bz4fp<(KWgf0F`=-y^|Kn4# zz}@8Q!e9Pigw0z82RpyjEKTuTPZx9;DzcU!SOS}r zW6teP>X{XhBp`|0IH&O)g=AP=8hqpenSPlvL`7c(=9_^rIv~vOFwyI*zi94Zf9#etQTaVMS34XE+6G3H(sHB zFAcxJ%^=8q4;V>s+%M)4udqT==_KzwK3Hwo$)TSnE27$6+?(TSKFaUu=vK!j}f9qx2K;@s5ZW{Hd_&sZf}c&{JE7-#@TF2incgZBUs$k z0Xl{7+e~4e)<}czEKJ_GJm329Ac{^K0z?n0m|e5Zx1?vy=BN;0Xx~OpKcuX!hS~b% z_lIm4cXVP4ZifpFQx6`8!14mT|E9pDic8&3`*tr3)7Q)yHAAMdXcgj-V{D=C)P$dN z+=Dy;yWKP0IK~0P6;mx79KhagCyQ?C{r&m-hE6zq9{j(lZ*2c3^^J++f2JyRB;$43 z5&O>6UF?{{J;|a+i7eyK2nL)Iw1I#*M>soJljMMNe*GmK_3`$XiV;c1!*~^5t?Nds z>ec$D{plZw-uOKk2Y#ccKY#Dq<-cAZPiDKP-R(V*mrh4kLlF@F<&QAYj0Zy!F6O)jtV z9pwXWA0dCTi`;l<^HP3g@V{lgzKyTKZ{I)b{o*|J`PGG5(S@NI&ULUXB{rUqL zp)FveB@)=jp-16&NAC86dOL@Zki4pRDM6ze4<^8^9F! zkeisq|M+a_-m%=5f`1Bmg2ib^ojK_yZif~MSoTD&UxOaJ2Nx#z>Jf%WSy_|)PKN#O z{Gc?2vWeB`0dML#=QR#7>OU;Xb8W1>=yFFLg#-=Me2gi1pKZTIzrnzpb(W$i=8!YP zu(}iHYs7QcSnCH~UNlU@@{)U(=W8GTw~R3f<_~iUkV!m}=5FDJfBbZE)@J=8{{iGr z8Dsrq$l)DR4WIFk>^#@u4}$dz_M`Np%nU$2H+=4e8oOe`EkoRG+5qGfAvh(t2uZ&T%C~Q1QLZ;d? z!7Omhg%A<4?$-~a6UAONDhI8)Ls_bA!S(K`0zx$asP#Qa<`kuuL}V-mp{A2$P(7K~ z(d(r!Q&fxKhb59tMLm8`%7X)pjt{<_l{JZ^#Bs|E&RFDEJdbK5$0_rg#6_+dt+V#c zvYVl^h=p8y@qlc&$qciN08B9)3{iR^F9+UZl(i4JXx4I*8MP*DswT+;sPv`>m1aRu z>U*OWW9uN*Zf65Bih35-k!J)9LxxGr7AVSgGR4|NpB{<(=I||`UQu2(G`@5 z)cKjS^-}@xe*if0xEt|N7mRha8?(nIwAQ;0OG}pStLvC4p(8vtSmj!b&5&BAFfuIx zLwY+Z^DtY81cr%CgCwq%2Kz*>a6x>{k~EXHtaw@_^VC9M($8xqZ48It%bie^W8>j; z;V9e}m@@H{>8j?Kq}k|- zhtY=yQ>Mc@CFcyt%$=n2-k{B=-D26pt4&rl$%d4TWEk)_b zcWa?Y;~^}2M80{fndRv6rm_3NjNY8dl267Xt~HlwE$665md5&XjQeyM-*C1_x6l|Re=i~kv>jz;MLh{dbP?jj3JxskiyqH}^0sI3ExGiI+e@4_B zCa%4Mt;S15sfq*w^`s z#AcS<4iTZr4`|^W0?=RxZ>?8E#3gCSf%)FASm+64;sR_2vvdW53smcAk!k#+9O7}R zY(@^Xi#+kFoK^CiT$HZXr>^3OUtbV+e=Ts6HiAognSLeOibL&n5!iSF&0zoQ$U4KW zwvJQ8dEornEZZ?^+H@Uy;joKrRLTygaV)jwsn}WiOu5GfX%TGlQpYHLeR z>f(~87@jmroa+Yi@is<4or8J*NNfu6PKVOZ!TeE|@mReNe;6@)kO&W(<^U`P>8xgl--^Xk z3*T&qh;aq`SyQ`$%%T!un(}wV8O6Gqt+|5)ecDLZ6SWx^tVpH*#Qu@O?IG1L)g^va zhw>nf;bTx1k5?^7me%RKtPy? z!_+}MSPPLF2&mJ%7Y7A3ZWYz`t5t2Dg=7cUR!^owm-?jzzGjH#kvZ+Amw@$ zdEO<8(zL?*UE@8pj`glOUSzFvs>(kL8|u<6Tw&x=r8Hi3-M{45kMaemFzCL2rqY?+f8`6BC& z)(E=nxc~JnuBJn%jfV!L>Uf>1Ex=e^f)*)Nj>mTRlvP5L0`~(oz5R)sD#`XQ1DZ42 zYLhIg;sZb-4dqp?QbkZDJA+lq%r7bTbuM;h5VV2%*$^L4=PYWmUx$OZ(ToDrUB?TX zYFYXK8wIU%8r2QeYCHKXS{1~v?E69*n&>!U9Tur}yK%Z>l`qtPj1kkh025I+8LXGB zQ$b&}TD&k$&Mb*DeWP$x(6(fuY^rr1?F3wZ0~PvA)5d4*JTXw*Ga|TF>f#C2DhGBJ z*@$Sn&y{_wY*)~n4TDDzTj*m z;T9!OqvYvE-R{UPPy5R9ZAiQaIyTjHR*O0rdYzU|zNb&g`}5t>g@-~X#G(I(xd5nY z%*jw2RJ4sX=mx=U!lINMnO08~^%xpwFKbN7LB; z2GJ*u?B|$Lgtkj9INbHjW5G!i{l8VTP>`J*ulQZw(5AiTOq(Ljd8a$g)~I~Pbs#io5%yiyJHKA!7XS4D4D-AX;R3S<+ ze&=-otAnfRUDmf5t3-5twv3ri(uz%8Hia{KY?26pPXAtlSj+(GKNb%@tMR(q){9Ho zd!RrGJ}yQzuDd2=T@7Q?s8! ztAj4=v~A` z`mCsS)a^??oP=Sv+4{p)YF~|*rWZzbvsZ&(*6vxri*9|*`=b;h0a+P*r%yMz5HEY_)~tN6lBIFn}XWtMiG zdu$-th#&GPuJ-g)IDyODTN0>6+^m&5FcMLHYfm}KiNL6(QCO0yr7t;8MXb7a4$`Mb zdDlxQ9)QPQD*n2Bk+V^@RaTmBpq*U~iF2!NM*(~N*9mU%8vU1P489d{#@nV%lF^ep zcHFIPcl^1~XL{ zcAV`F@l-_=ZgP_4g>B(;F%y}+HUUSy)$5M0i4We8Z1thwxlmd?oU8(8%y+FVOi zqr1VtbQj7bi()sshd^YkuVl4F`^QB_ZD9A+alt55GyHkgVJ)tvOnGKFgC@rT;`RtA z%(T=2YgOQ9vNkN)*CNpn0AuX4R0v${8^@vSJ5n<2Mg_kTAVot-+CPdKFcmeXjc ziHOGig3qQVHm22KcuUU&11=4XKDUAurn*#BFNDy%l%K4Bu;TdUtgS{I9j;P^d|HZJ(MeQqtB3~6Iq@S z`-Mdx^RF^pO<$XM<9N|C_`~MMwnKJV$;+YW-o0w_{cG%2lnZK{poljuTQ?N?w1J+@ zgz_0ef_A@*1F4YRJ6*LP|Xzh*K~%g8nhKwB{HAbxLRE@c?+U*Me2Ri z$~^xZJbp%&P&KesadM~oo5AA3-~r%ataQ~nBEDX+g&x4gXFS}TsP+=?J62A>oLR`< z+x>M!{|gE}Auss9=^vc`7yW~kfr0gZq>pqZ<4M__{{L2~YIwRZIB`dev?~Gu=F6-D zyi3NK;A$z7!N35y2=$HBy=I(c7 zxBT~1zyB`ZzxVTHcsIW<{Xx!tjw1TyW*C5bPzHOqPcLPo1l0d?_pmNb_#`ic@%nTW z?%$tG!A7j`nRg`pFP$VWB9Oq zG_CNH-xvO2&Q>m1jK4H`4I6X89bF+iS;!DemGWkqPgf$uk(U47cz9V<^W@X_^wkfX z{tN9b{)j*5w`authh4}nx&NU*<>E8qk)=oI?nvlr+#m3%)>qF!b=CKJg!G`rKiW6c zp0Fml%Oq*P#Mv)r$yPp~pjDnIUs&J3bjN%TNXgF|7|{&8-uvLZ&pFz@TUj2TUz*=& zXSYN(Ts^?%?|*}SpvUgNzZMup4L|#Nb+)@$Ki2+W4;)JnlVpLL7v~B`gwE|kTs$QY zkxy@6*l)Prk|&d?qv5b!5{PTrWPrhttk+(mE@UeOreJ#dZii3)ZpI^UdEx(8FQ zc-F}`lhF%!Vyx5zmBbWOV-F3;JK#z+zH=l;iHyAStzw+(Z=q zQ`BejE-ixmkrFz+|4A+w0uG(<8AE*Psj~`HWTT02_f@i6QgCs!!3>VbVjQ}$$C{>d zoQYM#McX1lMXI%0T|{R`C}iQA3R$RX&~R2k_28xsj(p@4!_%I#(vp9hKPb>frr}RuP_A+i!<#BiqdT zau10rP|*|;Gev}FnW#DMY)SVL^q(O5*nx69)r3i&@;5f5bwb*@OcSgsn-?aVV`e@L z0dMvA5A1HPaK{*JqzTHes@yENEApC>r)i~NQ&r3M0C~yS8N;g5s5fYBS|Zao;CA?j zcvW6J7IA+m!c~NYC13yu#1MpN`NbSO20ZMOD7g%W1p*a}%c6&Y?wZB|sbu7g8H>wp zIA)bCk)ar-l1rk6&}xPP)NEqZRxPNn4Oz>oa7qpZE}*An0N8OdlECm{K9y3i6^1g3 zamsqG`-Mxp#uUar^}jh%{WNBg6FACdnhd7U=9VCSWS~TLB{aTZ8V~gUkuymwg`?rb zNI02-1VA*?h)05N@AJ)%q}zcdr2R2)X1n8Rq&3#o_zIMWB`D;ZU>Ra*A;_g~2k zlS>@yBNfHQe zKpsuQOvpmssz_zEL}n z?;IORd7pd29--6|hs=~*kM+>b0BV1E?I@e7p4Cnba$Ejt(oB5omm?cLSu!zD`LI15E_BM&;^Wgr zJp5#X-Kg=9^XzYrdvl8S$iNP>&9<2lnF&X*Sx3HLrHLRhFP@-gMU+n=CeuNp%tR=( zQ-l9NWl7j7f(Yk9fwe^_&oH>JI1PHFdWc@~R!5Tkhmu=bd0cTDRh0RTqg`V$70q^B z!jmTBFtsdCJi-7D9$7ri9PF^3sT)cv>(vdx;@}dXwLGE-Zy)}X!gB(peWB{!$nBp^ zyW~vwYko^Gl46V8JC&#mV|m%DRCVAP%v!iJ9NLuzBi{`5>>oTA7P_VkHh|Zsri7cN zY#_f8pjAU{K7<9y%mis{^}_u~@H_ca)A{RqDeLWR68gB;;<#2-gI38g1p~7Ue|3rz z=a}6mKg+c^nd@xh9k0!7wBWwmK<@K+)>%AHSM#5fs^!S;ikx^0(iICBxy4+;2KbU2 zoXpS(8s8YXV0Kfm#6>~fF-svGs^8yMRTZBTnZ0#1d}Jl4sFJ2R z>`Zo1-N-enCLwo~G!qEAYxb>YudnH%3Jm;5AUcO5pW7yFQ+i1xz62>9ph~$T)U9Hl z1n2_M#^j_&$xe)H1d(u!ot6|4i+|7)HiO*f!PJ4-#)$& z1WImK;QlLah&0Ts$PlYv#zPH5%5yEbvh$rBLFW?^86^TcWJr-&0v+{FX%Y%$4JP zv{nwdt)(JrJkn*Y#RASTIBm{%Q_1t8R{y*#P=>5tS^5!W7Ne(s zdLHGG$-9$4MZ$KkXL#?hJElpCnc^eiIMecCUA2|ObAGZk6F=gqJuR?2J^PJH;#K`B zaWl41&xv5K*#~#n`ihSvIaKjXW8(vo*Kx@{46)jfXTS}1Kab+~Qhbju=&jNutnRx7 zw-K3JJr0k?Hx+CYBUy5n!LJIK9QX-SWQXb3!Sb0eJ(HR_MpSj@i>1z8qLyYJIUd1a(MFvJ4i=&WI{p59mcErTSs zBaR|F-r%3!#2WGI0Quxey!v*+>c|Sv{h39Vt(<4?cA5P;xznp4#Smg>o*jr)NTYh& zXDUai2}F2wo|4RKvW@EJQIc_5BS~{+Y2{$_y{CCIg1rm<$u;#?2b~rWibJeK`OU(i z$P<))V*SGEL$cVcHHY$U;m!Wb+LluC9Y!@`9)(V7W(F!N29G4*YtHz%kjq8JT05%g z2}QGW!|_#v%O+Ut15StgoTnJb4$k5i%d@0bTuJQ?ECXL^`P#w1DdA)X?&(($!>Pna z*kIkVW|c^64KEmRnxR!AQhlP;8CB=x4;7SsDq&3vR5NO$uc1Ki+Zi_7VK7%_$NXSI zvxA;>2zRf$x_)tWuKH9bLcxoR=@))oRMH+sH{y31svWa3wb>Uu1$4PP=xmCpZfdRv zGhmyO;H^((_uhwxvXv~)vHPi0x~bKn^t!nRx*WgQutzgCvvW4BKi)HTTgNI<6*gK{ zHoBm>JOniIFV!TmSWLj}Z;IFbP>)+8Ebz9eXLBtiM5toht5ix=xzmyw|BLwM*6>wV zcPY^b!D0OcF8Ub-*>@m;BDAMkBGaBlEt#dFZVDHTx+=%`0dB%&PE-cHwB@v zAiE4<8iHFn(9|wkbMbupOWflgH?BauZ%B!rX!5?=g`O^5(1BQVm1PAdQ_`X-m#o_& zSI+dWCCy+CbNd}CoJU4s|B70=fryVqp?tzvFw5bzY~Fk#mwL(dS!dM{RC0f0WR_>x z7(S3Hr@0<8i!U(aN0IHx2UUxxCVjmupbqMKJTzI2)%1SuX^Oi!*xf9K((cSVEYj|! zygz$e7((`4I>AS>`nZuM6xB%+VS!czJDvzx?R{J74y&AJ_z2n>eVb zR?BGOrKvjuG?Dyirdj)yU7vtir-W@;J>Z>e5bVUlm8apK50|9%@+5oxYULNU!9vb@PBi446x4BA{bL}P`ikXbG|W=A zU``wR!0A0bTnp7GlTEtB)_&Grw2p=RqT@WSRra*n#Ty^i&Sa1j`h=#=l*}taPaNhZ zFwb*%w=U{Ws|E_^{7R)>N^`_LrPa5T6yhu2L(NdaPGNo2QL!thrGUKg;EbiBymXAD zY|n{LMQ^!#MJj>UpT^+G+PrrJY$=v?9vvh#xhO3QFT2Pc$#w>OhL@9fyMaId)!4y3 zeG_8#kfBGJm#r}nP74-#8DTiU(B^Z~a&CGW$ih#p{x|_$+w`gM785*wIrKm9-1*6k zvy&^ul|Q48EyG4L4>f)ju_|6nss_6Vn7agBck@S9{l^>*?_>l~j34Stw99DD+GCjl z(ec-7$ZA@{c_#(RhP--<(?gBkiv&>~m4d46(ly6Za94bQ#Hed4ZsZBd;!yE6sH}aW zgb;vbO;=jA7V&=6yV+&i0AsUs{b!l?U%s}m)OBr#h>Gz))~;Q7CkI9sxq5J=Rs(J7 zNzXDr$uG6ei9~HbMnMWYeM1P77+@}HO*@I(#Lxokx2$n%32srq0PK5h;?Q8xOn9l( z>2jrLS@6FNC+X!*byL93q9Sl!)ra{g*tCLoVX;-WF8g0`_pK6b=S?iXqhR5^s{cbX zEnaQhA2@b-8!setX7mow<=iA9kI9xFJK5{YCzibiy%BkYd}mO&CYs= z(q=!kI865QUcIY_F|lUZaYr6xzlb$ekiU`N-u=(^-shtW1(`E#;;!;JW;}%v-0Rq# zLFgx@_d~a{{M%!3x;CvQR-ZM)bZ-9%sh+vUt;?>yS38lItImr#0rwNymPyb$ zK$vVicWK#Yw%F>2HOy)9LK?PfWg8Eg*zfh=hX3c{7kI(xmF$1f^jMkxPnsSJ%m2{y zu61SON!XowKh<08cf+Shi7{ZDc9+9}pMU`dGz?5IHE0c9W?BKjpi8slzitr8lk+6a zOn>U`7wT6Gkp>i@($>rwiJ)=!`_nmJZSx_&C6G` zzX)MJp=o$`F&w;=IHl=SOqcAMKm@vMcvT{My*55KG8x3 zgTKa?Xy4a;qJFjTe@SucBPWceRoHD-g$#0La})N)#%;bc(#DTrQSiHePYoAPrda1 z6VHk@TP--6-4KV<$gfRVV9oC3qQAFTj{V1wqm42&N;^O56@`tEXtQn4Uys~&jB3F5 z@-oje75Qj;BJ)_S9DkQB$mk?GH17X<1txCMZmJbhDch+W?trDJ=C(SC_StX?=6C)(G_D=;KSZcpLv{U)lLvu>Z4;!DL zteCyzYS$PKdpGY>CDvs{6YaY|gZvDpf7o?p@tXepe|{wtvR#|ozfP<5b=sWt5;hvE z^LsSGp)Kt56yiQk8bcpR=AKF|jj63yHrBYa5b-^p;SW#UO>6Cw>{J!5)qN6+B=LGv zdp1@**E{93dC}xI6tw=n>@B?YfJSGRhF#Qgq}7=)>L-moO=)tzZaS*=@6Vog@%v8* zHF1mpQ-~J}Ca|KQ<~(;G##pk~Q&a5ewd5!F2PeVuhNZD*J&oxsE@iMVcHPG8OsNMc z+e{Ytx*0d>Rw(Dlc}7|tK}S70?t1_2uxqW~vPd7NGX9--9Gs~h>|;4EyDpR)e-8}F z4LV3TD4aSn8J~O^#Du-!(WxOFf~^;+LEDEwDn3>f4ro-8!0I+GKE(Z|$nIwUYONYy z$vn?of^=_<;v>nq5ihqXXOYoS(a1Ox@JtBCA zt+!Dp&@EU{y<;kMHGQSzH&Y$p%-9y3;r!$B#?o!dqLYlFrT46MY2IPoMHF;==k3af zzGCMqhZPDPnM=X$=M?2_>}thDuXha&jjWxMS&;TcgSCzU23w=pn&T5%6Ec?Owb!+B z(V5!K%}ULMCx*oHsMF5Cr=R@%FtkK8Torri%n{d+wHB?Xn6Fp0p2B?n`1HW732&I| z#%H=b5uqZM;$Twd&d~rC;U>&Qo4Fx=3Y_f-Z0f5pIW$Vd zW6_VBZNl7A(SP;Dd2?|#Q53PKN#y?R-^J*B+2n2PEp{N3^2JXF1 zG}ueg&0~ueWnGGsSK8IHor++27nOe#eb^O&%27W(ap>W!Oa3GSlS3+t%83PnwQ}fB z?6kw9mpf+!bzy=8Dg;x^)n5XE(K2SN?YP6EuL-hKO6G4RbR+y}q@;OSv=Z9hwzbP^ zgPt%Uy$3j!jBC()xmRN2Kn0+AE*MLX#?(isi;|0@<&F?X`fk?u^NE2*1KD4PeYO2j zLCS=mU=&4FI}BY&%%2TfVGfxru8&|doWyz|I}Mu;HBa4;JM05Sy=mNCK-1Dn=vg=Y zO6DvJZDo6V%{{ERa3yaL4km2KJ_v?+F-&qB4loIj~Sp`L@+bUB~)epf^BE!eJL!;dvn6IiPg7=0LfmzBP}aab&jR4 zo!38+j$y6LdwOQ6j3oA^94tn8V${}HvO%njYP`x-LPj1WbK0#T*(oaW6s>$3X*DFr zP!I;MDOSI)HLHhU@HJl_@4cu9%4-E~s#=I)aLi`p!WgWjaR|qgbz}~g97P+`B0t?> z+!;d%{+41pIAd&KpR)1~$*VCCs!bmLv`S+Z0^)&Yiea=QdA%L4z(pg~hzTD-~dpAF{M}w5HoNVUOpN$t_3RXiHf< z0#=$b1`QXDXK%&vw)p#?RB4&aGf;uw&zLT@7Cqmo`Om}Ou+O+Km zU%c`;;_cNnRgDJ>O#{>6ZnoqU zN~L5TlWnG;jObXAG?#For+u-c1f2K0mUQEA$cF!H|JV7df)hDM4W0LEk{Uf&QGaRW zFCYjG$rsZ_;;M9dxSJW^i`PQ@h@Er9-F~9d9>x2`2o2G7&fO{p7uVWH*40w8ml)iV z>i*nFKOm}S*=FX2W?Ci_H}lI&oJJ5mb+c8`sYZqa3vyWJ@fKPVLVr%ERgysRTJO`1 z*T@K?rBdQv@ri&h~HM< z-Jqb-bU^!#BPDt0`!GnK!c<~ZCEJ<91L1@McA5Vg_vxMVnZ!w4mnoi^&8YTHReZu9 z@;5#($2+C~V_7>f;8T63o9`Y?8va*&S-Y|o2&)np-teHW*K#Y`a_M(OI*+{A1apTm z#TIMFH$G+*h-4fm%364?f7~Xowxc&pvIl-?oqmgW3?P@`x0LFH_*E zZP8A`7KN;1Sr9z_#IgS0!=pkahu)yQatIISDgznAVxKu3BRn;@s-Oa`sG9=HN@urs zhfU#d)t^BJ5+vxo?^PurA1g_L7VPxpVqJy1kEiY1SU)!-x!-ZVl>fv_b$D(Ca-N-d z6};v8%%94Of&tKIe&&@a85kRUI`#AUL~`YuCZyb&Qs-fk`z4L< zpZS7g+Xx;0S8L42`Z{SEP^<_ua0CHV3zgwJzd8?8OmN=n3sxD8O9neu!z{_Nn2y=z zBB(2Njy&g+-ve2W?kgbk|Mdod@doFks4W;b(jLu$C)PtB7r=>Ei<0C?`|agQp#0G3 zicoJQ#wXxidq}3530Ng{L4YA|^a z*B&sSOtZtBd}|P?B6ybhpgV>{7a}m)l=&-g3dgP?Dn&xt=R3uGb*}U@Qw0#J?;Hn> z-^nU-q95F;%9T{L&%Q@>ZE=+*4@V_V(}CA*ss#czd@eQiejbu;R8p~3*lqsY%_=2lFZ~MJ@bh4|%Ifv%SQiAxY~})@A01Yuh>}Ur28=iNzJv zM8jl8`mu;C7O7Is3gB7YFUS;DlKPXHY~1Q<)jRa)70O}dNf_62vBAA(nxyeT?+Ab! zz<#rJE_vSk7e}H=wTzEi?LYmo>EA%AZwpH4uGdxPskEmSjcj-cLL6;$q2GgY5`NV1 zN`pwb!pY%-RdsOmgnm!Quh_F#JnaPxH4F_r5M`w~SJqWATqbs>02*f6$d@X;;leDX zLXbMi&mTaX&>`tzJGniZmRHhozTNDKX+d_-9BNrLhJDPSLvUo)dacaFwvux66f;h- zG(gYY9PnI5yFoTeuy?SyolV=iCPfVbGm@L_2q>kpdj(9DIznqVR=e$QawnU4w0cOr zQ(>(uzPIFS*v-r@$Q!e0*XSa<;XIbwVb(9nJ*4crfd9wXIW}hkZQDAw?WEJOZKq?~ zwr$(C)3N!+wr$(ClhbuSoqKA3*uP*^tu<>^&1cRrMtBfRdUGe!%I%X&=vsA*Ant_p zd*YZ6E-3c`O+CJ6f7-u)?_I~Jrse$8t#O(=&8;G*0%?5c9hD;4f1Z=WSVcWH)izL= zwXSxc+2ygpxqv%Pe-XM5)iB1s)>o(a#85VwB;Zz-mTMK~pRJ>b2)m%~mOf$tnR&7H3M4LHlHbR6{x@RW=A>OuPp zXpWMX!|HuNQs5uTb#v022?>Vbo7ys*2DlYI>r{ms+fDMw*8-(}3=WBd`wIuUS51F6 z8V**W1UYD&wY2=EyI3^p@O!gAG4SR&xyd15Tft6Acv}&Lt74eg1@5cFlKR>S`>TP$ zK^J?W$p6Mfcc%}kJM&^yn}d7R6a6IderMhl_PhDBX14u74WcQ?!O+XcgKO4Irb@Q* zAqFPwLC}uXqQVrn6NO@~k6Ig*%gj=NYEOEi#!_&K@f)1Md%ru-#4-uoLXGsjL-;0r z+LfmCLiI?y#|{6*O=MZ;BqtsS`yDoMpPJnMwnGvhtp%e4u{T9i!4$MAmu^pF`4O|2n1hOYIZ_8Zxhv zksWA=dY-xXrox-EzB1^X}zd9Eh^-^wvjjBIvO zT7 zQjYEwG_KF*Sl7WDAm zwM4oxkPcSB28~Uy-CV`iGHh}SBn`~Oyc!~!jTRBqg)UK@s7J{O=~*ke0sF>Z3es^V z8m*IAA0$V`~ewdHgQ@;FH6xfd|Gp^+# zFTTU~$bDCCMEW)P8ZF-2y6%_T1-GrfU!CbpcpVkNH?s-~UQj|FJ_DkdLCZzO4>!zv zlx6czzePFMA(sfE9V;F?sksT$UgJrfTj-y0XUH7YX2`e>Kzs74j87z$-;`A!7W+i? zV*WbbwNlE?t31q1Hz7&aHxpQD;86~l8QTW)M3ikyAG&zik=>Q7L+Y#jnz$4q5wTZ` zru#f;-6g|lfjm;1*E!PeaO>W2te!h&kk6dC9+5N`yjWe@rTMlMpHgk(?-O87)!h7W z&|@4$_7d;O!UUTQQ&9!@-{N)##c#Ws;?}E!FcM-mtT8v?k_kfom@FU62m3)uPe*K& z!f)^v8!dlSvl-4=MxJ~E`wJ5eC=3`M+Jm2oP*1lt*qOy=Tp)2Jf6-WB^c9DXHLXg* z6U~_@YQzGMfr{U;?Bv}5Jvp)4Uaa*3)^q+Gsm!oCogl$jAqa9A0B^@4y72QXwW2JX zx`$kyufgk5;VC7%*>yoYx{xbc0prqU^BwWV%=4~Xf7ZK#HCMYxZ3NBf@v_tGQF06_ zu_do{d}>kFay4VoGY{hOAxf(D{P-g`qy{ld8Elb;458{JtP8 z^Hiuflv~2k<{oukeL#pQVKceM5&i)dfc_jKn+0tEUt8BQz)C(5BJyR2WaFTtIf#S; zhiHnWYM_f}DJVO9yRXtPR9XntvWC!-kk41tgqqL-{T?ZzM8 z)Xi-2t3u|_)~~WcHz6q5c(1~6%~8nO9t+3ev!yDl{(<6`(G!nW@!|Wdw;MHtqX&`| z;^g40%&c#))d-8Jju(YC1v;s@qENGkKs}$Jcl&i~dMlUGQR!LS_mhFNUGHAnNvbpt8Wv0)e0B>78q3&P`6Q z+iC;Mcii2?Dig#bydcIGuX^@m>@IN~Aem+lON%M;8<&=}zbRc>x_km1s-iavaJtuyw zKb1T8AM9z3&wSeOYPb97J*q3P6`xnP@QM!aGd(Qi^gO_4bp=ixTiEjMqzY-Q9^Zzo z_}bIq4xZw96)kU6Jz?bC6$A6p$8w}UxEO!w&Fm2^#9tZUR^oSrzhDqWw6@{dqw{)M zquczCR#bIEu?MW*6L$0tqAlzeZ)6gXW04w2@_g=i;2pn+{&k<@zjgV&_%a|v8gXn0 z9+skN%^v(wa!qO{q-XNvig+i{o^RBhiUzi~9B<6u7DfOgL}5fZM70es`CwP`R`(jB z%F5`X=OZ-e#UCQ>cAvANfN7W+Feq9DnIg1 z-lDgkw4k|HX-Brv4M$ZxCK037xf+fJB_#MX4O1l*wMPqcyY_nI6UZxumYkpWvFImm~Hl*Fhywhe4nIl){3BmUi zSp+V8XBKXAnuG(~lV+>h559%g^us(XS)%5S<|tI##9cubr{T9;xrkLSBbV)umdnM< z59AHr+_kgC3M?99-l4dzs5YxfbqFb1Sr9bRnCA|BK~EZhzS(}8NP|*p6G{n&KFEo% zbK>!qsEG4U(iZ1#8*OBBtf(V%K`xdzFOfyxbL&;IU{J_c=*}tcg1OWncK#rb=Z_OJ zk<=Yu<}8hewAaD;7*K&>gQ)d%^x~CsxcbRsr&+Yq%$-=ZBuEN1E^v_#gWCSN7@BIh z)71UhRRxF72x^W(k&TRC-U;B&4q>G{lGE!+G<2B<6G|lWQ#$VK4Jq|Br_(G-S=!L2 z;pd91DH8e&!Ib(W&>WT!SX`LQ*tw}$gGJ@*c%L;meoFFeyDXo!dPv2psgxbLM$8VW z1XtTM`zZw-s@QW+l%)xYQ3Z`7UV$Hp!311~Pf&*ftbi9UU>N|M1;se7fT4^GdT+!@ zA2phg$h^jfj|#{(D+^bFjSt^}ZlF_yKKP~0Xd7bj39r5FmBP}#d&}UJAeQWmKgW>V zlW_GXe*P#3+~S1dZS^@5DbwrpFt$6c$RX7}j`;8ERYS9LuVj3@>sD42xM3^DoqJs7=zSgu1E*5jJ`EX&KelHs zoET64L{o(a#wlqd`f(vZ4v!r?SSI}H$8F;(vjIDjl?P7A48!MK_G#83OCl#MJWX#+x#0#A7)Bj58nVr&3bu(`{*gi zTl7co$JfY)`L8@Z&AH^nY6-6pIMr7zRnLva!VV4CF!kqBx!ua7giQae;mUh(us57j^f0WdU}#Nqi5DGqCQIfc+=Jv2jixBLQdF()RIHMti@5sm2ZvQd)VM4(8)?d!na5w3yXWqF;8AzKgeN+%aqf{3w?-<|2n zaS6CUx*Wp`1Qf%K-64x#-=4x{|&5}xtbEv47F7i zY&5Lj0Yw#K_qgO5RI)Y7+4GkS74DzQ%Jq1;;%W0UjW=eVOMwpoHC$-Xp^O7Eg}_4@ z!6W;`-;6KBcnt6~AW$*7$W2Q_m_EEu*}(Wr1bwtSoY!j)p~_Ps-RlL5vs~#LOr{+) zwXqH85{|9LJc-|LIZMo(x!4x4QGZ|q_tzGbF)k~yLeOIRl|dB6Rov7}EHQ|iFzQo! zr6?gB=LutyH#3QHHs!;T1APW^DeJUtK zct#9j0nW*3k%*3WQYee#1HN6Gr0)y}46iv%wQcX#uIih~iyf6`3zCFnC^akzk0 zV?Z4Y%Bhy=o9--p72o6|SuHs{bU8-?L_DdY7uJJRdcx}_q@JJl$0fG=C|0KS!1-h?ubM8`6@AcuY zW`-zBZ2(I(dMEA!SR?(wn{@nf7hQTtRZdpQm3%~Cg9`O+;L;@q|KZxh)-`5TQDD+X58hbI9T0)|n=-*3xRcF$SOS2;wg(4h^o-%NQ zB@RX8F9NsCrfSz<-?UDLTlFj$tw~Jgm#9b?g&Zm`U;d)W-GUWqyoTj1F*!MxHNy~E zf$#A?PMbK_I7ct2x711mx-#{0fK#9iO6yFsV>>MGvXnKc&BdLodcz_|Xh#KKsWBTy z?C`mC+};kfl9Od&-mE+BZswMOOV}f;>U`}tlAzDgOO>2~`vgsyxVAkxHDgVU=4@Kt zYf1nXi6MoICKs6yrE|9NxQ<`_tXciEsh61{H531AkJeeU znQ0um4C}(!PE=bsfTEt@Y_^dhR^EJsw<{{XFuXUvWp+kQn?ED8oSbMiYk@bwUaAbb z#+@)7M$jCj8vj`J9BqU0KW_HDvcW&wAD29?4l`eMQIy&B%`_w@ccwYGBnjk`|ECNb zqgywm3`*V9OFL&e&JEgxZm5?ZP))hHo6#5!4P032(De1qB=;4JpC$F({mNE^`UgS5 zZTr+k!_Fy+dqMoQOl>(LT6l})wHK@<4_AWo1nk8;pMA6CjIoDTLm-aJThQU&D)e3> z8l6?hb(k3QNnh&?xbI48NMoAjJU4lnnw?Vuxg2G$6(4IYXOxhR6e#>9po&fQ5m%N; zf?>tyJ|+)xFqTT6)g2^6e_v9HTRbyJaycP(;*2)J^Y_4;F3tj&Dw8>efF(A(SU9eJ z;~Mt)*ch87TZ^)>lG0j2x~7%8W$#ky*}iXyqC{5-rb9c!=zwumQ**@wyKR)| zc|@?01gp2p&yxdq`~1bel0s9?Ks%ZwiZUVrIXl| z_G?E;xDP#h`jX7l#`yw+C69){4e7CM{s|bI>Kh2gCF}WIh;LfMiuJ0iXDEeea&^^F z1>76A+C+9#TsP&daYjpV_(RTS6x4DFu^r{^ilo01!piU6XYmX zPR8kBQo&;Q$hdg@saVn;=W^u_S-kEe)k_oM`1wltm3c>eT5MaY5OuZwI#iupT^LU5 z!wd4embacUHzJ|)H*fpR;)7G>YK1etlZl5 zxYB9O{%S=ZS9<0n0r!$3hH9rwPxpLU8ntPuh;qOULKb^SEVv#wAzK#GDg)Wf6Nl0V zVwt>n2f(x;`0?LmCd-0Ks3*x)dTq)1P({ur+NO~32)QM?aXOo&u)mbS!x%G(a+s01 zTo`$$miF!&5J@D&h*`07-PLFC#e)yeN`#4;H|9_@IEe~G{l#sG^=3qbi&j%U^&`X| z7jK8TQNHT%WzQi$L{!H${bs8!g^^Oltp0knZFj`?EW7B^wMO&&Ann=6mr0rTeFF2W zd}eRufS-yGZie-=lz2>EUTp0Pa|~>($f5nPdawEpTeN%6yfXRC@=*C6{pyCxA_z#l zw?71ckG{@oM?+hB%7KZ&A%asT;pX>j`-4j=o;qBFK0C1Rp?05stFJ?EpzQM&x!V_% z@04FWF(0eGr(iB{<~NZe6#kQ>ildbkZOF_+X9)wbEf~t<;*G-mw70 zl|orh+!{yf*Fk-<5G9FwpiP#Re#aJ~3x8rKKQ9jP0zGuRfkv-~jmXDj@rz>iW2};@ zL5guHjMpW87HL0gI@i6bptgSfseb;(DDtm4RqzAsmLHinoi9HAv~~@A$;LO_;<{FL zGN`J}EU;KL6YA2E;@V4Xvs7PjjUfhMf4hhuIz0N1>^ zU158C4dyCUtOhm{;oEUkh|yl7omvMOVhSyhe^R=5W^wjm!}ay2c;E^N=PzV!T->Z- zvAG%;PQ0SMFsAi9+S6t55ubxIJCunt1$$rj_3el?0<jS{h#2r-KY51~Uiy&8CZpZ3@>uDE9W zv$Dt`boqE@|AE*=JW2mgSc2of!4hoD9RHh2gsAk{qA|jCJ)rNgd8M;78<7i|AczCd zF@pi(;>p5pVMl`jKRx<#WF5>ZNS0!fh9A5qYt!xg2->s!_RvrKtq*ovU-LI}J{;{G zkU-?!B;$-72SdQ7c`gT{Fa#hKZybI-hyfH}(+i^l?MYSS{7;~~(1LQeB3HkH-BqcT z5xb?0**MiYa{i5fXy;u?ys}xZ4dFtS4&bujAm8hUCs@#DS+mIk(PtP~jz{j221s(T zom9ckhX#T4Fb=jrJNBdU|121i{K-ooZbcr$ghJCosVx6m*!hAk8_4HQpt zcy&FM2lj*pA7`a5vKTaOKVU(@?3il{tD#hcX$|Cm?oGN!?M3IVFfTZBWRXAOT6#=_ z{Z%ED7&*;AD^WxWttC;85w&npQ_e~v+%&W7yiR845LxmsYOv9_zG43;w7`vxS*v;p z?L<;9Vsc(;W7_`O60|BSy{-J=+hPgQ{A7eLIZ^E??6C?2U%=Si>oot|*k3l|LM_WcE;e#q7|0%?pN^kY}Es?A12oC~G6Dc8g^lLK%+g|6K{IKg4rm)zkh zQC8GkU#`^S$<}I7JSgrQY_X)Lwls7-+ zKB>^UWgUK!&v||iNqjl{&dPO1sYq;Z%ZmCAk<*8}v)=Y6c3S)%g_<3#4}ef%uG-j z!3kyaYJUC!y6yx;KkDLkaSK55@`9O&Uk^`SOfoob;wG0;hHVp=`4aJaz%i&2Ct({nrFg7syj~fAvw=nZD-7G6l;?Uv18gH5nv=P#>=IOHGr#QSY8+Au==Ig5iBUeOlGzN%xqcV^b z1yCc$NCnTf6s1L80N14|uFR?q6>VSk&Lz;%>iJI4C zh&rGCewzEEy(Ycw(2h=o-P#XThc)gcCNQRBuw_B^o((_4voTq~Z-+R_r%?VY8JrukGX0{Y^K z#Ezqf@x_6LS3ib*mJex?*^$+-4Dd)9Rm`Xq>-WM@rCK-JP|_SXEg32AsB9JmB#s4_ z$|9$RyPC219axi`lPfKr@M|PVDQs2a-j);(isVz7noLzd!yu}>)-oe?LdA`O!OUzp zU&BU1hP+@3sL+0HZ^K50*#6mGD|D^xC57Shbd!6ZL&W{uW~hIZRr$PLMFQPRN<`ii zrX0@C6>qv@J4XJ=Dx9v@4g!L=#GRNbCPAr)Fp(A%Z)3a^@%hbd5TxJ~&)_J88&1t# zPHh9(1Usk;;efR4&t!LeN})8*{O%in8pl0e(p8=L_+~(Qsct23MP`)YB5tS;B{U9N znbSG@CpN3UgAiIxwY=ghk5KL15PA@NDX{Nyo%x{B$_}LKXuUBXn#7(hTZN?jZGtUq z2!+mQDe$G8=69=V|L?X$HHNpakw(wgI*fF|(#qb$Ou=OSFs$7|1-W6yzO@u5FhO#6 zp9!(Qb>*MRb^u|>AuPn@*8_DiY}jix{p9su3`~&zXCE%DjcyzUIP>B=2W;bTm)cJ9 z=jFw*2|<}bW?!jBNs3v6vV1ne?(idMxiLPLz}bb%=3B`~@xSjbZ}e0HvE?b4O*hRC zC*4SRPF%Y}8bI(`H^zXl%*4K^pe@_p=y)Wu=a<^KITQux_6Q@Ta`Bd%pD_jVmb{+8 zD!ueG_@NkimSlZM#<6*V$X?AX`s91Oa{e|32Z8tUOw5;$|Ieln5Y! z<-dgS^K$K!92ff%BE%P7Zi;;s6zf;2^z17Zr^CN+HO`Rw<0A5#hC%6b?()mlvhH`< zc{T(1qDBa#!&55E2|6{p=p(mfINoC=P66yqe(0%ZfIcYB-)%%l7~-gj3NOw0v@J!s zP2g$`UY!~jUE9Tp6Sko%0G`X_g;mXcX%5L)dfixp>a;d=@#xEr#67xz{RWL*Lpxci zZ@jM%Az1c+a{whkVw@OcMU4-YJFPyPt^y~NTlAZe#b9pl&wltj{x1ZM)OUYp15|rNe?&vp_VY!URJ$#pByF>#un}9;Ss3Q8 zxmxD~&*fy~5Qfy@ouZdI7*#Jenjw-M+@X$Bn^pH@MTFaN|Gla5kcv+siWM8!+CPr0P*6wavHXiax_+kF`leoKf+8q40D)rBYd zTIV4;Wnw$sbF%J3TNAWnOTl&xYba*emaUjW3y*DOZZkSma_c}kAGqwCg zGgQCa{oKd;n&;Mld$c7e&0W$~WMh@ZN{toH;(lKsUMuM@3PQ$h2-KHkT;>?|!R?xh zNEnGexCW|aw*r%AXzcZ6%XFvS=&m)4y#U(OJh zycrx3s+Phg9640n&+tzOX7w+6hr#MGUgJd0nxEdKhYs%cJ-SLr4`1_A<=_Kqky_^< zU+YwWLXHsOqW!H;g3PQ~!QaiZ-?1l`AVyJ8a)yF49YEk#9g7wx-QSh91Rj7D^IEcm zj<@E-%RhEd=;p1Y)qWCFVK{}baxCfY(CU%5wwJm^{zTJ@=}Dnuwn!DD!pb~(2%_kf zwAUUID?4UH4mTHu029FaOXu)xympyt8;TQ%Md*Q6uZ@BkU~DY+=R!UuHm zSbZBkSg~v~hh!9Kb>8M2NL7Fg4+JC}{CxQo1q^9ALsY-krp-Jag*Gy6xa7*?+&l{b>Y51Q$W5sCiYT~xt%7EXlcf~ zv71c2(%Mf(wxonIG$EwuEEQ?*N3a<_#_p1e;^snEst~4s2sxK~=~>@~y?uRC+c*Xf zR&xT{0mOfJa-9{ohB=lSmEC-3CAnoq5(k_Lig&HNYzBuhiHtSl)n3YJ5D0AVZ1T+G-?*}^w3)|M0Pj_}fi#M5p=`R4BB_q>9#;2RZZ8VXA{PVp|Zl=|_W->*~0)_HTw< z2ltXZf%q|DGVX&TRjTG}xrsufiVGl&u9LG(wQ{|ZzJY&)YQxF2&YHd2P$ zui95jjcWTQ6Go1~2pkbb*wy15UPfo279L?Y{*+3Dhz$r~_H?Cf=d{_Gk89RSgSP<= zTP16&tx-b-elapjI|L~rT;QEMbv%&pma(XGuOzrZ0J-Tw&aj>&|0S=6+#ru=qhor znzLVN;zo=*?9=DT>ir!1(U!9U{!?Gd{@?VaEdNL3xAZSI5bysPms`tf;D?%`?@W6l z0`IT3fg>XUyCM+SEJp_5IWvAfD0!plO*mA5`Xu1xH&%;oC% zGf=s?{!$$yVD-228LqLX#=@I$TE-0}K*LdDL%pVOia@YM_e zUShuonZp|RlAzQJXnOI}cEtkoSNO}~+l7;dN&)ZlxwWK z*Y74T4p=t4)xz=@v^M2?ZJ-a9>`o z-K7p|11eEzC0@(^eOD9|1!G0X%Xe6=_2#Z9I?wKoOODsmCyYGglub^R#TMKQ*&I5 zLgME2N!gD@OX`MrgD$39t7|+-8o-ukI> zR;r(1{iocR@pB9vGVwahnDJ;jA!>|mnAXNSRWpCwtuSX0qq=rA&QXe2O%>|^MApj8 zbtM)*aQQBYrX&v%CG2^#hXY|M`{A}AYgAYZelVd=;^v8D$0MVYyk(Xcsz#N{FPIV| zL*kBBz=>Y{WcL<1sZz=*e437v*;=ZJ;0HRMm<0?ha#q$In$N)h!;O0Dv0r?|Nk>%q zcl7-ALWI%fScHFf=nd@OHCRO5jGb6N;;wRFml4-4#^;B3av7k|VCOYn7kK_XDZx90@gA&P0f;28Edau4WDtlv;zp00^$DnFIQff7t4)YydHs^J~+ zxSXT;otE45oJS)|LIEgcV+$$YxoU;;XukxeUhOW;@Rs9hWs?;z*V)bYsuIsd{aPM5 zNnBpEbUWpOz;zoose*5TCw#tmhSliE9diOtXZ{k2axek84a|SvpQ!K`iTcZ{$P8bi z=4f5uiRj8FD?7wloz@DLLwq^SC+aV94ReBsoU5f%Z89yTk$DHJQ+~P&(`6}#H}Ibc zr8zj{mI^kGdVgv~NK5PiRi=J5DDMc&1_(G>1aTt_YLqd3Smcx{ey^4ufb9V04;tpn zWX8k}gcxn7-NM9GkHs?dV*~GzeLR?Ed?8xePBw*oL%mM0)<{=B~SKKxbyBts(&B2Fo?Vg%J8N0(e!0C>FV)h9rx!U%Bpy!IjYF>i-SI{^2Na0 zEf3wSfM|KGnTmE)T)mF)o@hle8wCmvEXBU(_Yo+C^Jejscws<=S3r1e=30}PwA}Qw zHFiQL7uwWrdl`x;lfBv3w#3nu{$I`H-pjQ1= zszo&BpWoc;8%|31xP!5%3Y%L_f4M)&{6J4S=_n`H=u+3~OqkYA zRGEwg;k?X>o^A>|^bPYH3ruT3jd)%IKrjztg`2^UgUnjTh+eWy1@#69hc>WuLOYQ6Svih(%$R^s1Pw1F_n06rtShx5fERyu9* zBZPkkCMvXrr5v1Qi&|=&;NPMUOVfI48BkBT8FrAQoisnKZJ61r2-^9SY-NqZjjL>T zNoC#-W)2;gwJ{A#WN4K=^mYFLh+Qz?rZMfav{GEAGV@dg36Q8ROrraTdWRzemZ%X} zWT0_5rrkUw$Gmgb3z{$*^Y529UM-87Y+!9gOi1ZOc}sR}l!wkp7pCO~7?LEK)NH2* ztLct*g}R}}PwOKKQF$k>ILTpb%3SU_!?17&>7?r^t-yuU^;`N%lG~O`EVIXUCRrLB zj~H&4yi`l1Wl&#+lOpE0Vz07Z3Kb5`1%tYim;YVgvy<7t8T{dqhsSwwWd*^cK+@*F z9NUN-q=4HtrvntdF)cVjslNEq5$DF**i4%ypRu&9DFJc$w^+NXwma;OJp{q2Fn>$b3V&!v=@ou z0t*45D70F;xj@rzjTNm!{A*m09D-hNedt6ZPW^)l$f)uU9fV@zXyfFw2%pCI9o|U7 zwYXQZ*k8k_aI-ia1)%9w7Pna*PyXm!i~TM{+cm0iQFi}{b_z1HH~f^X;Wc*$%$7?s z9h+rTxh0G;=nRDi1U(aZq;3ZrBlQlt95^Xyn~>-HTMlZ-y{?OvTji-AO0qhs5z-IG zNuJvWZan3)BvKt<`F2k$fm1nY2>kfv!D86H}zi|9;M>fy;}-(}KA=!?`CVK#;s zo5Ds%glVXJym6ZslKXF=6vgDH@9fz@8}f}-V4t5QPu+Sv_WOg4B8iDLl6mwr1p}N> zEKuPaVCPz>Hw)Du?LuWwjuqbNdEuVC9Iw5WBa22eI7IG)+52?%JF3W5jPg7Rqf_5ofb9R)kC30dN;gob(JLMXB#wW&6lug=uJat`C z1ycca5NG?Bk9y+(7eO7V9(~_?6}DC|^!NK<=N2Y~#74&0yw}c{-Z@Cki!{4hN_$8@ zRLl-{Im6ET(_AfRBPq)F`WN|jdT(XsiS*pE=v+Ab4!hB3Jlg(cx=-;46GG!SiU{YG zbQ{;K8|D073$u1EGUYRr3k5C#1;QC=(;r$BlQUe*NqZ0#9crmiI>Y3uB;1zq4gnL# zRrI*jXs$j;5u9HJvxOE-sfUwnotNgN22S3IfSzKdR;<#MiRw;+j-k?za|;hFSg5N zxT22YIOdlibc}p(^y|YIOOOXopN8D`6BvrtAvWbup^tTZ=w}PmI>>oFG0|!!LjcCd zhH%hv!#q{}LK{GUF)SmIKGHBun8J8DC3L^J&y1TFI+Jua<%XAq!h=lAS`W)+?+*Zt zz?%Ej?d<4uHmHk<`_Kx4OO{sb5?@n8wr1V$sN}?DZmhpQ6{fa_|8yyc?U<_7k5V-i zsxsFTo)px^FVn@T-ar1+n#)?qe*kQ)ampwM;C=YTC5h?ny7Dh60z0angNSe+H>5RI52^#+YcXn=yX^L z37sZOMzH0Gh(y(nf!|ueNFBsy|Kg3%5qhPCj$$DchQ!kX_*-HdGfnD%ZJ!*d! zGfbvm;o-sb{{{9!Ulqj8>9`|23upGgoKKj_eEtlTJ&fe5Se#e2LHN?+i8{ah!(aP> zkbmwFgLvobWb7;(DiK1b@@fjLU3Ipkxf~c{j|@4|KZul%;hyIf+l`CAn+p1riJ@4| zx>8z_Dk#yvYFs?bt(PoE`&AQ-12PPOMGP@iJhwf^4SuIzkz|5-t#`rtV2l|aiCFjQ zFh|yN9#hKx7m6>JH5UG-?O?D42Iq7-tyVh0zh2~*ELRx zW1Qz?|3dUc^+yzUW+$D ztZ)TCI~dT9{D;YSf=j&8jEA)lZwuqQM~=Im*>@0jRvI=2%uA}WZ2f6EuVZa>hUew4?1tYOz-c0UU|@1(3X#hwV2rkaPGZpsn95ODNxXIh}FAPA`s%VJU`-cw9htZgNNbo z3DQeeSvxK9vV&PpHj^GFU>&K`Yp{L&!+CsVJ>~blF)tK`LF=uCO#Rd*F?7xiwmVdm zXZ=xry3~*y-KJY=ygT#%T@S?2YJ4h zqv$trw=xbD>%A}JFN;&mgs4bJ4Bos*L z)oK1e#;t#pnqYPnlOr9Pqj*Q&)M2=~R?m(1Q!bEKuE#8y&MfD4{w?-)Q(JMc2^(GA z(c@z8A$^4qvfVSrRP>O)UajZ)e33Rq?2X;;R?9gbQ>lhkiBYY_dn@@0zjXv&SYi2Y zf5?=$Kkf^&)##2N4ekM3%mb$-4Y|oz?o)wJa&QYNZ~JM{hKgQ7{uix%+elGNm~1ui}Y?$onEv3f$>Q9=E53KuNvYlPIS6S70?oCagd_?w>2wh#5rH=SQk zxA*t+eI-4hJAF#a`H;>ok8ZvHSU{s&Tfs&%VAJp8d!{x;s1&UujM^&M?p>kV;QcqX zpC;w2R_pg}(C+RPakHF2WV*jZ0)FJ<9gc!y8VOZuN1S+&Ql2pOo;u5#u7h_$Kh#e z$y$%6EIEuXt5tE%eJ(VxVw$nf!vz6Pnb%;qH*_4)HL4Ee2yuF~YBmsgyq)KkPd08q z3A~^Z_MD!sPs1fDdo{9Dr60i~*l3xQT;8E*uj2@J%&c2*mUQ4R))a8c7@3`P_Qz1E zI8R;{n<8orZVfDp*zMtAy^-PduoVeJTrQ~}O2%kr8pBhwvecX4Dfb38xK32j#Eq<$ zG(zLW?S#8Dzp+1y$H|!BT{sy@jLX{HUH-)}JX%{iUn56|X*(yp?9k&CG6_j9+D*q( zD5q%)Q69e2qFw?_Y|UAYsv*#>X|&_b@(mZUk+xZZxc2j}8Auwlawhw?AS|#cNrv`B&i!lUd`vQzgE7rzb zm6^KxDw`*^xQA>I>}9-z^k-)^J5$&&T7lT}{#L=%G54x2BVz5AsUSjOuV(;>?Fm|o zwf2LU&V||mfA1T$6C#l+38j_WfQ>k&Y)j3^HFfdW9Ky8CyS0JFolT+V9qaBf9xU@D z5*Ua2jeOJ%_K^%vbCX+DUL6lnrg{vhVFSA54h9$ukGO;JYRz3(_T9xq;huv;JB79b zK}3oLvI@S4kE-fw?9Bc&CU|WB7S?NxuoKAI__SDx*-3shG^Lq5sO0fls{=n-DUK_c zzlkJ@#DX3lth{wSug`1`)+DJ%l|9G_Lip!VV{;c5x1I?J`f3l3iSCNMT-VC0XZkT> zsAiuW-gIb#?iccDYAv!Ycy=~rSyo`RD~(Uli8!B6L{2fDQq(|D$zj#7e#^4z6K>Xv ziyB`R$y)Xk%f7!{uc*vvinNlWe#@Q_Z8blwF;kRsp!^_`}_ zqfk6Z(o=>0)<*1_|M5Vc(rGRIT-`WZ>q^a1XwiKoJ&k32Jhnl ztL{qokV(7i&6v>7jb86NAAdxZuJvc zI=Y((*?@zgbnGozMMs_$L#BEg&G0@JfZHMqw{h8TBJ*Og#efN_bX(fYP6ysy5H;^# zfYv&zFS2tlSGZnT89N8YMW=M8g!lQ)fHFO1r5Nby|GMz`8#y!v+lp7h!;;9(yVs-m z48*~QiZX6YA-81-AxP>Bssv-JIFUqZQM#df*i?h3(Vam=`Ai&?G%{GU#xGdDk>CnN3$A9 z5+>Xni$$24817q)>Q zUR22{NF3oF@Gn*F?YaMlv~z0C1Z=u>l8J5Gww;M>Yhv5BZQFQa+nLz5ZF|o?_^S3- z^&Y%c`w!fQcXzK|y)OGfwkRZ`&|)(%R8OcivRicHDGtI;Ohr0_-3f3t9&O?TJ>`}U zc3XH7ux`a@igU3Ca<1#=$>14jAnoh^fRvG`!Z`+-a*L3H_Hq8fGjjLZl(n-+f){BC z_&LPXg#D5www&Pu+8*OLtqDjZpMX0g^kF;U>A|e+t&U-3m^EFY-+~v-d3Edcd(6;} z17A+fz21YNHH7hmrm*2XgoOIHg;paqr)20u&0@T?kfLHoH^RKuT8|%Zp5va4nH|Q0 zIgUem4&!(FGh)0WxWu`RZe{dPHx*3Ga%^*sD}wz$6I_i+PhtZW^F>znSwpUFXCyefwsa9f)+SRva?XSZpaIVncfqQr#XVK1)k2Dn9>oQxx~*Tw-o?zr20HMehGUJ>sjFZlaxKsqLK_ny}-eY68`DulV* zlP;mIRq1^dTn+Z`lnwTlTNA&->D>`)Z1*mHb&9Li=RPb+7dLt!6?dDc;KIynNzb0a zJBenPDA#Y}p|ZwTX8OALyH*!SQ3SYruVHKR4P#tDXRJwJ!PAgy4|3reo0b`7B4uCE zq$@*=lXgzJ7roBAym61}8F1YkBS+BH`oaMoWYh~Sm6V9|kL6VF7)Ww5``4m6RWtLH`aDBIXPEa~IM$~eapUpLBUWSm#~PKAHYT8;Pa;e)9e zyy#LcEY7@?t{0O$O5dC*Kyd%Z*Ec2u!o_ z0FL+qGS>ITGh&AzC@!Pb#)3$dz_7x7#X%!_7$b~#h4ucqge`&PJnj0As$3(CjfbhI zvvr?AI^{%aVW&bHbEeu^#gBeM+) zea%~nG-{c&jHd4G2jsS@u_IH(PGccS!^)QUZki)CpHK5ge?z)E0x#eJFe&x?@nvFm z5-IReTWJYmfxN!&SsCDX6f;sG&wttIZe({uL6uIY6gfR>osTWGYaeO~ruzHOuWyW9 z+MOsxYJWB&1k~7O-Y;i;_IvA~`+O37Ef4hSB`sTo=F)A-ovyMY_W4i@V^c`Y zAK^Ep+mhIFq?FyP4N?CRIe=0Tutdy?q9sata+@Wi)lRy1Y2A9!4!suCWebK^Zly?Ss=A%99o(dc0nA>qZ~KMnT$$8jo?Y4&HK%^&T&_jeX!k9 z15DZUl6jsg#6>v|ViG_Z=hNRL^;PC+vbUIA#aB3fb#2HVItBLO{JKTWYDotHSSo_= zemB4aaMj5P3|9JhBv+W-wgfdpNK)Z7IH3sUURJYfeXI%QMxQn|=Ui2~;|b%&eI)#S zB^)1_$pp`P~W1x(4T|RXN zV_^%*zgq(5G5owt0bJ8bpNa|?IQ`zUW4%MErFqu)i*JA-dGj8zEJ@xkw4LIAxSP^XD)J7fqeGi|#D-2@|-a)1C%YL^gVFf-;-@RUKyJ!Qi7xT5Apbs?W#(Ree z0ot+O^K{7NAB47SdXyour=o=cTKHIEqOuS+Q-iI=D61u5$f2_NeMlGE?ANM8>_JNG z;6^`pn(UR4b>{Sb^+T0qn%WoQG`RI7bY|-LD7H(=qyiNOZ_B-qxTOx+f-nG`8t$4y zJQzLZOEJ#%+BniZuFd2hqA*{pCh7?s5{C2bNfCHbQ^XH3taenX?dLlA;Wy>(-;@O? zf`>0r^j|Z!-W=9{OP6hXxF}sBs2?Eemj2l{VTefW^BL~^^=PkE({r!6@am-05JP58ZMh!7R_X=8HRP-J0xR&FHGhq_; zKJ=X2O4V_hVD;)Vw6U1GXZncu&4qzh#whO9WTNZqAFqJG_qHjG9Z&Q!YMi#5P&i`2L>ch^l)v z#fsay7ZKwHWB2zgB_d#+vvB8h8{{=Jov&!X1s<|IF`}wZ=@eE-sHs-6lS$f6I=|;B z$AB6jE`M_ep7V&6^Nvl^n9eyb#*{3hKni7*J?HfYBIe1aHYb+3YLh&*@U^X^QVUrIMB<8rdat4G#szyxDj^*4@0_$Z96vo3k!C2@u@L zkaWNEzS?dLbxANXdt0}%Xd1lg$)g(EU=w0%6cLePyJi|RpO5DOc!^ydlWsg~1{VD5 z+nVVy7~LixXo3dBP!KmEDDKtWV{7(jX_sRUf@rM_Q`21MpU-@~xZPbbsw}`$6m)6@ z?@Fv&H;+k6ED0pG!TYIMB`wt{?O!9F1?@r3!G*IsX7o;htuc`@&TZ&ex8mE-+LHKT z-To!E56w5VpjXrG(9ABbetN6T#M4PF#LQxP1QH&IM$) z`txjV)qZOgx576Ma4B;X*z^qV7Nvvq00c4NcS*MNPwiUn@BCfC_C~cjLX}U&MRd^_ zk@{oPV+Iw^xVUyj@0#b$5}|qx%l@wORFLdzjwSSC?4#mS2SiUq0QNABQSb4R2mC`g zPSRhR9uvZOlj3>AkI6f-*~h&f+n!7yiv|&hWS$e)BWAk2#!kI%kW@$a_$9)EnClx5 zKD=KaHz*f1zkzqF@6|fo5Uc@-pzLdhLRXxjzJa*{6xMR+cr=sHd zUK&2`A_C@FvQgDdcVnx?(e@@jQa2;NZeDS8Lk>qiw4hsX&8$+AamicsWzyr+rYO=z z@+71(?5j%v*YS|NKQI53panb~gr4xvDH}(^0pER7d%N9%peCYJSS(Y90A(6@X%GOEGYqo86}@qg4PyQMV^T4b zSgF#&17(WcQl&y2=}k&7Hb?-$Y5oQQ5q7Unui1QO%;arF5nY4u&mHuq4=@WTyM)X+~fLH|ZRChIkaEq5<@|53#YWO2ul zH%kx*9c{f26Z_{7&6*ZBR)X4}T-h~3zQI>4e23^KAxU1}wc$$)6%~uM25N72O&JwD zFHS_P2MY;eJ9lol6SsEcqY%s^W-}&_2r#qZ)XRqxg5Ev0A@KQ{z5;6o48R0IMZ)j# z%DyDAqQ$}(&yZpcPl;J`%>Oq!o&1S2KDkH|N$-Q4{ z8r0;Ux~$%=cwOSaq6h@0^v{KzM$Vo5RdB&xLl7U$@sx+A=C5g3|E!6=2&|VhA2( zRNF<4+2vk`f$-NIgTvDrX?W{9uT_xvHj-BnYj%}~$bIb`1sRv%S7gm(tC96^g zmTn!OfXOSClVAe^>xoB!VyF(Io-(*O#^6bh3?E)pQf}-GImHgDt%_g zT|{yvj;&TBWviH68Md4Q&w1-8==y2nr*v+&=li&#SAoSF4@j}$2x9MuPJ-8bPM@DY zFve9&=ro-_hm95mJ>&N(Rg((#5v>wPioj-4RsUYR7@XuR?qWHt(bl@JIb_qTj%ftk zuQ;BE<(VRDgTcb()W)@vz1z0LDE9wS75wUk;33{0G^w=p02CXE-~KdCDwb6au>wUHt>h#XsJE8Jy->m1;0W=v~%W8ewU?SpYWPHm(k zQx`OE-xuJ~2Dj^fIXr4p=&CEQ>{lIdKKGC@K(+Yd&vCqqujv7V1hDbI^t+ZUqP1Xz z)DBq*U_#Q1iLwPpE3d%YGO~i-bky`Qpn8gu3zbl`wbH1arb7M};4nU;{*yXL=zt+j#h=HuFLv?7djM@b ziwM2bC>CbJWlB|rppoax#KKplkf9! zLtj=z*{Niqc?9_-+y#1>L&9N+B>cZuXvjyUV6iS$#WT{i9g(k)2@Gl`Y4#sh>|<~8 zD}n9vIQRKdZ!+XWev7>q6w%R5)ic zBKO7}(OaKS1{X}?7h|)*1#+pAf`-nIGE0Xl17&`NNbxw_Iix9Eg1$j?W?GZTsOim zL_n0NTZ^6{wC)_AzjrDPy%ZEBFH5f$w?|1uC;T2AS-emobU0s!y7id>vAS8Lea?cQ zBN>Xx>F(b!MDP;&UQa}$YQ{?j zYFGhsu-DTRFsrB(&r6YuXC@?-s*uAp99uZN$&_5nQ6676h)Ru8N^8+fGMF}Jo zPu^*p!XR0E+stMhM86Z>Ls>EFCHrG_&u-dhy&g8vNo2_jgF!-U8 zV`Om`R>p6^CZ)~eYr2ffEM#tDgzk>vnJC^qAHBbfGmS+1`srY zA9fm9ijG{9RTC0o6#u}Su%pEg3nkaBe8P3ZX=Wi-*DdkZc4t|&XDwh6ohQcNu=Gb> zNcyr--7G2fd(m3S5(Y{a@YBQLVN~aeCCPnRI-T}@AKA99eSJKy`btM0##0n%jx*}G z2{#ZM4bf#}%+A*kY{QPdb7UQpmd%6H6ugOGX4$b}UQklN^I15R4NVP5>iCPDUUV-V zC$;F}D>*wuZ^fI0X6GOSzLg$r^{WV-bI@bnl&iI^OjM7T4q@faeDe=hKD;jc3WTED zdEsz}`kuRN2SXJ8XnTXUcyvlN8d63YS`#-%wC$I12RY~_ux4wBMh$6Voi6w^^K!wB zl4#7Fd+&Ng!!SkVhYb=N z+jfT0OBd(%8v{Xv{~|2|^13A+GcYsT2qO&p{E?ZLMKq{2A0lg%Tjb*n-J^xeMK%KMQ8zL!n~j+~t$k9Cr~Z@as77HO+6 zPIIu*%`rxl60Pf>VfnZw-B=mbb=_t#dC^oF90b&?m)YF;PD#g4ftt7y?TZzK$Vna?1_uN z0|cbFEs>>&8*CGD^J`U(!)SLhX(YGT_Xky)$ z6tpg_XZeeU5s}Nt5IQ*(SbZB%Krb>B*>M^i5cJ^9QQGy$g6wi=VG|ygZ`vcL*C{0ezqd7?6M?bRnLiD*46?w+vQ*D!E_1c z=Ior_nmKfQS)h;mO9w9ZlPgaO+YIwXcJ)ZmC0tc&Z=|9!x^49sWgvnB5xtGFOk_(^ zZ0u%B?l63EztoZjI~JD+rLGS>O1r<~S`on+C9OmiL(iZ~7nwseW}S%d54Kb$;c#Q) z`vzXW)27tKM?z)2tKO>Ss3#J8#>7^nvXK2<7<|O&rN9b^3)X3rfl#|7;8SHZ-^RG= zuT_%dw*ZFZMF-}X{}Q#rap=mb_sIC=AtNcp~0q@s3F+>63nKN}*kmpQ0)bgZl7w*}~$(>~3$j7$+c zv}e!U9WSLU9QiIJ)F(()O7q}g z$UebsU*}^S0O_ucr!o$sSw&HPNXa!MaSB7=kb|x9e_QILS&h@ATq-7TR2j$U`7ei- zHf5?b%w2*SMq`z+nRkJJV8UJzRUsgmHHibIzftC@m%F4m{z%00@z=Y})N+Z6lU-YF zsZeNgo1tB3Y&3JBvwQ&As2n#9)OV({=u|w+li9|JM`wFkn>sJGf1=T_!jIfi5ngx}j1?9|5yUDE@ z3%B!HTm~$(#nsqiDismR)AEI%PA0%jS%L!dLyN9i|Bz<=Zj!bqpT_CKTb_TeK$q2{ zFYy4wZC_a@T75^ZmLPC5YFduXj!$$(nlB?J^>dPb#DsJ=ae~V?f}T6PKwZCA>Nc`n zKi6)g$D2Y(kV6OHgGe+ z5}+yxa~1|kBZ{t}#O917^EE;!!($HC41?t;O8q326t8pDj!L06#5g4T1Kyw8xj~DO zm}*l_bUtd~ssLk&P{+Mm(>p)E3s?@zh}Yq!B;eSy<`af_Cv0m$hR5N}#W0?AE19GM zJswGSAh2@}{utQD%S3vy;Ca=SLrBk#fZ-KGV%Z`60aI6Q$~}S-4lxu_@)f`Rz5M17 zn;0E7n0ii&)VqZA_4H`*_XCjM0)W}gdRt?5tQO_aUUu-Go6c&$6 z65L701QtWQ`x)HVhmxT~& zc#FvvCm4GQay@vS!@u15zp*ID>nCMaS5cKAjf07Ey7Qlq7rk z)So;=^^8+^=p+^G0N#|MRIStXT%zZhrr&%U0XlRp>C147O*d-mbgR?446HEpE^JnG zd^f(kDa0j?Ezl=|Mw%-~7&wkSx&CZwXKbQ|mH-7dCqtJJ3k>$iNgUl!vB_l*i1er7 zDl0-Jx?{cGDxKRLc=`{Dy~ax)opHGs1tfpf@E-`4LnxwAhf$OPcz4RQ%@w-P^}mdRF8#>=$LpMZNKzx2(n?HCk>VLciRoWTP9r zQE!Gw3}VGEZT|ZTXP*a2P%{D^}smZYub zYSj$SM=I%L0GU**t#-^I)drm-Q!c9O%29M1d%nAJ!XVukf4)3?4Mk7UqPO{&Zt8N4 z@@V8Ncg-+rwcaA2mdCDI%+s@v;W5#Fjleh0g^gCTBSfv>4?L}Zo^-GCQo0*%E-W7B zz0kt;yLbMo;pz0$KS~tnGM#c-nYyLV7jEf(yGv<~!+Z_X z+PZ*7x1^>2ZPj|KS_ublNsIFOAuEBktpun`&b{{4%GWfDxC_ zQ%6PhP#x=F*<6$B3L4gQvVqeKS&;~_^SgD^AYSfEVi$0a;XTDlV@vrhhxu}ktE2T= z6X~c%ZA_MD8zZ_$=i4jcx8F>BV^{obp`Vs#C$*9Hz_cp$Uq{*~VRUKc7?}&Akk?2ua zGk}1gk-r@rsY;!Dag>(|O{WemwQ?ox{DZVIU}Z%3*ZAtQ-IwQ!s4RpHNbX{@Y z-o?%0r=7t(MBhB!c13yKeiW4NcGk>r{w)=XRJ@Voi`=K%(NE8oGq*`crmnoTN&-Fz zrJrf>Iy-!GPPJavxt@?wBh5gkSXO`4%E=zJXo}N8e%$+{IaFvmOVyHG$c^#YiiiRN z=8S_FhLHaHclUKmPtrJsW2JXh%MV(-w99Gh=X##N*7tYk4{%>+SNDIKKe_&!`ID8A z>wkq$P5nE*{h#@h1yU?xT99{9^(NZZzr7Vw*( zX)nu13Z}2E&NZVz78A;DVt&Bw%2Gh$0qB}`)@3M*5Pn-xZx3N}&!GWHj?j)5{$n@P z#~xV+y*fsKse(hJ{V0euNIOzu0Y?k zu&ktR+MUh%tu9CEHkGH<9zlxdROQz~jYoh?&a7Th)Re%qYbt2c`28$<_INi2a!f%7 zUg)rbmFBb`x_)pu$1YZ&zahGTtjVv~Sn+cLP%d65yJ+|_E(CP^MERf%Zu8_fdqdl( z-}zE93Lq7_>5PtqtuWq^Lx1PdZ8L6H?oGKA?~+Zif7@w$BAkbDklPSAJ9@B@Ry+3b z8ptI)s~nD(I*_QgvYO%vzsX4mN&w2|_^8hlp!79WnzX7Ke0f6#%oAy_dM%UOY?+xU zf!E6&Z~by&t%IQ|y|6UU(Vnc04c4yK$|qOz8=Kj3m^ZnpyAoovmv1yPW5k^b$Rx}? zok$DT{}lC2h?z`0Xl-K{KoXl;oU$!wtwRq&{|i!O%G35-(g9CipkP&B&n@qc-dfS4 zMH$&mxDU)XS{|=z?Y}Ep*WDArI3g+QAQ?RtCkB@x0t3-X+E}1FtBqFE`Z{8?6XjYL zf{%iVWfm++kqoOnLuvQDfOAkmsJRMjCEkkqZDAILgRfl^<7sjjp2y09H%82`&YT$7 zu^j%S$J{n6q?MF7rj?@VuBYX$OQHG(^f!{+@ucB&v4#4i?Vc20fl!v~A;FTMLj>iN zIWQ?ICOlpYV@m&pIIoL1*cx{>agoakJIWw1ibC|8 zQqR^S^@~PR^}`?~va%$g(~;#Zv?A@nFfZV3Vi0hi{}#=>n1@l>*pkJ z+rNF6ckh{YZ+B+ERd_2LHORkgdj^@a;T~~#aGR4`J0VyI##bu`DDaR(dBb;CuQ_KP zYUK8b=7A8S3%a)Tf8nUigT=C1{khqbqmndz#;4MRby_4GfioxN!K>%BGOkU-9-Z|sIi_#yCHs2`Ahc+{zmhrmLLE?uH!Ny{w6e7693cfN?})OzE@(ik zBh~K&=3vS+tf&_Wnr+)|ecbMN;`ZK=NGp*mKEL`iRcy5TePRv}XN1%vbP7~kE&wx^ z{wxl`9{xldMQWVV_%Jg7ZH!z;RgGUyE0cabMWvUxp5TU0Dq=(9f-}lvdgW?y9@w=D z?HspmbDv2`)Ez3+bKt249y1FxiEj@;G|n!uoiwZ_u{+gEPxsse1NzH<6{ZGBjft&ZQ8HUPg4?sMRbsegy&Ot8jay`O zw@@Ql$fO4_2{pqHPVJwq-d#J+4D`B0kKqm?m&ud2F zEQRhD^oheJw#~^Kw<`Kc6nPhA>58eh0Ga{BrD=Ie8q;-QstWx1;LAfgms3hy*M-q> zZDS040XHd2Oh)Zuta|Z_u!Addv%MFst) zH{Bv>b5v`fDv}6ia;RAE3TC?US5nY@P<$cih0q1OL9)Y zCLefrT$dkv5Wk=eAAEa-h_74gBHwX%fO3pMJjA!4SKDgO;H)|VbR!N&xQGO zr7&k0trE`pb>j&XyHQPF<-9w}MY?ARR-i%pOe;In@%#Kp%7F61;x_6qwv4$Y!K1|W zTJcQU-E-n4S+&~vmQq}fwG&Yp$lYoIDV-4r3s_@KwNsde{<-G9gHeb9U9oaU5)wut zum%dmj*Mc>-k=rsTNQs~0h2)ve#~sFDtDHY$?*|(CmVE-Qj3|>gz?OAYD9|_Y9*6J zik-NyHdVaGSuQyf7&8rF-jcs=mD_pc40X)Q9l8r7K}M$8`z_~``l4Fnkm0W52oqh} zLQ#zbTs=(8(MZ^3P73_)J_!OCkhaVKQUiVrD>E@o>Xc)c(pC#v50co*=GmYhzS(6R zF%bJIpLyn8s`Wsp13?s`c?AT9&;*MKe}%p(RsBqL6H_-AEpAeqK8IsTc{uk{vRG_J z1(Ooe_JFf45st!Uo@19&%*^CE7e%oW8_wGWZ*Ij~+nye85+Kol$IQZC&dtHae=gdh zUim#;Mpx(`XlfPyw_<1j)KrgP>+Fq14) z5L4|iqkk-EI(459p8MproaWON1LL*(a7E#nrHGztSTtfohm-L~*L&SOz!~47=5`Eb zL~#BFdFVO!?<)U>@?_INNH~T~_j)g8d;`$seej~* zU5mmrcya-u2-baNC$P{03}W;rmdEx~;*0GxL!7$N0s5YB4;#}Ct{SLZjh!s)HHcKd z_Nk|wtEX)x!2P7ZGH9O}H5EbF0@Mku7F5_apJX-$c3Q5~Gk_yS)A)r&f{@ny_LoDG z@WuwhwuFEXL4(Bh0Os%IQXR&B768r?@WP@{$*0qXUrrB09Y_Y4$^pPts{lAdJ50+7 zAC!I`Tfmaf#NbN zj^f~`C1vHZ%C*9ba!RfvT3J8VD=Vr z)&4K;q+EZYYL^QjGv;o?U0Kxgr+?b@M{3D}DC`PMHcM?Tnkwqvx;;3)dm2O&b7N+T~R1*7)6`7J%8B_jPo4 z_lz{Mk0kOj(oMzE490Ef`7rA&Hw$;mjDp8gQ{sH_?E0srr0~*dcIs%_v)F)YoZ(Rm z{Py^6RsAX#-@@XEQF8I@AWHJ7jQQ(isxn&6M z+;5V<;4?`f%Wtd3s!MspUbI zVR2Tji2}?_8<2dmF6buxVdK1V{o5@C2wli#@=OfyoE$*re`M9I^D0)=>9kitCCRg- zrAUcq8p`L^5u|TXEo)O{-X+ZJzK@T|oly2+BypO_gNHo=mBuIW6d*mq#CKKHV7if) z+0j(69kIJ>hF*M|__?=~)+gS2GVHqIovVd}2|}(8+xsI(D@NlG2{U2VUcQX%%_G&5 zUQOtMlBJ&q)aoFFF|`f0_4qvN!f4}wo;j5l#8~DFKhTHID48ZK2BVv&27{OP=+Wke z3?Z<9qy;b0* zvE;uM*nT$kw*=OWyk`j3A3HO-#7bxUZlIN&xX|H4oe3AxMy31d1wL5a^okcJcy4E^ zv|@r$6?>+RcFOTNGC77{FD+~69H_VDWf%soDz8sM;1}EOVbuYOv8m{-@UAG|)pnL4 zT;+O{(tC14=A#A7f|Wu+>@xXq8WOaa<|&T&g6>DlEni7Vg9RzaH@@h7l3C4@9@GJ| z>LKqkebS1nsT6feN7-^`fE%N-DmD7> ziFhRc*Nd@S<~K_j(4%~w?HuO zKyGi(*MX>&-_rW<#2VIwx}wzw$`@uw5!+TkoL1Ha8J36TY1s9g@|A5GsIvg4=9C+N zVCRVEZ?8>(P*ZiqOgesO2DtJ`?QYyrYv&c0e;&P=OvFt(n~mPl)KOloAD0j;HKsFd zLxV-uDcN6y-uIE5L@9jUhWzQ}K+0<#Z647WSBSO`+L3f)HO(H^Li@<8 z!%ukG19S!?Y$jOzmay7EytstDu`n1D8s6v(d=s!>e2uFa7ebWTm237=MF+V#lU&GQ z0*q~=rKU3!Ombf)n7fcP3CytG-Q`31V>+qSJN(l9!Z-}%)RJq_-aY==@{U@G!2frrA3stAoQ?#%pPkpt;z$Dvi9N3 zM7txB9$H#%wvbK@lfVlj55Jc_^1gf4i|bMG=YDS-{c(rM6m*oHTa&u)B$HIw_DsVb zE9{k;-fdzxxJ}vINj+?GG}o~{jC3|lE1yR~!30T4zdltu{W2C)rGa6=mhI|kT@ZRY zPDWMk>sIwfU8pe(&!Qtg%7LgKA;`^DXO|uqVG>t5#@ao5nK3&MRu;}yNpX&U65tic zvw@ZO(?}@2(Js5HR{fQwB2_>gVjhlUm;HobJsv+&7;{MOb4EX6$hM8`b$UJBm?RQk zJx=PTfyMq;HBM<5Q^dp@uS(Jw!xM)E$WPZW#%^c){6^E3j9RJ!o;K7iTMA{du4=a4 zNeK;LaoE#IGJ^`#2?2WQFtU9-WRW%p6vK>90M1(m877DTR&G`2B&Uh9$-NqKPMx^V zjztuzsLwQwP4DIkzs}-3?RU2Ys^cPdP3EDEc{=9fo_#hnzSeAvWrqcLB@63Pd#13+ z7QQ#QZ)gI}67%!|Q@d7y!_Ym?IppA7$Az_8wG5rh4d)1Viw?A_K@U zPKN}j;yvg(Y-{A&%PfKjF(wjqaDF>6?YU9JMog&CoGZc^zT2NtY&OOY&+~1KCt%Y& zZ2%fCM={FbW&r;DQIZEn4|vJxnF!vne)yE%!)zj(c&rPFr0qN?RqA1RKz=JqaG`o7 zix-Qgtm6bp>FC5zsKj%^3g$SBu7RN{gx}D|DpD6ve%_xDSzg}sGInVl#dX%gtzjO+ zZe8J1dxSM8ZRK*LkUP-)dn$|9rpYKx!mqaM1lWgElL&21LzQT=qLRIAWND* zO1~$n%4CxYfP6=CUV4)X^H><3e$PBzO2|CnvqXaqmc;Pr%B{6DY zMf=d?wLU$^h$S-wcbrIqshd*KsFvB?nADR4v4;`Q0Me@-G|RgP@3Bx_$R=gVx;c?e z?e08c6Gu3BzqVgtC?XI!iN5UH0$;8XwMB)sS}%2SE5Wrw2trTm8#t=WxU!WxUecY$ zBgDhG^In5E`!!U$80wqxSrLO#Y_54w&{aS{7Hj&ZI3b&}_jrdOD~N>-9gVU8Rjd<> z3WF?vWXif-Y9khJ5z2H5r@#F>PV&N_)mfJ0v#;R2LvhDqdYP@tddFa6#~!_+lMaMSTEQ-g=jIbdOVC#o2kWZoHrZT=Hg^;>e%bf*2i*3T%8xt2Kh5v{wtdH9pzLup zef4@W_-M$>kCZ|g)rXy-+iV$IIg5H%UBVH~o|eq&6fPwwXZB!U$1io4Zob;KO!dAPm%Lq0l!vru);S*jc0qAvM;ACdw#t zjc_&*wcDo^$vE3JE3(v09Nu34pbX0Ww1t9Ngz~LDN9;!%Fn-G```21p|6KEtlW10I z>@`O${ALhk`wz9>8zoXJ=6ES)1)AeD4p>-QK~};}-jsG`fMGVERk^3s>z9SL04hHK zAuJ~egbl4d7=Nc8xDto=I(q@SP50M~$T{Lb?L_5j1tj^J&MkQp69b#oZUn#L8YiuH zG6%Df=Io8ZU}2KMpOSSNF#Q2`2aDPdUM*4tha~B+cwmp;2I?!K*|9*-A*!=f^7vpm zCd{!?L3R{Wy|gfq5)EvGCVM%KaUk^`yk~+Y5z@kt1YU1(&tPsP)X49_*%_!LWNQ;E zZsQV!G0%esMekZqWrUz;!~?7bB8kT+qwMgv86ZENcvEenO=qjJfD;2q8UYJmm8n6DC@JsH)@@vBBo5cKY-1zI{rXmXCl7E-Vk?*pI{p$>n@*y z#!3BUW6JO52Tgnqq6LzVLj60*+Gi*^qV|EgITCy&p(cHI27(piay?tRGYf{}Sv_hg z?e=1m$-)ItHf)MU8cQoCA4T=aEyN*LO6KgbGid^^rn>6=xZIPJ7p~Ei%#vJ6Q7Eu> zM@OTgDp!c}HXWXg^jHvF%AEQ5tB2J~aBhUJpXCDzSXA%PrfKVA*7LJTms43=uv1h; z%=nC(Q`qtrnB1kd-)2sEy913uFO^O*Sd52n8En-HrEuBzfT}71(gUFh1>2%^Yf0daRSI)E)d)lStBLJvYT)$ zCp@Dz$9v_h^rQ7R-pZ%jz@8DwVjr&hg+F^j@IbPBT~=imlqu(&XxnmiOxtV?$9y*B zgoRS*Ta_;S8&ig-qJc-Xmy0eqM8PuT=#w3fA8k}$`SQrC=kuJnJZX8`q@^6@H2lZQ zS+H%~8mxH}Tg(4i$(EOZ2Vl!&P6Zwk6V(qZ7Ve~*S8kgCuI-87AWSXYUmIAF%rhn zGm`zQ;w%piILGp>Z^@mse}Ft8Oisog>We7w=V$Gy8d4sDDCx-U*ncQMx_DlQ&sdqn z^oCye(6QoXx#6jJjo()9qCt)=_C=}N1g13VqG)b+ z;XIuG6~>B%nUUlFg#ayS{Z9z8vu)L&f^q$8B!|_IASx+8)*Ml2N|5+P3fz#tPhq_dyJob7L77cl_isQ--B#tTBta5&kxH(kmpARykNf~}?i`_oSeH3maoR80vELMplCcJ^R^%8U&bC}xgD-cEG z5iaX5Q7YGI(+c~Vr@7XU--Dn=mP8=ti^XAP#aUoBB~v*&g}r6YXp*^+mVgqRZbkr6 zMYFQ9PP5!jxzYkIE|25 zv>j&CyS7^C_aPb7x)UmkwkpMt?yC2SuyGzc9kevR=O8zk$yr`6&$;`2q{z^8$>y<1CN3;!_9$7vXDGi!J7NgTQlqtX6yljZQHnb9^$<(L(RlpS1UdFvbL z|9R|y%u2=d!m`@PaJ;y(4zcKwqjQGGTTv;A)MmL3cD!W1SVG?92=AdOcaj2Cx8`kY zhOoM>D!|U!CBtAQXw{kn1+q?}5dvrqn!f3o;*KKNzGz7NStpp)CTMacM*&TD= zOKH&lfWX&W-Tb_w?))Yq7KXYgg#FjBBmQfDc!ouvc$U&Y>PJ;7IwzjW{b@!m+2a)= z(aWg2@AG>nkfP$>l`;9xD1kM5abj$1(Mn5!GE$GX4CiIF(kUF0`ni(LXfY1cNJg)= zqWy7k6oqVOO^0$qwmP0lcXVFW;FIXW!t#huhZ~wYSm#PH=vxzq2((7N=1q+d#|&m) z#eWnYHP`z+r@E<=z+)1rI^+WN23&fX&)LB*WwpoGu24`3M;jNAE@t0ZW5bg1`H@&q zI#zI8ZgUfj=r8i+$b(?TOsVJI@uX)X?DL;?n^JA=Ll@S?GQA(ts~z!2;;&hGgfz)% zMEme&dbJ1+Z8y40+crf$>`Nu;(r})@J*^!p0WVg$0n@6&hLwn0NKDHETw(K+yX?kH zA?zSMd75$8q%~?e2;>x43i5jYbLJ!0yX{G7n`g%tR1}h;Bvz=s47Z#bSxVDUEhfax3WS6VHu&2 zf8iBs+xs-1wEZt&3CM0m;+2NsVV8J!vuVkD;VfKgUE0cofjgD5lOkx)F0y z?`MU#z?m;_E#82WuT`H*uJwH5@R2lMZ-;R?0{*BQFoDR_{?dB~&{E;AysH0piX%?T zD8Xgih6((}*`QbmQlVIvrWO5?5EaY%t6L(vB~3iM$JEw0fT{lHmuKAEE3tGmq=Mpx_%uUA4ZYMDJ47Cw1y!*#1s zv|iS^{t%Qx>)0ORk}7jKI0nYcfm;(2?jg~)NF)PQ<;M^b>;jS10FhP5(`jIKBbH5?Nh^jyG&wp2v+1EMSY&%6h+9<$Cu*q)r-YNdwzGK?Y2UYzJI+ z_>aBvOFFIRF}lToV_kh9o<{+)*$J>44gbpM#=Y zGU`Nu^!W92+xrN9*YN^U*w80x1XPr-9@fQJ6QYyla}M1@mQ{A(`K zW|gd4ZG4DO847$HB5x^>6pl+CV~ac2Gu>}4yD(t#EI@$FR z(7UvAGOkftDV2mU!JYQWlLhg#sb5hSbJwg7+XCS!E%NAQ>wSN?_4h1CHUm8r*5$Ev zi|**acbmA4<)MzLdvs3y60ZceR!+x{O@@8av~x<~5MKvd%4?qz;MJ1B(1tVW6(^ik z8=AZ2&etA*jnncD)DT|&BCygc+3~Lg_wwArE7XQex6XEAY{`ugSCw<~qU6=x4p3p2 zgU)fVrl-wdHJ?`gR1=5dy zhSY-7>Jk_RJlfBjbYS_-<*E5r?~mIk6%J}0f96i*%^*)hRz6)a$2Rj(5DN(fFTdk} zT1{wMljplZ?}@d)HTj-L?5c>MmWA(@L7z-US z99R;_vL=k{k>oDasJ5Z@$T?p9zfm+M_>wDF?hZ@FF2Bsp4Wok`^ z6P&=iI;LfqaXsVM6^j9jq&=mNp&AGh^%Cy-Ue!IJBb=cA zH?i_wGs5E6ZR>}pKM*n7twc5)44?|VPSL;>|FX?+yF2YQ5iJ9*p!@PZ|V?^D*O9I8$<8EXl)&RXGs)ROOkmGMZB*oRE&UDS#oIa-6 z>RH8{Sj4?$f9+nGj6n9N)BE%^6Vd(r*R|R!4{ovve>LA?e}l5^eu)d7!6e{xNlSCa zY+QaN?S(KlPEKicd5|*=cs$%w#-r20)JgYl^Aib2S$=dm=bE(H_oc$$Bx>|8$!^pm`b(WKiU5GiR;-dQIn&XoGi0e=uW&!^YpBS19JL0dgyuI(;-8>HJ-153XQAo%q zBFxqy>dS@)&q}n8Xbl{mG79uGrZ)ZXeO^B95@wU3u0amaJQMra)wHD}RilUPLiZWy zT*}Wj4nF=TxMvbD-?mdic0BVIh_mph!tH#W*VweB?;XfE*0oYwgG8%i)s9vD@YL@s zY7QRSBe_tk!?Wbec%5vW2Dz5Cbcc>L%lO|fta6&TRGCP)Tb6UbKF&v2c818fo2mP( zRPgFr6O()FllVc&b32i8zy8_?rNLWr$o;&Xul&K!z|wT@r94ADTTdv`r4IR^r5d>wIibxA)_0(KtWnsmI3am*AV3?l$`%pzkwwBZ zQpirA%f>iBNsSDx+w(shib^Cj%zWVf^}a|n;NO;efQ)Kvm08I`3xa)1kC_CisQqtP zl%%6Iim~;-&mITs$U#Tu$p04gk>ZQQgZ?67DXvs0;nP}RtRHb~wGcz86Ks~P$92QP z+P{%FYaf|LfGYSOo|1t9$i?io3;6Bo{A7Pfw3QDFXk&x5Vm)pekNtl9;?%>m?Xtq0i*gg8hzs{NOLB^e8!d=e25|g}-G52UN?xN9QdWcIZ)beH zAcanQo!cb~w5H>Wh>NkkiH~f?yCU=0Jn~K&a|DHQq3&bdKOHv*_%|uFoq(%2%B<-v zz{>?z({2)*-l3`#Ylhf`&cZqZ?x?+uOr-#qHaXk$PP&3m%Ou%g6J}QKTIF`t*>X~h zjB1lATbZJmYP&yE5hNcWF%`IFnl{!#NAV3-q9>cyD-CPcbYY22v#s$Aw6V~eZ)At8 zZv3}6PMu$LlR?DhwXkq z!y3=KMi=LqLI8vWP>>;whav$Ba6~Q3y--G^1hJQcI@6V8^xK$`#JB@Oa8CFSoP~;tXFsE3!Bdn$| z5I`N+il#Ic4}^XG$q=G53_tErpXP~VW=)_Cjl2;7gsUh}e|QjthhA<3Qa7)wHAHsU zV9eF+Z9_p=0vZdPP0!AbG1uGz76j~bgHX%#AOi%k-zVNbQ24@fKSm)A-1b{tx1Wc? zMzj0OieN9aRp2GJF6Ymiz*hVi7Y6moUpZ9aERxn>1;w#@R!@ge5m6=BGdPd%LZjuN zrO?8UMl2IGTo}*r)x-KqIeFRr#$;`x3S0C&>dN9XfXiK;>Mr6day>p14W&EWkHNTc z4JlANET+*}V1v-&9M8LF67-!nKa#f$N3Kc}vi&W~-n9=^IAXZ3&C*&oQm8*y03;GG zSwici!s&Wu`8;rwg_#Xo^j+)?z=PDd<4V&lgp>qAg?J%Qky>n+Wbuq>-fG-n+6Iiq z$q`&yuJATb_rqTLW!uRU={;HU=9ue%I}<&v`ywHYfbjP-FfD+Q3>*$&wc+YT7tUi4 zB(5?uQ{+{`;A&zNGwm+Bse#}M(M%jHjy~LZsX80+9n#Y|w49GfCKe?5=y_rN9lS^* zT>6izC=^fvc&l~Bf&`PyP7@<_%$f2}1s{(a6h`)h)Hena66_=H1a$w5QHz7*h{@kh zKWQqg2I32|!qhP2d?LZ3;&o@}!87vF>G~jGni6ILyxv)Dm5%JukevjaEMDyh6IqoG z$C3phI8tj(sjDhI?e0#j!gVs200DN%|B%A&|CkQMep%g}?V_>aTD2U>Mb};HCHMJH z+^tA}U<01^HlS~K)>DDLWHPdesnl6*1by)`Grxc5a|m+6H02#3DC?(i?JKM%!@4#e z_Q3(?G*j#}f>R~?!6)tnY`rui$w+BA7}v2lNQ@Ohl)Iyd7!+mf5_w^Q@tNGi5ePNEmw3Th#u!X4>CfoJ%&mb@XTspaP^|YN2k~ z-Y2g;N&bPIe(#_nI#Y6@q4Z31Y->uAeWBW^dGtcw3alUXu#@!LrQ*}xAU)Ul6KsMH zG}sSMNMCJ^X$mxzFj>+5w&0AcrqqdrUR4wIJdLNmI!z2R&;S6Cm8U!c!^ad*X%(t* zyZ&(RFvwY2tn*u>#BQV!NA~B^`Zj6a>&*@=g^F zBboh6Kbg$2os`IbqB&xj^gOJi1L_C^3M?!BL<1AMNgSk(!XdY+_XzOQ)YgpCmdsRO z6!$FW625!itY3&dRrF@HYl+b}q*>qngD$vTR9==3zlQ*_3<*Kd@H7o}qD4^0h|F*YZ5Mtx&^qE$qM%s9UqS z2K=hDQ9gd@cNo+xWdrog>PBi=TQ=n_w*eaV^*$;Zw2!Ptt0!^tpivs~HLWq|%hng@ z02{7+Y+6}*XnwnAoj32n;mG(zz_)=!cMWm#;rufH+?mcfi%0}ut4~mEJA9H zJfhq5WbHI7?7y~ppc~Jo-Gzo!PylzPWlSZ`gaH2^o~%<4hPudiY(?V{-=kbRPO{Y( z7O&6pH-?Cwy4I|0zD=(u{hoJ}cYtS|E5g%@xhRl?xiA$qy+eR^y^83ZpwxBUMT}Ub zi?6LBj1j%DnJMPR5;kwlsWwYmwnomWFEln_ig|~?PqeBf`8aa&E<45&tPc&QtEB@A z8ao-EqSco%|9M4Kpc1w%mm?Fmpkkq@a(51tqhP8YS=WfIR!-k&bl@nYeqOzd79Djv zerYOvK~J6k+D$o$RD`%pe#o8!Jo3*F!X2N!=*ps=b(xNU2bS*mQqzmOo^?^mrMqHg zx`q(IcJs>2sd$aSlH~zo+cwa^f%;cGYn@FCOVyrmVmtIi?BHQ z0)7Zm&ims|lEOPh7$ukw!LkPl)UuQV_s_d;8p^JLe7kgc;qxpDc(hD1krMw&D&4OV zKNlufu-rOjNzX!dadHc=CG_B zPRjg{%ZUq8SNnW+NIL}Ruk*}J>JGW^5Ie6A*n|W9muGzsNZsCoPXAr=SxLww=ERytb=tGLu~%$2C>pzLlhH z@Vhcl{C%ZN|CYD~m`bKTo_->Qe2y=T;h4%8(@h`K{}>a*Y5oID!@>1mCW~rkiZzT3 zGaV<_wT-361i61~jv^gBCXe^V4^CC9r8klF|3`~WCQFxiNd#lXJS7v710E{BMJPT< zPS*phbpt;Lce|ogJy(Q+0(R`U6!l9TSW=K*NWHH~C_A@dQyoGuT)D4GOh~@uWFKv& z*wIfk&d1(+)lNRfpgv{`>-c>rr0^u#%tUrMPtM17Z70PG&rV3~Bi#QOYu4}kV%q>2 z+B<2NeiNqGiaS91-+EI^35Ywm?Y1@9!5nDoe;cnXrldT?u+;e=Z`3!=nulStX3bJ3 zxlt#rBqz)xrKz^$ES@d*zNooTtF5e;Ej0_!qrQB2d2{FdWetPTmD1~^oT#4khN^W( z$k{T7r@=W8^(pBCnDrTckWpkfV54zO=Wo~1DNyt^qS4unIlxOj(m(qT{d-l>hyE@} zk~&{%cd>f5iNZhm5)M>irRV^I7hI}qkTlkvcWa8pKLHHeF>*4MTBK^k48 z*Soxd_AKL-)jPRXn{zOWDdS{8{q6$pkGq@?;&Z=8G2kBxTi#!cAJ3Q{zkOTXK5ma$ zyD}ao9QO0nZjU$T;(R2kRFGe_W!6x#-W?nvzG|Y6}Gz3 z$`>?F{-YWKMPQ2Q>&^=|mw!qAn+rwzqmp-q9}pcoUq*1KLtsTD0PZaav4-Od@_KJ0 zm%pj-l{ymnmUHi@?mNo5h==@l8`zE=zb4+nDbe*2N}aO3#v6*3q>f%pJHkRe?*SF{ zWZDFT1Y1JkTH~63pmsAS)ZSg+hJ^n?N79|8P_O5PymrXT4C_s=Zx@4reiF}Wg$47s zia>tv<}k>Y_1hd&SxmIi8fa{GFd_K%A{BK)F6<%jEGao_Ra;y9{d!Rk?`oqz7fUuE zhRywRvuoVj*`J8Ml=yZLDdHLnI?H*dgY8TQvF+hxKgHA@D=Tt%dO&j3A4OG!TOA2~*82 zY9GJ2^dWn-JJjsp6+^E^1kB(X2}n@A*8~!TF_#sO&tdbW!Y@B@Ktxi%TSgC-hNYOy zggODJ01RC2^oR7ci&Lw`ET7Zp$vt%GBg`pk0J0M|M*C&OyMrdfULT#4s2#X%XcOxV zv1E66FcA07hTAA(G0JU#xlPOB4z6@^oJSQ65w=m zhEH_8dHbWbd(AGVe_)jv^z|C0@UXiarkWgZGh{uD*v=U8iMEF@+rymPLZU4?}eNiGUep(~~nKGwM*`u!pxv_6u7pvo{LjIv{v3FpK`;WnMQff6$y{r z&vom#P7`AhLSDbGw3={bA^M^bj%76x#Hd}6{Zv|q<%rQ%_rhyG4!4jWcTOY^g~G}n zYeZz@ONwOgBayNn^qK)UktD1#(hh4`El!?GS>*P+`et@H@$}X#1XtGzDu=-9P6H#W zya6q+gc*wY0OUlK!>BX4q?C);OqtwjPaNl1_))+tr=3+YZMAzzzcX@zRcGFbaUh%T zen_Oy$7s!!kCZD2nvuiU&hLwQEgPg#W@`;sJC&wyCTr5mN;&P^!)gewS@)}k?Biy~ zq(rQMW12H>8siZ&-zByseA3&cO6=${C3z>2va_%e?z9SXc%HKww4wkQqye)NZN^ee zAb&JE))qN({+%LQ5E)KHOXLaR$%CX9J>z=lOj`QN0s+N9{YyQ-vVqGR)3meNu^tW5 z_PJJy2EVK5+;+sB%};)uDmr1=z%>xnL!tkKY_H(Fj zBi}KE{AMf$_>e2#*PAVvP+~O#fXb^l_aN(|L*EOd?f@prJoM7P6HSltNKwjU!ObsI z%RUaoqo#oqc`+gheGNKYb8?NfWQC={S?jTAudDgI5~Fm zQ)#tC6&8ZWjb(b#g9y2o!$`@H&VV1|K!*$(@`+Z}W1)I9Zya}xmG{5+^Kv(jRc5Tn(4{p#93HI|?@I2dNg_>SrHaV5Z}S@tD%cuK{Bqcq zo$!v7^#qObWUfR*c3*j-^XYsn70=pPvP=$?#gg6CBsZ;I5(4*b?*Y32KC*G>`#HKR z3hX5+wM5-Dau|__KyR9L&Hu1;75<7cSh9of=9u-3CAt2ik!mO`I?!4+l_OKs5i9AJ z(&y*d(CUg<{JfpqyDdf4p*3L+ahr-J(2L!DDo1LTtYxgNCGi2z z6mzvE!5n{gK&Y}b(WFxZQ(odWcmM%ts{W*E2gb&lqre@T*Z9{l_J#8b@wOoT3Y{w-w5cdC_uV=crjfzpMp$yqUB7~VH=klRi7%_+ zZPd)J=6Be}LvqWilWr;(69t{MPhwM~c>W`A|JM1=6I*rYr>#`;qG^iQ^ik!y ztF8I7VSgOImeSY;*!LF^oxCzHi7z;CN1b!gp4nl3jigoVP{YaByUFAjXPX$(B&3)i z2Rq5ALS8|_EKLxx*Kfr=yzm-DBDBvg#AZcv(bHNjUmKhMnjMcY=vs^&Y4kl*Oa3~g zAP45Aa?P;v6tCx3_UB=)L3y4`E`dk)d*8wk?kYIah_oQUW!jDzc~UkY`@J!ti<#Q_ z`@tV39rAiwcvqsdDiOCk&YVS?te#qLo%D!5``sAM=Fr|kXC`KIc&8<-h6ImJL;alq zNVWd@OvL0~LpiEDG^(<(i@f_9AtpB2^Sq0Ws=-jO3{{O;duRFVALY+7(MlH4c#Q+8 z44t^jIWltz!nP7-Ps-OhVuQDi z{6wlGQWBS14nvcIn(0;3g5yM_dmAZg+%36{Po+1OlTD6HR7OUE-2X9%cdXktG=h60PBx0Wu!Dz#&hjetGYNZ4icxA#$N z5Uvh~_wUUi$-XjDD5 z)F;;l;3U(K%Gq^wklSE8HsX;Hf~9t)S7QO^d3+@qv2mV3UUe=1`UcCv8_m9s?6wq| zP|y>bgv~>%VQh$NQK8{0$8MM|JAQB}v2Gblu-av4rrk#zk&oFD4RprGoswErpe09eRB=}MrYGe}vEbn^@@QAw1ZwaN=%u&&2(nPc`E8sNwzL-X zd~*FS)-Q)F(2|U~U@NZa1z%nVn3Sgt=AR`^5&xTf7;<@pX*yxVQ87>OwA?`~uf_1j z4?HT9(@z#$Mr5hf30q56j+)t2V(DM()H4L`GGEF1P$&R~gOxm4EErWK1ZFb#-+a^6 za3P2VsieB6^XlRTVpXV`(RWi6n4i8T_72Q-FTak@qX)VoF{D^8pG1v&WHtn#{xw@Y z0qt<^2=uM{tj4ziQ5uhaC8)a1Dc?!b$+h*_~OJH>bR0Z>8D zyRe08EU2%(gTEvD(zo$w1KcLtaEpQR7ha{3K6AxJc2Jep6Z%!S!GBHxkp=?V-OH&X zh=eifAHncW_sMS^Oj1g`EL04G{v1kP$?;kRBmJ6x^v&YhpD?lBh{iSQ4#(EuZhmw3 zbFQ~zWw%cIGG8TzTJ986C&?0D&p#JVo~vSo+&1PGscue~+b$9G(k(#O$^6ik6UU@n~Mv zr@g7(^$}iabl%mPos}!QcF8e2_ZAEBB(XGa_K7^ZaugKsVh!h3I|oZ`!q*HQ zQ3^zQ`>BoTfC+Z9$bWW85*Qk$+c8nu*hX${rx-|6Vu6FOEcCEFc+`q3IL&l;-;DRad_4 zC>Z6Tq18tcBH?*OyUNAvO93doxy1StT{W~>9^sv&+a!y!3X6|G8`TNQYIUuVjDrBzQa9X=S)b_}bW#;HLiBzv}HIFFJ;^ z#^Vl9?pVEd`*m<@yb0{1|94=_*MbZ;oQ1SV-9^&5**A1vdc!ylQ4r$g z@%x%7bI~i>Z7L**0u6!qLPzW})Z7IosHXGHRq*x8J=Y*T9O#l3S4DpqE-t?WtOv+w zwQval?uC{bNb6E^RBZYDEIwh$vY$P?%vNVJ6BAMR#u@rr@wdIu)ANG8YLLmCA(F}M z6O{6-`@T1i-I<>>v3MZmqUP@dl*d@S}GfQgoRZJ6W~AH^_X4%oU9uvHKndI zxfW6{y!~95ZprwY>q1*w@_Fn1?IkBN$Uze4qcGvc-kMLMdz25SxvAUoKyvG(d*2?< z@bh(hy#2iskWf79`kxFb&i{=e#m>aU^#5i-wsobF$lDxyKQ)>aF1Wi%{`QL_^2$nR zB3zW-;SI(6C^nTzDXj=0@LVPNb)nh-s|l+05ZLX{v3%?A7x;@Z82C!=?b{>X0W4RY|jhJUg<9YG>=oz4(o6V=44%FZ14yuJHRZvuSqux2`O&r|+Q~1S<2vmr&O# zCD8ly#fq;<1QCW-6^hN|Z?b1#Vc@)x-PU7cN1585;)gQ%W7-7VYKQx|yTMvN4>E-> z822aXXqb{E^$y-j+zt)nOgd0$H^sLXEldxYG(0SS^k!BoqVkcKA|{`PR-59(T~==0 zH14*gMq>DIa`@F$TKPpjn`mCbGI%dHSHMb?{ofcL0WI`hA*qog0)~sC6a5Zha?YfD zW~4%!K+cCN!tfOS1a8A(-G(LN$EUX~If&Sqe75SJ~Ex{ z*Po;h1_f&@BT={P5Hy!4Kqt%-BVHz)`Y73=&hk5I!<=}*gVAKeMro%QdZr-Kas1*s|44pw z=yL4N1T+=Z1cx9yvYls)_`pB(5HSC(SQ*(fm)!JN=|ysYWY z(?4jygBu{=r)cIT_|F@Gja=>JStvtkC6kLuVBJ!J@>vZ$ATA}ha7qJ@vpCT+Tf&AN zPUR*+)XU^0jlhm9mjaAR^1~Fe1&S~88MTD&A@JY?#2R%>j>s`)hD{@hk4>OODT@Dl75|Rf%SbH6-yR3ka{R#M7sZ83%HTezEco>EI+dV1_;yFpxxnUPB}z8fq>QI`uLHfzJUk_=p0 zu&VDM1}i0b%{DD_Pko6}qQ955K+#Pe#h=8rP386-XLUpJF{3+ztoIcUctG$-iPfIx z5qwz-XNjb0xM_#z!y?eL!sTxnh*FVL_;1Rh;hGnQ=qE(=pB4%je;OtIR&=4W$GQ_@ z#z&?0!va4)Q(&Uyu@roC{^LUr^3k)L3aw2_Xcjw7m8Y|*)S3>ZYoXOV8>xXDe>7Td zV*`YZMv@s)8h4~DR1i58VA9D`-$H8+aLp@OthJQ_OZUC^IDw#!UGdZrOy*g8+gZ=h zag4h{{>`#!sR_((%BSN%D2BdG>!zg@uCirmwA3~dPwsbXjKhwB8d9PjK%p4m^`^PA zzuC5+`nu_cE|I+XI-&6~%$(SZkBJPo|3X)|BSU|l`t4-WVzt`xhHvg5NSRVq+wg@`0c`|XNTcG0`$AT~`%`@M zRS347Wj8oiRB>6K;rUZK06Z(vL<!+irn-@Hf%&sU2rkmv%iFw-pp zChW;o)QL>t=6F$#r70$4C)D_{tSYLR%U5{OS#r#CX8z?{>4BuoIs%SEEc-eyd3>_k zxm@JT1@l|(#UT=^UZ+T2*;87Grso^G4$tp+sTBaD0T< zw4oEA83)J@@eao^O<8|#=taa=G$i1MV>vy}hC|FTD-=a=io`|P-apiB-;P9(V4Mwms`AqTe6rTg)Wn1nF4 zYgZp9aznVZZi)A07|h@*FFr|*_D~s1wI^g*26}}<$vs(~(0wecprOcy_J1CHkV&H$ z7vTU{aw0QZ4v|(!NJ;HyIiXv;%q*2LB@j3-we`R$d(0_nu-AJjD{NKu&$KAYC0#OH zgWVxWs0~7fNc(CFYWN1*^E#ytLDW99y9ah7V&tS9k6YyxyEDEjBP^x<6F_r9ht`o? z>}b(zs5ECw0V!aKP^>oF^_pwFR>C96qdK8wQ}tx+DI2l)sVy^o0IaR&5VQDzgPV++ z7Q4dYg@D0n6>lrZ*e*u|QLIXozzN0o|88rO+SO{|@hfYHt7JVoM?+wf>eG7VGY)4Z z%*m2vmyiw><9lii19oVsB~HpPyo@?VV}4)iQ1!P+nkP1)V6T>&+d9A1^H2E=uPVT! z+{}vgAQI>;y&c8bzicX{>B3meI=^=9);i@I;;f);$Dq19l_4dc(kb|lGMVcMX7=Uk zVTW|Ag{r|%b{Yp4H!i;Ohq+6)QUzN#A;5$zXvLCqkCS`qKx0(eN#q(Ms+oL^Vw76= z;`~o8Ql70%&6_D^7AE{9cce;2q>>sMH#&{buCy$ zKE*(bxM`{lF>hPyeo#jEbVcPn>fy6LR7<<@5h#e?9*xKMx1u^e&Fmi8+bKkjXx(rX z3WmL}8bjhZPmRs|zf1RNB2|0r9kZ{@a-BNvf8~za!jw@84xqC1hw_hS{-aRNWT2D! zzauMCk$9geNvr*txzVQ=V*4=!YKdsUSw9;(KRo5l78bMMiJzW_LlXNp=AhgcCc~Ff z-IJRlEky|ENe1B!)YjGP7!l-?=9YPFU5KspNq0uBFD2X8b>z_Zb%*c-@q0B#zYZ$+ zz3_zMH5Pp4wekay0DM#cU1E<_EO2%QPX;~#hW_F~k9N$7@eGMymEQW2t3>F0`~G=Z zPB5e4k5RMZ0Ta33#u2*OQ%Y2f4K%TF2&O!V1N_TyGiGNHh z+)k(ZXyQ1aIvq7BLhGN)i3=lr8p?(3+9n*x`Ex=Qiz%uq=q(>k-NVgeMaq{wnWL^D zL~A;2g4WrP;I;qs?yPy74V>od%Fvf1uZC5Q5~rlJP2}ZAq&V_3K_$B)JLFUERchQK zkeF;OuBVP+CUIyt+9RZBAzM?+*i!C66Ra_lE>xL4Y}%D46%NMn9yVKy zyYBmO!0Gj!*M=NY+h`?V6qt&f6z@OQjJm`;g{)yy!+=#VZ$!pS^uE^iIC zE9WSj+5B<1(#m>EccJafwSr7wBR4ci5b3P+)8tbX0}U6Phz_va)bWLw0QChhpD};P zQ4{$$VJJwYo}N{6Ilgg~v8?VflLv~BmiRTS<5TeEdr`HfzLwqo4tIB@J)--GRlko+ zD6G9pB{7pfi@!Y7djU!KSoi?MI45Q}HGXviae8* z!Spw@c)@lBe+~~ynH`|CqkjUJo9F60AABC@CCE8WZjCuu!PN${Vnuf%|F)7ElC^dSV)`lP>Wj}%ard*c#*SpDWn}$ z5r1*M#oXkgN?P_Dwd*P?)_-nK3I023=r7_(jG?LyW`{c=2P2*ZgJg8t;LjM5=jTrL z=(;_kRPLbs&{5S9PsG5o(X0QsqU0=#QCF!VT`+8H%PBR&mb-}c>M%2>jPo3W!{#>V zfB(fjhzfDc9=Z}pUbX#v04eU25pE#14mzqug z4yHEf)(P?{T7AP#Ug9)4CSgJWG3kt{Q}*@v)1Vi)VJc3)*$RP{_61xBKF;I%RKF+Q zWs;P6iFP0s!V8=JL3pp-!Eb@KL+dH-)gH{Vy`N zC!OxI+)?zZEb>-OeavP_XzgxD&@hicVmZD^9Eqi_T8jE>}=NF+G^)>c}P{1 zb^5sLQi=Qvoti|6wsqUGZDW>g+qP}nwr$(CZO^i8+paou zzudb{oc*vO@(<)gMvnH4-oFN5CdSxhhtx9c-NI$p+UJ8A@4Lb=m?FWsI^!693+kCZ zje4TYPi#voI!QnQUW}L@PglffWJV*Z9CVo;5LtyDN7@&fDG^f40!q=A#1Ta+L}XPZyK@3ZyIe zw$4bRaAaH@iq)HK{=fk~Y{LC6TwU)-UEkiV+YmTim>VB4R^Y@uNnU808*l_$YWktQ z{Yt#amY>JxSWyeD2G#io!O>k*-!NTN)qtkl+w@zkTnBJSi{!6L$sLi2__I=Wi$Zc_ z>>*P=MBN4Z{tZ^sA=vhwU^U2(O3vK;bDo|rcYVAAgVwRNw$^A;@0Rzg5N6{V-H@0=~Y7{RNtD;38o&^WY&XI6zO0rBL z%Cm^R!`Oaj=z!gM|Ad`gZ^x;_&pTh^?RtFI@7$*n| z;?Iv(D)6hMS6U$$#7pUeQ3i@!)DhwO6j5hUL%7LEDbfx9x?NhjF=OR<6NvTRyfR5_Wo(Z!fSYQF@X*H8_>X zJwxfZ61?c`vCzQ{)r*GqEv2{^XH2*NAQC({$ShKY%6s31(}3)IiGNNX?E)tksvj5E z?`zu6=k1_|K}DW9_z=-Uk;!15U~a;4y_=jELL6>aN-y)^P)S7h8o@6QLSBewmUyg& zC@@_c4<{=R;ZUEK8wP3knYDLfc_gDL^pfv(e4uPd);*6m?W{k`_V-`ahTON5qks*l zw0e9rAPQvP4N!v_$-tv4UI2)8hds!IT`&jY7e|QRHm>guhK}Wi(xUvCx_p1kK=c{} z($G<62L#NeRdZx5Ts-(7Ac0h2LNG2HVvi@7-w+28zD}0CxCX|#fD`CzYz`K2<7UAe zAxFp<spq^>VgD>Rh`?xIH%SECVJ$BH%2EI+2m`9#+sGn?M_o*>8iC+C^#$%m`e@ zPyxAa2=&;Z?oqVruVUe&0Q_f=N!6@z|Lr|ypFjgbY;ULBk5PR{l^@uAD?@#w_)R0e z8lBaE&{Gl+gvIQwVxdSQ#rndH6qE_vO=@6Cxorm^_!Ku4I{LfbB~}K$KcFX146**$`c|jP}eb$ zU+;Qa`EOV~yaS}(d<+@qHE|0wej5M@4hRyw!aa7gMYG}g*T1uF+$Ta`ha@%k1gyw5 zUW!>|Ted#<_;C;(Ww&WhtiVtkw=?>ocUdrF`;)e1I85ORADOFIkp^ZDJrzH22q zmnbhRBxfHZ-RHm;<$Sl)fz1!;yGo*NZB4Ni%I$whCd8e{?ZyricIFo>f<7^>J#4 z{r=Nm)Nf^d%|KzFi`1cUNv2~oGGm^<2Du!EmIZ+f>JHimDVz7S3?Iw;363$HM#G*m z%Wh&(WdL}pof+oCWw^B3V-P>Wm3xVm22tLJ1($j9RcN#{6X-vrFNGwR=1ki5R?vr; zXq3KOc}vqH!h4$YWmsf5x53clm0AAAXARbc72S=?AB9&ufL_qKjadNUyPux7VVW!i zU%;C(Jw9v2WR-{ulNgAXQLd4rAAea4P=KeZ@`i8?L-gc{0pH@iKz|*F%K1b>J{O3Q ziR9fGbQO_PY{BPjol^#oq!mH~i!?4#h>xab=~1w)poxBI4n@BeEHJo^N>y4PdgGpD|x6P;*oJzJaMWEV_Zion7EbzKy z!cGm)Wu>&vc?TqAIB5=|t7!n6K`rR8@x)fO=}tWa-HT6-Ez3GqRtelt8jgvgq6Cw1t`^B77~|MI(O5)vy~}+0J3&1mO`g zdV>Ln;V+~v`#$4G0siFV!2f%yUnO$R3x>D;ab|c)^{(4TJq2gr%1OyPLkLyS)TZgr zlL!gfV?KcW%%g4%0H}cXXdD{+u|geO-5~Snukav(xjwPRYbcH zmB-Q=n^6R(uLk67(X#va7|YnlzralDMk;F|eWz^toFz~WMAuG1CM$}W!or77MxOJS zdE9a{SQ^0$-DQRy)y0!CNg4AbHN;ni_vC633^9}ilE6rakjsZaGauwk;}}yD_uXan zj!~IICiUlCHU(lv9}KP}R0R>3m1rXrN|1LZs~jM7drM|{Ju@iW*0>nTWXhZnceTBe z+yS$ruuS2awA}0CuPaGs-jAtr*`{QN_Pk+rpwBoLGNV=17})2PTck@Hw`j4s1d33^ zyyQWtmzfhgu zg$t5*rN*3=<0*4=1wqY=^FHO>RcD&@=Ff<+4#%-5HImk)`;bNeoEHy*CijtI!JQ)6 zx6CC?{#DQ72>9uumW!3v6XKmjagC&GlNe@%-|rPa>nyHr7Mdu7d#GbVqG-UwU%pPQ z1Lvv{FP@aCjhDAf8w7|!`v`HQP~hyGfPYeKFhoHMYniF3E*pe`W(iXgQ^pH$O>7Wq zw?Of%Io)_5XO%@aAZVIKtF?c%W!sA{#*C~5%Q?O46+6N+=krzi;4_N+$h;p#f>5*? za!!c7TGI~8m#)^`f65aV5lSJD-Ckj>`G=(ywVysUSPF_cb#C4Ed- zM2rs)9bcoir};d?5tY~rBf?pw8$-5AGO_cWQ-Yk$q)m34Jq%*&*-ju-2Pc{QRq{_A zv7{jwLp;($^&YY?c(*X$1C$=~29?*B#7jiz+$UTl@gg-+?jE+PzAEI60652RxNIe8 zT$KhLiMnqU2n9zHtGZ9Y z$T4xed&U zCwLLHlQ*h;F>5%>bk@ar+BEY4^j^) zMjlg=`pkAOty{*;u^yGzeVsJJ?q2S>M zzg}AGw2X43MPVw&pTK*J}~S z?rhDnlS*9i83Ba_8_y$W(xx>XrriV;hp^cD{3#95ouj`3}R62 z*8Y$p-O}W(hlh2U5PA2h6ZBcnUNG9f*nx6$v3-t=xT%C7w!>+Ux2oV40mIuav(b>y zCJ8e4-aID5AHom+7V)EDc!J9%^2=;2LRd)zqz2|o_X{{FT}*nJRj6_IV0>yrV!iIl z9Q=GEFf#+Ct4R#oxTJ!WqVEl~r(Sfzx+QQi0?4wApS<)Q7x}MgQYZNY>H}oEXW-k?Naoe^h;M3{}g^Wc`(e1g|Mn;jV8A)y> zXN#zMr;?s?m(u=uQg2SLh0x}UP_TxXTqVDS66m1&4WS*QH=u&J)-kwO5aYvHV|j z_pi7Erw!3}wl1C91pS}HCn$}EE)k&P+fW!D>h^eZ_2IUyOs|LA=MLLHiH$=3$ldeZ z-O<{c|J|F^s=tui_xCXXl5R-I+oYyxpL+v@h{Cp6g?e4MT2%I4;-aj%hr9z!0X4DN#Z{VhSSmh{h{yBP(bhAM_nt zO3ro%kwhpO=K{n9h#2`#HP8+jUx6LI8uFs!ytV5>hR4d>HBU2Vzi4%arsxV)@h(WD>2y-#m0Wn$ro zaDQ*5XRzYnf)fCw9X}*KeXO6eqGbTThN&e*bI!l{Ej_!rkndcZu!)#50IUx!arqxb z|JWlIgwIZ+qkY*FQP~w9I%u-(rjk1J7^RNNe808!sK9yW%;{w!JBA9g4yhnt)XRtO z%!q5aXGDHc9}7-gB&Rv-UGG=?T+mI9%yrIQ16cbjW}Mw>CL`B|)BZ_e#cy4?j3$Ef z)~7m0IM%j!Ub~`zIt0OaJvW>FSJK)@;nv8A*1<*XK9L{qy7kHD8lHkdk3**F6)_+@ zj8OMyWwj?a@bznScrr2&N3>5F1$IO>BB~RXn+X%x;JCtzDYa$(jyQ0)Sv5I$IG3)m znr%j@owaB)CmQc(A5g$HiL89L6L?)-;b}QXZ~cF*A%m9K;S15Ef#0U~jw4jL_Ry)9|I*&vu$P=D09Mc6PONUuOZ)-CXw4I`l ztd%}H3sqG(t}*sR`#?!x zc~+vnZi=;WY}H&xH~FXURugm(sqn@qabyowl$w(M_}iP3!ugisExF%lJe*A3N^F#^ z+TC0BH5i#%HyEH1EFprSht48DdJ$|eyo>tO$?F>Nt$vAk?Q<~#hgAA4 z1UBlw@6pYo{JSyQ(#Be}P$j`Un#A$FGujPv5G`cSMFup(aa5K1t_ts_{z50%X(<@C zT^tboQzg*h(4g&1_mI@?!kuZ9;55b3tTdIn3?1qG)ws)4UnM)D$kxEV;;YPsD;LT#D(fx5pC$v6 z)CSL~zSJb|TNJ}eZ#mDQNd&|Yah)WA2kSq+2R9K?G_s}=%PaV(zm%ivOf7xP#q2gZ zn|#5Ld3wWZC#&{UmcN@I;_Kk$TFWMfRLP{<^)rek{OOSn^3jURiX!18Rm~j=oNi$< z3ZX_i4Tn@=qx=Uo!ZJJn_(c3ohb2}>@1r}L?yv6z53h6unno>jt%^=Rci`3jqQVfA zVGBR!Hr7hWb|_(xkvl3Gu_{gx6QVA5zaAwKJ*#Lg10Ksj$ns)MhFK@T1Bi)}b2s;i zzR!$O?^wQUggK@W<^L=`uebfX+S9AIE{H7v$LWOhsJhXz;)J$HLTw_t6FHeaf|L5D z<8qh72|05^t?>6GpuGm^8zf9r`bfSxYGOj6)5EM2_%B_h;XU6-EF^8R`uwlgHE;Cq3i1^xsoo8fv zAA29XHH7Tf#R2h9>E0SmF60kJ82t%+2P8JtO&t0pmDYpbeUgiMbkY9NV+C-!zkFd= zUW;>`J80%ilB3o7EkA!4?6etAQ79JWPhNe?ta#urxlt7`sX-J@F}%6hB~UHJRCPdC zf4q=-ba+QcANfQt#e^A8isO1Lc|nxzrUQo zAshyxQ+S}u)10Vth94&y=Iqe0V+hWE8H}j>r%P1cr@nA$HnTSsZ5FA4qV%msm(G<0 zFd{zdz)%J#p_il~k#czVNQ+QAV}H2lF6?`<+9fU;q{Ow4``OxV6P7*>oc>SzW_V$= zZqbancC$&+Zx?<|kj_~ly;bBNjNnYJPz&iE_a5;W^Xsk+TQj9m2`nuLE7b0VOF(_Y zDd5t}F`StPw%@mM%zPwxVJCD`Rh1*6rMJ5BHxFkxmU*4%@bNy>qtlg#KG`H=F(AfS z&t|Q)rzPHo7#wQdhRR#6^QiacPs#&lBzSvC0CQSf%;rxqF8K=|$s}0Yuo>oj2>Pm^ z34?sol}K{|M+2S{&CT%(b3uf0@Wy2WzYzS}u)r*5POB4H@n+thZ>_8@CGm3~+dWQO zx}P2DlL$Es_NNTV=!r<5Rg~zHcpV0cx zU~l-@?| z2n$m7)Rv=aQ}H8&ZEdbTBah%VqPS~hX8QuPgReEhvX;paSVv2ZQFm#U?4!0BmcV-K z(}NU}(xz4!Mv|})hW*ErWsvm;31g>u%w@70YR`zxi^{y%&CCqfDDQZot2>#ns#4=g zq3!OEa+`3K%r8{c-$Pk8IMPkZEecwcov*LJPVD#dFxC`ps9ZDldRW9_I&>X>R^f1; z@H=DgN8$Q4vax=1mQ^Q$G0gF)8ULV^R1eZz&*c+}r(V_FW=OoXVPmtFs@vSX8yf`g zqM1O1Xz!!y8ULa3X*g3G4IzJ(zMoneCe~@{4;EhwGBuK73JKpBZsStiCqk?#jbGwj zbk7Rd`RNeGGD6shny!j}+l0+42|dSy_Qm3#8fpMatdm-FFl~gy-3Ovz3s{jP4XO$p zRa~hHvKfQ*(%y%Rpfy%V+bvGCgvjWNl2Mc)v_Jf2Ynz$DF4kL8SrMzM6foV;uTwbj z4A-XJdB)PmwBA0XSyQlsq~N7XYuO2>kc38tT&dYvNPyT)b6V(mN3Uusbu_2xuw>QQ zI~~x%<7`uP+sE7i=P6rpIgR58Th#<*N6m3Zi-`5rl1=$x%YPN^G!0>a_N=F0FSYFr zdd&Q`CEp%uNM)%9P(tT;C{zGRQY^MOsMi&T@M0~hG^JUu(D8euNnf9a9VM4IEh~|J z*B*hu{jAx9)Z_zlyX%;oKTCErV`xgvhu(P(Jhh^{R3q-wFHM;Q+$1~b7-RtMA4#J> zB~A~(7|`z_SIuzBE))$C2-k;#NU|7PF-F{+_C;wucDk&=od&)GBsm*STnC|VgDjuA zUF3FM4M__17V%QmWy{OLic0LYy*Sh^`*_bq#zA^+QYdK4T!(+~iG*i=kfmz}TwZ<` z+VAJU+LviStIDg{b^4_~^X#|+2Y)l`I8Llnw`K=+idYcV?4W<(OzU$e_DgLs)hasM z0fCf8&%y;QMJt0;dKgai&P7BhO@bvx%MiI`Nr00ouy@Brr)5pOBm7S;G52TaZ~pwc zV05`F0*7O6-dn~L?Jp{F>q*^@@~Rpdwz=gGpP$6TW^hJy1bMNoeR6o959f~{J$iK@ zM4Xu`VC_eVOdPy5vI=M3^j9g-`d1jkFLqW{blZc;K^d1TTS4k%K%E6;QMxxtmRFh|uhbV9cR0*A6Xt%Id={IM-hl%z!q;_? z#A|~2sHm#W`)-?KS{;bQJn?uhGF(CG^kkidf86K@A>+a`BhWLlm2#Qx5_ z8LtAAYBK^~s(&SLE$jgK`7DHDa1LF<@#5Ld>I;FNSpaF~t6D5I*(|`xTH)Znn=0&9 z?=yw;$L0X>@`>=i*C&nsnHJW!ce-%MAK%61ibCvN_WCXaM5J|JIN#sAXXFR)hB|*! z0YoX~PT_k&nj;Tgp)_(!krV68JliYsf|~6?T+oU0(x>XP`h1qPE6)VpPTU5YI+O*y zq_~$wRH^-oP*{LQ3L114ZpsGSH3k@c_C4rHquSfYFECQ&xq64mT*JHD)`~_-R>u)S z2;_KF6p6lc`84{_fcR5w7ou&@cr1dbb;k|8Z}W$Wn97+Y(Z0Wko1nh$D%6Go5w}Z* z&=MB3BWDvuI1kX4Zh`y>Q|iWCb)~d<(oK$Ax|ZJsCtTC*Mg{BAYY{ihX?*hd&uPOR zjTq=u4Ta_fGV+=YV)cW6U*2Q?F&F)~1%jm$m5??%rczI1VUtFLp^JG})^SEQpXYN3 z25y_zvxsApQtPn`coX!-ph0Y|UJMJ~gx*Y(@?CA2`sIk-3^hdI?t@D1rfVwAn9Ggj z8I)wEfA@Km6Q^q4;V_-qevIesn>6y0xW#^XxtrGm7LhB<$O=4;T_7e8`=|}I?;H=2 zT9n^vaTyCjhc3pPOi?VFSq86~MDNbik+)Zsun&W(^R7JLYFEvwPO{R-*T2(H-p|pl zAR0vF|CZpe{x=B@6C(%ne^7$ju=7`e0u!hl14^OpE;!Nf`Hwim4#hXb!xMyJSvN>ncQ85}#BIl4>8Px+lg+1` zgpRUq+;`jhks=8s@g=#3WsVVUy|t&>-W0^c%hl5=tr@*y-12`lv#K;+-tA<5X?-dG zb|MUaCM#UYRPCHDpv-QPJ5qH{d{T5K8E{(i3JLA*rR3%{b!HVon*Czk{eUEh!hl(% zr^*)d+UV>m!Wo)$PRfXqV>D_}D7oGx%u7=6BK-}2qTVA~-QLrgd>-RNh(0F;In|XDY+z!3d}jrRhL^1C`4uG#TAnXf%nZ4 zHop{Fdh4^xCD80O+%ErSJifEep07nG zMHSm*JZxY4N9Wb^piU;Qnnbd0H!K_}=X0LZu(vPIYU)uMOGP$`QP0(`mizPkBBkd1*O`hHkJJP14^sxYgUK;RZ42JRs)lEd zMvj?>*A+xi*0XchFnfgEipk}l*%%jMz@^6t0SqNe@7(jfB_SZ9{%sUq5$3GtVnrVy$Hf?SwIZ z>PQU@7cF3wLH5bag)BJD!Q-Z*vWBZvEj)P%A#X#b=?Pap)n_+v9XaLLjnJs576z-w z+*ln^OtTEE5;Q3G#@$m*UzAuXu?J zk3^tefj8v@Jln@Avi;&Qc?Jhdm|L;i8z9B7c}=LKUN~4@e2!StDBhOx>zZ0uqCH0JF>Tb~ZMswT;W!_2R$Z6_u9@4USJt zeWZi73(9y~D*bS734*4aL# zEMt(}O%c|Hj~DdhA_{pT)-d^Tp{Sy6?n$JKi(_*c>;3jq5IvDX%XsJtT=ZQla~i`;qpNa^dv8 zfb5zfcu8IiWU4Gpm7nW=8;Uiq`Z?RBU8_=SxtF)t|8Bh>WU79F!R#!g}^iH zgqWGtk@L+%T=dJ2M=|Il`os%=CqHu)m<&-M8y!+w`DFw@NZ9e|vZLcCCAR6p_E zJboO;n>eKb;zVA3GfMll5+Emv>m$y7>U49mh@<~P#wSYkV00|Su=4xHd-W-oWh5(@ z+^}^yew*s0bZ5@k)e|-GTTHP#d~3JOOcFBXCeIVFNC9(>i^kYRYG>=_%-pO>~)mJbY|s z8910g<;Lg%A;g_YocSMCHrd({y7eg3hkYP8xnqrBgBB9SpYCn;L@6NeCpVV7geLU)h^ht2foCu zBakm$K7M=I=neICgKhzRXL+;kJz@)7yUtH^aIGd>M7k1y0?*fIkF6-T+ zVz0>jAiT$vjXHRsBDN`2=bIMgQLqH}nHxm8PG!3thPN>E`u@K1`}pR#@`>@{iD<7J z%5(erhn)DIx#qsB2Lb|H0Nm&`6LHTNMVVOLr?lH9Dw)Eyhc+QDi^;!Caif3}RwDv9 zBjoV%_}=l6_AddU7puq8Sy8Gv<4t~n#7+2$|NICKEOb&x%XOskpT4!j+DHpP%N1QRMS|1%vuB)z!^(Y;OYzfh+R0U4^kuD` zo*EucGakCh*Gi5X*us3%vR4CY>ao}_6N3()Zz0Mm5I-IP^`ENX6ihi1?d3L!6iJ$j zffnstua&by9QydX_SWx>X{97I_El%%w}lgELJ7Gq5jlWaj5|cVa6a0#y zw?}Wd=i@hk0wmJ*M`Y&KR<~olv}K>BMTAq1^K|;}%EdXJ=A6)#E$r=hSq=M121_u_ zrl{I?2Djr6Br`dmGTl`}%)gxS-2YQfA_7Oz19kk-WFwUO^jQKri4K%Qsc z@ebQQRF<3U6qi$*VCwL1lM|c-X9Emo>az6|Dwi{kL8yLNrD<#CWXFE&a^@$9hU$*F_-`Ns*WjW5ldsL%iD0Pw!%Y@9ThXLDcW!e}g2B{|b^gI9UG^l18+p;*MGo zdr#GzWivR$Nvqz-Hx2=<`{9uK0i&-BVC~?zxN=+eG3t{5CMf!NREotDP?l?UFuAPg zTEz^Nj2kYh>hLlb>BxK(zw&rJ_I{Vox8=STy?#E&7EkMB@qH?uC#DC8FgbfXIW?HL z;J-WsS*$?4KbH^N+$0Gpj)%T?b-&+>J>o^6hMTC_auh|WK=YG*6ean#z^7MnODaJ ztUNZ)#4d@_2Y}N}e1<|oFjEwItEF-c-a77>GZB}fRf}#-pROlnB!lj$uh&6>P{Jzb zhb&%XLA@%$XbTzQJ_{3o1vrw!n%_-2rgWapE0JZ~$q%FjH}aT@IZSSxzZ_9>7c7Oz z-{McAfjq+pGngBYJi_|%pK+>}eThcPxskz+s_;^S;%4z7*VI=g`8^Tu*rJxo=Sg_9 z%%pi&l~tqSs9qmzly^qr(qXIDcGApCieG)GSEdCHWqcimpq{Dy&N+mo9yQ5g-wtMKr}oJtE(KH?|+^;e+wiX>={>Wzqlu{J?n8FW~LTMVOg|j~Dim zMy!^#8@xkn9}smz^TGKb=;}I}X7Y(f`oYR;<=f z2~M|ixuxR@8zp0E7at&C&2TO;`jw#0LsSkAL3eWDo`0jW?Gc68FrFZW*So5lx;g*K4-d9M|Z;}j~q&cu6!ct3Oa zCj!tO%Dl0UirPkCf2^m7h>vOh@gN0LoI2>Vw}27a#kyksz)rL?g2_Y4``j(B-nJ2o zi8H;xs})9F8Zk%r}eejc4$i$4Qjjv5I{X0IKf6m$obA@fujy>H8DffnNDF$r~4=V zwx&JXn#f2_j%4xmMMEOyjS9X3L-Nb_!@?!NP=(QRq}wIt6cW__=%4rx{^xtm0HfJt zymp9xFt)-KCQtwc2B!>R2VK`|9u$SuvrV!2k9W$jeq~W)e99JZsnCnnh%F5)DlfRWK+_e4;28e4>!Mx6;>O=Y_E$g$AG%jvO zrbbpb-@p|?IR?h=mz%SE((t8qjuOwqX9JeTF++BY^3q>LLQ``{#&Rl3d(d5&Q2Ft`}t zRi;M^osjh|3X+DE{CYAppR2=_rJ*@D`oRItDRiUVg0-_2o(oR*5fZSEFV|+76;?Zc z`=p@5qQ5^(z6V2198D)G$MTUArg_`=)tIHS<9|hqN^)aD&?t2X&}nIHm*<+tYf>ZA zpf{}-O-ma}kGrgur@y3nErCd7(NGuAsAds;yfF7ed)0v~syu(z&+TORZ(U_f8ckmy z>RV8=jvzUd(&-B_$6YP-;Qs!-$aA`ROGLaC5%$tw;!O11Ix+7OhrxGUvkorwruPV? z(MA)FAzLi#MasPfth=(5uI}H^z+1&F<#A4pMtjC2NJ2&XiiBe?wSYh((BgHHudV^< ztR?POXx>Gt%l6^DVE|L_^N%7I&PgcGZDd@I!9V9wfSaw+?FII!hb6I=ouzmYZvh(J z?uYWK7GBwjaceWOyvVo-&jFrea4W{ZXUzIBIEuw-8q^>1a5J8Nt4_gPev{Yd1X4VVp}br5+JnC^L=m(O-!VhH{gi@BOX+GK1ci$1ibp-g z@q9{xc4qcv^lMW+buTHfh`app2$p&G!K)ZL9_Fx93|K9d0=~9KyLHOAm(PB9X9pE) zYE%SbV0xtRlBGb!oaSxDa_47><9mM2MIzElvdHyHp~Tl4FcT^<{ONBrWrz4m05+@R ze!eiFs8aiK&bZf}jmhVF%6aLG;dC9ScE8iKL=xG)dxJJuP$T({3yZx~YK! zw>dNA+VPjr{IJp_=F~CqiKg44&OJyxyrB~D@ytR}xhP3qQDklf)MpRI6j}T*ieDq0 z$3u!IaX@!}68oW)X6cJt)HJk9|3YxOAp7OHe~o8F{;bW3E0>9{9qXg4LFv$mSuIOk zw)@6pE+RpBtWeFd>gJEk6#nAZFGk(+A4D88i@H~&8G_T+mY{*aCr~N~ev%ybl%y|8 ziMz0zr4|)Ucy$%@p_FJp^`IyPO$5BQ^@bk%Op3B)6fa0iNoQ?0w;9>bxr9hyGWXtB z|LeKOSYm9OiN#;cAWprd8keJJUlLW9H7XwTpKqo;KjO=@k-1eajDz{hQ$zDOw?s>Q z>z&i8J{?T&bf^YPxXFE1RG`kyh+G@~iYREd$I;`Q_BJWA#K?dXAi~DD>3d|G_Z!J-g6cHB0o-(9$r$B{c0_l*z5Vn?b19_zS(yLNaBJ8VnN@?UFf!D+WN~J@O_R&YnoJ8KsI7#}d}hCu6X@3XoO{ zc~V85++%60cf)7)q!Nr<+(g3*qSDWB_sbKhS{EHT^P$t`>&%B1ShW`U*;n?;S~+V2 zbs;Jf00NN>y@bckR7d=Xf!xs$@2BAbd7ith?bzWx3B4PS!)qjokiKh=P0|-P#XTL` z;|GKKdyKHX88_*mN7rdU^x+Dao*VvNWxx$I@L0n&@_jx~aGx!>}X%}YC%gFDk! z?OPfqviZic-U$#)qF{N7l8B4iVe)vXKOvP4-hlqSxWh>&os1i7qA?XkaJz67+S3WKkaZS5~ z>ciTtkhv`sx4z%@k`yGcD2EiY4jRe!<)&LNg@`fnfV-1**88{;UBYn_D;`Nan&PE4 zDU#MCuzx1B($W;sIS+bH0Mx1AK2`zQW;vG)j64%j{~9!!rsq)Y5BsD(FxR6Z*7MeG z{0vhX1sih+s6`Xk&k$g5(`7G?7<(m_t1P82)xpgO0FcnXxdZcUzoQslXV4tyl7hbb zkYZ_+FQXg9zixlBY(|^yCSju{h%hlBq4NFbe0R$@@Bnk$+U`@O@bTWf9&sU;O zox4a}ZAeA4!vbnZZu)X4dgiGEh#sdli&(otyBs+?h{#YGZrymCO#0|VaCPGhG#Z@j zdy-ms^3N(k+idJ5wn1K%Zt%vR=P4POuEb1lPHeQ|F{n%zHNXG4UGIxI-Xw~CSWfW& z+DfGu`<5`$Y^PpIkIAO~O5h)KM+QUq`7qOFk~8kxzAq0YlI>LsGg zr6yS?Z6u_4@8!ag4GURv>Drje$mbIU)JF$n< z!=_Xw-_G}jZwcv^sr<>5-;Q$NNL-biHI~SLhRN-T(q*EYb@j3dJOO>ko95bwUM|n+ z)e0BNvcNb(*?ExLl|Y_Oyej;2-)8gCHK9{35YyzRMmg>G)ABhDy!;F^w@!zw-4- zOtZL`ydR&|VqUt}!}mRmlFesC{ZW_p>-%weetC>;`a}UsGjv>IK8DYOjm!*ddi9Ed zE$8p5PR(!m2}l&0Df?ff{EFHZq!)gujuuZGl<8UTuoomT2L$-~g}K@mbMp zEm0|lSHEM8o=vaLUoD_Hh#3KcC;kE9qehq#6}`moX%$k7Dx(XU{DtPnkl$@}*PX*< z;H+3>>(;B=IxH-Uz0%v0bBVxiso!+UvDTr*k2}L$61vVn-vNK=dKPSUoT8v%Y>oH? z8+HK`gpb|LlBgtdeIIlkXv4s-e{388>2c%~=Q>a}3jq6kEU9l}2!6CW#tt-}@~os97TZt{nh1O_x$YiD{dr9E^f`ZeP=(BcqyhipoUc?RQ7B{woA z79(63r24_(tLfIpPr!dQ^t^}IIf(o?v;K=cZ)&yg6JHyy_vC*;d)xUv0%k}YKKp)6!JB2A#KS|S zfrK-L=-QbzE!L2$hx+++o5T(IBbN(v_d9a_%=dl)`}=u#K80R3n=9q95XEFZk*mv{ zO*}aQpvj)2K&=SC=jZUd9fNQdEdTOSP5hA3eW)jRNB0(R%LgH#2w~Haqg~e#lE2zp z^2Bqd^>W?}9zk??&u|Ot!SGO2hm2 zK#q*Q-P}f;32>qD3jqPo_eDEr>www(p_si0DJo$lcg8;|35cS{=&0sdn7^H;=-=6` z&VyZHS3noyJ~+BP#D2Q(oHwTE(ji$(p3~+aIk($`Gd)U&U&~^$`rF-kR>~LSnS2{) z!BU#%$7rj_Wkum!;qj~a_MUe7b)Zi8lWaz>gr#%dJvd50Xxkp?lGSv+98fV!P4J>D zDEG-QMxkPUb7_znClZ>_pEu`NFm^7q^bbqRb-cgyO6PXde7+*Jq@}^s76PdhLUB%y zDI`}`g;-Wbde{Q#8!ROD;e)Av8a(Fa7+J#o!HNp@lKfz1NHyXGNE8?u5I*1gt@(=? z-J>Sslp2j2hIlQ^Qlo^1gl3-Z2*1#*CI;voOzemfR*AdY@jchGP8?GeV15h-f0^omjKap; zcMPNQQK%}9=J{2JN8&IuSdUgg-3OeaR7Bh9*WwPp=fPBs-ghGIju;Vtm@?8_XKdKn zSWUo7@Rq0*F-g&X_34oR&S<7L=8rR23P{Ww3;6M*hF%@0H)|yR(qEALBzL6k z=X&yuqtLlj%Lveeu4T|%EM=K96OB*=Xka~+nlmyzjrBRLM^?137b@C8z{)sN|vnDPqU z+zxMK6NWaG=N&Bx-ShG20&k4N6Rxx1?GE;_>#bl)wg%Gg6_!X7ydX&6Z-#F0X2IX-3OXi8EAYSMCTy^g~*JCyfZtAh~w zMye_XhD;ZN6;Ot#b}cA0>I%S_s~q*=8QU}t$54Y(r)x^SHH2EJz`Ug9%mbs{d9_vjVxvL$|vYOQs|r`TsS9PTX{A8fXW__w0FF(I5Mhw z{1DQe6&Gj>5=UvI4|O-q5;{_Cg_}i&78@!~4F;|J=477I;aXUg57wRU^(G-V=$fB5 zzr#%mbLF4gZsGUOykTQ>D%wh348|#kbk%Na!HXiLU(vW7%WPvq=ExG%`D&A)f#UX# zS6Aad=!_ju;Z~{vD4dlBENh*@Y1nHN6-^KwPu@|89##vt6SzE+BuY0^q`tc81Y38T z*6M%dpB;EZQ?%#1<2A%J>OF+Ab9YPKY{V62AW|W*Z^4P3b7hRP?FFL*$y*s>8o0d& zcFm_kH;-X|);U=WWdX$b@fd2fQLt`l$@OMP1-V)ar`99}741Tk(wx$E7COM>4s?%rwaxgRjRxNP|a)}~-(>ShJ?O!Pgpk{cP!{{>lJ*tR?n$u z^5o<`O*;V5AcQAbw@bzn{~6N*y_u@e38Gu9?=-{~u#D+2x&yGZ3SVjQ?1K{@3r3u4 z1WT53v689+iB^b65;#A)vxRnoNoegRu0U(QBzyrh9`)F9@dASN;#N#d6UiY84+3-A zz9Mae$B;ITpT76KvRoU&k`{HOfWKm@=P#+qu+7UomkK>@d&xPsaat{mb8*Y%mO&Lb zzbe%5U#${Gv?dPyc=I=rt0yiic?#R$0gTJ?+5GBHhKCw<(0}=1h zbg4H^0x4CJOpr@%lN762l&=}T;CEV1fa6sCuifiDKV&Cs!!GmbK%h-8ai4{(*A?n` zkW%$>L+9T(9sQ{7)oinSIP9;j=On~ahTHtGv{Ns4U^s@!-8fX48^InVZD9{{TcHly zGX6{wh@)KhKFh9RiuTxIOHjLjQPjb5{&tRzIW1f-AfjD0(O zInUJ0^P*g{UfD-2)p{E^7}Q9WNk=z$ry9$yo2q+Gj`XCU4!+9GiFnm6`fW3D-G5~F zV;>05Dq;c>#Eh1=VF!_JuP@`wkmMc;BF;qbGUsWTkdk zuo?;&yr-xTjwjQJ2d%UccuQn9y9!}8Mg%sbGuCwu5bhOfT3T&QKNEE05%59Q*uX~# znL44NBjI}2W-vvdH*X6!!(93CoW!wfc-`P@)uuODmbk%{9j!c?iAp@(mD>y&x@@DB zHeB@q&Izlb(}X)9>)7IGm61DXFNCo4*TnHs{wdM@W}d=Lt@ww)IGS(iNz&bvAE)@Z5>ic&hy3= zvkEG*$QaqR{AUI{Qyto0vGQfx%!=y~kUOrBEcaX!hWSLU9=h*)=RmbJs-lmDK74?;H?ImbH$gPt_u`>u%-Uhk}EZvY7&5ai2hLj>0z4 z`V8Z+n>H3tDeT4<${l*NFS$TxV}h%@{@Z(N+h@qP_zdf8^HXAMZN#frF)(@+SPx9Fx1(x?i}wo;PF^pX~LliEg?kCyDI8SncDd3hC1!Kx)NxHo&tc)FQFV?#_ zu}P{dEN13O-h1n9D6vd&l4hcy_ z7KjW+#Kt(B)F_K6i|mTaM=XRN*WeDGN%pR~O_qUZV_|731vYCj1@q+S-S#(QYX7gYHO)2Unb zo$XeVp@?I6$W^Tx<&$*Ai@!P-;lS_*DQz+!QOEaKrU+*iU6PY^l++4MAw)&he=(8Q z5aO~9(e|FaD1xmJYcJwlO-YXUKskYRh>y524OsbW7 zN57rB^mhRhS5I;Zhci*j*t+S?XTD`?CiZ_mN|=F?nA&nr)r^ZmCS6we%gj=>rfYE$ zSF<`@XJo)0&=XyaB_Rh(Sn-}ntC_U7i2@V0Ts8{ z;Q@xj7cF<;JwA!4DmD}llvgF+(h~4jQnI2!g*|!Eu-IJQXE|5UljSQSRPnL0r1v-( zD6wpMk%Mb%ZF ze0xoMn$#!~yL)=9!#@|rrgZXRf9pX^nGIR^eQhe&)Q6Nf`qwPu$Z;sma5iymDKU%) zk~P`f3?(XiimyIUn1eIKf@)4-z7otvKMk?yOI*AZuBb_{^&E>ZEj}@^UZChm-VuX` zvvyF!TlM-ofR7@TjbdsT3}0b-`uT9zZWOR2s9Xrv=_CPhY- zdxTfEG#hs;fB>$EAI!Yd&w}1v9;$2k5vQbP@dIGvwxEMAKY4T2@o`G46*ne(7-JlC z;|8x_MVhGd^2#fF!6{-l|0|y|RHD?YJ?vssBxbxGYx1O=_tvh_w>Hj!*Nj^H^W*4B z8`u?@tNSFFA3nEtjbH!HGF=gdo4KKX4K|XWu zjf0znikH4KR*{~w(YE(NqO-2$TGLEVE#3SttAnw=1Ua4RLP-6o3S!EsGPNllzIE9l zx;hOL6|VdRTZLmf7OF`5j2gN@`F4~z+;m2@)Ys0XvWATf8&waCMosZEtG~jiw%(O` zwQ9!;O+HRn^X_%5iXZC;w}A;CWedZ9excUmYDU>#%j+;&ihj1bDPICr5fad=A`#b|f2p0IvzbkpV9}ElzzlxDlIQ-~VS|9@2|4t-l#*&A8$Me912*SC zz2+gHPSaKa?|^54aT^MCPCS}*j-Y%U!23oH{}FAVuthw8+Bow13%D+&^^xm1idWk< zx~nsr!|`A3-41AD%_F(i&l|$e*sAx#$r66udOzz|Y;tH0CD zsYF`6gHZgpKTrz}HohV4{OZllN7=gkP(6?tsDV$1#OLX0e!0lOzD$(@fEZ5chS=5% zKARd2h5fSb8mZS=i_KJfa&duygLHgPoSh$*6g3^6*(#sc8)oxZLFS$uAG$foLAYsP zTQ$3QhTr)Q_Ma>#V${drKeaw%D&f!OO@Vppy1v^)&7UlT5P5xm`Qn@9(mKxL=gg4Xsk>c^tr8u$Nh%Tg=|+4O^lvfBooc%@r5W*<*mc8iy7?XGys z_DBss7Q6N9qD@um6#&{vVTOQ{ogOr;Tum{n>|a)*m-PMK_{kH##r`Me#rnTtUaTxk z|1a~>l};x4KUEv{&4uSgNRh+AS-6}iT3pA$wxMgi4xaN4tWb6uF{TnJ^l(3J=7*{P zP%FB;Q>1H9QARTEs95nLr|I$m<#%!pO5gA~Ij4WsOKbjz_WsBIe;?0RYvpsj02~{n z9M7Zqdi=TLG^>`sK4Pr_i{GCwTl9CSLiH)WKJS+=eK`Txh@bl%>EDY~rUI0;sYT?a z`wxTw{Ox?aY2*dY(obprFB)3qA=thRiAjhOft;W5mS;J16|hm_{z zqJeC2;Nb&Mw0jNp#$$EY($ouUXJr2KmULu}toQ%qZ2jJvH4lw&2h+K;=~ny~HXr7c z%uYWE)nIFae$qo%ecW-y>AQ0X6TiOn_G4q__OKt!Im7m!Ks?K^d2>(B`~vNG@7V;A zDY(`Bk0TqzBNKFSZ}0X6g$7raVqG|a?H>aG=Whub3kDQWq=T5EIy0fkLNitiuG!`t z+&O6heMu#ZNhe#wdOz=p*dJSViGBb@MpP$|LWxWmA0XLLLEu=3D137+L$}zOaN%yC ztOvg?mOLbI?IEDsDssEhZc3{!gAn5kZqOCU`AqZ&QIt+u;otofx_KgGUPa~$%&^Wi zO^wb7NSiyoIj^-wj#wYv&h#tH@?qwc?GDRE3dFNKv!BtabJ(|d>2lyqZ>F66?Xsv5 z;S^sj(|tH*rHAJBpsG}&KZkeILbu2LXYb@eCL|UmB~1PCkFipQoGEXv%NLB#j?h3g zQ~cV}$c3nK;(5Aq8$WR+DMcQ=JrGS`L?q2jzF9Q8^nHL?e*_{QueN;Mo^r+;8O7$E zMO;^r>-kQuARqFqXvh6f^+J#T^Tf3dYj(jDgcm|U@7*&Q55w4 z+cKs)l1yB!`coHrHykk#)Y>Z;(|;JqqYI#Y3peY7ca9@<3h$@vnIro=KW=K|4_N9c zb<7M-Z2ON^Avz1Dg3de;HOMNk4*4-$_ii}2L`=3BFSE=Q-*AJAyRwrr3Nu6T4$%0} z=8co(f-pM`gcE-=j~PuG+63D&z_)~MH1>~Eddk28a7EAuMQ2TS=M_*72I_WiWTdor zJZ8c>Ki$M+jYx5@!eRw84ZK!)i|Gk-IpqkfO-Ds||LZ}Jv{q9`j|FYD*u~^IWos6P z40#QI%I<=L&v+O^IZMpz&36@!R)#Qi1=5=)EPv?l#HBgSpK7Gf!Sbe{*{|Ytik5%& z>V1z5d}Z`0!q+m5@(xvtbfot$+Y#1CI5-qmc@)b`Y;6nO`bj{d1}d&<@?d2ZST{Gr zhZhG90o6eFo;3HS;@w`%xJ<-AyJ=!BKV8`1z?qJiU!GjDd#<&d=eT_KK>xo0*_(v`*pkLnc-`lKRDh zTf5gr)p5!a{(6rere&>##uM95`XqH#34L?Uz1m785>x zGikyitnlm|kGc>?k$nhf-nO59*r6K{kp$3H9l`{n2{BTQtFn;!K($$7lV$ z%$oy4>T5M~-E`aTGgvE`j=MA>-?^;JlOv(!Oci-Wik!%vw_8nUy$PCEROA)8BeA7` z)827%$6CAKJINKJIi#oQn6-e@G`}}91Q`xw=10Qm&dwIRUcuO03Q&Y#$GR8m8E{KH zn3xX_M_r#~71M>@3>gu)pM#>3K}D4&;%quyt;i5eX03an%)kLWWn8+VbWE|FBqS;Y z*At=8(d+nN)ZPUpvbJI7rL4%wTeoh7O?P8{(mgMNDwQqdkPHo%g6G(;YlqcRQ^3^j4K5a<`ov?4CbJk4I7ql8pOA4y> zV4n+&J`?))GQ+o-gYkx`alV)n;fqB<7zR`%CvO$7sH5dZNuz!lz=c-Rmq24=7EVU6 z2PtQ2<@f8_h=}zN5mQb&QrTKu%bHLf4i!RPL47J$QmQ4+=q5(Z1RaJ-<;P7AKTkEE z#eZ{Jr!F`ppdf!5ZK}-_rrrDyAo%xXHH~!InN)u@@dJb*5;;9WvMn ze>j?p#olVBvr6-$%V5jDitp9qjFXDVV4JE{CqkdTy5n@0&8k!nJ>9F zPd`{6y0`w=N*v$R`;nG<@nNFg%`89uL_A%>;Q$JH@p^CCw1Ejq6*W$ zcDKTk9s?cl!on$c&1+4_w^Hr3lAe;%PL@qovE;84-9;%Dgz@#EN;pSnIVQohM>_$6 z7RN&p_bvuz~+v-w#+kLzwoM>POm>6 zV&#lwRNQ|r22O4JujAzan8BmJ$NO9kP2#$&>eK{MIx`%Ty8q;2~qbEU#m z&6cbmtWBFlypmh+HnR3)T2OYZCr79kWv}TUAv>JXzP?BDs|Apa&gK~w^pZo%eJo)2 zh6aa*ZDX;q1ncSb>3kr5jlNz)Bf6_BO;^KhXPCs7zvc!;F@oLIWkHi9ACqzZn^K53 zrG+{ZyLiYRNF@NYaZg8=-KcEn9y6%MfgGq+^4Zd@QD&C}*U{Dk63?rP738Qh%p#-2 z@F+}-;W!SGG|7L_?QY{5IOBCUV;Vfst%c^Gs{U?(e*ZlxbO9(SUQKtD0^=1UTGDN2 zupm`%DH2fmg2Shcgw#*p*Y-1nYE4qFqly`fRs!p9Fq4|`3ZBk)=I8AoF1)g6JocvrAng3x%d zY0_{@W5slp*ZRUkEsC_>o*5#wJ#~MvQ~@`9gV!O&8#ZdI|3W^S%t4YqolV9BR>nEk z0fhM9SUHzHeausudArN)sDrsBTU>;?q4&;+FSaCH6i4~Uv#k)i@yyoVY@x~~-dBkq z5;w2dduI2K@|^6oZ}8h!R_Xa_gdY6x)Z|arfC2noL9Ig%5Hc4VqzVU(4FA(Paxef} zPwY#K?iO3ui6H2eVYrOwBv2q~E!$Rcqx$lkl=7jq$@y>O2vMZQv1ZE0XKGMRnKnY= z!(_8_&s<}M2yiY0U8fbAkTPeZ1xl4SOrl+}GOvn7oyg8q@xhhpm(yY)Be1qARoW`A znKr{>qE|~}QKbb}X=-%l@5+$|mJQ}ho}PvaI&))E$0^&{RXkDq>?F3H@ztX_@clII?KZ0FD4BpXIR7(_Ai=0htlaqp zUA|m&Ed>eE5pn#?NmBoJTZ6PLHic@=gDB^3v_l<=ud&1bd%NJ5>zhIcg&iC7d_x3* z$z)w0WL{mDgZkWvErFuJi@g}Y;?TW(kf%qIrbC!Q z#*9n(Io6M1AlOiZv@V%1zgj3L|HWiU#(^MCe-MV&U9KhXEuq8VoVZ#PI<_^MVBg;! zfwjPT_AZc%w)kT?-7`Ywgrft0@puG$`L76_CR21G3T2TebY%u7v(CAW|G| z^zv%RYQ03KH2+vXwo?JY%sRT{Md(Zvem70Amh;~)l^<72b>m-Tb5q*!M`rnjeGwVA zQw`?Y_Ij;Ih;0yyEKe7$=|DRzacLN>wU<$syY`0q`ef*rEux$2jV|qZlKg$h2(HzG zKx$a{>+nZ5I`RZ4hI#+B93Iyx_0XEuz}T&2`{G~%W8m+)zWqXdC->gj_h_-AEJeY5 zEz`^^N=m0sml!ee1&WvjlH?7qAD0{{QT61=T(9g=7n{rq`=}19&9fGS0u{OPl#@nD z8Zy^j?k%LTqTr|M(O7HrEbWkS}6ED&*uqwp(SZKSXf;gl^^w zM4}^n$u0ekHF5h$=!;kV+Y=Y?nbq!N|44M-hBLbBd_{am^p9x(sL|JnQ+z=y+!!?0 z`VNEf#X^IM(-kcu`0A(CogX^3g=~X=NGp@hNiD5uS+!3Idskz%mr>)WeQKW85CMFR)$Q$a6=LQEx|5KFXtM3U6 zVn%~A?A||?ph|gUc&d?+Qg5%_wwx?m2Cf#H$2t91naGckfY`;=D~8B!j%F>BlN_-% zRM^Ir0^RaDx+SaULlv~tan zW5j6z4=$LS7!*b=jOjx11ntV6mNhRy0OPt{1yKPmb)=Tw>iXQuE%Jh3+ZWLNNlYADzue9S46D;TBQqcg$R z+gJ>GBJ_e9=y}*C;r+C{mix3ujG(JsD8biAwWf~t`0RqOGl3%Yr4X+&!(w!WVH*n- zvNjnrux>{`1clvSUgSJB=%&Yd#mzZJ22;(@DYNQ7?K}Mp)|D*#f2RmE9F#+5K|rO^ zKY#e$8yLM5FMA}Kxde#%@#sfGUJC$<8H#ozK-$0FU}I8isXEph+x?fPYxRhKb2~~p zt;)hJdR;m7-DH)v=~FppJyv*G>>F^XqWX6fFp}&OJM88f>#Z{>-hIkR&{ex>J#oDq zE4Tm)IyASU55+^Le(#No*aT@Wbx&F70A6LRSe*xGcQ0AZYWHEVDcC+U%~eP9H@dzg ztJ7x8?zi;nQG;siF>C(?3YHo>-;G!}bJmn1zP#Gu7)4(6-nxKmFea!uPnnf-?%es3 z>`x^0I$!$tDA}?b3NW3S+1jYy?dV-r>?+@X;NTm%mNpj~^9ZrRJrLZf=#zW1I6YXE z%cY_wWG=IoTybqCajEihwL13I>klt_Pt;6&d(mD#bY^&1@nP-RZ)v`eYw4mV;Z`S< z33fd;A6lkL3}V6J(qn2oDb&@5X!osD>O2B2zCanWFakuEgU=vNz&n}PU&UL zPm%53`x*KJq$MCZ_@9_7$Nz@8vamAzKg@OIKb;{BJL>Kebrvdfblv*dJLC`qk)1~^ zg1dN=0aGT3AW0ocByL~s-MVSI?#X3cFSAZiQpaVT(}!c;o~KGaU(U1S0l)8K$bTln ztGkCA?eCx0=Z~)?bA1b6C*@}x8IB%*&Wj2%+=<-T82BiMub(GUVz*M7E7e4uIYh(hmJh z{<7@+UxRsvD7c)&U0lpd$HB_4E@XK{YBrO-_XvIa@pz4lm;9~q(0_AU^NEtd z`CIaeS~usu3(CJMrnj92v&>L8dTlznp`J)jOS?kfEr}fmNwIP~q z6fHulIi+$?LTVz?WS@AI3d0a+YWbKAd&F|}$K3qT$&NBBCOiDRS|UkrIP=X`HTa<| zk;GI(RBuB_h)Y4x~wP@&M27CtI#!vJ{D;tUGh$Uy6nCjo$?CoC7)Cb z$jAPD&HVVNU0#DF%sBO}UUkTYAJ2-wWLKL13>v?#@?f(F3cFbaC*!PM7+M{;CIF6%Sxk$s)`!w{eD&vnCd|pd;s1E>Lm~ zi&Hc?6gk%Aa!9zMN`BtSP<@AiOt0Jlp|*P3haWo1vy38qe>Xd8g*k$M>f^F^{`mA{ z4C*G|NC6z9;VT#Q?;*~zdQ=9B zWNBq@?D2}M-E7>#d3yRv{7-rltS2gqB~v`1H3{|A@Q#9P;ikc(4cu7t&9vwT+*b{o z`H}F4Q-@hDu-P%v@2e~GZ6S3(5QcHYa}u6Qnaf7yqKu|Zx(ai8SlId*jk=}v>vTA^ z1qH)>7M$Du(%oE(5xa!%zL<0XZ^4=}BJ95kDtq=ms_dh!Ucl z5YGYsGw)$u5SEauG@>l2@fas;4{bozvoxW?Hv4xw)%694=mE9cP|w1l-T5`b8xvQ} za=XJQlNY6j4(;UcAC|WF2#7#Y2kQMQ157i=gK@5MO_a-JL4>aij}YkY=gW%-@Or30H^Ov(@+YCX&H{HYR-~F zm>oms9#uvnm5G*k>UnwXn8>eQ5M4=rS$D1MF?w8gTeOi4UP7(GRj5)G;a@T|DiA=7 zPWpT5C%}gg{|`n}gE@(T7t?lna=eDDnQpXr73G>~R3Y)sevCP5JkWl3cgmuPgK<8q zJ{c7R8c_B)_a_3uuL%La9THJ31|JbuFWINNY%Rtj6}{v@jOvCQ=*vPhZ$25^qmt=8 zU3dt9*w%;85H-k87yx@z?GSfsKAf>{+)^(`Kk*8w>y?XWbKfl7?ozkovR;GGS@E$| z!{|(C)2Yu1LX%zZC*Wsl09j(J2Va~kyoKJDA}WNl#)%czb8khr^V5CuY8 zaO_LQk?Ye#Ct$;yPU_)}v2@(iIzHLzE(C{oPpH!V)dp<+*GfoG1V!-(*E&nW9bqDP zlJ&DGAzRvv9Pk-xbFm#}^F9_W6Tgs|aU_pbW-Q5r`u>`6 zgpDNxRYLj z^-OiEno~aGPJvK6i_p@GOG(ttwf$KsF15iuOA;v*Qg$wKG-p@Kc$v&NYfW9+?#-&G zS!{{QoE3kLQvNdsHeHcc#qEhrsUYnZ1@74Xi>zTT@wBzgL@S8ntg>YLLQAZrChycU zvpFJV;N6KlpK;bandSD|R*wG6UcA6#w0{;dWzw1WV4HGx7P+*}s6)rH#%;&BtLyW)sDJBZ zYfO7e!Gj^Y+gI}q)Ppas*lZ@L?`Gk1)RhLq;hf7rMKb#keHT`i@3j=T!+3y)C#wk+ z%CGl~M0X@NG^RIULACnu{6H(QFiz{pVa%AAyQEZz=j>n3eRR(uAYzE>1x9z`3)ZAn8$uysF4H(Ty z2)n=+}UxpN252z>~sIrTq*EZdu{X za@m`t>!HK2;e!@7M^ylB>}2a+%(P`A+{_|L6ZUb#3J4QKTG5>lPBR+~BGAV%#*4c* z1@_P=cKb=BTS;b7Yc!Qi1jzyPAt7u*7T%STu{bX69a8-!WV~`Q)fQAdb;;&jl`P0p zJa~rbkX&kSs}=@Xy(-3pBGcm`otxdnjM?;3YH7{pK!9cGaBmH(he$KWl;F7j-vW{T zUYwDfn(nW+2+bmUqB5mHtuVI57CF0-bKCSS*|gm20tmQpsCKjs8{^svz)Ix7zPQIPj7~&$JbO^2`P(cYaLP0w;f#j@Om<5TE5hfQWsJN%+pREAj&~;r zVUI(B@Toz)A&5euL+{FvYRKV&X!X<~;T*OUN7k8Jdu#wAThtxj8n^^{0hL0T2INLT z%Kx^YScW+s73;ra?he3ZvEoJ#0tA|r4DD#wtn!ImoYMo>!T ze_8-53@D8d)E74kaV4+mT*;Z)@XF@<|FEJo#uP)h>=E*s;zX+NTiobwO(fw)7ZFHe z=q+yh%?Mqa^KB?j)x(H9w6jI5#)inom$RsOJ`JxSOJ)W>OJ@uza2GL7%wu{f$I#}S!0PzVjT45fBASgQ{b0d3KWtH>8@Wg}_2G3*d zMtnwemrfSlh(XJcD349lQrE`{+4>JT;}(g;q^zDt0-qSthUpCNq)>j+6N3ohoL&gJ z1S_*!lwFJJ!^Vr^rTSD#;8hqN^9J_mb`@HO5!*9&7kigU?Bo7)NDvw(THbulC8D@L9xkwD>9Ja z%LDt?9|Zk?GE*7=-WyszZ98AA%13Gtq_Mhm3d_rCd37Wd$FQx$gHc}nZY(DB>aE4O zwKY#dvcT>-3)^P5CWti=;yTz6x;t(+cOuiG4ltDfaE^qwkAb`WXns6_B-PHS6oP`c zRH)3fF@?X#gs{|^on(>Cv)AQ4m%7o|e-tjHCZ}dftD5qORG8ZTbl|Kir$}P0?VuC`;UOBYoSD%Sw+~KF}pRE0X8&$mb6z;h?o(I zI)p`sxM#vFIcKjsP-HlWcNJ}rmr{7Kqt z4QJZd(t}j2(t7AY;b>$WQ`*tMGP-K;i6(AFDvqSr=^I3%x+ zYGAU(nNQF2Q76&b9;S&gR%fgl2jsyV0-o7sfo2;i&cAW-YXkU(O+k1S*!56MY7sO* z+2Cw`R2P-ixxn|r3@)KF>8#Qt6zCGF#JjOV*SQcpc?`QDSE$S7i-_&4)#aS9X04ac z-0nY9WwFF{ypD4bsq}}DykchtzI%--9=#|X`4NIXA5YTihhh7sN_AN)sh|0^>(7C| zz-&Q03)g%TZa_)Na_r+VV0;sa>QQ~Iinj`VQhzhIc0Wz-?s+ZM#eUce1tOOZ z)V0;*SKF6ay0Jxm0FS`2Qzk0Ij%Y^{xM4900UXwF$y}8by9-)UU#5|7@cGJ#1{5nnapwfrHIl`N9e2SLc$R{WgmP${mLcmAI>Z6i4{+_#=w$GpBdewg1 z?!vM2H>igNWHY?MB|3>##xno_2*-)*Voa z*s0Nuw7AVZ4)d#$EzimD`v}yWEPxU>g3Ep}LQRs|)qZ(3M_3M-p10CA^+e0@di)DF zoO(yy+sL&ay>u|Kv*Ei%olSdc{BAT)2Jn2LjnM5bfSt8Bug4;hCG0f+1xn`c31$2y zz*ItKo9>$} z8D)@%;P=Wu8*(||Sjuk1tDlHLVXmiUmU~OLcX{eECskkyEFt9#Xz#^tm4Q;0|*OecpoPsyW zAfgaYJkJeki zR1wpUgl>SUV;Frz89)<4LnQloz{xYQ7cZ{?TEuWJ4k1Jhm1X|5f_P#ZDB9KU1^FK! zqp*Yi|G;*b82?vnhnbD(|MrmX{Ks~P|9=lDMfo(2NV2LAS2m!{`s|UJ2{6X}XG3$; zDwt6}7|?OrULIAiWFu?shUOUL^?(#DTXxNvI{fRwSumHxr#vps{NLmKt@!6_-tVu+ z`}fO1a(xPy1|p8v4Sf9^cyXw!Kz=+$Xp#VbAD{1+l+^PxI$p2$PkL~XAeiqxi}de; zRAp)kfKpa-%H;zgMW>x_rya@9S6pv3#{jv0rZB=l(8~9;arQj~MNm@3(=ZQU9)ADB z8S;-{UjG|%0OBUsFfatP;Ar;UuW!EC=7C~2dG$Hx&iLIOy0g~-fa>nyPPtU6BENt_Y>3b z!lT~+8MQ$5zQ-fqAL9Zv#GGkPEJDWW@y{jlTX-@lq z4?sCN7uV55i!1OISlS%8AagjjhVl2%!as>NnNtZabqVzR7mSH^kG!&44b!OoZ|Bl2 zIf)`8MpplS{6&iHR;?_eToJ=jigw+1|Hh{xbKDe(@Rm@?n?siMlW~?E&!#uVYK94a ztX(?iHd1#~nIMQ}@VcM}5iq~Y6rGCEkTU#J-rHE$`$wOB!o6?bM02;Y00TVB#L{bopMGvWucF`T0-?T48EgUe){iLZ)XEm z>#8;@G)lM@K#Ifw`|D06%4ji)b@1*ADsiwCWw(Vv)Ha1ZaF}N67eHSRJuL~s){FDKZjso-0Mw-dfmTMb!lUh zEzLX@*nXI9#bXh7lZ!m=E#8z4TGU3H(^C}NF@0veS5Bz*ByGQl#EBK)?na8C4alF9 zRidVGo16`a0X8XVJjRCtkYW(Lv&}Cw2AweaYk!(i#+XI30)P)e)vJQRy0*vCiK;^1 zHanFGZ^%Et%*NlJLdYeSf@p2gSODV|i`^9&GbyfJoD&+xgYs(LLVh*XaRS2C_-g|C zwy!$SDo{GPO2g*k0NBPRT%H3&#Krlda`?a9z?YW>FsC^m$Ad%0b9{8S#2t57bpJt6 zS+x})WSAkAXw9I?;{Mat^(2~8@&^fh!{a-oE04@k@?sMqCZv0{P@gNd;KO)F#hfSB zfHH@`@2KJ_1je@(-=_p%I$*2n=}5M}t-nW!D32Ok$ZmT+m0KvG9+ChNq7)yJQ0QQe zLEx|uO`l1Y_ZKs5PJtx@@ijzKCn1ccKz-LwwkP>qa(f2NkkOWMD@h>yVbiqAbkK;t ze{XjRpKA0ZlI4e=$&!$G$ftkEmwBrPRtptF*iO48RjRrrThuaY&d(F?@+(%GIWsMNcJTh5cRp09xd&>*rZ^mLpSH*Y|0*&Y^>-q!4 zG9?zF77UY{hr^3Gu8yZnlAVZZ^R20@054|ZY}Fm(pzSI2e%8sWUP`9=m@}>E%VT^5 zX{8l4)I8?v(?<-7#c_xr{skK}AH#JVHk2~gY zFDZm2xmY9g!73F`*GIM}JVBbvC6t{cF7+nbmap~NaGk7hgT#%1u{6sT0U~`TI-k{@ zZa3kfro@JLIc`Ye~x%q1R55pN3G^G6+Jl;8BnO=7T$?Y1|m{cN*!z`aD0SOJ^8RK2;HKqJ| zYWuo1{K2lTuFMc2Ys#|OcWqtigApfmpfn&ac+|sG;UcC>skdt&`f$}Kj(ThPfA*wZyx8uqpPxilA50FaS-Ax}vt&k8 zc#Vu_Qz=@dlcdgoneF!KiSINag+J+R`ScR0985g!H~zq$U2yh1blv8m?b;S#lercs z^(80}fNVG1u5h}e1A=+h=2ojJ&1!MV_fNi$%4)GSB)itvd3lX}T$uPs1A5|Dpp{ME zNK)M_d*jA6p{Rkl63nmrmagiQT5Xi-N*z!+GEpHm~sduP~Glv zcIuCltZqi*5#6qg+!;I9Tp56Zx!n$P$|fI4(O)yxjfPs-m6vT8!tBez4oNk{I}CN* zaS>x7GKF3x;Ycb^+}|nVC>s&dMa^&M^K4rikQA)?V8-y{q=HwtYa?f%IXi$k)1B-u zDF`(xB7YjeS)nfC*gRdBX^Go`4E5^swonzyC5PJJAnLfn{TWtFj}g2UU6P#XGLRA% zkdVT)gJsIFd@r{M5>GJxc}Kt7O*$6Mjq8k$~X334|+<<^kKU!%FZPs#s|k25SI zu(Y@txhCKwq6KcMKiD{?HrpDZ)4{>gH@MYjpL|n^qrAE;syV-qlX5bc!1`LP={h?p z?P~_^SEXSL7p9v-WhV{3dCtKAT`5an{{?Ql_q2S>w*pZdg{(x&1^Av!-N%rYCK+U? z0Of8I&8$SkFPGp-)X()iAj{xR~$W2xb4PyFeYD+tD!q3foA0FH7#Nzac!F2Z%! zIF{^?8AOBn-Zjp%Zrx6id^QR~Bu8dBiGU`En>%C$btDO`X`lmXE4tw@qpO^97ix#6 zY5qV`S{akj*!t2`hmQ(xz{oI?D%{=F&xQq?KdoSG);U8N;%1OvnL9OPwi49K z4vny{M+jm;99~q_bh=_uzqzizU+sMXRFdkRg2-GhsyO$bH~{7?tz-{4H)k_)qmX-U z@&PE=6bMnL`ssWbV93i`E($?wD4C~Uxipl!6=9aH7qD5Ax4(|_fb*Ad*9UkPa4dRX z*}dp2Mp3{#rxH3L4NbDX7&6@9OtR`=rw=Ll zQWBZh72b(=ZKv@3JzJ!Ney?UXtWg_kIVGTuyy}w4u=4JU(Bx_M%RK1N7?!q=P#guz z(B&n+>t)*7PtnK7nd#7zen;d6sW#Q731L|}EY|!?RiA7oShYCKKn3x+mY!0R+m`+i zwdaJffmOS-__!fx<|Q@zHGW)A`H=Xg!@F5{zDGBo1ggh3qZWSZ++cItszSj_-j-2A z{hXV<6n)aI&AR*b<;+p!X^nT}*F>h-`0N*w9U`A4&tbUJ);1h^H@yQ`o#85yZ&)_1 z639o@t6CKI#wI_O;8EU?Ysh*np&@g0uc6xvbBGR8d)9xwEhv>+=+c+x@Mcp(F3Mr# ze0vy+3F#kI)V)hNSA4N6#V*|^WSchsV>dx6$JgJrf#2!hmzK%J`@!qjyPJifhf^C` z%Vv0F7=PP+e@WH*GC}odXaiv*Wdk4T;AMK79s8Ws6I>i=z4n^d$7Y6C`J6ZWkj9B} zK__1Ne%(L)Yb1Ji$7u1tMNd_sB59gSGDcIW&c>8}+<|0M@kXJZ(taFYFZM3H_y1_M z7x$t?lLb}JIq;}+`)FnG*5*EAkZN;F*7s>scH3T`zhC%!z=*&KaYPc-!mWv5(ApPt z%4Csl+BEF+YZS~1a@t)NUnM#~|L7f)!1L2_c#+~gZiirO(7!}+ z5qRv_13Et+T`j3j$<#}!HqjBAB|qP7l$j-6Et`of|6Pwg=rSaNNp;Cb4#p1mAHbBM zXDE!_BM3)fJqf^)h9=r)^|y~JF$|J2VK-z(j~7bFA}N?DNz#pI1)T-c-x_S7q zn0hX!&KkkPy)ma!+js2Tf#YUFkka3v7quD#m+G#kktq`tAYkHR?*%(8 z!67*G#lSf9aotw!02mYF&xM{M_jDTH3NV6ePXJknF(|y%!#B+HTwkZ@Wj{qrb(HMO zoQl9Lhwv8Q$fbxqmNgX!c*>~uO#n5#Zx!JsAX29J@iJjF6IvFBX>L(MO@&`)`#E47 z#i_6@&197EQ1IsX*q#FqKop>;{P1Gq4#s8J&4}jASzI`Q*LfoDlt6C*N7Y5@_-?>K z8gV|~2t%YU0eb}BOb|BlsEEVYTyL9~(Dd)^ORsabvdr6TJ1?BU8Ei3m{lZO^MIj~v z9b5~aWFZoS@gM6U_hTzN)r zG-)Q>k@>|suH>e<9`4d#N=v1rXtE#}Bz&yG*?Z1gQzEYUlP!2PTTEZOPBhH$Ch(IHJ0K#@tTod;q0AP{QD*yshLQv4fUd)zlkM~ym zN`hIg`-xMxz|>gSjpu*cH5Yf2OcO)+#EbB-p%dMB)V!8@MAS}JW$WrsBTYm;6o=B< zL1legX8NuOW&eBAKViq-z$7x2ns7%r@kN_d@qwsXoATaTQVSPK3oG0flPMV%OWUX6 z+BqQ*a@Q7yDYXt#ieL%1S_T}otycsI60CL8jr-QOIS-WpS*N}gY;}e$9};v^p%M5g zk;DrPuAE4mUUks<=^pJBgSH6I*Do~1L~ge9m-K{N#@Hd)eW-(Ev$gn>FDIQO(kQMa z{LGnF{A=GEsxKv|Q)j9^+aQt3WZB|GXg<9LVa2KorJB>>WY~Lj8DWR}D#ZiU;UM1O z;ase@ltN>-_Ho8W3+xuFXvBf*hUq~>3#1v2xBnr>!R<#^Y$_W#hTK2ZL1TFb+p zZcFQ;XTy(H|)`(iW_ZWl*WFgf40vsj|@Pu{^F6mHm-065Q{z%!9z&2XhClQOtL9uq5@Vw^k z{AVj&TqaUZEYt1Ek`omAfOX|6f*5^31!Rd|8zth73!FpNWy?8QeMY-Uk@e76Mt*Yp zrp^nxpqmGIz@yJh`J(DgrF#dEypSaANn1FwVWAVwl&1L?i{fbM41Rczkfy)MhbsvMiiS?Ey&O>_WUpOez4WpPiVupM z%x9!_-q%s(QJ+_yUkAFtc(tegM;~iFHxCh(MfjgvOHdst_rvR8 zwts|_7ys-qS_KP{fUNf9Dt0&#vLlYd<}|6yG+ytJC%K%M(XPgyOyQOZj@u-jr2ZgS z`lIuw>EzIEH*E;l(b9uks8#QcW}o3<$wHT2f^ik#%ZZ{=eR2J+bKi3yhcQ9cAE9)R z&Bub>(jgs4rSgweM?@5qTv~#k?hoe|UAR=WVGwguqfzW6L`{^&gI9x#wLrlZd}b_& zWHkds4ypbQrt@N!GYUpPOcRWVKoc2>eoS<=x9&_bqesLBAzdW%D+>eJtpTElRiDjZL)KP7l<;Muy%s*YH8+m9{ipN8sjyz+OH({M)0k3q+PO(2Psp9e$ z9=zT*G>2<#aKQ5vbeUEulGh`xe}TO{{C;OY?UPe_wikVOEIH$HN{3^--IySkQ0>2aGLXVfPZa#1Z@=E` z%~e7uMA(V5R6jYCltWyH8oz}qrRENO=}4~p{lnCyQxa`hj7xI{{pGDKe&mb0v=-*x z62^pS(yu9--r|Hf+%qz3uHlpO&?|ID1@J=O?GkLIY^DmcCtgbS0LM}90G`s~zr<-+ zi9pPxoLai@k#Stp#}~rbV2~~8)Vz%n0~_RaHSDUYV`5V{Qgd9H0ojI)EPo2QTUckc zn47(4t}W0d$e~ylq*1k5fFHJJS59JUJ+$#(tiM@c0`1Zs_RtGK_*+gr+dtJHR8<`^c2(6CBd%shXzW=SY62gg&b&Vt=<-Gy1_5^P_zVm@(p4l2bfx;Q$)B?IrR;UqeHv%PUWFL%*VF zh^zHD76B=0d!NUVrxgG4ckJ`;np^`Eyv6|iC557?Uvv%3kps9~^X#xE^_Fmi8g3phE-u4P6>0Dg-npz{mafck~jR-Li?J_VQC8fm1E7 zy(IuFNqCc79|xzw-)wWYP`IP9*lIbWu56N<5lBlUic;AF*p0pb?|wv5klqmZUlV&mQW5dqd<^M! zDXa-8B8PPpB;*I0s20bn$e}o%ewS-4nCY5Oc&&}c;CAtVNufy#pnL~-jP#h6qF6s-W^iwedPyG&| zsb~oWhpPjzI_0L3A$Yp=cr|9+`+_cIRT>T&u{oPdAezW+}|fqHKoI^NL{2gXX4I7nMYsAnt}dRya-Xw?PMu8$SdY$=DS+PI69zEG(+?gM1B zS6q99-*FqiWp!tVnk}aA2uEA55*+UD5A3CMA(>yU77}%*zjwFUzl(X}iNfP7Yc*eT z>*NGt7OH|U3}tI%J4GdkCbE94i(NwRaRd1a`|_j{v0UlvhB-7l5@>gW1GBA%nxXsg-Hd45{zW1(eeO5rBB^~%Y*87BGExEx^ zXWY8F%HG~rDF(xG|Ct|U$d!7@ov^bIZ32II<9u-bTL)UC`N4JXEC$Pi_Z34H<9t`C z)EU9M#a#n9x62lY!`z}u2extAK_9pznOHfGmsW6*6YtqYcZ*lbsx*6aVY6r3#}8Bao0Vm@^3>vx3Al*!_IKsxDDH43Pc>IKqE8g@y6I zI)#aYRERQLVh?vgE5y%B}5#r#r$>+G+`f;P!!&22~ z)$zFrY2?!A{`iMaeNudy! z3~c{vtjW2b+IZ>eS)Vm-KyvYlJV zfSh3YVL9Db`L0%|h+nbLaiQC>Bod->^On1VzMTrSKY+>^gHl@=wG3Pt2pP3`vb2As z$EzbR98y7pl@>EY6eT>7E*kVW4O*CZNEm+> z5DIa@L^ZelwX>74%u? zbV*Z(7a9Y+#qJVK1#1xFCRx^-d}P}twRC(x-S+S4vEbWS1HZ@;++KKNQD>Md1fTfQ zs3h%$2I)Aog%Q2_MhDU4iN1DMK1PyEiMui@?cxA~>fW7Igw{CgP?=YKQEdln=FLDr z)YDtpT&x~zKzS-^DB?Tkq2R4NHdjeJkZCi02Hl6F5RdX@qJW@dM52+;dz!GU2)QCT z(>OSMP%?Cm5Y4|__)I5Ok#E^SqYU%K<;Ek8Jt*6~+)3jSOrwx~x-%-3jW@0<%Xi)y zlxt->}1K*PHvGdh0^>BWu901VH}lz_n8lkz36q zkEuJX$p|TRsMeA@t$#X=3#eE#qAQ9`$4;S2*PC?EniP&qS&U2dOWAqD@kt?LmKiRs zMX+oPmgCtykb+=65QaCu-hJ)#mfxXm?3wF!-`LG=HQsbsuKS!~1#zfY(scAzK!eld zzc!6*Wyl*v9sb~!i)^?xl2p^v0Yd$gGHk?9(O`jDal(8{c5!4#!>(JXCKo12UGzN} z6V*(56XeyNF^L#zh#n_xvXLoyuSdvGi=pZ(+fnfWrCE3_sK-s1SPZN+v;zx^zoh1>CpjGYTwz;UqzELHeSU8D8KCt(QPZ zt-Qi|@-OVujhrymRAidO8oj;8p&zPtYt^BWTnMsb98%vpV{S!Gw(cc9+E@zJTt%?- zTdinKU4&s8BGWcG$qITnodhI;`S+E<-F{O-BqvTaG22ZNb)1T^)I5cm;hDZX$)*e;mYUe1gZ3wNW>_Gm~KR zQ3TU$UT(Bw-Iw350W7LaQiAZer?zMesX#vkDLAZCos&=_@?S#Rrc7KVPkf!d8WuaH znDksissG0rj#)762=?& z8YJlOP$n6)XsyK+Qdx&epbE-$moOWc(9%isX>B+pj;+Cwz3AUYoQfIq+3j9l96YKP z36;p`*S?XbtD9fH{|L~H##2o{J^RMSP&sRq?JA|J3OU}VOHXAL>omXjX(>rR|& z;S42#P%&f^YvS&fVI}EF03E5je%RiEKn;C6!0sLXanFiS^RU>ANAW`yB)j4b*gjrCyb+Y{LX)Fx%8q+?iGRYs8CgvQE zFB9ilmP!w2S6DazfmO7u5QW2Y{hs(-)5R(Ev9_iqSKW{doO*kWC%w4?Asu98I`;ac zu*QT<2X2J4H%I9it&ak@>iH1CHEI4FdKt@0cWDi^(`3XMn*e)Yhp=b3qqQrYWSSP@ z-0gPlBXoUoNOlm{5*?U>vE}aB20$BVEws7rJ!$7A%~j_elTHa}5|N$lL8|_OOqgEz ztFzI$)b%_-RTmhAb?qJA)Tx=i8NgErczNV3gPKaAqBnTMaDHG2xdwTh+S|`lF5csm z;cAM+IG7eoH;|`{c3n2T6mt?&01pdQXx&lZaZo&VFRMc%)VBwfm`2Y>K>Pw_vIEs4 zMTr!?E!v_zQPH22qiZNenO>* zIY(9LrG;YFca@OW!o0v_%@YKbmn!|;Voa8NX9N7zPf~k9v4M!-JwLl5$=XsLs<&+E*Ki&UeUT<9=XFqOVTF+e!MKEp94h~N_b3BHf%gZlNIGml#_+G75m6Rj z85xiy&4&7_wiXN|HOOFUp#xkYg}GUKut<5&-wGeVx{Y08SCdi4#9@2(fHN*i`GAEL zQy52@A^eYB^buMe&pEVql64g5nj`IBHHDoy>NHwE*%ohd4II!c77wYCT_f_kOCwrd za2oXF;IvF0$k~7XB;D!=q3;@4Hhh@i+6bX7Won^e{k^h0-zoF6+7407jWrWFQD+S~ zv)S%f1wkwAy6et+&l3)VngVa@{$B@QYyG&ZjF^Wa40{h0V3*kBF2JtVIJO1V?kotN z20)*;lfoXkl{aQ~uC}NIVVBqV=HL^!1{U)Qc%42Q@>KigFTcz&S$>xUwD3T&Y==c_ zH0CJjrrBSDRiQJI&l|D0Y#oaD@EE@(|66S}n_QAjd!Sd)Fvnn9jq8k^`^Hun89}^v zObUpXR$Lx&*_Ij8qAzRS41q9K^y`!%c3wG)SVQJ?uLx;~CKdmDyaO6sA4|k>=A06x z3{5z2f?wg6%FV073)5}t3qG{cS@yiJSJvqxi-bX7d&-eYKQT5}s4y*J<~V0R2HnPC z!QQ^PnOUC{hEBuD?j4J9l-|Q{Rll7@Os(kWVpkXi&`Jf)DFqrjI<<=LOC9)?yAaPT zY?iCdq*15$CcPt`V&|d~^QcleuJy8;=}BZm=MtZE@9ONStL*=mn5f_+Zh{ zPe~vUvnwOH!RT)xw*FP>;qgvaUEq>?{aEi}%$jx`z)|*;!8$vp;rNpb z`@4FFsA4Hz^BL~}Z7tKH)a$f+tEtjyvJ$}zUhFg5Ec#*sM_Fmo+b(@%aFtiRl~c(_ z$LY(d@4SW7VIi_srqHbKX%ia z2(z!332%x5o|3xhGSb^rff<{fJ;^!#&WxUzb{84?A1$09AmLE3Dlp5s<(szKDRN%I zkFv4_eZMFE+DLw?|J1Lr{5SmyD-#>r|L#|obhM*L0cgH6b*EidMjh48b5mFdj=k_u zphjH??0OKtd2)vk`7vSdW@hGENK-01yj*cnE)6?Xsn1SNb@=g~&Q4IWlRqISqVE54 zcYjFsbf^9OoBMr#{CI}}MA76f9lLclwIKOmL_2=MQUQiKe!vm8vrQ!`_kH@^$>GQE z(M?%zU=sfbt4QUpFz)}D!2h}TU7Z3g-=i+YN5w3~RGeE7<_pccOW!?mv+nl%k$Tq> zZM9u8bGLP~U=EVd6ZdzP;;(y9=s@E1GW|Hyz*%&&yTV||HNjzyc!A)sLE3k9yBlUM z?{?l?s66`3zm{A<%jGp#elP2Hg4BcCBVhERt}1Pm(j|pb(L{Or8dGMF`#>AqBdG7Uci6-8-?dpI z4C@6;?H6Tr=Ac!gL5d;U3}y$bL!Kd;$$H&BY&c=)<{38E4}cZ(3%xH%3l`Tfb^xY{ zu7%f!=Ww~*Y{w4jOXp=lz5LZ(q{SR|uX-i9^XR?=%OV$Nv<6uazEYH`Xip$38kRLF zRkSzyo8Bz<-mB*G>cnQNf}CbQV@v^;y%QptT#ym=y>CC=aY&6@h_+QLqFxt>Vpb#K z)%A>wpk_>zQO>a6*8{z6|x6JqO^&e_~ zGs6>~wE+OMgIU<+FFpHH2M|1&eQAWL!up(=!Zfxh{UiET=Mys|=UBCO>{$~d`E)pP zv0itq%gyI#vE|F^*w znyoyml3nr$Rib35&;2Q3M2#c+&!b_Ci*IhiZyp? zNCu08y~uczz1=xICE$Oaglc`#3di=13_Fu!_uJf<9)3tuO?-E9)J8$X`C?tBLFwnCG})XF=v*gCEmH6%@`cn7%lgq)=~-e&3l?Sw`K4ZErZb(n$dm-j*hR$Ir?rDSeaQZ6Tx8 z`hI+`ZV-XJahqp$FlgJDV6p7xG%sm?i0`yB!w-IvA_3tFi3z5D;*NhBsgQPv0ulE_ zROzNE&pEQ}3ouc)k;8#;J|QZrw{%S840l9Qrquy=ZYlHNUm+6;oIfh^`2hVhKwe}a zsnVs-a>B*6kE;ne-tC)n9RSx_Q~dpt8AI&7vYy=Tn~^}m)e2BG8r+hMv>U1)NF>e+shy!R`bqo35>Drt^nmc?fhqiQSDaTT1v&du<6Wm=^ z`^4BdT)V|U&ML#L%q6^|M));-#s0L>IX;X7; z9KL8hvWsi~1}yufmv`kX;PYs59s=COfVMmvDqx${@B*c7fQ(EYuY{f&H(vZGGRgJ_ zx4nu0#MEMqx==|&Iw6dF4@+jGFGODQ;VPG=dk2x%vIpmuyp z_?;>%)@2XdQ_-1wJ=KH>83VA);ka{um*SR>c}}m>Td?W%LUdau*2Qa;n9wDlH-d#C zl|jm{1-sd1IS<<}ITWinW9LO=h^ZZ?K2BiQYrt)2KHeFzRqN&%+cU>CxHubF#UHq}I z^$Sj&@=18D`F%1Vg?CF`k5j|Nc@i)bxiM^RA9C&X3p4wswJ;?v+`)y~X8-I%xD}?p zkdc)~=t_b^?-!P|87B<>oE+m`*Q*Eg(^;Nq-_!JLzwOQA^y>Tk>XVMxpV&fw*`9t4 zJ_02b2{>qI+@L^{#~@LbR(|IwZ|OM4C#YtxQs~qEg39L+|1kIvVsZblV6R=?PNKSH z9~V=^wV7b=+S*jaFU8VpbS92x@Q&>nuvKsktB`E`%-#OUNUrH%p&Sn1!arSszIU8g z4Y-A-wsMr7mkD>(WlL{>coQ;Xy0o!2b=8{SZgUL1_oaNoJc`{;iH8$=IsQD-tv^J^ zZ!=^2M#<=2^ys9hj_zZ=zQ~U8ovA;kAD4wtSu&yMe994H*$KL93bJimtH?_RG`j*1R7oK4FgTbew^#|LY{~pm_rkucvJke($=1Pq z-PBs6+;%c zr1?u~5JFfOF$S{66VGT$>|(Hyn5}w5*3LWyHy6v%!J>%gH_O|G!*NYpBujZl6~|`+ zan*vU(Btr+Q>7MA^K=lsPP^)h=dobOm5O68|Ei`1r8r&}zQkqBfY9b;NS$M}#_7o>L zn#j2_77*ShELTlYvF2ZiwKiOAa;xbHuEWF8I=PA}8AypI0&^1fo8Qqf)EkI}^%7Qf z<1HR;{l#3EPd3a4EF}d?*`dv9&ZWg?HTmm@6I%0p5*6Blwi4E0Ps}TU2I2b7o}^c2 zi6+g;?1@ZSiTP0vAp*9-eZ5@n5DMfN49%PV1*9U0AdVmGslL`|krXWRcRtgIN|GGU zstQcL(IqlqFOajyN|B6!ku_QBZGwZKSN#k=&KoT@Ho-atdAY5!u(t+tFtyoa5%L%Z zw1%T@ElMS-@&@-$bjz`@o>$hsiTP|+LtSs9rS4_fKiVK~u~quG{?#<{ zQ9|s}O4(Xk;;jO21p(&NC-*PCn9$&l_u@v7(3Wx0E zt#(qVZF3pn)%0dkpSFj?;~PJ9+_B`PwKUVUE>v4d662{(--buH;A(-bZ*M{hvjO8+ zUgE9&rOQe!|IZG4En(1p*(RY8S)#a#;8`s~+s7hAu5|q|mReZtppXdGaE>lWx!Ak> zb8a7}RXIg5IYnkeLn~#=i7QX`HK`mmF1(ZF5n=jpBF8=JrXS6*0ClELOfttw2Pt0s zFHLc~w$t0WPuB4QQG9xCmnX!wcDP^{z_QR|JB=$A;}R_9N!nehxvEe%#;yH3=_ zunUqknRhYJ1z(9(yyaoIgL8cZXAb9MOknuMa9zdC=Y5HT3RBYPs{C%#&EE4jtMNyMRH`y-IAR^$_q{Vmuu-k zm-VaV*})6A*Qh4c54wEiLjfhAvnYxfgxVFL144-ftl?qQyz$Srz1^ry>w*(^9rTHJKUNRJkS7 z>8Crv@dfW?Xbf;$Iky3C>|fRT3TwTlF^o1Al41{73?25fv%#5%E$o~-;T7&=%n+Dx zQ z>`eqy%qS!PLvbM9-^70BWQyI+f>yF|mSW@TcVF<_Wu*$F$4O0hNK4CN5@F>#fK8#N z`+HaR>9Ikf*!vEX0(5{v=P92WEj{ivYNJ}`uGRsicW|?zUtJ)Rd0HgFyM}4#ZKKMI z^u;5mv3F=;p3aKy@mvwQtor@x*>hhdSw7yPhcQ@>VBSMTs;)4~uaC~?9yeHIEA@{$ zlm%1VS|0eeR%=5ou5rT?0$F*Hga{!EL>6AyvT4+qsf%3ldVK?e z82bqd68--ByX!5YZu{QPkL&a7Xzzdl2wu#+3b%b=q6~x+dD=ZJtSIpp>HS06i9LR? zik{RJejGNc{@%`;)V(eV8L&Rd&#~VVN?d%RIOeFEd$C87??Tq2*{kjD-A0-p?`@P2 zNxWg={lEE>F9Ct?Cs=roOp;KWReA` zep@|o&{-_s-Hr3Rtl=wF+@MUrH6+kk$X#SztU-vn#h-%S-@_3D9gZ1olwDANiAU1m z!`)Jc?kawlD0>!CF<7sg)*vO0Rty$(mVK}ew-{&F8_XRMpCWm#63k$Ru z0|h6YdgDK4ntK1wn97lzh;y%(DhI;v55FOn^O!b-YL|O0u7}h=@n9ik;Qe4d>yolF zM6OB)N*j(lTKna~-$|C{&s4UMe-iDZxZ3f&vdl(I3243X)NXHIzh(ult*dY_0=1Ej z5)lcS)2>~c0uoM&XyX1`Wy}Lbd9_Ou7%__}?p(_c8)}$V62^JBM$BRwFzsflpdPBA zdgotan7=O4`2=&5FOqB3WeTbnu4mz8KHS;1AaD@8VA~7{{5lcXN2(t9pRbz;%ohrg zq^y-yp6%Fckf#$HgRb2c+=(_Uuj}L=&SZFFM=OKJg;VOr{<&b5|5+S_0~2J3ziMVY z8)7L)dW^rX`1}ju#L_x2Yr=W4XI~&>)Mfg~BU-3P$(ZGcs zZ}rWQy#m8}WL)2tSyRAVT*`kbAF9ifYf%GltlSB%#OlC^SeVR{()foOAmaQYari3T zMHArm#$$5nw<5L~Jy=ze+>ylhEZvdKTzUrcoMQ!Bw-YQ)|4^eAzl^0|F^K1r@W2)P zF4)f_>{>S90Wd<2X=xitY&#$N7dg({$=$8YH7UF1CD=?de7L&17hZaEcRT%9J|t-J zO`)f8%NO}C2a;Yq8F&X3W0|^Fc1C&sHb1kuWE^g%4MKj2Opd9`7co28#V8ywb48q9 zmIMVO`gFc##U!hk;1lKw;so4o|EZ5)DXCv^uE(jqHN}uIcz`O3y-Wyk&h)Nx3(%xz zy{BP=p&;qZ{|I5W0dBNrBPZz z{pTR&*`WL<69kKv5~>C0xr5mzR>;0tX5O2BNu#amp_H7P=r zFOH3-wZ6$AI#xFLFeo&dv9UuY2&%#GuEcP@aSA^p4YYtzu0P^QY|*k2HtMrbCJB2* z$B;B(z@+uHBHC8M$!gSxqsgjOlijx~`U9@c84ZiudhBZGOOI*lqrS0055Vmn?HwgV z#1%=kT|kZngKju2O-ad)xlfa^s}0qNdfr(&jrzdQA=sdq`faFbD+$&4#-VnBMn9~l zRnG7x-BrtSXuuxTp351_4fY{Kk6mSGr}Q~| z{=(HwP|gXqHLbi2n2QYP%_ly|vC#7-UimsKTf}9lrke?$7H(N*P z0Iwxvn*`Qsj-qKsAu1h~TaF-3%f5|;EX1U@Z(}hVEM;nJ?U*zO7I@v=B5^)5#L4L2 z7b#PbLD9F%7TcPy9ztVFYMzESq7JV(x2W_2Q2;g!c#p4FQa5VX_{k)uqM}89ugBV> zlU&&F)fWar9u0cM2l5J-c6=)2HloC@zu;~)F4Dq`!m%m<K2omnf#j_Rd%oMqf?K(@!vP;p%+YZb4;M zoeV?$Um}tMwGiuY%?ci8uePIFEZC&sK^L>+$lHh(iiFa8K=@H??n5Bb-@EDxj=TLT zIK6U2{Aj*vk-P8oyK8I~HR~h*2}{?80k}BM{rJ{kv|!p3ysmE@?izaxjEo{aL@8w* zJKG?Qp0});yw4tV1AApN>U7(P2-XbJ*D9-fE64WfO$X(aORf570omp`@9 z8CNOxYL$*gxbLq2JtBo@?%r5BFWL1vsL_r^upv8l0h`_7HToF{7Uos#E#+paupv>4 z^Kn;=Y(4UXMnF!r@lihyOAlmmt9@X)Ela#&;l5ZU>g3EaZJ~_SMRfUS9={L`9QI5) z1hf_NUKZP2h3t>otZUFP7-v;9&ff7BZs#AM_B*;-H_hyt^^LC2M~9M)^{tB!E~}fg zk3UkJ<`?tm<}X_|so|@#niu*kPM8#)))rhL;pe>k)O%Z&+UlE4oxE6M-q`HQb;C^w zzCWQ%fU1C(&KQ|O!`=&?)p1nxI=i1FxKFukL<3F_{M(OTHBpXX z4`w+tv_UJBXfS`q<(1gd*Wc|t8V@uw#WPzW@prOvQ5UgBDp7Y}M)E^4b$%M}9VJEP zI~&~xukE<5qtyYIvzPqt{C266=flcoi})A{X~-?L$XO}IN9Y?#r(=CObeMenhQEx; z2dRWk)qo89>&p!pj(f))+D_mAM9R}e-6+hZRk)*MX9(Ha-K!Fo8kC0nuG;{>yn&+q zynjb3q@6)}wsxIKHqs-}aqV(J$xD?C+q~;--(ewhjln>dcD~4B#?|84NsG{ItXsM4 zoss>C9PZ)%fLm~&zFCukgWtA2Xn9}43sPiA?Qsb0Gc18oDTj?#8wN~v4 zN*k`QoDWtb(i0yrm6?1!{UTqk&x7D{h(zi~F;0d7!+eAqik6?MnEs?xWC^wlVD!l)p=moO8Kn+N+&Jt$TX% z6sjmuHNt<;>OYg`9zZse; zdv3Ln-XqCeLyD9Tsh{>Zxk(arLmOJePu)m9FN(k6LH%+@PhhrQalLpM{{6HM^%>*7z*k*k(K;5>R8O66Ls;N}&#vuR}e=C>}yxKvzphHffG?yD{Lsemvc*4wS zL)lyNo+Eb1_)gr_@}Ja9a9^{p?H<;+498N7j$@~M+M90M!G5P*2OF9+9sI79$gGPpK|j ztEVy$;YMM*N^gj%vK^&4iq#rl&G+={ByO9)!+#(i`3*2Qogji`c)5`jHK}|0q>c!E zcD=sCSE~{Bq+G@#jC)u{X{t=dX{j18f5!{P_-tb*?#eRfO7xbjqj%y*lzT3%SvuZ| zvDM`UN*{v>fjyb#c`r9o6wB=C=KKTGCY~0kmtP2H45J$|uQVC8Y;vUP1$l#j2Q?-c zb}VeY*g=Dmhn|*;>#7#+fl{GF^fR4za3&X zNCMRg^>3ukH*K79$s=I$@HoSOz)yhL#reD#=10&=Y>&43f3tjc#ANgqv1H&tWuC1vJqF-F)Q)R6;iB{p zV=-duuak1XOX1S=J00K6g@UpCyE`oRrjin9!r`Ie#L?iWfO5yG@Li? zaOt~CDf%maS8BwfRo*qLApS`&od9Q-9mBT86`7W(%-U9D1* z@d&)nx=L}S-1E_4XCAiTC62AS`eVZ$R;{qBm({p`OuMsM@#+($<@6yoaN}J3BT3{= zS?Oj(K3Zu?6B`dTR`~X0=T#lKC3ZQwH7=mbRIti*_cA({TS(M>4*Y4#vu6qi0Cbqs z(_)s(YT8!t z=xeI=dYD+0l;-)%zJh(s zujW3yMUkOiz87!b4JlOw4cg{dsrxx2cR2o=Vz5Yi-PhWSS-F0EKDXKia$3)hd%8)d zX}&=s3PoiuxDM4Bd{?IbWtXL^T!qM4-`_R5*7Q+w^_DZ^Ku5aLbHi4*%Mxz%T7EaQ zB*ewhoqr#CIyUad^rCOJ|bwgwdL2V`3!1}0@tzct) zw5faI6+7u%L}L&S!As$=0Kh)kI||(3PUOH__Ep9pyW;S;*tPbkZ-|_4Di_%;pK0t{ z(i!n}JcY%u;!y=( zXV$tke)%#75c_uIrD8`Q?>HGSD}xYmrcgbZ1uC~J8qs& zE}u5q%FCg%GbFJ_eI~%A`hxdYWIpM6BZX&>kL1kGR^S20LKb4c4d}O6l~-Th8#TK+ z(m0w+Gqzrc{LjCi6;esbu^%hXc8cbnYR7mJ@q%>e%zN!5gqufCr#sv95KXjwXtR-f zg4@}KE_nV-Ij*e|42t(Iubz)^oKD$XE8bNwG&nOvUC+3%4h8f$Oc4^R?xRIB4u#6B zbZq^$t~KOk!teMOvH# z>vQ~CweWFbU>9x0zwQ-CHC^;HN@jI>%gkAn{6Py#NbFpqtmtoS!UrW0?df6>RwkP0 zo}7M-LmkL$CLy18FJnZEUsOB>+>UoLA7@p)$xwy|7teIhKC%2C#?E0|6fIhk+qP}n zwr$(CZQHhO+qP}vY+H4!Sv6kc{le<4n3)-fMVi(=nU`KvnPDT89>YPG2m?Fn43G?> z0?@fSKwyFq0$iL^r&>Y+z?TvYzj{cIm#hy4!EgkjWH-#u5C9;qh{=6~0lNiu34&ej zqvT57^`(9s`49p%&2w)tM9PLW*Ye@#7aR>>Pq~+WwOBhDyh!>2J zmiOb!ws?vXwUXCyB%CJeQ14Xj-K$&%JGF#hAVoOUo#-U_OjRFFo5c(gD7$IX0%rpW z)(y1jKW5PeM6hNK2ZIdB2DBE57asG|6ZL0KA_gZc#eGmDifGh>FF7$LD8251lNdme z>%$WfBHT%?F$&ibrL0XWEa~#t0JkBc#*$Ddm>Td0`11<*u!4NGH;lBc#K-jz;rMnH zk@`X31VnP?mFd&w7_;6BH=AK3l!dJ(1#BY{_6I=PEwWl#xZI)ekS4?>z+3YD0pHw1biwQebb``IT2!VJW@U{T01 z$Qhw|vF6&CVqn;Z94EL;9sN15*R{l`b6Oi3A*lu^|1m67kW8;sMq1b>@ti z3G+3qfE4~F3h*6YA-sMreD3^zY zXHeXf=ECuHRlv5FSpW}LZ_O`FqR@hwruW+|)n*#y4^YCe7p^d@loYIHFy67flKWB_ zQ!`ZgAN0&~7c64u39Mip50ZF*8D}wt_K-=O4Zf;kfM*O_X{;rVoCI*u5e^ss?9&W* zL3f1jdmEvlZk!wP&KM|t1=?~+lq6AaVELB;YAfY-eCA(^?u z<}MY}h|L!f_-|vHYemHALZ8z~GtB|gh%fD@aIB3+|b{ z)LTugJ4<_%tDimLeA%&;cSZs+dt!Pr?`dmLdBi-DOE0nd>Jv0yT~2AH%y40tEIrSVUfWU)VtZuEUW5t<1-1^ra9yBi zY|CctCdmW}T}B}B-I8iH)ife-ei<>sjgpm~L(4|@%Bom<@+(EXY@-$*7l%G)kizuf z)QI^>8)GkFk3G9#t@C8w6o?rD73oh39eT8GY3*H^t?+QsTaoVyD7}MLpWsvAcolx6Q-(OH$ThnXpd^JLKKj(KMoU{Z#U4?)jhAj8J zbC{nA;>~6tHkg`6-PSFd*;4svlRu%a{x?VkRBWBIqJnR&qXctnGs-#!RqhTgA$~BJ z`Z3Y~%F}^y!t~!~-O=$Wx3*Os8E)EnQ9>h(?8gTZK5df-0M)$Hxf1<7e3U+kTdkX* zE+0|qi&p3oweTpFQ|PN~Vv~+rtKM!5Z~XkufgW1woXDnU%h;oHYm^y&%b4~H@<(Wf<_(B?n&78SpRdin-vsiOM=hr={{1@Y2C~RLbS_MbF_zu%v ztyD;#JRp7|4`Ft7Grs=3=^6#~kKn}tsu|!S%f^N&tT3(&rXlb~V3#*ju%sDUbm|Ey z>E%vjilo%esfb8YFWjM+i!@Ue6qa5DEZHP;iUCofF0=gIJcyuPpB@gD9d#As`mWhl zCXXoS){S^!oClC~D2_naMw}?7JBnk#=9=h0t~<(?wvk<)Kd!TVfKi0$2obd;hJTiK z5t#4h17}u8BBeTz%K|7)f9~vYXMzRv&tIEjq98iUdMk*0ddjW*vU(DVhvE zH01kg!#8tK?Jbc?f?%y;Vsec}5=EKWhjUX*!-Ix1))Pvy8;}VFL9?RUp;=%-7|601 zlnjE#P+bMcp~QUlC!$C-OY9d)Q)6wZbSq+XlP_h|*N+W!$*)*A-u;GrKx%$My+HQA zN{8&bHaVUQy1F&gG_Kq@2PgpER6q*sc{D807dm}cb?!R=L(gi`5|t4itb1+qHTW9QruGj2x7sC z@v}}$nQJ#BHA8+wRAL`rAj<-I6>g#${#okq7SoAoRSgV9H4&_`M4^DK*oa4G{z&o#y4iIEj?8`wWte zG^pQP$qcCC(qM{fO*`_=*_O4>(o@BbqjvFD4a%snPgT?9w-c>xxid*{D4D@kbh@?M z^#^%p%%UK_9%1MH8x9fy8yzUEt1RR5Wv-4e*e7hlS@_pqQtW^*c|v4!kSE7|9JSx1 zJX?YUCfgdrCG~Ac<`@NC@cVPpxP%S=c;b{07XlJmnmiVSEvR*E<)=OEznl>3NrmDg z!^OVSBYMfiwe2rg-H=@Kp`mCtIkaWZ;hmjrO-5gvolUSOr5{yO>-A>riTLi`jKdPq z2G}SI8VjpYv~{+#)125j0z~phV5AbBCm2c?{WHLicbHryAwN9pwtjK`x~lcfmXq{D z`?N5i;vorfIgOsj?R!8~; z7eX42MYti~&b?S{FRjO@DT-t>^kogJHteVMvfEf!<-?14IjHu!A&p5KPo9(b-d;~+ zd91b&N%Z8Ac6j>Fs1A#(mNw`G_KSZ&gIM%eSXv*o!poxaHjyu^UJa)flvtO(d~9-5 z)sm);K9j3VYirRvdJ5}Gb}3;6{aeayZ_m=mUAny~-CdU|$h6EAC#5_xqhzX@jscs|43Fl04$n zxWT7u%T2uBNVom2AKor_R{6Wwu6y-lrb>#y5aSQpIB@;dVu}WRzz^{+64qw`J;_X06 z2XP@uxi2ohCi4=65YXR-(R&@JSMZgIR}id;U|f%}9QM;a|4mZw4yk?_|JW5J+DZ%8 zr7K^~%ciT8ID$0gD|f>v^QAeNA9MQ{o}7}>uv+#Ca7~DJ&IL{!8uFfIXuz>O{meY7 zGK0iofqpyi-uXc}%ABM9sIV=FMqDAUP`z_tktYMT2V0IBF?R(^xDs!kuG_!neLO26 z&Fjp{6UYgnrE<$2%nr&R zpMS(ovE!2b4@*C8e&37Qdf=JdkD63>xW!PnYcIOI*yF9Jv$X>xPCkv(x%6k}yPctg zdHL)~M+&36F!o#1Sw2oqsxh0wKH}EtH&W^&{u3zh=-+ zz!k$Tk!ZpkwiE#xZ_Gi#%yDr+*h|hIoouGttF5~kF%rkyV|pR8 zaWHKpbOIL=9CuF;D5IGObR4-SIXC2fZHZ$nASPY;8|>5drTA^q0DkTKJ#8@O%pJzv zUY6g^tTg)Vk!jTAkLyW8WI@WkoBNV%DwkT{{%rL2 zAqw#pCq_|X7y68#ZMA-&JbJuKD3fPy`% z*E9^3>^RjLICeYSYwmw?7Pga9zt)*09N!hH_bm+c(`TkKIXHANT($1yy*}HOF@9cV zhAPzMKEPGP<_{M+r*q|pUsQX(VeaU?!Q;rxCBM%4-y35-Khiy^0X57W*D0Koqe-}O zmR}FwTkI+O?>gtie=DhE_z&4soZoUS=0cqV|0ZAy;{0uo5kqhL*G+iqno4qMMw6YN z5hAbk+Z;Cr?(e=P;I`c}c+%0C!mEBh3frk^MHC&DcGR`jsp>SZ!H1H5C&Ra~xg#wCJJKSv;uVX9IGNB0i}W~*l9>oTn4S+UW(|ne8IHo=qM0pG&)lN?GKm?T9;sh?}`0{n<@TY1}%Oe zu;=_4;wdI1G|@2a9@f@V&X;1n-o82pzM8D91@m*07?z1w)8eSxfOyqV#e|M7 zBfBCYUaSA#E4(YHgXeiHJjl-$8j`Q$ZFvis-jN|o+7su0)%j>sBfp%TP=6jv9{ri| zfszu+MLd0YVGI2v@`JYX4B;d<4&fVy6(9_5UA&v`%__C1+7Wh?H27Kj=!3n4S zndCK!%(KtJfOA6c5=*AihCV9 z&!3Ta%^gI5CKqj(WV1}YW*jI}iOiB;`2Bt*EFH>2i2=1=3Ya|w_+O;P`!LDAGoMI7x(<;t3>0o;_=ddqQXKaxX zmZZ5nxdzHcQ4>A$N(SKOm7%T|LDmQ-kh(aZ*`)*bE>ZK}E3r4UhDK8+R7_8H8Br`% z><*Vw?`Z6u({op--%+49&aDnNDdg8*NP00>7NKTp0`t+~{dKO|&0AeQVEy`a(m=K3 z98GoT7buo~B9Wk|2PJRqnu2tMJ&iK zF((a0j&syzDF&^`$YH$5yiNuMs?DUUR9fxo(|oA@!&Iun9WfZ`u|-%6Xo4s-+uE$J zv}0zu)n0VjvrL<9C=wxr}D88(W@rqo~QV=VD{ zV{%rB^>fVRrL*!o4K0_M+851Qy3<)?gLbuc%|@G#)D$TnkF}o|`WAB3=+_zIFMC9K znqCnue!jJX%=+FC$u5Tm-gMAK%nMdHX0Y3tBWOu&FNRbBESqhdU)_SnBok(CJ+gmN&=Ax{;A(9Y}KzSG;6&{=xU8EaMfyT@3|%19gQ5qqrt0DV5*rDm{-6zz#ar|&H@s*&BVS19T8edXiA$Wwt;dbH^FS0s zRbbnO2JqBC?Q@OPu*Me63{Dyljf_i7CP>;6NeRJ73sD{l>055i9GOl}mun^w2Rm9->cDDaU|X643(!peo_>o3yRrK97PZho^2#$8Yu65 z0JI}|P(S{|;6w%iL-YJiT~dDznp{-mG@MqJc~G)6DKs^^zzdgiuH!=%`EO#QIJ#I7A*Z&sGb&qe0IxJOGb-I&*_A`P*iX9< zJxdkWNn7B0S*{b-?I2I15{5$_++t9~K9Wj=cdfvehs9$RGz+JzY#WzojqX`hK3Hd6 zoj}x}LK1N?LmiU&RJYkTE}PY@ELurdcF+~9W;TO^N=7I=XEGi}5!WQe5Cs+oP|7`JSqj;T6Jtu(0I>N1c+WQz(=qsFR^x8%Y2sdbnP;?Nv!DM-Y;&CNr-#xG3bMCWxb)^A2K4Cd1{{G3S5-fnObtU$ZojN+48^7P ztiLsw@WwtA;<$oi_sOO_sTq>159Z&%?v#Lp9Q+f@;`8Of;8d)rxf~qGGCf#<{dOsJ zHz#1D14*tJFS3<%g*z1z%?4@UQ=(JZ=}#yvB!XMi>_ z!;%K0(~SizDAJ{RksX=!2kF#W|MH9NKvl!s0^FJ76kd;>BQT*r#--+xE~Hs0FsZ+o zVc4fb0uE)Ld_sT_r!m)_cdk}1`OHi6!@Y`P<;CuuOCZ9_$Ktiif5ctxK&0N6FtRUD z$r?{(MMs_EAljqMd%2X52Et}4jB%FDR&qMdzcxYM#tgAm8VclQdrI1!f3r3;jJ%qf zbwAbk`*Sw5cXKkVsD@MZ_6r>vI;muzY3!R)_%pE>Yz$}2j%(e(LgQW|DD((f$Hj5+ zr5CxZp**M>zPSEnKnh!pW&1JAh|Vq5NGp(`e}GJ=FZ~tU3)rPg9JaPwcZ@L|#6@4w z{W~Y=K$ko#lz^=|)jU}0T}tdaDAbY;Z|G*Lut-@6T@w?4g6}iC+i!v>-VW?lld!do z4mlgrvF_1QL&f05ES{8qHPdnu3)b37a?=cMf-K*Qwq`3BMY2A$0HnJ`1eP}wKsl4(;8K})=Pk}G02&gy7*Ji=$_ir%;s&eSrlQJ4673d zJFP2kYHcBV3B&$2Vuz)rcD4##4Evt0k%UNYD}CO0@S~GufbB;$kyUjYENu-&S^ASz z%SfA?-~*3Cv3=L>c5~8^%SwmA**66NsJ3H3_d-Q0ypCKB)=pmh}^7k4Tw_Y zx;GNv9UD&EvaOT`y@IAsC+7o(!VQP<)7U;bsfa^6O&EUeQ{A*rBtuj4ukB{|3Qdr_u1fzH~@x#Z>Do z;tzsd|-DOA>l;K*ke%i{7p|7hD;> z6&O}oNGzxf8xwQQwlldpZvnL1Z?&v@HxGDgrz*s&+d@S2E?rS}PHnO>q}f_lpa7$?htE zRHMd`6wSGq8@cWES>ja9Fj4ReFFPKno2@}mVr#T5esl8#`B}k3JMFPs`UmH5EE%48 z$pV-C`PRB_(1#&-Tmr#}#unmQxQed-ob%O`gUjt%tsJwFMC1C!!+36{2ee%r*lq`O zG0ONIujY8yfzfYqA8)%pX!t!_SQTj%_96(uq-`*%6(_M*?b=78sQ_{4>0rwOG;c3V z5{%M55!&rdRJRSr00z6NW;sGWAi`B)at-$)wIOGH6nGL?_!sKr_Lgd@@!-;;8CZtK+%Jjln^2v#`+m%%CAei;_9JZI1!n?vARH@x;PFbS5U_sEEBh&b_ zbszD^+=UgH%ZeuAm@hTy|Pm`zeiBe6O-IZ0irB>sLF2iyZ9`HlPRi$k}gV~h> zvhlva`ZQ*yIH38so%;cVJo)K(OI$GTIVXf5qLmc`4gcV>9AgwL99QgaxZ$}%0Xv_G zf*2Ks;eZNX4JSAT7aY#-j2iELF!m^TS?^+C{Rt~y_^!)~91iu2p2gctYne(H0Kz*K zT6sOQI>0n)t8`yNlTcbs<%^___Ld@MZ4Rk)0)8fKE4pJ2?FC^&=oIRXVKiEfnnn+F z?Y^zUaivi|H8&l*2cu>-$t({+rMt(VR^$shy&Ka+;b}gJEE8k-u|VNx4aSWe(yvS0 zaQtPk2I5Kw5v4Z~>J@?r!P7LX-!5TT$jM(LyP!R=W^BmLodQGWqOl=3Sd6`ib#?0p za}atI2Lu+v15(%2Y{z1;BDAEICuQlYMFh2fE$<^k-@KomB_Kamu$bqk0(Iv}H)40$*ZSNP zYukOi7LmNOs284_AFH6KOOEW$Zh_YBcdoXA8uPq`<+q-Cl;-%xQ=hk5w7!#YG4?n0 zGa+Uyz;@lMvQ^6!S||IHOUci=c~2R4Jk7*g*S4kuwY6I)*WvD41wC65ozxT=0d-_@8&U#hR~=u@1~_|?<-dp@rzw?r-L zaoHyCB2t#rJ?c}9z8AWunaifL@l%JAjmlFNJ~3o=x>6K=lzGex4wk zEFR{tdyk;bJzh_3=xfp8_!Kff#4NLJ&(U#dQ6W8Ek-i)~+?aP0(CrDtO|RhR%`F%ei6cEuUsU%O@8sN809(v2~qXsOz^Rp=_#!bPPWnPL6c=ubo?M-fqc zFUq*i_O9A&s?NZFb+u(BX3|3SR{Dr#D(|3t`c}(Jj$G(sv@jjF^Y4?o`_CD9)5gq?p{gFf_=*?*2t5w5>=A~yNLXhjsI#W`++0BBNJABzi4B_MpWKQ#8^1 zr^=+v?;9B6csi6{rj2z$hF%@|Y1Nmg-O|PggB^(b%Dp+ewzy~}awK-{`A3sn!7kZQ zhtrELfNR8tQO@$!Z^~Bf)<)&M+HUgMeh#{W^$6Er!f6y+K51GKrnOQ7%3&XT)0Ps5L_cscWT&Q5^yzk8i z4UrB();{r5Sqi?q?&^G%ra?YeN=HYih_xR?rR^ zm=ouSjGPMO%=kG{1M16EhEpgB&xFeC0rG*Xfxpz8z-?r?y+?SRpmfA<#H@V%15jaf zfJ4Z;9Rdq08a@Uf@0fV62wVifPsWEWFBcU({{}D*2~yCz^d7_{Ohm{)oRM1G13>D? z3)GvsOdp7=0`yUb9aKyLhAvR!gtMx9<1`4DT&48Sb1c;Li72C5Z5Pi%_oE-rt0V;G zNk#4FAl0`e|GN};>{0J4BeyH-9`xb7W(Pe!YXT825&JUq7HEy)Iq|NT6fdQTLnNPD zCjCGXBIrs&OtrOxk}NxMC{m6TbK2lT6wtC2pSZ01RQzeRl$LO~pNd~rz3Cb2JJDYiCS>5{y3T)ieJva?WAh(tc2Q%?oMDMV{;9|f(h z(}}}OG6nlpvnb-GC0(Or6pkrNgL5BmNfJt`(xqO-kgy+fzCQ)bv~&WyZkm%+{j9RC&ZcY6n zlnqLeliDYbt}W5@Bi-bV#KfWhJ0poSZ~PxlCR0(Ie@5I&X7T z9pi%adTSph(+n4#-ZkPDHq+2Z zs9lXjoy%5+TzVnNs+tn@*)xakL&l15RZ+Q$n!Ha^HotG#kUHNKD^tyUdQH^fvRIeg zIU;K%4O_E&y9ep0bQ<)Sl`(0Ky;?@tw;V$F8UUk#3^vTaacyCA1H~fgXRwxrP;*EO zXjQ3hXag&EDpof%xZ>oDoZU`T&^DlrroQ5k?w6qn-R?&eDUr8+(JeKk`c^puWV>Vl zd;4`THgNbt$64k(c!8LjIp|;Eh)g>NrjN^~#!Rm)$x~Dt{fQ@t<};KP((V`iAnsBnUt;d7G4w>AQNCLdBt-tqm~&`|b4oY#m353r!iJl>-?@e1n4%O;u&)5^sR)D^^>CCCKY%qd~>hHgypHE5gKNmz|rwD7|CE3^rL=09AwL^iCFrh~6pw&VC zD9--uYC+23F$_kEP3AuWB3zS!0|?OA&;iWstVlle*c*jq=ic*T;8Z#;9~EOfN> z#?{PN;uE4qM`oUiU_Vx1o7e<*jb7OON*Rp@qe+T43a{S0!Vtm`t!@UKYTQ0him>D2 zNrw39_CxN#B{G`4B1G6r0u(i?cl<%G__44Pl%%Z|4~R58vy6C7oJWGXrDay|Ia5}g z=mvyeNc!pu|@g|@?CE71``pJ%_4&2lF%cT=eA({EtfJ4--5AlhnF z4(h= z=c%x9!rPap=2q)bqlgU}pvZ{@HKZ8>^J)0XEQ05I$0yGjo@T4sCT%lU*<8wfGex6h zAX>}zlw&1B8G&+F-=Ly-xe!UWB51@^d|?^YZG|owQK{}zU>=Uh!l8^><-%aTova#K zUKn*(Gs(v}B$$Xo1Z(SkRf@9SWH3Ov7pgy3UUIaISdSYvO=i*8*O;~?>MQ6$6+&^Z zYN?)oD#<`G)}#hwlX^gq&G9V$Rbe4T z8!y_ci@xB0H7(6&yU9)xGNN`A24~7`zIs3I)=~`f+x0ak^=(A;dXstm`4ade@=!;F zFuBjdVK{zUMc`7yAn`d3v3wJkNN4K2eZNNv|7 zYtWPyq2Lv1^2OTrn`hHripF(3gMVX~Mex22oxdR49>>Ft5b?KX2n_?>Eb#kbf1Rs! zvI_8)gnfbI;@CjvA*($Npv}HGAZ`XJX5i*V?%Yls4b-tDd?c2eNd)oXs}x7MDl zv3Co_zS@VY+sX>Dh_0Uy+S6v&uYI$*^H{_(b^qKR3Dn zxD-*Gyjt=$)=F1&95%ks+JVh2mbQsD^!cKF=IZjK1m`oSK@Z{vI&j#ke`t(CAB z=pRluUOz@O0>;Mrv)l9FX4Cbu7vQ@|x31Opab9;iEs1yQ-s}65pI%oGcZi;7)@F3vyeA%TB@k^VLx~i zf1Y}e$h*S6TO1@D?Wa`-6xH@Ua9&e z8DF-zHTK;$mlW30&Bo5M%sCbIsg(Oyx@67Pb2G%nwBN6DOl%WltLF3aa)HW3|8D*< z?nS?!!NK<5@oZ(--ST3qqy)uGlt!;8oOsZ-;C(j+Y4!#IAGs_onSv!qGfx>qxz(UK zK~&GPA%H9dHJ3nxa&0HyhQV9cpeu?x1(w}qD`F27<(T?Lb0BI*kXR;4 z-USM{<*UY%xWEtLg9ymq9Xvw#1Yx0c>+n2JN$@YKeBIFD4F#Vo*2l*N2aiQX2P+Q= z*I%745`eGoo+O-DZh+ol2%vl2G%Z2E8pz!R>#8{gDq`~%y}fIdOXnKY3i9-oHQ%?^uf<>=f{(x?FIHrU&db!(8rZZIb$RHdRjzE{^M#!d8_=f2E>4> zv9-d9<5T*E?F*jq`3nC7K5i81{-00>$Nvg-urU8WOCF~>+VQ09|2NKo<6-!E$Whlc zjn0$_jvy!`gkXyACMqy>W1>Jrgor}TP(BoA2#IfWv&?y;N9cp>i;WMtIFIV@2rn(S1XHMQ!7ujFMtk`b_YvY#hWb}D z-SdnQ*(+i`FTCKsPS*ZJCHhVIvWI{u~ zyoXwO;Mw`zL(n+FbV+^Ym;GR8mfrj>qyPv+*p`Wa|G?}HtQzK8L8sSefhJ|cP`od^8J1~Zi!$vm_; zyVEzDHl2NQ!$fYwX%>2;l=0rKDe(gXahj==2!Mrl9yB5&@O#<1CVMk5CTb6B-^|Cn z4<@=Si)$wPQ)tg48;j$&V_U)@^+B#JG$ioxtoeT@Q&2$1-ugu68gW2f)17_uYliNe zvX?qAF-8}m8fCgE%4n2hn)CRR6)N+|Zt{g6>bBHnVlY!kSe~Bq%&~FsiwClnB#QJ_RtfJbe`y%$!> zC{+&pbG9Ae`k-&eoA<cxRVQm517XseKRPI zz)lWHi2aP07 z4olw$@6T*wpaU8xSsdB><=b@6eSyzybONxqDt#WC+XuK= zZrw)Dev|&A?LA^${zILh)=IZrFB*m#AyDv6hhH3k}@6SSMxwne5gYIk(xu zwzECvif%ner^Q)2B{Wz0JC!H&l=I)zd9e zww$wFQ_vf>Y$nXPC~G;>r_j9VnH`4Gc($0Vxv$e&B)yx=WFMDP2|fSCfKKxm4&Knd zvLQF$);0it@@Vi4rru!ealV8o4zV6);0N2%1VUy1`;uVhlq`D|`jM(U^3P)g6P4qs zwq3L3^i(~$#2Sf0fBfp9)9iqEZ!Q31cu$R)&`g3O(Wt0c`neg&5Ygnm=KvX*yBQ^! zz~6`~C>;bd##yX0Pk@+2HMYR9Vga+dSiJD-(qoX%yZ>r0$CvAAHPGex87WA1Y=n)m z*hB&Y4M3CMe;b~_gS1+Cc%ENQFQ<1>9Kx6fuHS52y$Q`_WQc3nT8t5>R%Wh_Iqx)$ z{>#csM>Kxk%bz=f-AstWwd3RDxh7u@=Bmf}a<+_@84*~U6vUK6APJ%y-W3!NrkTqG zOD7W#&1-yD20h%31G(pfl|D!|4InAHXTlVqq%@>9Z-Qy)2TGG%hMkT*8zs7#1|V7{ z6JnrG3LL-mR7N5RL7xU_I>#K;{I824OoO@*nV_2n*plZ8SPGSVJ~i-VsglEfzR&`>aXV{Rr6xWF5?L|N|U03a~J5QQtzJhLgCcsmy$<9Q21oxoUEk=IN zD?u}9(U*u4^*l$~Yx~(MlDkp6vRF^j8!HFu3nOKThL+H=8ST!XJGHZG2gt|m4_aSm*^;ZVa26KoqM5eFVjcnwdNgmN3v z{{UqWr3&ZGX(npISGz7KAHmZM>SVBz2I8%yghy-R6nzY+AyEVQUq)VvJc*Jzk)iB+%MkXbi&L*QR_{jqfbWwn}{j35!FctNBKYbW)3?Ps2zkxl1uVJOM zXmzLP%;_pEfW76;(XkU&MJxBg&qHZ;n8*xat%RqE8eCK}7W`z`v4Ww#-0S*^9OuP8 z95c=&m_A%jQx^Nc+zkiZdao2$+NQSgg)O9oiN7(hGpI68Wo^b2>0z__@4ayNamooUbgGDT9 z9r$=P>pV;oMo-tGVgioiJV1H1IW&EQ6s(fwloVTZo{&mzDuL$gs2dCqw|UyGbpeJr z#&+{m0y9aa-I(C7#a#i=V%*t14=tfbY@gjcUF2pW98!0Bo@j?Jc0|w&Y%j*!3>GZh zI?Hwu&pLuVq|;5LyGYjMYK}~jN24T8W5KV@D*DKHk1>>1j$_lq#5@mOj}xYcuKS7R zNcR55nwnrzNRt|nJFBDFdfF$EqiA}R9y%_j1v;gk9pxu=ZwG1K~P&BxFR=c-|NO)fXL z0@t|aY22QqlBFJ6AO7&N00YtMcWz~iH_7>WbnOb|~x*s%-CR~*C?QKfyNGIKxaHTX~ zg-rh%9LVY$C**ItXq58SDyV87KKg!{CiqvaqO=McV$>d0I~}IK&$HS6iNG+ zM(A#XqWuai34blB&vsMPRh51&XEPIB7(+{~+^+Npy8i*_w%*HeD*-@`>8VEK9fi)4 z={Ilh+4*zPA1B&GvO7{&f`dkR%d!)8(Y@%cO!fRG?M~MXo9YeWq5=c{H%TZJW1fNQ zp~~Bx{+rOYquSC|ulh{i*ksUx4RwiAYL;xDrrouowz8DBy9K?x&bCU0%&qa{MU9r4 zX3f23i(Ohqf}@s}n34uK_QIP{#Y(+C1+vxdR|#P5JU?52Jp$KJXUyfgvDD?xR(T0W zbjo^yc_#)Nf(s=9OT&VqXxht(qUg$6*iy+&(!A(!%}m;(7?9PuuWvcFxYo-fC6gu9zuKbv3^qM@99dwXUMF z^?cn`#MEyn;BI-c6*bj0Iy^P0&YBe#hB)gly5um#HZX8UdIm+>~n#y)+8qs7{Y81febN&p>(D zmR@~icI89(^nXY@hagP?EzFjUF59;LvTfV8ZQHi(>ax*g+qP|2PtWd6#9O?GS?3~G z8F}v)-#zDe>qj@s2K9S*CDuSQ7Yly#ji#pRDu->u&T|KAXJ@KSdk$54CpKfm<&;up zw&NC4#Ttv=?KH@70wOJ&#?wxB75VjRXG|9Q3kpShzXB)N)&`Ubjq_gIQiYlK=i9E_ zJ8@jXZ#nD;p)=EM8g;{hd)JLZLLY}{w!p*>Gi4QKSQ`jK{(ER)xXEnr4aORc5F7d& z8&B6lg>doan|h}@mCcZ7unp1GR7(|!k}<;NK1Gg*3!`(V_-4C$iQB)m5E$4-Xj3l`tbO8vfkkt;T+!}OtHdOvGAce-4W zQoDs;%L4DP0psAPaF4FTZ{1{2^kr`5KkG|aw1g|}2KS{8&5%E#mBrthC>;|G#E`b+3S zd%)j+^ZR)EMxOs7_x~C&yV&EoQ%Ji-PTi8*1_~a#*b(_}ONaa=B?(GHic_*m0C9bw z`uzChbY$@g1cO96iW`7 z3P=4~oQj8IdgjYJqHXx*L#8jG&nH=4+&PGiBf)H6e5ytJeXg&Ymq-j0^`PVNZXw*$ zMis_d%#(=MY&4ok8OIGu`gFd*LqUmOs z)@J;Hk+)#g54_V7o)6CAAeMQEmL`uK^TzWh(mBe%p--YTuBZL_b(B^5rZ6Jr$ydTF z>n>OG(ykC5e|*!Zm2;~RDVy4{Xro9-eO3_~Ed4a=Ot9!jUmdPru$dKlqIbE#;3&F& zE@((9gNler?m8I{c3tl%e`Ljw*0N{?3y)J?^YzhAo6RYIide`OAP4K9w7DIkL@5C4 zsheAxDkJHOJw9(Bk4Aqbdd{DcnA!7noq`r>0G zCvax#@=b2IV|a3$K|*Zz$k{=@9*mDv-sQg3TrU z1|>2CATwDFp_}wTSQp;3C+XF&?T2FtjRKcrLB4@$9Mbq$RfVMRMY}oN5<~5$z>k=F zZU@4u-zh`&m_^Hdt^Ouzdv>f_d`J`~^d-vys-tLfDe>G`Ar^)QEVqi$8lNpC;-#GI zfD<{Pi40eI2$m6l*)!6^=q@3AUxGOHeLQ=1ju@mKyo6DjM0-qc+aesV(k@$x&6;O> z?Xgi)dFHdWM-xX-82LJR75@UeOZ- z7_)Xj3mz@TPmf`PE>4y`@FNOqDOr^&l_&0@nt;UAl7=;H9J-AIh(#Nnzj;r*>p{2a z=0RJu-TPZW9J@TN!KYKPWz=q>=(FhwBx39}xLgQkx~A!7up7Ll8liMSuJwc@1S*mf$)&^Bz^HoRkid`#y-|&Z-7RiP4Ef>jj2kZ6VqihmYR3icE{5mO;?d z$94jxpPG%HD`T5SGtA>$yDKAmQ5seQfGAB&6h1?e1|JHf`&mAIt2~cWO&@CWhjs)^ zrWy`4%aLny z9x@AV-J`&WR^EH>RPnW({iAfVbB2Y97DbnjgGeMlhZZ&6K#xk(MGAS&f#C~UtLlP& z-&S1pR1_ZxQ)P6>d46t|X(~Bl#GmE`tHvaalx^Ml3s$h;1-aYcjw(Cqcwe@*wPq+bTvuE^$8_s0Q*rara@Z!o2^N zp%N7or4>6gL7G*9ym&K`SWsi2g+M*pyok0))1Aka)gqUZBv9Z}?493sN)DuTUHTRy zB)j6AhG~i(QR+@x*-i-EZk6h_cFRqzb+@x=5>7Xz4BU4a(uP9i!AwL=bz!|WuC={E1`1xcHI{`98%apn0mXc&p;K*; zS6eCn)T!JtsC1bLQI*yGx zG(j(R*|ct-Hc^TOWyKWyC9CuD@z(mC_x|$`g{Uem$i+w1gc`s$(;#-Xuu??X0p+3Nsg!29bH~jUN*)2j?yO|@-|TLLxpmmjgKG-J zne;qwhBObqXIBs3XTmpa6YPfbTFrHnb^EF~)T66h-X4ssrB>ibWc5U(jq_BEpQmxu z7OLfpjS@nh{a(1(Ik}Ls!G!JD;5qpvcrKLD*Blh~$>5dn5((;iTM+q@dHC$msGpe1AN$Sr@Zcnir10 z58ubK6_>_;Fo&>udCR>{b0!&gZGc~^XDY9)-VP5o+++uRS8i3D)GvVuoHDTQowXdb z+Ark$-G0l2+uj>2xeCRg{8g54&^)zSm3eZ4D>IkqPz0W9_Sm!sY~Q&i)9pH40AXj9 z%~?zb9(NWFhNSZ;wN2{pUj5vM{{?=6=TH1^TLk<6GT#H(*xCM{`CeDo-h^}h-+T{H zHwoFWR)0^P7V9Q4{iSoygaMTX%S<#W!C>)A;>)+{%9vo&);<45j*SJ@Nc`OG^KI?< zU8Tdu?eAJ;Zpq)uT+k2se)0j`2s?-U`) zg8W_npL;ba>$lzQ{GGp6qPn=gCX{a{jgQ z{_s-gaIZ>j=bBy+?~!Yl!WV|BKIiJUQ}lDz{Z@IWez`;V3SeZ449W8Xi2d96NS>5g zFn5fCQqM%+RRrg*PZ)Vl41c&Co>n#Ofc1XM_|le`zjO1$BA$C=of5?t5-i}v#NEm# zzdVfTADp?rK_QgZ6 z2!V#wZ>r<<`3W!9v-A5mvAePL7C|O@={^SO%Z8;*vDJzTe<}<6f083cxvJCDsAZb$ zB2Vtzf%)-Zryh;c$PbQB^Spg$^9pFCcD?ug4rc+P>xN^iasD&E*#f1PI5y$NS{nlz z}&&1*UJA?Ks7?yvW3!S4X8Nq~3OWapgAK-NA6x@uV*6!6;$T*hUe zabizF%PJhe&~F;+_zf@r_yIJ2A;&g|UpJ#rR|J5=i)P$o?hjiG3l=y>=&wcjW8&6* zzgn0ifLONv*!WSjYw$3eKo{uaqge1ja|kyg1S{ev_3R~L#yN2hYJGD&zIuno^`lW; zyh}Wi)to7w3u12gQ^hnc=m*S(EkYuh+|33~N=P(=AD_bP!buX&Sefhj5s4#Bu2ow* z==nm^`f`r>9v$;*cLrGT@?-**k_I`D!Q=CmZ2FIJ2S0FMt=cXu;ZS(3SvP^pljlkd znEwuRPWNSnmt1O`^Pd#3y~LoKL(3WC{(&IPg4XbZOYN5oK20Fo*pW5J>Q5@CDVlejn!~30 zv20GKys|SGYT~s5Sys~?r6NR%A*yC6jm22ds8%~c`lh1nntt;puP<2B?kc znK|lAfIzZecGs&h+)KnVb{8ys*Q?z7Lr?bfiBn>T#BSZ(j9ua!-03ALkL#rrwO)ejS0DHdDF&Y^ zg*=Fu$YfBN%p|Oa6&#w9C=p#KeZwH7(!UMlu<5mB@sGXBq-phCh!Mx8b17EmTs@93 zzyP|cX%vtVzp_00Wr9r>{hVbob9?H4Y4gay$s22z*)hv77RTos91d_Q8a?PF7Bp}) zOelox!z76MTdw~=ydFMuR5T@`^SIBtp;2~0RLS2Yf$uQVzkR`9n_YJHuD&}gS_#fl zr&S?*DaCUQjqg3U$fc;K_cBe3m1wQE{c>Bw!b$_aigoM?dp#jHKQ!~i#~q&qnYa)q$2q&J9MFT>DB99lA$?KEV# zmZkj!Vp~=4ddB@w2TxmDLv2H8H$Us(-tC`_q7e$>Vvt-RDjZCA)aiK}Z4Ue(ma; zhf^#lz3Z|2`MZ7V)+f2?iU(G>wj;s(vXlw>lfd!`Mj3V%sEh$&1IlWE%f}q%Ko{0d zaEKx2$~|DZ6akj~#R*iFb#BNNA@dn^1RQ=v7=dB&52&UtI8b_}u*X@X$jcAslmxvL zLU6s20@K}NBqIfy+v(z zTANl$copX}#BI(~ZcsWG@gnshxTO>$mdO~LkS8%rtjZdHwi<~_I4sehd1jDO&+PGu zO#JLvr1vBlT3yQu1P( za`_h&is7aXUBUF86f*EZ(q+fSXPMnHWsI@`_O44Ui{YmwE3a!UyP#9-)GAqNI} zgt}oiyPzBz_MR-!3pu8QuGjMI*uurnkSv%WTZAjUnSO1DQjFpV{1Z?u=IS&FlU=ER zvUxlau2g@_H|2QL!%7kC1}>8!>GhsVyVlzHJe0Yl4tL(im{kU}H@jn!>ONg|0@N=V zCPS8T6`7ew4l;n$oP(6>R8^Kd%Os>BT*phE<|~RnDxB0`YVx!%+SB(rx5?V9aPrn| z8j`d`To!zwtI2+q9Gm;At&Y zP3UO0=v&PRK+#eZ{+ z`YhK+>#Ha$vdtxW+nv-aP*fL)+FEE2zAr!D26Bh-%Oh=?_!1Y;O=`$L&8$hy;m@i{ z^Q%XRl|!f?kVaTu5v`OI!lRPD_+k_K&w-IW9SJI1PBAZ%k_8d#I6D&koU;R`138-8 zJVNb|fGo94s~4>iUYv=**;Zi0^Tv9u8cH+E##8mMXN~~y%yV^1lnI+amzI5qQ~w)$ z^|Og;O}sgE*78o@I*z&<^k&vCk(q?7h-OJ=f$9r|vHJ%IzV`jGzPP4v-_%BB!K~u0 z>*jx59ec4KFFiA(*$RP90>mb}<2-F0*Uow$9eW^DGtcvx?SCILQnLMtFp&6!qm%4_ z8&{&sq~mpf`aeGDp!YyD3WS%OW7S-`w1Ko&@fsIevh}E#q<7bfW1X`#jXJ@dzZUN`I^WR27tWmQaTe-PsGytabZD0Hk_)-r0doR5#j|jGHydK}AoT@r;BD zUw@Ii-^NZ&U^%uWuN!9akG~_!CHqgT8au)+aDEOceglgxo>V;3n%5hS3}PWy!T8YM z+4rZ5X#LCSm=r@?dTzy{5)d~`J0Ct#8 z&%ez$5mI1~JKO|Raz74E1F`qi%r=~McafU`=y5=}wr_pswaIjDue?0qM8(-7x-}^W$!LXS)}oGUMbyM-U`#aD%xA8RI)Te7vI7NISrK2s?1<12dp@H z#ETeTg1+kl$r+-8#Uy08vK($Mib)c2{9{d6@lF|3K3)iLhcMFe2sdJsNzT3WtD8@+ zIUxyLoR_5t=zQCJFJo8s1tutjfb?wdk=TPmWCoUoCLA(J!Ei^d4B*yz%x zIdRbq!!~FeD*^DZIe$wzxbfLsjXD0fGi%wr+Ww{V9F2GNtcKx-x0gUyKbBE_tjS2q z@nI0UYfB(Wy7I{V1rDfJMs)S9dqhEILPgwZFk;Y>Q?i4j7 z#c^}@Z++#^XK@rKvV^5ezKeZP^utO!M3K?V6=dfZj5^AC+&IFt&wq`Ae9VhawI#37 zs7WRPyGnVL)5RuJ60gl;3aO7{;{2Z%l=7RjYFz|7yinEwyN5nY`A(_n=5cjZ@m0e+3%Wz3RLwjY!Fm@D1EQ;F4#!eJXY0%5V4 z6|D&ezdIgMehb4nP^ZV6He3aq1S*S@w<<=HGP~4;iU;?E0^Wn)T=6oon+ zyjQmxYD$SmRQ!sl$Vf?uByv4zWo>^7@$s(`fSA2<7GY#}C+S$8@g!sY6ojwWWPRZy zMrIXpYMQEmOBkjPQ)Si7mjGcrTA7koNsIxedK?zt&>A?v+!hntzjFRDkey}wk=u$x z*I1X{)#loeFf0*1G75vn!gvfyT| zb6X$HAg7m7vupO?U$e9HloON0bTDit$Xr=w4Luio1$NSrEEYyw+R}_tIP?!YeW5?z z*{5R?Sh1z5`%12h-S`eD=lh@Qb5Qs`{AxWuIc3dWb8@?!yT<9BmmoQ!sH$=|lp5PS@vPo7R^64;qS5{J3`S~N7C0;VS7bjEg9R7cW)hN1E@^Ug+&K>#rnH%#%DRf1v%BH__P8?(^mw zxBuanx9z+APf#Dm&}}o1@At8y5#o?E;_okp z`-T%i)Z7#a*}eCYuaB=i?0+^jJo!Un_z8}!L5%n&PDu?w@^&g`==|)~cb8`R0-Zz{ z@;v?z({1uL9(#BXhL#$O*YUe)-_JXfgou1lTlo8i3UF14a-eN_{;5?d!pson~?%MRyfw*+2S` zT-b1JNufa1BaUfEHz&J!r(E}hj@~{uZBJ0XfEa)t`R`0uc&d;<@Xa$b<^*6)aKM@}zWuq$l_5SuT z@I6NhY%sP(rQ-GdbglI$7ZKG5jf%3Bl5&2$li!p8(kvlLz9V1G5MoT)TtLv0-$?E2yRX<9S^-J_UGWSQM`%<{vt z1Z=H@COUOtg^#f5VTK~*(cld@7ET;jmX1F@*OnJW17{-8Tw`fHTTK*M2q|s zmAGrVi5)awLmezUJYWXaeLQ}rY|FX8&>Yp7QO0sQ5LIjba>sf5hr2ZnwJ8lZS50dM z-7s-sVPufxWwf_psfc_+T}UPzG1-cJmyb zJw?ARE9EpkF7DhITAX{qo{pG!&9mar&jnerh#|j8XYUznigw{z^DQ2O<+|8bIcZok zrAvH%dR>g;?)7+c^TQ|2iUDG<75YUJVN=}5D@D`5jDHXNwL>Y$Hl{^4wy^}g4dj<2 z%ZXVaV}1;;0AY+Rc)Y$j(e9^=)VK%Ze3^IDGF<*1D?QK}(d=yU_2rAI%T}wAZw<@f z$0Ql(03=$DWn-)OX_3jp*Y9rzjQPtjYyL-rFNib%1*{Zd?=v#v&&ej3j?*IW4TP@0klZt?~79mY8|?+BqcC9&yG8SD&Pao{@ywR4Kkys7(qOKl>YZ-K zti)>_l>^v`k};mq!_DGa-7H}cu@-IFI)_vquA=OSi|0?@HXYd>;^SG%F-vCh%kQIZ zeOfi9iH%8g5Ne%H%xr@S!;qsfm+b;^f92Mb(5KIUz5D}np3~&jH}Blz#qEElyWC(I z0+@VPS*O@dx1YmSqmOe;Y5dHsGs?s~tN(gEbR!jyUjfPg1(Lgtm%u9Nt>K5#CVxlTAMtN3Uak^h}_h1Ib#$zsR2{bBEHyvWL!=m|k9kQzx4QyDCFEad%b%544 z7LY#$GNbXBg!zxEO`ErmZckm0gs`K(>&-q@=L~xC16~-S$*o+iPo7IS`4G3X(eSG~ zXBk7)2P%a}QSA2JI>i7_*K`GvevG-!neStfVN8I8v!_XR|Kd&AEu3^RbjY;N;KD?u zptyV@r<%2cIRPz>x#(1)7$ZR{RxKP`FwO>4Dp#E;MuFE}ay*`UA=h-8I!G}2=kEfs z&&&FbR!5%sjy`GI9dLNRuRkKf8rfhq9f(D1#xt70D1FweHo_ip-s~ceQjNl&Z*Fcc zc}fx)lWum45yX|Ayo>7 z*uzJe51w6`qI;rg-LjWbG}1u>kknLcpOK%+{hrn6raa=$aa=(cO|&$wCQLvOnx<$+mD36>G6>LKd!%$I&!w@vu()>x(lqhA(JIt%|A-||?xy;~V zKv(GhIImcX-*z~c=f)8U5tZpt+$oxN>mp8Qa}vow5R#3A=#*mzKgn;*DR}MT2E37e zDmES`yYmwKv9URS5QRNGz$7yLuvN32CR*qiPQ4jVAv$uH`b90B$%*}8nF_$i5{@U! z(EPwsP>P!P?8a!@d0(N<{*)Jd#E&HJK$*gQYv7=x4}=FI^UcoY9JTS-_0@vdP60nb zF$1zwCj#(SEYua}bV2WrP}(?AID*D%y%RU5SkWYIU|U|t3;n~kkt$$^55;;KQ6q!O z1iMXF2KPb7q*%XO5l*gV)VGo8!^@@kdU@R_QM8&=7-Rj0Ulo%{9}^%V=;jU>%4S%VpNsfWlwdXQBeTY0Jeh`>0*i>Hu*r#4e~ zTibYWJXnogR701OYC)qBrJOJ2$^_jSM%3AZbd|o8YYCHn&Q5XVQ@gdw+bd=s?*~4o zpy|giuP_|G4Y9#@4!=tqQ?II{DNDlQJqXvHKjDx9D{5YqWDA5=YlTcb<*`FZu!F)f z8yvm3wi!lZpru8wVYP$Acx3g=T9tImQ~D30^FyI?8XwayCR}9#qRx%(xo8nxCtiOK zo}@Iya&ZFWlgbc+aw@X!Wbw3&m@Uf9<~eSLTZn zOiJiOHYdHqonaT6e>^;xx5=FzqY_>WV`uJL)IZYajh6Z|nOjuhIO-H+Knmz=hBqbt z?%Dx*lPJ~NI( z-LVa;*s~QNL@z=LwjVL%8%}TN|5$f>9Le;Q_A3)q{+xlm>98@QDp+$>x>*PvB&Q+& zO327K5tlUI!iJ60#WvfmNNF|Cd&4u8TOEBu^tB9TcIlk_>aFBwx^xZs%f5vBT~vCp z#(pRaA=rYK6;)`t{^QQ7y&%)tkeF!B=V zvA^{yoMFhr_r$bMkVZ4SCJta`VrAybHj~`SPLP9Z+uVzDyj8(+ix;h;GsN_zWt^EX zQ^hQVviBw3IR!AQ*EntYrk%B&bhY&0eA1Lr7WKbQh8E5MO>&BUJU4Uoy+lI(CMbUuGjy})38jB1inzOy?vHJC3# zfuHNnCbIgrS~FiMii&Ur%!KtSB|r9$ySN^&U7D=JN4PH^P^^@G27aP8yt_%3rl=u5 zj3KOmuS@Xj`h7n0{d@k}$+;VJ#Q^@~+zCsyvh*%=?taMc1x@2{SpG%mi_UX%{2aFB z&%R{ZzNn%nD^&_jRkKv7dK{wJ)PZmkCA0h}qN|mcFW^-p!|*6!z6)$txN&H|d0CsL zK^&aMo0%K!ePGnq3ALy%54NuEFx)u%Tu^ro%}LiR_5t?U=;(?PDL&BsDG@Z8E|(=| za8>_lX1N$35NN8Gvgp!10uMv)AEm6W>yxo=Fc2)?76}(_EKw$+rx&Y?6!jU;s6+@r z+8F@TZ>gx(x=W|&=^p&kg&R&*hpdYy*)IL&(;x~6bs|ZIxv%VFLE;`|cZIDD?F)7{ zf#)x0oaXLu89(n9FQ~=~{Au=N%5IfW2e<0ZxQ_pg=>NI=7pS3GcKW}?FaJ~19{>O_ z|7ZNNts|XGT8`BFsoreQ5^hEm2-aK-KZ!7DsEZ17-H((c)KGk1gP1nJrOCgW*$qQk z)#X*@?tWCSzNjlJm_(YX&$oAXDTqh}XPzB7d6VZtb*j$1r;{7&!}ncJTdHHCu5$A{V)CzJBX z?F;rbAh56P_E*O{&Q>3=JNv0fQMm(gi#y^J{Kv`dgFxeTPIzOLk2Kz~obx6Z-N(%r zMHbxe`9@^%QjvPKj&Aa%<+w*%HSRd!YF)Dn-KYfjJ_mn)Ec@`yGr)W^N1fj`y8l&Tv1J@+Q zLVEI<@4K=29!Zsm=M2+?tuC0WLUk(!yvH)+Ov9MY=_xP_Ju6-rUS3XiPL*g|uh#G_ z;*gUj&0*APnGRW1w|=_He`o_opAW>;cmc+z=9(GFApL5AlxQK3=zx3Z(AOD|$MX|! zrSi7Qo*+HVrEKYUjzU0r0?l}He0%GmJPCHzsLAZl0Vaz z+C^jAUu>6|Ho!>>pxb{*T)}zZTZ%!J^+w?N1kl1M^;P`k_jjugSxk z#__VleoLo!+FDkWK32_1RkLL$A@$QRQ@V(V1whT(9X$?U9Ze>8jAGT9Maw7a zp#**+=(AV144kmKdb9f+E^H}m1p`kn%LJ)WCe+1(rz0W&&MMg2STJi!P#6aJ;`he6D3D&B~h_2M+;GDJw6Y9 z9H~q}H^YU>PSViUmt)m~BnNbIc;K4c0Zirg%TodpfOI*zMArHu?yV__&3SjtzC<)? z(q}@7MQ8GtDS*}_VV*8+&)qD70{2A-Y0T+g2v}X)Y`ili%c@1OoCSHq1A7#vJ0yV8 zl>)ABcg`YwVD%a3pZ%yujZ;AI29|AOsyu&_>l&c&B=Dd)-S{^$_5Ib>^*RD>18EDZAsq6wHwRev`rf=jR3Y13DbM0Dss@Tdp?3{4_5>CqWZ6 z(+EJ`OfoTx|L!F!Tm+Wj+R)Odi4Ee^&r#?Hk$ZjH;aqo z(R{rvyGZKKunZW3=)9X4FADINn2(rkec}v*$v^$bA!PIDlFvs0c{J(2lJuqexWIgv$CPkn!UCi-*G%(C6uY=v)%tVL2)$S$-1niYMyZHLW?0p}1V>U2$#c1NK$ zrxMgT94Lj{2&#SLUSzX-sxUYtzQik%O^nRkDUpN&AtH2O!gkjgKJh6}lrGN%R}9BJ zAly3IlP>X~EKzWey}FRFl$=Wz2Pu(Q*1=(^bP3lGw?xvjX>mZdqdl;sjkJYqkNM5> zbK@LV8h_R}L)TNft)a>>^_oD^*GAkQPtT1qQkbv?Itev@{ zlN)W18%!MJc~UL#0=sS8CqLV}drWoqi7NbjV8)MG%=MSNmtWUEDal|w&;|wAd*C&H zn&ilY8W;0{jhm@g8v1G^ljFi7*Ubjq3hQR$RcP6=6a!S2ty)7Qb8ea0OiG~a)f#;> z#F?|Dz{zPF6;FdnD|TQ911@v19#Oi8xh0R&aHCx%uH2dipyn5k zShlqRIe9AvdBpThW7P{wS?w0Nz+Db7wPHF6Q)b8wpT1rymaEY%k|fL4tzhFcl&D=Q z&IA!!3h4y8*E0O&gjbqwh6cfj)|C*nWq$q}BNDhW_*(MKk6dMSG!1g{fFQ1YIA7-_zFM6CeBr8?Nky-=U0tkK(=p!+h|u0<>W7z=}- zChPCqeoj3IXlC9vpNSGVRFz_=X?*ESR8kau^V1@5dXC{_d&L-WmyvX#fMSPsdepWdAu~xfh92%4kA8t z(k~83E-}I)IRZX^l77kyJ!K;kIPY`=jz$&tWDi zM7U=NBYB6qC*kOwLT(bmIX{vb%N*I7PcJ?i0|&{Q!v?ZArJNFkp$`P`qhpo|H-KD5V3A8PG9C+lyVrb##XNWugbV9> zK6|V&_CsgA(B2v|5xOvP(CGy)1?bwRe`1Q9%Fbd2xcfH9?27}Z+i2*9#OVlibwLon zXdBYkByk%s)CET50#Z{*^x+HqOHVP;VU=Yy-1guNs`Jyx~m%w@Cx53$MW9eVu5&w+z1iidI$uqJ~ zDuHA%G65^3!TT}^L~$P%q_V%uz<>*F#?|W2FHhfp!3)wzOHFX1-)ah3ag_{05vYiS zg&uGb)Sp;ghEUR0T5;DXKYFyv2`>c^x+yTt?DarRyt$pmkRZdkzyv0b=7HwK=^ceS z5Myp+ULOJuPB!DRkUj`@>EqeYMX5l*jJBinMjCJ&r6tSOjo|vUv85&Xhv-PiBc7j= zlkvZjW4)|sgW~&UCSoP4v$IIPZL8Bzp_E$`zT<9dMxzxW)>RmqCwz-HhEeR6@UPKOT>As{$SzKnC6d_MRd2M8NsB3T=rlPfw`6!;z6@s$DVlIibyQr>Tge==gug_*8xg$yIO1C$t z42Qp^C_Jz!tjM2NZvMbGxTsa0K*@T=zbaGp@4Fv>c;_g&GGEv_3b2R9cO3Bk^tvX{ z*5#1s?B#@6_ItqFUmSHV@x3A4aJV;-GN%W_9B<=;9859b#i7?f1-(nCN?r=UhK+27 zYMLbTdCl!BD~^q(O{EF*k+bk}{iTBG<}kbHr`vQoIU*}$F%IF2+|R?bO21iLBl62x z9b+Yn4Eat`Z;xZs*dzc@F%ddg@t~efV9hjdJ|K-$43~p@oreNC+>{#QIhHr*DSL>T zTV9^fPk2a%VnB{I@F108Hu>%ieH~JY#an(xD_>Hqa-Dt49Y*Xs6*J>{%-5?QIhNn4>>cJY#!#Zo=4GZGWIm8t+Bnu%UbR7;Qi$QG*JnMobad1`$Dk#4S z(*c}N{G-kFicj6XTOR13`xDZFK!ZpQ%tzWDl|k5(E?aw#i!a#HfN;HWP73>}8d%ql zIsjH+R!8v>w-CB$akJC@(Q?Pz>jC)m(2f18S8vE)!Y*{1Cv2zFx1=zZEk`vpu zZQJ&VZQHhO+qRvY*tTt(f2!W(-KsmdgC2KP54!hWz1O#>^sCfxnA~zoDn<@f0b&N( z?qbq4&g{!G5YisQvmvKZ^PAKpC0+=@yWdHuTpZsdnLBhWf|RW~A|?1^!1(p6TBWTc zUQtt5`nWUHDy{Q6`z#)St6*Ak1YRwWNZcG&rd7!%pM4DNnxaoCr#Q8m$j?O1=u8EN zE#op42phv%W560C(YrTBFQuww)?%>y=HY9o0`7*i{4u~1nZKnvO3%d8@T}|To-#`4 z?sr@p5zsXgkqlh2NdWy*kX}lsH^ozAj2Xb-cPBm~DoKmF2&*MLv`st6Clc zsd}y*%C#Zi7ZTq*d;eT8Ds0=MEsG9g|JiB4*LTK1{bmktJGiui;J`9W!uqP2D99kp zy`v51AKcLBdL4~?;?1_0kU-_CO`jh<>P5lkDQ3Tk2;ekxD~4!|MXesQo3`x3cHciX zo-{>KSPt960Qsi-lX|UP>_Dcq4$9)*ptY_*?0eI#%Ml&VW0tTvIyL8?gZrS}FzC^S zp>#qnz8Szi5a6LflAjAzgJnrbpxPsU3W-i%Axq+FGYib68#Fg(;V@9C;=I{HTg89d3~l`nA=`sYLAyk=N>}co z=o@BuvVGNADTtMjm#inRQQf+XpSM63teS0&ye6>64dA=O*oq_Ko1SEtzdxL0K9}4s zDd*yJ=j~%5mu?sB-n#AgEnoiQ$j^ThX#O{=7BlOAWUF3bZ^Rfi-|^_qxf_ToV0CKs z#Oo7>2@2-~tb*0RaZSQ<0}~Sy5A2kVyMDYny-ZFw_`yfD%y9H1O*q#!!13WO3e5YS z@A`eGhT8U&mfD`(=!U}SVsC$mmj|Nso5z0N?(gkZ%MVL(V>kcis(Sm_{~SdpEsL9f zUaio5Pi5-QcNMU|rd6eut@2LRJiaCqX zX<7I^BIuOtqQFOo}F5&znL;>e|4Cd4-a!t;d zKhBpv?N>&r3Y9^lQZo+3tc&j@z5G9MC+%aFSMrPB_p#QP zdEiRH6LdS|K6o1#6ytP^9v?Wzz^)u_JN5a~$Z{j!6*IPXXMvpai#1Kuztaa6SGThZ zbfZ>4ooH4qIGvTZbDIFaJh~o?riyWWxa6mem(%^p{2CwwVw4KTUX5f{9b(a+0sPOF z|5;|i>^4T?$xlR`a>iOuIs&I!p#zh1_bMD+A7?q77!~zxOVN~`k}&WN88S%{sS&9W zlEXEmAX9}4f{w>+%bo4$2CC-$gV32KYf|gr05fl(FEAmigx|oPI5^ZWd8$6`Mp(Mv z{<6nD0CRk`4bOvAkfc!d1uC|0^QVfb8bKmKywazJO0~9CJ0V1Q@G_wC7Gm|Xl75gg zFZ|nr4cMa3s_{;&gfQr@?qd78wDe@)LenL5Mah8+So7`Ut+cG|9rxqip5b4V?=+0Y z`F-voLLghFSKrV=wFvL(9t;JbFEr~C3F(T9-`dm0S(cipE>uz+w0KCVci zpO6W=(IMeU%3vYDsEV@S_UK9D1m4vH?^4v{Rt3HJ&1V6#Qiodd`p z!>vRX`%4Yk1cr*D&ME+PNp(`p1o_8E2oYDw*dLiXCUs{<>gPR#No~w{Q@i_Lqthp8 zdh9sPeM|&@MmwZ{Tg)&P`zJFFSbjg( z4<^1<5(j(_L=b#mnK$Mi4xsrI%TWEp7Txra6mD@unl^zBVbKH;LAVkr7BCfPOnWU& z;lG8ZGU-L#K4v>B_Y;8N{U~E(0Aq@Uld5|Bt|O`2r4sVJ?Hf14ts|inv+35xvKLPjg>P}kqK_OA z>E`$<+`1WdoJQ1?OgYu&*IjKYN?;|2V7eO>xc#%Ls z4M+;5(LB~(R*L0SP%)nC_5tX!9CoR+#lqW;NBA>%$eRyGNE{^^c-9(yV9XEYBnqL5 zhEG<+3?Y;7u3;d@t@EK1>B^EX?R2D->xPt~nP)d&?@JK>dJJg(7Ur(q(SNVfP`;z} zrmSbk+whYdHRKY;V;EP>oZP1W0ov|TSnLOqK(37d+Wu3=er7+(YNq8HTdMW+;%+V-EFW$VEN-~3FR2fiJ9x-H$h`BT(oUYIO&W# zGb4AkbqIbVoPd6@)9qACyF_m4&!!0lN?~`i9c(e4DiT&m%WCtO+=h$(xGW2loM0Xf zA|sfxTP-Yt&U9q)yWqtNH{J4=ETim=G9+BgHoIk^zoZ`IEPbzA z8GzV(QI$RSjx==l_1Z#W>rjHNlO$)8 z9OBRE_^ZJ)NvC-)>5MGer%c7tU5x|qJg3%HXD}a%;{fV7oEn8O!EMdH{HEg)G4T?t zsm*bRoV=Nu{Be*FA-{2SQWlK6^Rs-pN{vTUyRXW#%OETINt0f2hb9!DGe2*}pA9l7 z4O6l%U-4Cnkeb#+4{+2auHPJOK8G+i-IRt+{Cdqk@8#$WI z7zc+ORLyH)Z4q6+MWTL*`XEUJ(-6)6y*1Z{_m0mIFZF-m#cxE^{Rb? zc6~h%oogP5RBoHfqQwvs%^Yg$Oh-*G&V(i`Ymp8%GV*zwbs7$Cxyzq4I<*pXJC?zR zb-OIv_vz4ll3nVk`Io#UR=2pHzA&JxSW^=704vQt^t2VDVBZzjltwUX7gF_Woo<(;b% zM_XUFV=*$gy!rni3dF8T4$?QgW|eN9u#@6 z-?zh(sI>s|ni!vq*Y}FVtTD%FI$#!Ly@}b1+tALf3I-h?Edtfr0*7h}>*0>6C&Ay) z0@X41)g@K8RtiqwF!Q8(OL>2B-Vj;Wql>f!xEeW8OiSsBIq(2WgzOL6vRokqY-a|e zQO?>syp`j(3D|Si@_*BhN(|sMd#EY5@EES;>945Hy-AA8+8#FHEI+8Dl}`X-`!~1s*q(vYnnK4Il~k3sfIMlE#Y-6)g%0Ms;%fo ziZAWlDUTkEDT6O^Iym#iloh?}UDXB)mm>u$j?XWV`P<1i#0XhU&0py^kgKBlCK&D#^m?DjBl_5q2-}}hicni-`44g2=6UM@rm=m#ykM^ag_1z0<>!B zRa$!2Y1qQ-qYs?mg=#4hMrC66{Gq@f;^V{dR>%gzX1IHFjP_HFBSs)q1kTwMo4>0n ze*%`ZRevmOpY*JMbBbRlWc5Hg9g;3^$#6!uCW+|<6R59H+IlW2^V9T7inulX(Lqw0c_TPc0&&(R zw#4Q)Wa@)rJVG1OuC!gTf+tDdj1skFihiRfLVR|{Z)pxYwwLm1Mhzs(Q< zI?Zu;rcFt`?Py)5ePpGKX*tlFx~}8`MwnGiadSMUU2orDQZ7x-q+6>N<4?8DD+C%& zS#TjUN-ad?;DpFmrft$w_3)HXqi*#gR#B|&P;F4MEz*@@^cdiN>$2bUCpgD4HCO+_ ze44sGQ3KC5xrW}s9MVAVG2Lvc=J8q-cu7PpjG@MoH4p7^ z0&TT_#}gjBIK=x;F~pqmfp(v%dk^@<-a;^B@0@uL(A(MeX*1I+rNd_Yr1dx{BvG@r zn0iF`;-azbEXI9af1sL3!C8fg@s9@*@6r5L6m_$5K+1fka7Kv(jFw`U6hl6+B z#7q}A=#ZtKR1XUKrbfB6}a z^l>gti(rRY^qd%DGn}n8fb3jvf*=W^A>}6OoXJ9Qt7nXjq>XY4@tpw&e407Lj9eQV zCL>G}^u1Y8pX7|q;x*R$;%;no_KOtQv%kW!V3d5Guj3qfTBqgM+3U!`yih1d`uDb3 zt9iQT2O=&v?T10hn)dvdjN6$4TGQ-n1#e`RZHbCn%L{1dJWJN2G;_|O-ti2^A+hRr z)QP`E+D#ti46ZM)!pPC)K@Vu$e2p(??S$-Q(f!W5bR}NOlP^WR_#0&NCIU&OSeUPg zO-S84Dt&GuPGdU=^D?WmtiC^Ek|@Oig5@&Z$1W_;##)wltS!Meb>0r7l8}-6W0K@h z%Ego#9*r&3tN0CiL@spj^2S9~F=V>B(8kGcx0#Z_rHvU<_+e`eV-IRlbK0q>?Nq1# zbFZ^OQW0N5d8jsD;yy<_EkEkPuSdA)=aY@YKdqqzDBe=?O{&slxRWfgv+9f`vsLqU ze_@T>9z%oV+UEm5pd{g~@|O~Ro_q@9(swd;rOlA|@Z}^gkVubjZs3S#y2I6**zAi@ zY%-GVWKxWD8xMjy;u(Zuri$=cj|NM?a|bkgcrr*tR8c9P1^YAh9i+fk!gMFDM-XI< zzu&+W=~n_I{|)C*U^Y;|q-bk{YiVKc{gWCes`*n!nL{)zO|f&YIQ|;ZaFKlFMr^FR zFDy~U(zRX9W%JXsT-jS*yh`xtSvYlp1NgQR({5AzY^Ug<#&{;=Dj-~mNZp1dv_Rl~ zJ7sxO7{Sni6ERxf{AKq{)+WnQmms;Yi1b^jnTQ=hadyx0?^|N!bQ}V4!Aw*{^PVN2xq8y{(RavIy>onw2$ljezzp3&*_kk?({Q0g!g(^>Tzg2GB-oVPLA}tnAtO0#7 z1@onvK4((+*(aRR>ir(m{f7Ght~L8Fstw!!q`w->&bMz$BY{(ZWLY{n*!Rc**&bjaQtrPM;1w3xZ?avrKv0gHrpu zzeF!G63D+}CQ0=L_OhkwBryxBR(OKJ`&gei&;x&o6z+(iy z&MWCcvgq*&_tDxD0>nzO@G(rm1@2QAgcB7^$A{Q%h;X(nr?Qj&o$cpY+Hfb?QIM-H zSt7z?dc%+&5iLa0Ny9-r1)?Yu%H1gMVQbR5nl@l$**pXqhNzsddI+4mc#Rog2JPv* zxxv(FT5g+bYeF=CN&J0i_CP(ESaCBlqHO8WS4XsN8^nQspLtlP1WQOb-AOdbUNV+9 z)rlB7ZkGZ^q*wi&A?Dx%iV$(I{3qzfiT4qQUZh;l?osIAU-{UbflJ$Q3F3008X)nY z4!{Oak2jvNDo7qTN>8V3Y~7{@hgE`^2yTn-$4gfVn3>^B=9QCJ*{yGCf!6^&vv2tjF~IRwztOYyJpn1Cy;hx_nfIZ>cRBOx1D` zzCNK!-Gy!m_ryMzl-)xklCUDd-kZkO765Y?T~~9e(J=J*pmVq_5f4Q&P~+me0&noR z_;!$il>C0NfzXuRzDL<_`HUH{#2eB(ZX}+*>R7H zVt&b}n?9PKGp%A&wmwTMh(Sbx91uJS{&Qv)!~akpfX1XKLv{K?kPJtejs9)sjZZ%G z%;-)tuG|by01y>L;=Bprfe>`U(A&r9PIxeJ#1Vy(TF%3HU(XHrNE6>_$0RER7WsPy z6vZBk{Sp`Ym=kh5E&n;%(A?k`A#|H9JNAfhG%J~rIL zs#W}uKxFkSmto)P3Cf{9C04JKK8)axnUPEV?jz40cH`_})O#LQXpk$4b|3rfi=Z7CaNsW2mNx=p9d^m25R6|fgEk$Id+ zQf<%+Ik@);-ix@Ch?*7Iw%(-bnf-oLBR6d=UXSREbvJn3qlNfJJ;8uN)CZkCm^?~7 z>-TPE2?sD9?-CZ7O)DoK&!z@2F3WvA}tWDYG&c8Nd?FH9<9dsE7>VRVES>+{(b1Sl(0DQ*zG1TAyN)?ll@YElNMI$T{V}qH_932#fglhpi7!Z&{d6!I1@Uj7Y2?(@R1%Jn8 zf`1sIX=Ysd!dEFCBODTUHGAMcOx;VY%IBn9@` z0R61^6Wb3@RSK?#jR(o+$>DQu%p9gB%Y!eo7RAS`%K)6W3;JuN3D`>0AP*hYKvZh0 zTXNv+sgqNik{U@z&eW$MGy5~NQ9?CYqzX%+8&i-gGN;#IKZPhXr3JOD^JGpH8!|)k zhiu)d;#p-rA-Pq1xx2Ud;CtSP^yM#Jwvl_O%!}Alj+_4j()Y(W!2AYC3qJ-P+vAIN zM(g|&&8>`lLhcRRD_0{EpA=G-wudN$`6ylq?>j* zypq}HyR`&;NX8x^LF@|%2`+^qkVseabHcu-HPgtA%O!<^Ih^TJ3jKgIDW)4{V#v!f_iMo;y#FGepv4inQo@y_H`=LBu9AXBNTP@<$-=W5WKt(368@w9cY0YA(JjhB(XjM!}@zn+^$f0Cq z*%>a?YA>s>s&k~eurqbL!$pGhQyf7jsi>=YLN4F zP}-D1O5|V=r5ckhIlUDBHwzd_=o$L3D{b_$P=f@5WToGVK=*|}3A z5|ECoL1>x&$Q6(9a}PJ|Z%v$NRWTpHucaZHL|PObe%|p?OEX4Eq7hwOtv8fB-P|j) zhS=xqBCC<0hCo>%@v&{u;Y|5t{vt2HAeqECCu@>OJ?hf_qU22MtqLlog47;b1VWZ- zvx=p3sh}Uj_I@jhiODgi{PaF;m{HWg!0Y(bIE9tON)b&MkLb`mQKreEl7{-}MXSBL zFjPSbd?@IHhXv0tn}P0+*TPX!AKg>aDNj6f&`K6>tnwkdZz)R`=ae6i)Rq%0KA7Xm&r`8X&Ygzr9@B~BFUzv1eTeLSWmYna;T{2p= zrfyqjI53N>B;hr44~`)+hk92uc(qn-$da16mZk+0kxn;rxGMwY;-c*3_WF@$GqmIF zf^2=moUH)e7jxAYqB`CsMeFmw_i+%_IwsB@!sa&Dor(w@whm6KB36%8%2Rxx%b!fO zZI#l0LORBo_39N%SXiZuD`Z-GOjwi8;v@0(*mM8BfJRl!`DvwWJ}*rcRnL4Mf8cJD z%f`2pG+Biq^+)lFatEcTp+U8wdzP_f5wSR$&8f^08Nn6a8krd766jz)o~$+K2;@F`4hjisrlD7i zb)0Aa(5s6@y$_GAAX#+UW=*#8jfewZ<+*6MvAOq6?#gw)QQQhBG2(_O(0p8ki8_Mp?8!`**T1*lhqSh&Srb9I@^R_dn`(xtgCR+C4hU; zUhTnzY8+K*uw`^$Qj7~Eq%vs)Xn5;`I5E?#PgXq>H&P0KZX54?IjAGg=+8N}o!x(7 zd9a($d!Nd-1OReCiDGY;K@{ba!)1{< zrGbk|_^AY&Fu!gNdB~TsU_o|Pd}DPcaA{+-=JY!q5|u$bn9_nvkwQ+yEh^|RqUVl% zakYCYae0iXorn_MSQhGVz1E*dVL2i-nyvt}q5QI(zM(!eDmpaTh?4W_WsK$HrAB1A zTV`(4D;B7kqoGWJVRM?NK%TslV7hOwAkRy?cD)8F@NFf#;B#6DX(~@mpORfK)5T9q zM8P1Ron(FXYu|_JQw&jbTqgZacmOYu@Eh?GNj4u(}ZtS1*ff6ni~jcTvYbVTVqlpR+jTLNug%C4U}%zBx?>7GyP1MhrVZ!*(L4%Qzh8 z|Lb`H)goEWDDT6RS{Ic5Fd8a6*>($`5v+^a5RS4osD(qp=vOG?jJQNRnnK+BoY`~K zq+_JxyY~pF$lWVDGbp0jx=Jq!AVu}|j50J7A*KR8UUo%Z6ttaO6^3}GKZ$v^(LjjG z9ylo_6q5pRwI4nCQt%EiX4t?jy_%F9EZ?)a?Psg+P;|HzYpS_kdfb%52cyF_468My z4S0g$%JKJaejlNZVJ)>j##d%rEIu-g9FYNiX#vXJLg4rh8t)X2D}!+lhdC!#3r0!EZ;NQ?shAEum&h$U$S0d;%TGC zPbbr!tKKiSsJs9}Q0+7}Cj4H$pdLHWbR%a-WpzPKWh^ zd~8r%@LZ3mzu~^{lluab%ej^I!KRqz6SD1^e6L zG80eA9W7JL?4?e=LKX*(aq$hx4f-?v2sa<*BP1DGo2eO67C**L@-oU%I$CKka;HmI z@vGde<{KqAK7@v}I`DX^Hoom~X%>pZhA>}H1aevk?sDEHzXv>XM9OqrqWWi2pr(2& zjCX!Cc!jgovisbn_|Alr>~VW~O5PEvVXbYI;{ZZPSIB!f@pL|tZSgRA9822flZ;rY z1!e~MBlk%&8TiIB2JBH-+dMU~AA8#xr-`UtAIHg~4{qz|RYH+DM)OI_h8FaSH^5nR zrFnV^c28n&p89byGz2-ixr0OcGE@NO@R7n`Fq{*w>^V|^SO!56c2X{A)@Q!VF~4jB zc;w`7x>o-BLe{Sj4D?YyY43#If=q+m>|LphBN~GW3nSDf{H#xcmJ*y9csv1zdu2RBnaBaZg#E$Pzh2< zd&0zujH;oLO5d(?u^{8N7e)nF@lEe7zT)=jO`fZ;U>6d&Fg(S|B`iRLL%XyitBnnu zx%HUrw8GN(di+W1oM5v%gA68QV45{Hm8Bfk3WvP4(U!J{mXOD=wl3S<)fTHD?q87Qrf-Rw3L- z|3WVS8Z|7tW>iWK#`By~E&EB;X}PPFbfPJ+-+#Q%@`<$+I4y78yFzMxv)0IeA`{K{mpV)aw!-UcR6i)hp|BTe(G-taz{t#YwQ$tCnmr#w%$h z@n`5v(G0iZ^AF55sT`qVPUUsQILwoAO0~ab7b4bP(hUev%-jDi<=tM=nekjUyjI+e zj-tJ7a69|`$jbK|T}K}lVb5uF^DMU;QvPiwv_>S^SI@*C$HYUK{Q`&oNS%g2f^wj9 zK@g!e-WHasH+$;EeVknV8Q|-Dz73z=?>#T6qw6!?`b%!0_;iIPg1;VSr!tK;L+!f~ zsyZL4nm;VI=#)9I@FatRr#!aQw#-(YF^K?~YGBVNo10#vUy#52sU7G8f$0QG@Rs-a z&FZ`B2<&~wSvr98Z6ikndA~M2!C~~XrX7}3#I(n~52XRh8;d68#W2~`u3EN=wGCs& zoJ(C`1>F^$xUL;+*#U4P!FnUvmm7+=THh`o%9E{^XJ@w3J=w>)X;{H#h8&kqbv@rRf8 z>TTjor709QiD1jmde3U*fG?^J!;)sE&xB`>A-bZD<9zPG)yj>iZun$~hYR^cHVBVu z#V1b7!Kr@2*lqyu$EjW2!ew9Ww&5WqW)=jRwAEy0swB=Od&JhdgWkzg@Z&z}yM-qd zd4`ThpRR(kb~SS?FIKclE+H&z!x0wgu;j9?^3VEp5^qK;RzUw_D}xhKNlXAydrij0 zg7QN?(C$hz=4vUx>#E11NiL`M8-1#!pI|QJg`KBB!c4BJN3Q5rbHM}i`4Kpezzh{( zlYBW(P)mJYcGod$DAAit&d$+FkFmmb^^1y{eeJ_?^=Hjen?5OSHVNCsyNY~Kjl;x2 zr@{}aWJ;K+$=y>pwGX637ah|h=5@phis5h&jqW{UrRo)bzKub*$C~ndS8)9eW7t^W zG*}xq!_oH6eYzHf+U%De;Fy96>S3g-@3Zb9nYPc`ts@PAeGv!)V=xnjEH0c%LMV$z zS1k0gR~$;v3e9TbhpQlk=-E?zo!F64Z4TP-bvlXem}`s+bAh7gN|n=_1KrX!10RTX zM*(i6?my}48tyyui6nwvtWk5Ql>@Lnf#_F)8n@`?H|8td?|(ml;7pM||4j&H`d{!? zOiceN1TSey*%G%R{F2tAY!L&@8zZQB8ya9C_VL@qko^m2 zB7f?+46&($lZrJ<8CMR!mc+Io7Wzn&-gvJVgxSp8a;_`bqHzrDTI#N3Y%$r~unY;@ z=Q4+2VuXsM?{lRQRVuIw|FoLfjrk);N_;(K$*n5Nye>UCi?#hpNp5&kc(r*cM5b+! zsEypTnfM@X@1IGE6S0MKmcxCyT+r*5lcy>m5MUM}O1qjP=$iZ2#A3?!g%lk2Z^g8i zLUZW3N}Fo;Q<$wP0`p#1Sr82>7*`{Ax9)AMtVr8f%4OHcgy*f^vxq*<*z{wC0#55> zs_1RHeeQc(l%?tj;NY&UwcgL0<4z6fdx-R;)!M(0AM;o&>|2hm=B2{w=UPS#m6dsF z9m+f?E4WhbQEu_rqD3g4IZ^pv9Tfu)aFl*{T}}uFk~Ee^q<}0`&$Jzw&Zf zQ76b41yde<+acq4kd_ScJvJ?*fR(g!mNu6%NS z>8}-4+U{!;ejJl=MkX}pb;n9bCj7DKGPLt#A7!$kO4eRfH$_JLUPAj3`_FmAD~7xL zC*i*aFxryqOc-ig0_M`$uF#{G#%_1UjM%=DiVmA2jxjKj+MSM^mylnJ`^=Zm5?dZ6A2Uz47nBO7SP6j zSLLzO5W$r*+E>6x8T+0<-FfvKp6Kb{^aF!=i9^6O*SR)3Jr41Cs|rzLjcTxBf9p zVOYnuRGu1YtUK7psh{6W&;c?5vz20b=#U2YuM>MAW(fmR4(=hdOZ>57nR_rqvQ+HJ z0y6j&j|W;>t0pGUqnG+miMTh;f8oypqw4`9xvWZY#P(QKx%pw*AWeZqyIb~2#^E2O z1b%K1jXWP9|ESioq`&j{;sI$%Qp@5Nv+OxN&)6}AtT9dHC}!J46BFX;FcI&mM`!J!=$*<`%~1rU3nbtwPK!8w11BsBGfq zHBZi%i&WN#y*`f*?E))QuwV`xskchB)ZHT8loB@|ZVLGnbs3?IRAIQZIQs%PG+fy` zS%(}x?cdAUuBip710YSt7vA0=Q)7eU!XyZ)w$IGXX|l$tFtM6xXfCsivK^Lcw%EfS zDa^`O0TS)f>_a=*Y$~tRc>irx<}sCCo5CX)fR*|-LsG6a09E6oWLf5z)HId_GPAe%AdN@;snU}`vv(FnTE^l!i68yhk94<2;* z2!o?|mx3o39dSzwY&uC z8FGSN3KEH2s)ueA4m5PZ@fim07Rl<7?Zrq`Ebbkwv)dwxr5Ml|ZawhQxUl`QLC^>aYSOZ?q!huC_2sC^UU9P)Vo$G0E>2_Xb39k8 zeWkZg>&E(6ZW-QJ+RqByM-aBDEva`9c#z`qCxUBlW{xQx*>|ZjpJ<84i+a7=1gtXa zAOwo8=hQN64>6|rR~EVBP`q_pHrQ}O25f~BwyY6hVRMFmfKF@@5v0=QX_$THmBnnQ zp(c{NA(2UAW!NG^mvh?p>&1?7CD}BW(vZ-+4qlz|;o@QTbvi2`aad5?@w-Wcd}ux)I`uDb?d zGM^s+cv_#p>_w1Vq>-~9wLmQ_1jUCF;kT@V2J7J07Y`{n4Jo&tp7_X7-Zt+}1kh}7 z%E7oR^Y^9cJVDUo7jsCjQ<_)=J5%sBSUqNeyEod5s5#q~OSo9ew|7+2aDc`N3WxF8 z{3sPkjd8F^?iV)n z80qjH&kI1|8Rhh8KnAk`^Q78aLc@gs!uUk3(Yk~=hx4f1qij0>HdQsG)X zNhaIAlu^b2?5csZB=jnDMbPx%+s})!W!=*65oj0Y<)I6d+Yf;MclAb-2`{4>N&EtbGIm1x*t8Y&&8^85QD|{h4wO@O4zBmiTLY9MyYTUD9MGsGu|zc&=)ib8 z@9@^MH!y!ZWh;5^m0-(T#kHCllM2JH)~6@Y-1%0VkPt|{dR_)reU&cmr?784FB>Kk zgT50x%XP()$Yj(*=tW1kv$pym<<)#z;`*pTpF{dlMwQ7OREQc2cMZ#TwxeIni1&^2 z9(sK%@&c(TQBBy`HWeA&!?BEN|9lz4O|^6KE+`Qa#qb``VES(^g{~!PK7pSDtuVGd zLWpn2clkrC@N6D*renf02v};dlT3@H4JYQDiKxNNnY3ZmF(Enn$mu##abfjabb|Zn zb)l8D_b(#FdOO=fC!^-{cia4;t6J38{39n`-gxif$FDvH#s`e#o#wfn`v z>f*WQp4E8hTQP@+T7*4@TdkD*<}?9sG@V;{nzcf?OT43+a?f<4SVl(n@S8QIW;y}? zFLopH#I!K5lWl3M*+gaKM9PSjsd5|@Vkpgm_Xlp)*&=f#<=(x)Foq+VOByfMK1q4L z4LW`xvFR&2G&r0X;NB$~-3<6c&#E2Xh;`ldVgnlgPH|pOQeNtzi}tX!^&2?GLvpg# z6+@5}OWq{LeY5Hfr3&U>%5{;tNE>1q{=}eZK8N1YrWVEA{DG)^_)yr+#@jBO;haM(V~|EnHoOt@5&#*I5>^{|JHD^ z{%;M}|BtizORhw(L=PY+1mZ}9&nPcG4RSy4zp70T2L+&e0SfoucH#J+c41}x4{T1i z=2*;cTi5+THQs82E|M6vYm$mpw+oU$*TM}3kpOp2kqr2UbvKi5r=O&aq%kEY$DjGM zN}4n=>S<`;pD)}w{u!UMUB<5|EB2>E_ov9$m)GlQ@AiT(T?oG4A~F;%H84doZ(aj0 zrXQlxo8623$1XwfhnVD(y4WLm-Y;o+!B%7?HMKB4K@^>)7>e%a^%h2^0u~Y^Pq}~C zJXQnJ_;L?iMLc%dxsmh90oZiEmYr=X{ElvZ=QWz0>bO@WbuE+xFZpo*6N6g@Zh%Wh z)!idw{U1e-bT0TEq&X&cubJ2i>ntAz-k z-YF`Yo53%?1N%GmO?B+l-h`X8hY18@a;BkDd)DpVo?EMAou|r`GnPr{CK+GKSiuti z1-d6(qxIQCPM&{xQ48L|l zdj~SzD2`_B6JsZ>xE6X^1?6G&g9qXCm=G1VYhu;~t?B!Z@JL46g2Ie(1Na|IYU1)6 z?iNMNi|}Rmx1^>6#lg!>c0kD?ckQ=^Lzd#FTr$B@7Og~d`HnFAO(dhMI4qUTW_=_P zVo2xZu&%7vJz*y*x$M)2lWI#$<&i-uWz=cl{flQ6T(Vkl`*oEs)){^W&1m?m58YK`C&kO$G=kvxis?mW(fju+{Oy0gz@7W+y1>>19gtJ@G*s+Y zTBGnv4P>-9H4qO9v`?L-q({rj&}@^U^y@?iQtdCF(GVtIl6od>WhjtV>ZH4&49lfV z$0R~=shRi3j1*dKodAHzaK+S_9LG9OWtNj z6m;SyL+t?cll_IaN`I1m?~8Ckv&RX$#2 z6_Z+OA&D#GnSS4uvQUQEFUIDnCm<|lPdb1p1V5fS(?osv{1^|lCxs0u-_$0Kf*?X= zr|VXttNh#bQzhA+?+O;wgqSl42LmaGvnt@OmGu*l4^=kgaGz{C0(K^7)ZD(wO&IeAhx@Q zC~pDC!desK_gk=d*@-GkLv=_LP;aBEP_2#g-T26B>@TxqF92lWk0t`$G!(9!nghqU z*;mlawj?}KyUIii$j$2oE9ZrEu4vIy{8@lFoVL@rPJucLW#`2F&t`DXw_EdFg#^Zq zdSn%{9`HfHhL_enw*wME(dV@JW$AbO7!^PgBDQH8Jj=g2{045bwk}$0*WP2;-xP)KrUc%{shM(!(QE!_C;aLXCo(M zVQreICbS`-$C3Q9#tu3n(Wn3m=Z@vUbW@E01N6axd$z@PfYvZEh>lpr)a`N@0=3mOYf-GqLZ5P|O&Melq6|vv z@x(uB8Tw}!$x+y(LCORhKxG{M;sF{VpC%x%(e$%^D_FNw>kwKaPg9~=9xQcb7;u=TJqnK>&etw9y2wkm(5(A2{&~=$G{LRL23-M zPg^X&gd4Jur!sb$6Tbfl<7e6?2-V@ugl26^Psq(w&~HdzULXHyKy)>YMt$CylLRt6 zNgg*uy_s~gBhf(kZx*aiW52(Nt3Fx;>j-1V=B_PA>*o+-V$mlu z^3@8bQUilD*8uHrGnt`9z&qv?iovQCz?-t+8fe5W9R|zq{mF{bzgw_1w7Rs|y&zMq zQ8?o~(ay{y989*HM-~>Zt-&xwW-b1>*_mVrF?Q1+5tawj?;!7u5-ZIMz}1F)3Vr~(mUtPou7#>1Stp0#-jvw3`%1opg|r9J^7|sRx zNwGIaL^v64<(IkU?_9JWygVNAG69W0l-HTRhU1hLp~$4i8X$->b+J{i+z-++c6ZTG z5)|qMRB1PLS9&jumN2tJI!TutY&p=ElwfFcTUL#@3*X8(FvcajYu;N;HPm@LSbP8q zc(9O@z#vpmsXlx^Oq%L&Tx(}tX#fJ}YI?3@1d@?q`2EEh9Z+*bvC;5OsHQWn6=a?n z6A@p#`nl-wMyfEVxm#uGb7QjX2t*>le*Y1RpM8@9vCp*l_6139M&TzN-W!1&qc{5T zk>sY4mN3Z9r7GNHeDm+9#Dz@|=9*g1c0j>lKV;(RD+OZgVP{w^h&PDDoN=X_XH(){aFT2!W0^`9S1ACzviSH#k=S;^U-@Ypn zA>|DL1cI9U)R~$j7;#}{o=?JY)^?Vh=fAUbZY3MAS#SZLm5?_nkV>SjLe>=~vjd&V z(njWRe$N%uRPmBWnHsXFU^dDD>$LymN`QeQRpE+8?*EdBY0*S#){u7=ZIq*jXFr<-Dce)sAk|vv64TqOi?sRrM?NFDOv*5^KKSNrHm&_0mmem2#2Hyw(`qT%%)aqXgtutivDO(Wk(P*^aZ^VL zT;2cz>?LRz&GVTaU`BD?A+C+6z@MfY*1(oMx^`Lyw-U}MLqFz=SGJoxhr#U^(TLI` z5Jnprx6JUiY~4FjGT;<}3zn9BPeuM5MO}>?A?lW5jN+&DRT4ge`s^%jnr2p@ria>J zD7zlOcj5%+pQl9(-P3icNr__%liP{qFXH6#=i4>(1UsvxlrAl%9I| zB~d0+W@!LnCT7zhZKC%zfi%d++NtC*1r&Naotth5d=c8$WZKXqA-=(K(?YHn2K~2o zfImC|ErW*7?>cF>E&fNJJ+!+B*=lyO&vryl=jub*Y50L4m`g+sY~VbT3V(|PR(~{o zX*r^n{~$})OUjB#D*ib2F-0%_aSXMWrQvzw&Ru+cm)&jG-n?~2ehQrA0PDK*dd`pD z1P~*W8*0d=)lV#umixlW5(wDRjhq_zfj zjtO$CE!}GQ2FbgHU{6;jpeuRF0!50Kw2cEAxPG&|FC0}3EbX9Y?fbW+DpsrW*6nr? zivpv~l$ExDv)8ZHtj=s#ouEjY&g&&A$Gb+@+eQIji>L;7v?0mYwn9y0L;<8nXQSQu2|MTfNwvL#umeam% zk;kaJ*5tmF}~W4w&=d{D42`bsJuRRH`9^S){Jw6E}KU_EJIN< zxi&c)7xIWm!GZ zkS-stz{Mqp7Akx<2pfw`M;4EgrQA~SLYDF}9;cFSW}DxKZEu&%`tU|<5vm`)txi7z zhC19mrd?X+_d&3Ry`Y93L|LD_)YsLh#E4 zHw=@$x1CSFmloa?Ykj@NUNER0Hi|2A0T-lZWUABOYCgwz8Q2Rn_(paJO`BQdO>-Jw zNxSd+p?$l)H@+^s`R4z!l(Mt@FH0#i3&Vf3I{)7)9i0F7*XV59MITBURsFBS5=|V3 zi{G(6>1+@Gf#AUu7CZq~FY)UOB~PYtorkF^g^(Z~jcHNIIBCSw`}s`6S9gi*2vcfM^`3kI#Z48RX~Vcu4QIn3$;K<#o6B z>-!(MG!ZG@OhRvPx48M@Cs^@B?n^fFuJV2PL4E{H3~UbTnp-zmxHWX z$Sf^MA+VW&blUInfi*s_8F5mh>VWH-`Qq)m&-T%{9p7%akja3tCPYaR@K)A>AKT(L z*CGIosQZwPu!27xE;R`W3e}D(zEbc4ea;FbvgrZJSsf6fD#Ie-VX+ZlU2$?a`|BE= zE-eqepoi%w&5sTa)I72+xm)%!T5pG1^4`QG+mi0r>HYCx%=Rw%N`@QtxFC-?CKjCM zF3i1V^pZZ}!5!%B)k*2 zQILU${!wQIHhs=jko8m?BX$8gXr=RK@6!WzH`~OA19C2GKJS>EsM`*WA9)2RmgAK` z!(${{RB?cu++vLq1o^=f5Y3vz#>;_<5Sb8fVr*JFTGR`Ji|Ia+CRcQhbK+tmjJC(& zPjZZ!E>yDY7-(a^7q|j^=9DB9nsBD2f{>`FI2sjSbZyd&6{7lxQed>}4wNYOQ5~vm zIy4!CZsNi`i9fvJ$Bp(NRmIglpmN|oOn+fL(!{gbUtQjRRZi6$LFdKbsnZQX&!mZ3 z6NER!+>4mXzyp)iG`fCZ=v)bTaO=N|9KZvWHt8XqObE{h2?6F}tYC&1Ua~KFlWr_* z@7zpsC)WoVn3VZ1{9j>Y1Rkx<3*PzSxxUfh_R&XX%G@jWnc{lkhb_h` ziyOY>?71m&^+uz3ZmeqX`es7Q`LpZMpNzABBwfIFAHc)+a;zKCyKm(wkHBhKQ)1RO zJwg14iu8ww7}!>0RMPAwn$4G zUOKk})#2TcToBxle%|RgSD+qJ-Q}-b3@P-QnfmO>cj1$)RjzdsuiH*&H4$8;6lhS5kn1JC4)^xAm4x9wAk{7}BGvlQP zCuwbDF*keB@8RrMt}zE^pGs(DpGlqA86_V=dsKhJ1=y*jRFpN62T-X1&*`MWJIB2; z^pE*|J3f&=+$ndD8+uD<+T_T%X)Tv|$2kq~7ADXo=rtP2r{Wi^_10WBB4F;hH+G*F zklCO`B%wvxD{bDD&l`!=WYi?YhIm((LvKwT%lrvw;wZo#+MEWAXn+sDmG8<|S%CY4 zbE>=75Y0|N8?e3S4y;31(+7cwpF9L<%zOnxW5|i~fCAB*Xq>t+@sVf;LBQ{+UHwK! zyNKIhumiV9HPUIu9PvYV)wpbTwi*N5v%2mMPT7E8iVz6*N1GhV7cUJ^9;iKYT(LM7 zXQ>x@5=x{ImnBmh#zGSSfkBO@dOH?#tkl0uDZvd`4VT)?R!E~DYy0DUcyDdrRhv(@ z*DqnFSvzqg|K9PNJz6z$*2+h>#-_QFGvPcpLTG83m`>8IfaLl{6@vv0Dp%{RvLE5w zfjJP`S#Tj*!XOZf|MQ#DKPwdC`(Wn}jfYkg)*ncc@#y$vh5?o2;w#+rh${~=VWd(R zM481dvq&mdmyL4wj?BCT9tTM?#?ong`?g_#kJDz!^?0b_1%zt<^dnHM>2h$+A@CZF z47nmUH}HDxKh@%&eVqdckVOIt$ZZ23k}-=1IU2w>R5x^nmCsu&Qa&G_?5j@f%&J?n zYpX2uVWY{d&SKSNfZ7^6Kp&S)PpZWM@{X`;e^_;_LOXS&wd(Ls?Cn6%Puc`zgd#4@ zse%t|6flp4Dmie^NcL*VHU$yMCpfRF&q6>rH)q%0Pb}#Ed#t#vsCepUxs<9u_)OI! z9KsTo`MxY;;S{i~c!%-FLV+mWnOZmD2db2054l=Q=Q@n8)I$Atu1nE~W5nqsQ3a4s zgs*jRg<&>`P>=SA+v90bq;^G{GK(4BTvp$nuZ(32^!X*{RhgoS)AnGHBBu@Dq-zL` z#8)~mE_Qq2|6}yLan$N5Z*;RMBDLMStS#cR&z@h)d2)}TegHZKe`aI9*xzz+K zuqN-ZUomdDxJG`{um?8jufi|xTpc&^e zAu$O}xq=hdP=jY)e-eu~*~}^bW@K2C!Bi|@jLlz14E0aiWA*c~+icNm`Hhl~U#275 zs@I&D8Ky6}nmw%Bi1RcZ?xAPtzAc)aANrkugApgginQLO^2w^LLSK+sW`djkxso?( ztG6o?XsS1k*)Ree1+85_QBsYrMj>&R zQPz>2b6#(eTo7&SkxMPGzd7g8`~cSSC+0F=@qdZ^#1hi!2;914_JjavX#=4`p}pCv zjaacT2D{=&{t$17HtLyo#CjPGw%GDk)2v_2cI?g+n=wQrA?`xLg45sYUxMllkyt43 z8F-&1?itU4Bo9d|9@|RqF7`zQU9vR<$9Bk@_CIow1@8Bxxu4^u0nHJsHI#VA0g}90 zIE6pl=10F&7!~=vZjQsQLd)TW3Rx`~+k?rxW+{md zqv>o-PG|^nU)ltb-E-LQs3k*dZ17aQic;eW&a34<8a8McvZ#D;X)&%_4a(VaHsvE0 zbIl#>1ip*!U^|K85jq$MVeC@Gf_FY6{+lU3L+Xo+6<$a=!yI8#bZDOAlU*R+Y0LB> zG`tgb5ZAQM>C)-p!qk*r@MqNg^A{phcUzVtixI$eoaiY%;uUhGq6Abx@77Fu=@*Qy z#91IN4ahr}lUzUEU-3gD$ICJ`SXuv0hbvPiP_N0)?VIDqMf!=7&<&_lRjhP*-*`3~ zGNx>uTDr!xnI~sCT8*|LbEH-VcG<+@`a7AG$RJ3b#l&s=V{s**7P+%><0^EWx;F;C{{@l+OQ4)6XUa;2Z3m%Si1c8w_P~Gr~Yq|3kfq(3AwOjyUGC({uaw(_p>8t2K9_qoGauGmwtb1ZF1>zuE_+N4KT&eCSX zLMbkTmWR)jN6mZz7S{4~O~HkfRk>|ae{~&x)a*y1MT_F5C-5+Axp~C( zbb2qhLn~YHw8CcX1Htih8x?zDOk{i@KIz_|3Mr#F2gG7QLlwW5s-w|S8-d4*7WqUj z6iKJ1Yh~W3$*RySLf9I>Vx8^SXDEpy^@I**%4#Mv8$tY7s(_`6J@qlJLFXE>>T)7m z?r_%0w}$OD)Q_gi3B|LxyR*M|BjIZ5A2P`;*PUupI!qP3dEZuK4E=mu(jtGk=DH?I z5?ySEpf3td&pY6n`q}-XW~Z~js-=Dxnx9VRp0ibg4ed$eMBe8z3F_IXk5r>Gbj(J) zEV+x&>lHT4$3BV4sxNmW0$(U_ep$i_Y#JV4iK2)N6{|>cD|d%sPhfpGs>Y>leICJE|O_+VU$+VvtUJ&3kdo!#{_2B+B2VmqAFh2bo_DMT2u=ZCk<#z@AgRkwb#`eh)W ztR16Ye<|wjr&6V7yW=Wr;;dSJO3t7|yEJlX%;9kSnvpkuJ?u=b0X){WddSUXho-F`7J6txtaF?Bly#mMe#SHWIn5ODXf-tWNd+-m?=aK*+)&h?(Nz*9I zCdD$K<>hDb8@!Tgf_-jEw~X7|-SQC!@dK(N(mbTf)lkMU zvKmU?))w1T_E5^nX1?Go8oC+RB!xtpF$tno-3(%UR6h$OlcnH;8ho$0VF++Z*j3wI z+8EyOh?ai8lU2Fqee~vE9s+)IgK0S^1EZ9}$@)x<`3BdijIcl8-+04Y9jLi=o11yP z4to5aZ1S~UVT}HjbOodVcI1T5ntI2M#O6F3VFA!HBE6yD^OI6*Du}64V8fJkJ;=^U zXTNx)tj@MF7SfwxI}2Tbcz$Ixa+PbDc}eGGZAhWyo+@)WdKKcY;N{b5?g2G}GF!R} zZh?DqDEl3cu9j6+c6~sQGfiuk93$hz6P0QAs4FJ7Nv`oZ=hhA(=%s85{Wpg4Zmzsb z$GP5TdM5q;eKC9h(iCGW8Z(obb2OAActOUA<-LPJF*?m;#{S!+ZfZdAd%4=`!}`zZ z`aes{lTWKt0zBVH{=oVpHEsE}cJM~b*2h-1`caK1mj!8GKkT$ZgIL8JRN^qg!sLK+ z)|b1ehg;1uW1=WA-L*Wgl-dT_drY&NSUtDQ{Gg-7tA0oEqtbru47jQg0QHZ7o_KLu zyX#u4KIL|4r0j?C(9(++6I%s-Ha9ZwNN*yd)L5?WQ?TjldN7!K4rDH!AXAfRDPFV= zlHrvmpnRn&NbUfP`Q=}k8UIZeZ!31E`T+DcvSA*ZCTd#WEP`>E+8j%>+E+Cyi(mztVQRh<`Oi1+f=YMs6f>elE=$5_ z!WEI^EbBREG^KOZKN`MO1yW^HeVAS}&D(MK>tvySHk0H4&-reWqlFCg;Axb^FpS+T zuPCJ2tJ|!omAMAYtPkPALs_XVu|*i*S6!iq#h2I|KI0ut*wzn%!cTDs>Uog4L0AHT!9>y zwh7XWcm=%14islL7P?oTw-<0{N2b*Fk9K>rjyouf@G|VGR-rtpjHicpvB*Z|lK7Oz z$&vqid>+*|-$r+St5%lR!{Kw+ph!j)C{*`-KC>ucLDtQ*Cuf!{D3SkZhsW2Gw%|)! za$h$mO5iip_Ec896kAKElag3l3Eue-l6;q1NA5eB)?gB?bRMbtUTfKO|5#;qj+^+C z`@qHL_r0FAo88ZDkW8ZZ0K~HWa=!xp2N_TR1X`6z#Y`AsR?9-xj2|&sI492#2;pou z?5V6b+_+Rj`OIuylH4lB!tMz4p>XdRGo^$obVdKzYA6`%d4nF4pXiF{TdHX@-mLX| zSQNSrbhFR#CR` zsZaCwg>S%weu8Nb_!Pxdv~be!cZ%v@7V{p}^VhP(5~*CkRCpO4ArTSwKhvxC1+yx` z|FQ^a#Mp@j$J(SHm$-!`K-abeoPFN+k_(^xD_4OKhVnTi9r%I8hUP8`4R)zciK0@t zx`ClB<6MY=RF-qtZ{m-ZDaS0B6{eZ?6?NsHoqGlwIRlBB`-oK~ANw0XnAm5B<9K|v zEA0M^M@7rj#y8{bQhrIk={k?M!7WFJ;(S2>AqDAvK?zj(4{*ggXQqt6VS)VHQ=}WK zc(+xfHD~yK7X)WSrJR8Jh;bQ{f0n1{mvQcyC6O2tCJs;~CT;0<3_>vL`h}E=429Rs zmo9swk1(S~jx(yBRV-v%2f0hr|MaST&$Q2MKw14obR}R5(8bKtKHiQ*7iSkUVi4&g ze*gu>c^LGE3s~a#IL);v0!PR4AI<3s_|waYtlj>(?P>a=ASuz7shMF=jt1D=HgiA4 zJqtTTEtNpyRi#Q;7}6S`yF&LESC?uZq+T%*1?aHUH7yq5$WlcNiX54&>yoG@B4Zv% z^ag}||2*5t1BlO)*dCSQS5cd+~dvT@8l4wG@kfkIusCfw1&kXZNwB+RR>dVUEwr!{2qiY|zn(M=@H|uC8$^WreQqIrckso zK-#2!gk{pl%3ml=#2@=XY<{O^5r@zLm%`OqvYJiz@qmIC7GjXuHNh_%y2#DkujxwY2F`c(+Ayk11t zUee<#tv5$5^7&Q)|8hJAIqB?0&Ok5?u0|-!!0$L{_|L)6^v`Prz!OB@C`n?vq1m|e z>xk-^HWnwz%z+4w4ApLWHOBr%LUAc~e`VT!FZl2W{Up`}s*bfYE_^*Z zQU*%z!D^ELtY2gjL8d>>z*bf;ED?M0pYT)CCPIJ@9BRu&ySvwt6^>ytdv5KSQa=yR zZX2ZC%HG(2TK^HbSEZ4uYzZV4xjIM{S%+6Sby8J$P^U~-htnhL9I2_7MA`Uoly+P< zK_wbi<+wR?=S(8m@Vc>UI^;m{fK_@3eN%F6u_0 z@1)JYzMo0gq#Z_WlnP&~mT4gtTDH!}CQk`4rPrLGl1!sEt;z^Cmi^$CbVl`!Ol{Jk zcw~NrX9n!vUl7cKjQ-b2G@~c-m)%kmi_kb5lkYCPy1m`h?2e zTS%7O^%?$q&vgp`bP-HE{fqpxTLbbvrcy~N*6P%k;pe&Foo`dSv8V~7>tk2Cn*}zmavv{4>>%o zYvqf9d_Wy9`!a_j2Xm9zn$KJruH<`CQIhP&zln6GMF-*0Wog6D*Tpsn9kwy3t2Bkl za+m7AV|w`Ayy>)?2t^X_-eoIXkK))>bhZNlZya!%nkrK|3zN}VluiO6QmDD|JfW+H z;nV0!L7P5eQl}R+h+ao=(!s%}ydZZ%06au(S5l}fqcjVYIv6Oxf*GDU@ED);A>-Qg zEIUy)WdU3hJc3Z#9G=H0hh&BM5^1vqX(%B6r+=q0Cah~*C(oSrWW0x=m-=TaN4hv< zGLY)*^IR8glG&n9LbA^GSQ5%Anm(Y|ZQH1QwN^9~rMU7vyKY5mrp4K17|M|Rozy7; z6=W@_FTQS1b_D@h5ibUeJq1>qlCsQ0&iyB~yc8RBe`))<^l3fY!a3Pz4WxrsY$v4KMUflwDzzC; zSAyQPvb+4sUx$<`JW0R}G}(6!YldEEXQ;+)$5;2;i*m^4i?GDH$%56!p-=1T_yL3f z@7Y1~nkW5j{Ah*%p&s+M13d7<>x#t1&- zapX}4nm4;46N`4Y&5%VsxjwFM);#|VN8ntXdgoxSISiNxaC9E85R&VqKqb=nYIYF{ zZ6v}v8ED+;eQ_EDTGD^5HV`|DNbX1AVZpxj#fkd-7M zl>gp*N&PDV{8WE^uddr=3r4#Sm~k4B@PxKtxry9**<4g8Lr3}`!)O?;e^_;tM#o^o zbw#t%@6ULPV_FBp_Nj@lc+xjDoInPbaa(qLfyUo;Y^KdMBM+2nt)`K1j3;9)5x@Qi3)=QaxznF!C^Mib6UP$w2FRS?O%3o z%KOp@xDEN(LEeos^L$6JjfviAcGFw?`UH_)_6r$q$Zkh4xS1MTpHozHj4JXT=LB$~ zy4t3$k<#X;H6+CBVgXGx!~}%RfZAR50$G3vatj3$oaDf_v|Ewrr~D3844MyFx+1p+ z;=(K(mp>1*&nN@|vAwcfQo0laqp5!|AeX1%O4f7}I_6AP++JI=0qgVI1%-{iAGc{b z@DeHY4cQ|mV&1N7Ct5uV8~eNgD63J#0lDV}c_wGMc!c8?4=f-w_@gDbQy7-w;L(2% zOKS5ZXtN*t|A>bR);-?ieZ=2jR`eFVo(Kn%c29E@GQFM+NVUkd!`k1c8j{$S2w1_w zKxeC@O#{=nAFL@9c0wHjc(@)dKkS7K_4ux}UFvon-SEX4aaX`KGIB+VNuR8AZDo3t zLEdPMP9A-Ck2q^~-;50li{@mqy>gNQ`2Q>MY3?(F0RE-{d zciv!Z3LkJclpARwdspQg`NpLu)9teq-7E4sx?YSmWN{Yv)Vct_?b*t+G(F+Pu0O}b zkA0(jk5fh6R88phUhMR>s3Mo;vf>h-6;w3v^#%qjXCHX>SEe+yfWVa*4z&iuyRwf0dtdo=>Dqk1&Uf|eSs^rEg$}HcdY#}58N31FzWqb~wWeI&KcN%Y23n5ldVNgImi0-ZqqfIm!%q&J{Af?D-DW7`2%bkr zvFOv42`TSMw$dKoUF4W}1p8qMs)lxN8$jrjRf%{mELf#!c)F#-NNMJUy0X{t876;< z9XwjoFK%@Cu6%vn}Y8HKKzJpE9rBR4&R_Zdi3t%LLvqY~ivR(Or`J zM(`?A$H64#LXB+=*{_unqH)6louG*BQ+8S!@7NvEo;lF4aCC9JH)8%iR|O#-b2r)L z?g7HU3MM^O8~=WCWN|vXeIJtblZ$^&)92m1*Vp#76MOm~-ERM?>MTDTFZ}H(UJ(ML ze+mLzT1>Y6<+yz4Z!b`}d=;%8pY7VbfH%U5GB; z13o_#u4hUN#kK1NCL|oMrDLf@OgE&|Ttv9%Han$W_%uZC_+ZO-?d{LC^9$d(l11{= zE-mwpV!^$6ED<6RcuO1s1PubJ;k5k{3sgtAHASmyhn-NE}9ycQ?A@JF<9RXqnNFOC& z8+&e=`bRAS@&c~!7w$Hu*BcDY;2mUWKY&wPmzcb(>V!GmcaH?6)2iZpi>gA1=W2%! z8QAGmH8u}*Qm+0s2vdW#YGmEZztqxJ4%_cJy!AWI!b;sPZh3It)yLQ=^s+9Hx$}=P z#wjN?5W2AvQ#sVl3TOSaeqM$$jOe`$R_VP72QGa7d@7cyJD>1*-w!kAZM&cFF*U{m z|3x|CVECVuBQ}QrAk)rhOC;g8!TtjhNXzDObhAR*yX2M;svRhMONoF_Obr|+WEW3T zPLch7`9rs}bm{fYkGrl{dO&AELje8Z^}jv&j_F2x%Ij|6|BcG}<6G#)x6tRe<$eEf zvPf6b%@EagmfYp>{vuj6qMpA>h7yIsuh-}ObwVAi@FchE_xezUUGZcX3?S1}Ot)+P`03Xj>S!g)3qPx#u?3+{pYl`;J19x_7Hor-vI|3n#c&rC#|JH`tr`*;6-{BTkTZrX7N06v z%-eVk_*gowS;CB$lXQX}H|Ke7WS8b-atmuUw&yHom!032+Y(k6-lfTo1n=xkRRr6P zLmIxs9-c`gIL8)=(x?`Iyjyd^rRcXLH6*Z4dF$-4)ZxtaE5q$>2(G(1o7c&F$#j1b zK_QUCFUFC*q$$NJ#b}0-g9L|D-y@jCyeK4aaKf+8RWoGYr>PbuYOhURCZXe z(E5(2Mz@nz#!MS|z+k=6l~U!fNkkhZV~FY}RT-~25Uwb(`TAq-Cd(7yRODG1YuuEH zv1gXVM8#v05O(TrDgcXGzhEX+j)Mu#>}Ue%L7XI3z#4OK62ypDpBUAux~T*BDZ-Up z3e}EHoUOoI@AZ&4FjrH%lX)ecDB`~7>uxlhA*1{znw{7BZb2i)%GWlXmA8w#`PCkw zNxOhRt$9lj#d4v9V&(0kP`$yUQ{7ZVeSLsPNKCY89O&SQCXPm6&=}p+bTh6bfkjnu zkd?tkRBm1&WBaf^&2TZ|X@-H=ll!Ue7`Ycx!K=C@VPyNueHo9_Xy4!d`f{0JL`2Qc zUo$XDiY@I5HD9sTtvA`gDR8M>Xnn5r=QTS=%vqaEzi6H%Y{P?_fHxbOsLC(UT)uRn zbejMXC3@%}wKEEaoSy%b`uw7>TafLe)WOY|e#K^U?uNWnzHN7!_!7#-{JLs>UU$<``3&3^IyEbz+^kFZV@)R8u_IAhGjx|AaW^DOGcwVQ5_AB)bq9VzO6&> zjs34RmLsb#y9AYb&G^W>ky%o(O(c&y4^L)sjG+52u1pe)0k?|tk~oB+eVP+?$r6x$ zl9^DBT9)EuF#ZD)z!FQpc{I1W2pvC^JMYM zf`hT+Fr{14R^z08PJ@@~dOQ<3gNqf_;SWP>|9(**7TeRD zO%{2DLOpJ0W+YkTTMtN=oAV()}i+yj{S|EQZx=w z2@VlcRk`9Gi-|IXR&vs-<%N_!U}ILjDkAv}b8ll@#vgJA=Qps;c7j%_>QQ3T@JXP` zde|+YDbZrx^oG6qhWApnv@Ic1GRLe39_zW@MAwe6uv{OB-EpR@*6QB(_TrSYS>^|I zg^@+y>|}M2>vc}X%KLlKJ%CYEl)FfTGSs$LCY@q;Q7s>N*4tF+raMHWC&~NoU(>Ba(JdW(P__xP6BC(iM z1=|RYmHgyeVoT680X5h`QvhQW(I3f2Pc4KW7EdTJ^efTkcoMW&JMHyV-jP){)1$t; z)16f|?kI2!7uT|!_`+IwUU+t0Z^&we=oO-Mv{Me<;l2-by9{Ft()o92R?ytb0f=vv zH7{1+s-yV_@@ZTx3WwkhK_-gj+<^?Xais#pjzw$Tf7^}0Djy$><)h(AlbUIa+pA5B z_7@SQIL2PW4G5pbULVtcN?RPOI*CRA^y#Svt{YF9uVh$9pO~-y%wnQ3h^wo(ZxEI) zTYfmZRj$B6q0p4H9Ij~aKI1qi%QVuy$X^SFd*F_BuRKYld7Jud2G}$MHCY2zaY;^2 z(6r&GeNCrSyi_~?pkyshhGxi}OQWnGbNJEP5<47)bmPPZn?$9dX2wAbS`LQWz{yu03_ydKce77={j#sk)6t{)a#JiAKN=}&2aqbyW* z-jtY~kR9x}Ajf`iXdZ0iWA@RVXc@}l4z*c`sgI>N-ReSwj$a>UokJ7!bp@&{oZvtV z2<3!u9>Ob5ih5qD4Y0v2Ukh(LR+4SqU^wL>f>|bPRx$dK)06ydSvTCF7M)#_DU0A6 zZMZ%dKfgq>A`F8@v2oWl9D9b#F1DQMB zkLyBZ>IjGwZmIU)YNW|fZ6kM_U@qehT+;`xuB4u716l&RUSR~fZ9C(F&ab_^*aq8# zYZlS$#I3Xi3OF$)2Vl=#u5bZ(|sIeV&VIT~U9LPgn}l$4Q+ z5+FPuf=o`Kz=MA_cU=w;k|`Y_%8EJVSz7k8#<6U3H~Cu!-_qkpl)nL@N=FG>90NW`N?y>W9i&aYf3!f)9?}%@+?1={qNjI(6neXS zFBF%I+@QeNaL2A>s2|!-N9~sN;aL!xjpSXN`=*gdo|uAM_~6wE8*G%>gbA`EN?MSO zoUh8+6TN7%HuO;U@=<*(VbASiNH%COAOu!npEwy2a7D9>6V76bL@MjA*Z}y1Z zi;Q`u314l;`25>(QmO2g{4)Eek!m0N|(bVR12kNQF;xTQgv6d^EK z|3SJSRt!Hd#@r@a8i?$PB9!|L)TsM}$O}bCs6!6=TH!O+D^*!_bIBdUs_C>!$_hz$ z@-gQC7*vXA;*n;G7vE)!fO%QA!lO*Ll76dbeDR8S4X<^09V;jLK3=@y;_UXwtlI&p zMV_MnLxaKl05m2!iyF^siI0jVCo3`6c%hWEhGp zo|$_1qb#_zn5EkRumFna9ZD;@S-I&IHbuND5k&_>;;;f6t)(-X(?(UuPH&xQTCi>v zC7*~@wruU~3yBmA7Nt_h(&`B2L~v=Dsc+aewWmbKm6}BVEDDJaXDNw~^P6M?cY#>p zTPIp#B(i*M%CE2f1iuEvXlxyABZ>uVX%EIu;6D$29v1YPV)rJScXp4m+k(KKJ3Zfw zblb{`n(G~5j`vb{Y^CCL7F-XCevqiwA1}NLm$$6tE&-DQb_fH^oH=YMPJxa&hSR|+ z)z8Y8lK1vHRr!p&D(P^j!3-;5SZ$U=a?%fb5@c?VdmK^ZTdE};w~X$+N2A@H>K1T; z)ffio7**)c{`TA!{P2Bc-X$8%^TxfL!SppUWvOSmu~n+aDXE4Tfa%(urU(4GlzdN` zEcVWtlQ;Y76kVm{^A~ZHXLD?C95g(Gy>_mn9az`5@=DILXc3a|3TO6YuEFWvRIaTl zA4tR8Z1X4OLYgS}zaR;*@hY4JUJ1U91d2!j&7XuMT!fbH8kMSB+<02mOp-Em7{8f-OT}H+4Z{#KPOSS^*nbj7@#kcjJyMj7n6Gq=ojj&?lMk z8EPwo7Dn^33fshDfgy<93rdd%v?&Kh=pPmL?K4CugTJG`9RmOaH`EjAnNgOp<)B(< z)QWs}+JEqkL8bU+TL8X>j~Z-A{&Kiv+^-@|g6LWwaaBKh=H8|+gW;i95Y&;k1etN= zDu$*7k=iUjH$O|x;6|P}PluTLKk41uJa_!fG`@O?0fAy2xAM~76<=#_wc~x-=+!Hx zhwZ}l-)qnuEF0{J!TwcrSG3ySUr6y28)&zp?7PhIqvcsd5BO&SOs-dKBFL+j?lDHO z&9z($PdVoo2crHMYC-`n37nPkd3vCj>HnZI{J6Piweyj_GqWL>K;a=g# zRl|&@bG?!h;k2R^tR1E>H|rS&B+l(5LA^?sl7(Drz~2r>#zNFn`CNh&o50Quf=#9% zC8Oj)qvxS`(o4^D{7UC7QIsp)X|&fa+3M4}#fiY7M>|%fa-KBxc$}%ZtaDs(RYD3b zV1QVv!S73TdeRZPsX-B>=`>MLM@V9$HsIeSu4e{SRI?Jdz{KX%X8K(xT@Tf zf@Nt9E$H$6bupM3CPiN4!&W@J5q0l||Ita-7_`IbftdnQRk`}sT7@+*Kf>5sGi7b( z?HV=rriyTYfbZsa3PmH`;RvUeZ$S3gWh3w)z^A;s*e;b?m!uKsV-YCmox z6g!E<0)UpeH!OnV0GVuO?G(YfpAD=liK6JGOk<_N>6vkqP$qCM2c5EGD+~Y$9bv`Y z*tP4`J@7Oxs!q#F_ly?`tEg(#8C{}uY=7exi=~2HB`|UO_EnsCtrsXN`}6CCK?U3< z9S)g>br~o1#SWjaj06=WGiTqIW#&0#EIWY@ynM#Ap3Q2#1@m;`vAH?j|#E zlFa&O9CkR(tC%r8sMwLbnGMeGRL0A+>9bqxHVK%b&2GYA27F8;D8Z7pE8`@ici8V53)BEy;1~{@7FZ8-;c##KnuI(kpCuDG5=3u z6+8WZB-*aIr~YA968_aFt(Re9h%f{Wq_rx9h2(iLaYKvOd&^gCw}zxdbF6_`_wU|7 z^d=fJR8>})HCKh`x0NPN7&Gq3o$P-D{;OI82ao&m^Le|#?)@P8{eHO1yM@d90@~YC zej=4;@Al#a@GOB9ILsu zIHv5`pXz3Mc(+(r&^Ug*{kin#B{wRHjShv$CVH1*<9ioj7e>Y9L<+`p`jHt6B;GcLX&_ zSahtP3~Z&H`C*fB5tdO*sAzA}kte7#_jC&~JnTMe4uWzmK z-o!Ze;zanE+)`VBohK`16dcE$`xn}+AR3~qUrm~8(r;M%P$$RgC%%GQ*@Ty(i1q>X zN$sSgHZ3=CJ$^NjFE?vvd@x_)C)a(}$cKyfRAD{D0MCu{m-Ht_F9+?8sm3N85ZMdE z{|p(=w~I7gi5BBYD$oFDMP=4Je`p@`m=J@!89=WTds}W5^w(x^ZWnjwPjWiNo&rY{YpKqC{#@6GQ%FB#9;mK} zX%T%W8;nGrmlQXq{lli`6`GXvJ{*UMPO;OaOS1D#vGE35Pw?)QJ zS)|dTQc$uJvGYy&ysIUd4q~9o&)*s2R!1&R5%6#o8J~O89+e`1=!&LZ-M&=BA-d?8 z1Z>N%U`OFGPD;7Y$3=9z)d%2i7D76hKNxZ-OvJzK<0{Xz3+`$bOS8okelkihOl@)f z(l_N$r@wPtOor>?_()94^I#&Qi9R`|hL)6QO$cH$OR%5i{xBIj1uUZ!J3T|IP}lQ- zbB`;L502K&y5&3iGm)X7DL^tG*L3Lf&uJvJ zXTGR_X;i+8@Vok&^o$8YnYi7IvGduwA7dqqMz*lFgWo!n)*B<`Grcv}+8k>3`ixqxVlt)CVTrxuLn2`*yG z3g6x`WOGYT(*&=dJxLTL-By1-%&`MS%cHU1k)sMr6Qt0E2Wehx$NnJjAD ztd$T@yQq>m&OPK>bDUVMKP;|`>Su{l7lFAX{DtmVd$a-?V6Gjq+EoFs&Nt6!?$RO4 znSAkR7cLDbeg*Agh53E?_x2hWQ4h!)W##aSLNT^p?{+$f&M=$^AF9DnJ~u=>b+P%y zR|qHZ(y@!~ZhG#4H|bm}bRrYkElsQdDE#;E=S(uphq@4hPyTL$J?v%x#4vDMtzsbZ z8Rrk^hDAtM1AiK$A$;dJjPgt(j(C_=H(AIZRX}Vmifr&+d)xyQ;2)`3M5+N2Y3&jv z!PrEY@-5V8%oUol2_}n2DmT0AmZb7TBAUi!xJ|x|$S-YQ^60SQ4G42V9O%T-&I#w_ zRLdZ&=Omxawc`q8x4^2G^vHz5gW{XrI#b>rXx9O(Z>I@d1NVeFtfMv%9V$XZo1QQo zIztZdF4RzDjM+E5FGg#TwizX2VoU1EIa+djrZSmYN+qP|IzRNQ;b8&t|S68im`dMCtBk43V4MguKfAdWSLYAbF zgcgi;Thp^y_C{FYI<>$O!w5!>iO&U76B-jpTQx$imfQ0w<<09Dq&gd382j>%zWpAO z@{j#LR|SrE%LW(Y6(7ppG#<(x7_v1O1df2i()ZqUN>`SwP$l&!?9}a&S9BUh%h{=B zW}6I#Dv@0pShtPujpXCKMI(!72(~gv>`Y{^SJ&a+9b5c4q60qe3o`rcY#y-n)vI_vopBS#K^bcu;Gu!8*#}DZc-E|G1n>B6X77gv0g_>@dhyG6V zVA2n=B>KMs3wLnO`ydzo-%Ud_G!IKp1w3$YT~(E_2M&*@#iqpP|D0NXtRAv!-HyG7 zXZseeT<1UqY8f*x27Z(XU_^$AVd_p&EN8W?rPC=kq!$Ne_*z^S!#$=~MkAJQPQs`{ zYB8mQVo#K=h*mW~IqRlY(i4%aS4IraF&zJ^2<XqM?rx9vykj0kO@qfHSJ_tKRl^7Dn7sMT-KaQm9vaFtM^k27xjh!Bv)|IUJcEwi#e7ab7 z;=@?{W4c!_u76chLVQtRV5iE0rUOcIv|V+ga9Kg3UojYt9i{>|)pmJdp`O-xkqj${ z9Cciy!!oZ}WxxH!Sl+g}L^&d%&R+@M2$Ac}roSek(K|iii3x?7i=xU0atkrf05T%7pxU&)GJi<#MM{ z#f0zg=1dj*NSK){v)vcAiIKt2eRsd&O##8{o9rsbqc@Mnz7f8r?{${6IJ3mQ#2Ak>La*0yyR44bz_)DH0G zCfCj>+)~|i)@k8$XD^xFP^w%NvZPTcNrve#abq~|;nb@h_abE{v%1{+NAQ;J5Vnu! zJe6=NGOo=toJ05S+281;V&iq>xs5qK53X>+hf)be4R7P_LPS`Qgi$qFida-QDvbdG zts$gW2d{tjU-F}-FmbBa@h^4&?NkQ}1(yT%adjS=G|vPL4o@)+*RsxfomDZFlgIBg zqfIsldj}t?F@5lP%wDnVbbSbjW9u#QYdaDV`%E!DDgsbVeleS^A7vNg5`=NqTthT{ z9kXgKFApX+ld!>rk}d0-4Ln1Fba>(hz0i5y+P{Y$dW7OxH}DNYIYaD+SU$Dc02vAV4N$Uq6{*P(ws6?&mJb=E+bcd zk7x?|@!1Q#EM#Suezj3H4|7@(20O{Lp6Ot1a4_Y~dUbYMaT=eR(pq@?+-`a+adg`2 zV8K^9j#D=^h>WzIDQH9sDt+94y?j6l*7F}Cs$?`+#TqS}AiE?H#=Bt&c4Qa3^%iN;33QV zFFWqCWCFgm`NYXKI$Fjb;Xu{@pm9`Vu>a0`op;}y2!4Kyo$7gU)!O5GqxtxV8?F;r zJ+7gTjps?@V1g?`#)HW?teUeUStPmw%WH$oXF$Y}nZAWpd&||oZM&j0D=giXv+%bQfs_#`W^>0WgWW5X&~2c*>D$x~bKcm`0+dPmss&5I z4TU^rsxPnHvf{)!g-_gUa;}+mrQh5doVO@L1LBSN3%PojAC^DgzK+l zn{y?*Xl_UEn!-*#lO-3mlRMP^Mu>5^L-4@8LUoDy)Y7<|LvU6i(o!behPz6;-L|dv zh4s9!eI(iC+8FT+HLlhx9CMU=!>!1))?*-J?7)*pT>LJ4W?>y|jns=P%`aspM|W(; z*QSO<`E9D84J&w!jq^$EzfI-Ni``kOZQC@R`w8;sGp~a-+8oPxYg`K;6yVSr*iK%^ zt`{Pq2!>v;+fU*~lGSb<)oUIeH?&@UP2OHK59wM}p&Av|I$XkoU2?=GJrO}5J)fDMxigq&nYte<;g za5Xt8 zhrdy}kwqgy zm;xW!fpk^l!mz3KfFRBPu*rkcs))k1532O# z9@UvF&$#L`@Zrtt^c4r5u2=nMZ8GU_nDZPA&WRu77ze%80=%Cy)8L+0l%@`VHoF|u zUV`q%&o{JRDZg9MkBar#(a@s)B%H}eU|@|FKQ&Gn)@6(7@fDUyaB?Cm$F*=(6y z{bKszKH63o2gxNw+Z|Dh{@~sF)Th3uThT~`ZY)xZl*uC>l7MEK?E||)8R(+6`P(HK z>wn|V2c}!D|I_UgHV8?#gGux6fv=3f&ZpLH3fDMV7$c2p9pqi3>I?6{`e;xt=4dgd z`wjaLt+O2c{h+59t6OYl?}R6&P;>RdNPD#?Z!aGylKs57G*ZUXO8P; zIw=fLi}a*T@~~TDI2Rk}W;UOD(51%HcaVSj)^4F=i|^$%%9*LzxYl-`Tr3zY0G(>h zZsaIp&9rtuuk!vupxXK&THx`pIe{L5c|-h;m@kZ1;QTNAv!ydt8D?Y2JHdvIYsEm; zq&K1Eg%ersB{S6ev(HH?_4sP{NouQ2m8zzN>;_K#sgcj4uobfLXGHVIM{@jE-n3hP zzAf@uvA#1fT42+%Y+aGO%d5MN@q0B|ZFCtlwI!s_Bx?RnOp} zLbUlJt`fDmo+C?SCgp=e;DZAewn_Z|2g5l2H!zHik%{Af{`@WLYQ~aCIQhNS=IwUW z8&HuDE0nt%K;L1%Y#N;!!b`EsMtgUKvi0>L{(Q!C#ZFM8ujArrz-Q2^nVO1=iu*Vo z=kVw5k-qsmFpvF4EGh^*w#I(l=F0DO3-~@$1SINZ5z$z2hkLOH81=uU zvbPRct|}#rsFSN2m3T4#mHt&FCv00Id@Gz$!H5=mA;Ds zToP>BaB?V=>j7#p^3%S4C}S+6?&d$2PZv_7oMb+^FXMy}9hX>YC^(C`2a#~~ayHz-}Wv=C7fT$Bkj zOK0=1cSKRmz+MEt1|B#tU*@8-Pi@c`ivKh~7M1i@+iz#LfA({{?(A}y+md(R(2*B8 z@dSCt=v%;V1_IezZuX?L?JYHgHk=Svu;(%11jrHIkKPYK@4qF^VEC!!BL$+Ha}MrB zE>C!D)SuU$TZ#9+Eo>nLpIN(UXXvJREO}{uyLxbYZ#~5evnw!Ueb3c7DCa{*vMAa8 zbAA0ue0pf%d3i4xn3(5CbV^#qnSLrif}7!;)a>D&fc9e+mcBgSP!vLO3B_`Qe5s>| z{^#{4fdkv^Y7x*fL`&|^a_(?>+MaNLrait=xRdUZ46~S6N8YPHB<(EzZ91Mf$ z7r_Agj%8aA{+pjKR3N<qag~BeOO`mU8J78# zGSGaemyjb_u{p*kZ`o>LnT6f5-dA?c|LHkG)ktZp@#p0eE*O2XaVqNW_p9Q2m-2Y0 zD#DFJ_d-{w)ljB$-K*-@QoDN5>xccnN8ALYXCJ=24)5s!+WFzCdb~7C;^__DOB3-^ zYDs#f&SaR1qVmk1xO|P*>SN{_ls;HJ?QO$hzj6o7L(GVvyIZqJUIP$_2g+(ctlSmab>Jz%C)FvE0Z(c#Qj7Ahqfdym@I{5YqEvS~2qUht# zj#mGiZtl!`y9~%P&sf!tz%ERYkqCU4U%zr^JylDtKtZtJYq=D2Rzz#PWFb|4wV6=$lyd_+_3Z+-Hkxu9 zZUM*VpY0co6?J)bG-k%7FSIDqJ)~HMqJ($1$_-iZA$?jaolsLc=O2dZZa4v^%-vtl z?^Q#K90aAHEFqZ9s~QuJHcXDZcV&^L$!B#HZ3j_O|CJUB-Z(p-_D<_&+ht%r1}L1Hmv|Jo2Xl3gJ4}(pPq;UPx|{pGMZ+(u#EAR6$F!EghbmJ@sL5zYiRW zz5M6ji)4P#v`nebitn#n2_^uq)R=rDMf`)ct6wFo0)G!hmqi%tg%_s^Tw^Cc9q^$| zSHXGa#mFz#H-}@Db^D$$2296T#W1Y?lEMP)ppbkvpf&;@GxMU6bQ*VPbN7seUoZ3f z`K9cgR`$2YjD5=UmsVt?wo;|o>(X$4h8uw0E!54XHX)dI2Dxx+0Yuv}By7<(s6DTD zz`R}Y=@PpNBDsKhabe`>amF2$4iv+;`wz<9sla%XO_s-8K=c_osDIpLKjbTY|n_Ahzhso_J>j``~?l_EIP?S6-lmYTjK5ndQl zgrt#Zvi=}>jqgp3#q6w`H zxgcN2R_0Bqb9TgB<#z~kem|$h;|d}AhINQR)1^(=gnS~zSWATrjdrjbVPFUpox{*s zAi1=7PTky7bx{w^IADWi#YNr7pz(N9rs{;uv^*FzIs&ICG4lVhhCN?1NN-k3A<|u4 zRCiN5@_U-Q&y(KCBVpgD>sdjZk+&{FU`^-t)y{+uU*2+NT~**|N|NL$2)Co|%x z7~xUTZ6`1O=*FEp5@xbxJ$RoAD4!38{Sz!Pq#Iv>LAtZe8NrKpYPJAz7bVep(V9wK z5f9#oYV1_C?F9~vzB8QF zW8&~~#UnKkwcbALd%OD1o*2n0N<@`50mQDYFdS10d(*0M!h3MNXzPlLEBrPao&)Du zw7|!kMToz03cyD%zr^K|XHzjgA_&-m(`PM%*wLUoTfI(@6U8BLf2Cj29Gij)&=6YU z0K1dBBn_q`n z^@XXC{kRdcq3l`Vl4I-O{U^MfPD9&X8x+$29??3PRGshYCuC7+uBe^zR;i9o!QPjw zjy5$*-_@+1#vpl*vv*UXADN?um zBGTSQ&AAh3=OyZ?f=R%SM`aZ0t{0*2*#|=p(AvMk>;pNqnx9ger>7^RL0G5W7_M0@ zdjy`tqm8i#^og{hRAbA5{B51MJFMNeq?`w^5cAB9^c79@057N0Es@jx(@6eL&er79 z;k+Tfh#tShjOVT z-p_EAgy2JudY>F{_*3+>kL)XGFVvPo~7BNa(a z+#Fby+kjN#uX(5-7VzUpD4*bUmp`c+Gf*Y*@`aP{)|?_r*u;d=o5@l914-dXb((|y=Hj0#{m7T2A>tW4mtDL9St>rC#^3Q0Y*O4u zfxx+R$Ybc)A_qe(7rmtriIowyE?DjZC1r-dikg2g(j2xH=&-AZY#kw|HKi^Am|IMD z4Tw`CUMI8VynQt63@_*uhXiZ!N+ASpW0Q9%*DzJ-mx=}~?UzZ}!_H=K)Zpw`Lf32_ z;Cnz`D$RCH<+cSt`r17R`JuEJ-3PqE&vZ-k$e7X#Cc&3_m2|MwxX&_l(z5J#TPj?k zn-zaWmzUax!vJjs{419!H(fj5pd+n)(C@J3zGL1#YPNj?obQUh{)-PBDSZ4KNkP(E z*5#lLu#HEKAqiF87D737*;ci6ex?r}$?dKzV3|1VgGi}k!OeD%E14f2G`VTnOYG|p(Pd5{K2TZb?j*=XI6OOZ!?3B(C};O4~T zCEJbP&Y#5NcUkcG!T624z4#pz(yp}gs@NaKuyHq$>%X=)UDiz*>@Gf8yK)0r^WHA- z*Ar|-OiZ{nS1pBMQdhaS$VtRYS;mJ3wMIWGES~xTpD8KR@cq&ZK+W-MtUE(ydIZt0 zb&KSCS}M93B`&V7MmM-lEVz`;#9UaD z^wMk~TXG`p$w=L5Kk}$@{R=}dC(@1c^oWd1iyS|lr@uSi8b4&#+M3PXqML$;3afq- z4m8q=@^qcj)3an`Ebioho*(P{sONOl$a)1$HxwfnfnENOEO@Sui~uRY{k{{)m~A?p z*H&NEHr%!uDunvBXOn_sO9?JwexSZlm|FKW_4^ZzGY%S1@O3sXdF+;oLzp;H3BM zB^dN!HD4OQDwgZ7MzXuhF$p5Ha(rH7kJL|`Z-YO}MEvNES~zD>55F56Xl5;nfi0b# zr_G^+uu(10LO)6Ho|V7SSq!|pVm}#JExRD)m$!0c9x?}(Q}YiDACv) zbitGpqdLd+eXintqeME+S?K5P$AlyV@hX%!RadQvk%r*!^2vTKHn-CS=(hk!{AKU^ z2l@UA2I z3%Z(3<)cWi%ncTUzUt`q6P`Zeq`)2-*5)zHYBg|O3Bkiw?PYGsV$bWAmj6@_Pwa3a z^)l`SYL(e&<(NppHk*Nem6S>-wb2NA`4axn@{Z^^AJ8&{QtA0}vYKs%1rNW8U-=Rs zVAkfjz9N0qDhGW!n-*EisMa~|=&@WQJmC}HmXde+WNN@?&S;q$CYR0H&?Z*=^hm3E z!RWCck|9fSt2yuz+CKlxu%psTujE{8ZdCd&(mZRWJ~7uL5fG|$n?b){BXw@S z^sS{)pOW67Wq&?4h;k*5hgtsHVN~pCU#H67vCAJ(!NQK##x}%7PK$qm5c#MjicKte z-%bLnGDDg|6PX~_>BN1px@0ve?+>r&Ld?yE#{ERFQ{q>Q>t#`Xi*FS8xS&_gKqEtR z6U*jF5u?rrK4FVD#kQk%NtrnDsgxaSN2=Ggi>!>1eE-i)LXt#}r;v#ftaQi}VR#`U z`e`j0Rf~mYMaR?(Xbt*8z&-L?>yI0*WaG2G2?LX=h>K0ikuHcoADQ5ukAe(rE=i)ES%=gXYqt5^R?61s+92Z^NI$Rl9K$X|;#u zvv&l}h=KOyyhN$&t#4PWRUpdcy}Pt?Y*qKi6?Um#r2~HmV%0x*rL?{wlTc`^GSxup zwH-A!W^?v|oO0W#YOeN_$c1_}xBm1Sc1%4w%XHs3TyJ8xRlD*kSYND{<4g6|g+t=l zd`wt0Vf#;U8Wn!QUeF;Q!wis7r6z*&8{dy(>Pi$A7MKPu)A4C8e#8rdib!OU+gV46+;ry`*ZlY zc)BP&BVBUwo9%0YzktnFD6ehGb^1-OxoOiN}bG+2O6u9IDoX zzEX>evHwq4fp0h`y?$?FGV`G-%|z=n<=$>M|rd7Ll)LzDcN zI}bB(kJf#O*`0)#xF;wG5S}F818F@M(ZQlio99D4Q%>`-#xZ_H+CSM{{m1xSx9spN zO`2w)vXifv-7cza3jY$-_urO)G~ehDug84F z#u~ss@3%h$yM}B2|1aNTVPyPY@jWKa|BLT!>uAT4al!xB>4m$~K_G8?z$xG0-BO&s zPwXKw1!{poH1os`#gykOY=qp4$CFw?nq1+0F2rcj%C@aqPCa^m+-Q7y_bo(#`df;K z@aFIOb{GHqU)t^K>+a=yACPP5n@7cYI8U(Ci`&$aD1n9`QAl1LVBhQib5ewwue2h7 zSIz#F%KxZO{@cZiHN0Bo#hmf$>I2XA`z18O2Od}I+hKlF|{d)}TlUAil&S;-P zb?AP7f*}Cv52Z{dqC`XXr-1UQro|&P0e1(D8kQwUi zB$l~akJD!F+#>64rl3nv@5u#>L798<`U#YQnU;PW5+CAO-{1lCi>a@9|95Ppv5QbZBqZi3@ar*4JpDZw^{qCQm-?t&iBA2!++b@8~y=>I? z+XL(rzsD4YKtfB1_I|JKuz|fAGp>~%&_8%9q5qO-E>!P1){5u}C&(90&MNxgOWIW9 zsm*gtB5Q*ea0=&T6asf`t@-z2-fUq5wc7XXC!Xzizfu5EpLU6pXYrl$09t;go(#ph zFJ&=}^J(=^;ZNg8z@d2>SZ1%l9-@3`G$MY?a^L;x^by{S)%)@s3XpRMZo$6(_7Pi% z(T~`R=xt$7Ic04jn(1xi-g8 zZ{K1v*C*EU>+0C|$tRs7KPF~Ls#5BVUVB5X?bzw9RS>ZOnM5f;8_%N(tO1qD{-W%G zCMRT=pAtr@aUt*^->`j@2Ki~_V634DhHK|*55grfoB1S-RXy}`zIg^^*D0#- z=A;ggsFuyXck8~ot5HOlJOBN#3NWJ@93s=!s3bCH)|Z{8V}RIDcy=AFrYoj-P*vZ` zmf21lYZyq_4{`L+LWokL#vaK7x}1?#=GdZ;c>$rCf-A(>-KOeZ_t*OT4ZH*FKqj8b zSMP4XgpC{ZBz;<%Ew(KgQLZ~XB`oyfRqhvXy)&Vn^>#?Qe0u7oLDsV8RN(Ve2q~`E z@xV5JF_YRq+0I~?IV8aMFXX)}y-%;2ROukD{O2nm?rs+%4r`idAwgw|I z8X(|VzaV0M{%QxT@{p+cx%6{rj9m~@8ys(!8y@u5Q84SZ%cTzRi>}znk24Q-5yA&H z>A$tT)G8d-347w*fNFYW{q8x)e@;>YNGEx$Kk#ZQo~Q0R9bhL8D5o&}Nz@x-Fnk%j z>YPY?W#R2K`#$q*PF>=H9J6ImCq*oqsZ7tQ1+tH;rXz}Uh$`kH9hFdLd^X%_7wzgBQb{%N8>3)5#YIYpB zydX)aGnw&4uwBMkH}1hA5WhgG4rzrA@x07hVt2!OKdw*gG{An0G*ymNzOawPw1BQ- zpR8;Ti{qeQZ=&~1N7OJGMNaulBNd13*ydEEi}!iHTz^Y21Qg^)UG*YK@`A zG20r#TGWTKkvWNm`3{omyMisge1g-f@n49OYEsBBArcR6IvgEGz!7o0OT6UizwHhM zTek&Mys7osT7uC?D>f>BKtUvka9yd^J4_wYfiWQ{-z@y%AyLo=%({>Z1qNI`9$rbvI6=eV33HwJ z?*#B6%FX{dP~ur05h^bBb$m`52veX{y_@gH@l?#0M9;3q?$#zl!=f{=Ht}iX@9j37 zZ$meM;%qd{Q()jsM-P}KMe4uWUi-@>UBEc2zx{-Wq(0k52`^KT*GWZGW7*TP|sHj;}~m-h1L_B|+H-`T69 zOr^iOJhxB45797PGLUwr0hi^(0J28l4#VxP7&T`Nl@%Q}x%Jf-?hK#$Nhk+X(vJ7b zxOfetu5S$37B`DIxp-Zb@s9w!D`j3)6ZX>X{vSVg-+}XJ61V$z?taMDPFuDD zLGy_uDJ_E%2v!mE;l}l4^uNbn;_ZdOuesyd%Pj$fU=KqFqoCd0B6+V9!f$enUdkWMZ4LTx824qS zvjIVv3dI!gHe`AfQGF=k)M}DT0~)#zhZM({QMchFbyw7Nf8FM#0?HCsek_f#y&m#J zy)>~sh3T2z!?vlu7?Z?ZIi(GjdBmjgnw1Y-QPxHpN|8_ZR=|S z2{BQwHx6c^Zks^X50t`+xkq@|#RZAH6mUrK=!1XTdB**3&Vc`5j((BIpkmEF7?MYv zoU^nqLVD+6GNAwzXx$LBuEdRPytPSjc8|okqQqJU{rVwC>L&0UnZxyVqgh3J@L+qc z2;MY$L=G14ye&)f+q^WUVGlZBcuMzMwoMDfqWt5H6$$oumRr3i%g-gH0i8on)te<*RP{m6bo zyJ5l}JhI;q*Y9=>uBcDJLv2|3;r?l`=0RtCm>O6f&el29Wu_12+dlpw$~BfL&TilR z*aIu-^58Hvj;zrjfKGDt^;Dns72KYEY&8ZO;6z=r{k-eNbH0*PN+U|%hMTW88Kno% zfz;(SVwjx=txD33Y7;ftB%W)JBx>7OH}cpiU1fstu~5#*543KA-txB@UqwrUAf@Ez zb#0nM0kU9e1(cu$R}eCnp3(^PZz2EF+&6sYiz+0y`?NZAJYjLag*k?ek3O>r4|MjG2TY!;zG%z6lTphLK{L6|RJ%&w_EM_nmI_5?c4`(=lz-I(@%Qfx_G2w7AERKHc7{@u(&V8oqIuK{Y#DFY?Ost6|r~ptVU}d-BQa-|8(A z7zD}8gH=s!gIIKk}&k~uWK~hl9OSYEMliame9>8^l3_GT~yJvYf6}% zlCZD+pe!+nbm&tFDSmuv?Ydwgr?3xsUnRzn=x{2s;H0mFC>YfzNZTx@`eZSRL*8fk4jF9QJbR}anz-X z$Xbqz@6|1-#K9?Z_NMjEL$3%E2V?y$2Z!xPDKW45b4kg;!9rBs9ieUn?X)X@gh6?pz6GNurxiXVX@XV>HFfbdOtc6k{uWeTHBuCytt?Sb5VM_5GiJxGN-4YvBT9Ncc z0+%>=o0Ok!ps7!6@o9yTK1r=-VBCSx z-9(Lj5S;D9tGBQUm*qW*4x4*mClBK z!(BgkVoz`?KwgZEO9MzB!Quxz7oo1{mdidxq4I7XSbZp+<*vF&ZOLeKugrw*v3Wo#V(Njon8lgbo)G#I{oS5A%7^0e z{2+|_Q5=(Oig^vkAA(JD`|)~me#)&xmU1#>8RI23KCIQGb6*zzvts`4b9BKL?(`XH z2Jpg(BuwJN)${{HZc1hRju&h(aaBD2oAC+|wovf>ufL5Zyg#eWUD-89VHYqi%H-M{ zj-(jH?t>{GjNO5bQ|=i`w=Q=%w;G#lM-5h(>*Gq^swIiAhB0)lMJtwo)S{L6Y>wNW zZ#UYO{)FmeivS=tU66&^`CIBt?aq_4sISY z{dC}Qh{smkSkzl?B>pjbZp>PDM4kIT+_x57_GI{Nt<$DlM19=9{w+4XG}Lyl-0#`O z{`@omUocji(xxO_v%i68He+*RA84#&LXpqf+kw8Tv7kyGizs$jmMdU7QBS4(#7^w1 z-sYk^q(PtJzJ|ts++5rYwRh3vFmcb+slL!Zi|BP`6Q1m7{B>%_AmdP zr65Mcxc7Wn?N7S;!HjS6-{nX#UdEcWyxRa<*DeB!fY-RsmwSt48)Yp`um~E}<)bq}tW+HM4mYJcTV+bZzr*IFbRRw@I4I)CXu-Ke6aivd4WRe3chAmvzrm zA+=;86?{tdOI?D}3triCO8*9M6lH$h492V67~sI{$WF`BsBV^Rb<36rDVMS9v(klmRe2#f}3z>6Ksn@BU{8;{EDx}WJ_kx+9TWtvMaB6~h zuG9#`wpdHw!3;WFD{n(qVrQo`t}#<}mWt&qiO@?V+GQVI_>|3*f#F61)d{CzCFoN0 z5l5{&W#YfTeN8Sa^P-45+eBL%5Y@!!cMCrPAlKCVxiG?ZEniF>mQV;(WJ^xghG!sG zn-?0B(cD#7=peJC*ym;7)0zhhfm6M5hqZL7J{s)M)OBS=uEg}g3)%La8#mqT5LfAD zN5MLtU7dJ*&7nF|Dd&$*57DQA5)d0*^)7_a<~Gb*0W@Lm9%7fgw!}~E+==&|hCYsF zT+lCzuVMP%XS*0VZCL+563OzvA(5;cT+IJ7Y4{(BtR-!A^qZ|s<2A+TZ_*G$XIPjA z?vl4z3oyjofdtkPFmZE*V<-TE0XdrP$w{9tHtb?~Pn1lV|9QY^jkY#cgbP$}Qmn){5xjhW~zxaq{e$0&_ z#uLQlGI!1PJ}5mn+f^U*1@fT^Hd#MF@)ssd?FM2)8 z19it-V^gn*VOhIaJwIR4U=K!zc<^1Iq8ADYS$$tFL6|H`zHKY1K%DdlUaJ3cUd_{^ zR~6MrTyQ6q71M&fpehoixiO^MeTXO+DiHNTUna^bk6%Y=oMZGpSAY4PqW5t8ifitw z=iQ+tYXK#htOO1t2TJ{U2!7vAQQ|KKR>=UVQI59%uG=#FsQhMT5&61gGJ^tODQdM3 z6JqU+Uy4yx;~N0DjO+eMQ%}8A+Kc-#&sRCOoB)K>y@X84uP_VF$7t20$8_Fqp5x%3 z3((TA{%qip`@CAQGPG+H7HO(`Jb%NVLdsf2Abdiz>qHy<#qN)3^J3+F@PgwbpD};E zp0-viuN}z@12jnQ{{prrFSG24Zezei8gh^2OZ8*j(x)@@1dZc6Y<4xKY*o-_)pr`i zjlr{L6tdN!&m-QE+C|Lv?JOe!&JAR1`!_xuDlJ`<`E2MdQ`pqIMUa`5` zM%4>0=`O8};T(hTeZvLwb{5wMdC{oaq=#V;Np0mCy2J`ChMYf$rIMHG3oWEw z{T3YRS;tH7TyDMZOV*s-)-W=A^`o19b^npFxqmy%7f*>ygOl?ck3L#Sn(sC|Wst}F zz|Erb4oGGq^VkWl_;$RQy_l@>UWTdf_ViG17~yIBYmM6!J{;{t7e^&AIjn+& zKA2(%X^HHYC$~5NSfetnR&*n)LeH>d`{q6;t4N~ViSJvyjMKcPKQ}$CzQEP^3+=D{ zA!8icdy#wup`?{QuhaVf3|&Fg;wpteZ@137<3b?D*jAvS^+vgd8@sPXNQXEOvYvv! z5P~JqWt}0}6_I8w5?z^7ZCDlSWn-6bWAlRjb{1%rME0u=1*=&8iWgD1$iNU$gBDc% z*KcsRt2X>E13ka(U5%-@J1R@f^I7jcz*o!HJK3YZ69`6KUm(gnksUboV`@TT`;F>_ zNYRD^+D_>+W75cbHbisKq&ZA4g8B@8(PT(CS35@CY4gO|AsZC+G`@FwS7m23)FbE0 zNW?aglz!4Rva!Ku=KxzhID@oe$V_ZxAdwnHo8%J$D{d~$=s~=Nk`A)G4 z!&RudY33r)FiXFaX}vhzBVcME)HtMMk`gWi%P##_J%oS|B9$nViCVOZiEMM8FM8eP zMY%-FyneA*lH+H+HkmU#vgr}$It z+wzt)8d#d#QXi&8b>zr6HNXx*8k=I=I(O3&vjz6oQ^*uZhpw+8^I_8rR+4|&*1DrGyfu#>^=|)kw zzhXF!3gKi|{6m~U?eEK*blT2)v_Z)HXIn|E#*?N_BDh>*rGFlGpT*%!C4w4m(&#T| zsQ*7Y$@5gr3)y1TKF8XHf><87wMffu>AmzvJ$n(pFGJ9HSvpR&`Q+4MVqN6S?&dOU zcH{>&Zv=4){{n+fO}i06-nu}t#e*9Ew0}pTf)zYd&$|iv-<%Q4;lXTL@U{V2X2@&cwev=}u4w*d>p$BT;!OdeYz1li(F0m4 z+Y?VdrXuXU#9A+HjCnG2JFOt!OM@0ppn^pdZC-ohQd0K3kdQKSL_ovvP}Ln}22JP8 zecVNet-^~D*>%=dXYPk{nWA`+%al<`)HJ}I9}rS+;y)!%2nDR2Flw~uQGfYTxDe$3 z8uWX=LK$L9-=$QlGl-lk|G3XL8LbsRsL-JNt}-o?V$UB#Us>6VJ{g)vWsxmoiCd-j zK>1+AiP3i(b8Hcl#ciS?5WwGOp-w-TA4U}_gS=ub(RERwWZD`kGi{@rLOrVN-`gT< zJ&$}&wbVHjoJVms2V2K%*aRzzEisz3l=d++F#KDCNNrf+b)Qe9ersgEf zvG+O!3bbN+S#ej~aIZMLQ=mXCiS#KI@+23s^4u{_iz|!HX-y0VX0q4C0wIkaeD8=d z;FMN50-|Py`{WU_&L$)y0yw}8D^+bnMy3FT-K6M#jvZMcF4RT_{zFwZgQ=Wn^9S-D zpQNGo4nv4_o0(HviSD6P^mWYrmr`9{?nn-phV#(`wRz)~KT)a`sfn4;!bp}|?)qDQ z;1V}gvv~cAJInR|#1pJ?zb_kp7Uz;I_R`f7@SExGW`w$bvm zZ<{IQWQcik8V0<&@=fQehd@jyqpJOa1Z=LVG-muBVwq1x5FRGg0b{WGcT6hKRA-5W zI0uIo(Fsdy4w!-G6IGPx#*uWjdnr_1@3Nw1jV6`h(ofEsW5QJ14}7jYbCS_aBCZco z0zXXZJi*lVzm;`zMCfXbUYRrNrTMYn+4XL-GfePYCMutzq~%Vyk21_IpQha2$$qau zaJhTg+=>ukZgwOB*Z_f5gO!%PMj`|MawUm4HqWIbp$5v3XB8e<>SbIz<@>!Ybfzyz7y>Ns_$@>1^DXBBRYlG zEP(vjgh`jnS8ZCaD_>?BY)YTc+{7e|O7@LJ=|MRashaP=5UDodRQbVoZm0m~fQnka z#FUsiV`T~DQ_Ah6Vw35UZw2<+&8EJj#Y-b}clRLPWSui0$949mh=^nE)&duOoK(ZZ zj_O|;NS6Ee^7Sx#6|}y$y-7D${)Q*L^ABddxb=yfPB{l~M798OHhi=UMzejGe=lD8QC&)3$Bfwr$(CZQHhO z^Q2GOwr%^JdabH4ZsUGKL?iZ!wdces1ir{{Qf2Gacwt@GVAwL59o1`6P5@3dlI9Ya z#Zah2t5-^wyhF{VIdtR4tgJ~3zC@%U?{d!@B~cZEhJbwjd}an-r>{A zFK%s#FVke8C|{fiJ}+-;F;??N*MQMcB}NhTjlhozRj+uJGWpsEYZQt(#L3psKo~|8 zm>k_5@FR-~;Z*|eDe$gRQlKDohvwfj=FRW=)3^3G0}2P!b2fv(7~HJQRsmA&uw3BP zyxR>bASGJM7p4nSubIv>NePQ0%{u8=xQT^tgFGX+({<#+UTO8d(^#pNX%Hc)doUlPWIF;7uuTFaTT|S)PN*>TGo2r29{~m!?4OM0X#}tCU3wIH;n2k#K$9uvw zmFophg7&N>$(wDC7DqrJ6|hozzFN{8!aUcCGXRa;kE~AI10Xemc(5U-Z!!)<9k|7$ z*~lU~XQ~YXm#=o@mGgcx?X9HwuiVRNPVUt#1ep%tWtKh-p+m3%OkpEWzR0d$$cJR4 zyL~CZ{+E@QVZ^@1SS2jhmgkpV2{*ib@ISCz(y%$NDEujYcp6S?rP7`w9=oEFic_^3 zQb|6$~5^_hzaaceUV8e$6v^X<%DnF5Q~94C^T|0x0s8s;-SY z&Yb2D*pS5rtj8a6+tO`VkB(T5CYK+a;H_Bqj1xG}9dDahp*X=_dw4|A3zP)urKc?1 z`bZaQMDJBT^1V#oK;u~5m)^sbD3q{P#i>dyzsN_A@;)=bc10Ea2|ew|8-i7q2`lHL zM_^rFp72Ftjm0Z?hGHp}mhtbUKQ`Uji#c49FN{!&-dM81TJiW2niCiP7~M*If<)Cr z{&Mn5abuu4Q>6;}O1Dq0TxhKcPex(3HY{6L;DA#WnnnMr{9Y-LJ*H>xx+eH zigWJCUJVAsIDg7TPYczF;Tf6q<7%D>x9B8sPmm!1;uFwLr9c;8?Atdid$pC0sZCTm zwU1?_2DrsMp|vmOi4b(zZ*)a)9$y?x+)XI+t->yEptDFm zJzgFJpeZZCn2jbDGNQdq=XWkr3E%-wyi0AQU8dQZsxGYaGgSy$4n4o`lnK`zclG&noXh^Hn7 zj;s>jPV{1sfUV4{twFR=X12U=8b#kGGGEfsm?iAF+FAKv4VE~hTsDCFN8b8nR4SA& zaZ&Ke{Sw$nH9j9%unjbwuzc_ElY@!nJTeYaY6EEbZQ{a;>K=#-#>^E<^y-T;b1{I= zugc!~Nc(6u-Ow}y$n!R|jgD%$dY!9h6cYFmFcC>z-0@o>xmp_zbsS>3%a)pXBaFQK$94Rp z{%MtXm4PZ6@fxB5gFTo0KR`TNLd0y38|k$TX7&8+Mkgq;eev{@$^)Xfd{LaX*j?Pg$Fkx#2Mujg&kaSCyU14HY9X7k{IY( zzNuPMi|nWuHV!xaeZAk$2MmSr;GJW)KQFwAQjk-pnQ5GipSjUFJ^s{SkVpSTz@(|ruAqo zr-9DuTOd}cAC!a^`EQh7;)N$Zw8e1W1Ttj*!E@(Vl-+z~X2|m+ge#(&u1z>%Uck@_ahb!gCsNjRPAjGM z2l$6%U>yU5YU#ec*6=q|K?NJ5gtS^5E%W^GXCEho%qJwD8Rb3hMNj8d@|oRBvi{+& zb^qFPCRp$2^&$>dK=@&AX!y6M#HVIdDFyx+3I1;t~By2Of}sbxJwdKhPd z93$S4$E&;tBz5kZhm2Fr+Fu^#ef~bd{{n;X4gQBkTV@8f|1$n!`QP!^weDp+31{N( zjJ~3ekyiQB2BKe+tTeZKKmfeO2m#@>0}^jaoiQ;(c^EG5jw_MR3XQ(g5JMJ|3TMnf>nkZaw@hKTh9UsuKAB7i{hieG5_&_oVGJ z6rxB0eShuWWLs0#rY*c>k5iP`U!?WzKe+n`C)Htk21ot4y2w(0d_uQ(L;i99^q7|T zcwL+>5$=fFom0wBx)mOI9qrqrZ|qf_?0^08?uz$je!WM>gY=oCRptj+ir=@dBv1Fp z-g-ZU@8=DGAH;|ZTp^Rg^mJnQeH*EtB8)H?u+l4qj75?2^v?hgRX}=ng6Exh1R~s$ zsqk#b!Yk(64mi}e?W*FN4>o-7j;>wtwkR$+(Ff8k-N!=JUUwLZKhgVka=jtm9#fwy zW#f32w7os(R~tQj=xuy;Q#tp1JR4+k)}FyJK{y)_&?$BI?}&;;Q86(IeTKLR7^Dhz zv-@~mLYai?om-)jmeykVmN@La;L)A00!LkXxZ`*8E)fGvl_lObeop zSyqY$*w`%X{#8)N?J6|KvY%6FHYMsk z5~dQ{mD#IDPMwm^ve=AhiCqYf?1C7jPSDuVgZTvdW5;8VZWnn966fq&gj z1S^_yUG2Yoz6upC<%TwI+)K>VuI-ciY`HUv*nP+Ah~0f>rf={2r%B<4T&=ze70*WgUlR)vGBG{B+2fPEkMuHe*YEkkb6T zDOdkC6>l)J{4Brm3u+kc?74u%+-EC7*?FWIpi5cM(!kQzs{FhGiGdJ_wUqI{gvAbN zmTPx7jHel*ulu+n6co04v~}l@lQ4cXqT2Mva3llc@c)(NwI^Nls7Ei1Gee7G$1}Uo zNdN$D%y=>j2I*mkfQC01NA=nd#+*OVHxOiYPbX3QFfIG6g6$Hm8c#*Xg1exlfB5jq zR=ch1cNq{Ms^?qAHdNsL9wu0EKupwt0I2;+*3CraC-eH64u}Kt0RCJ{0uc3NnT^^k zVUUEt-U6H2kch97B!a{S3S0ou@;Hsm4a=4#xrv>bd#Yo1FOg#*3wryRtd2}S_wVM3 zBS8cv<9PRQWksYk)hplrhoC8h7~}CLxJJ|A4FiiJ#gJ7d8Ubi=a+KPxEiZkBLU#1~ zjlSV1ZHTMjnZ*|SE30FwBS}OaS=-G(A>*J{f4Q)04=ab=cx#naOTEr6=c3NQxdTnqq?;?K8pnSUR#zAd%CkEUtIea zPL)7fKjjXpV(^Q6!$M{Ykq+fqJxsL&Ckmb09i!7Qx=#+1V zQbE&58qBP^p+02(4@7vA!B<~B7AgtS^*^Q@3B2Yo-v`VrlE9&-QvdMT&l*prO)9RT zQ*}3$?866zwIZ>+STwJgTg^EFdi5kO__Ug30D@Oq%l$_QF2vKi<*J=g?M#VoPRd+} znxEZD(pg!Nq3Mh$aMIG`Xh4j*#B-#Z$HU{WBmGBx3|?00`E?QG=Nr1Vi(&E; ziJKCoL+el8bfNKwsCzcBV(fyUsKUa|r-w|B8Nhe)ej^ueDDz$;p8B@g5upN;>@C+O zS@Vw+TBTNOMcP$>phS1MY0!E}GY`f!+N#KI<`{es3@R~uk}4(}a%0!gflHZdBnR&u z9WDPg(aYK`=5QUx4zp*E5){9s^A1c&4q?MfeejcU@`g7QuM_aC#YMD1I_ zeaJIeb_il!kB)R{>}*{P;dYsZHMhmA#nB9!AE>dIT5Zd}hn)f$EOk)z5|uQe<9}tx zhP@VK!81g^;n;QmzI^_b70*C&DGLyqk;9-gyu3e8q;XD2q@7F(RjSu=Sx8l&@QxO< zE*$vSh;K6AyahLegdyvW)ZcBxuFPAN4<#a)YiswbYObtYHxSZc8Fgb{VKkA>ErC2;e8Ky*-yO}gP?jh_dSRU~-u1Kv z<*I*{d~I!^+U!Ut;=Ye;R>K#4(K68spnZPwYH^nv{=;(ks+a8qOctZ~d`K2esCJJz zj?Y7>#7lFw0snbpZcbxv3@DjmJw-Dz+;WSRszrfL!qbaYGjC?0@$}eDnnmtg-8G>= zmFs@bOr3Y1N0vlBDdDT4xVVhcd|KVCqvFiNC(hnwZ4{uU3F_{YDr<55a@;7b(9a#g za&GG-nEnlUA&J8&blZ2m76U~iZnQaV-pzh~-9SP-HHjF^Cyx6A2AY`T3($I-g4f(6 zB~NVaiMAM9S5;MdA=bU(vBFkv%=W#B!Eo?A?|~LOkcbO3Caa+4ZX*wi9bt6J#ubk_ zDqKH_kQbc2d?4JRhiU9brMzfs=Z*flOQuzWW&^p-roNhBaKT>MwuF*gHzoK|r^KmA z{KwNIJseeU5J~BMmT!=wP{0XFu+rIg8JSDuU^IzOgKdl0s}FnrnkE<$3^i-T^$H6G zq@k_#2WwF-xll5x>&iZS_Fi5%I*`2c*)qFO-g_EOk}tt7CygX-oUgt9V^EjdB6qL0 zj&OWI{^2*fbDEwX=f}~&R@vM4jUOphZMZ{=fHsW9lf#FvfM|oDQCaUhe+VB=e@vu9 zY=sUtU}-q|N^Uz)=#Qf$CZ0WiHQem_Twk278~Xxe$y3cSe3=tT)xGNPx}&hS{EMzn z9iGoJyxiQ029OyyGbd*I!ZncK#`B*e_C(m~9LEz4ZX5s0~xCyu(kD(Ihxt)B%pMBF$}x4 zYW^H%-{$ipLf6*vzGaTA8;H8oQk68DwO}(`6E$Pos9dXCTI8p_;cCX0ysf9Mi6IGE z$z-EoapF8i-@w(HR%Laq=cE(b*>2DS;cPtZiD-S0%M=V1dB#h(^&gTaCg32aS2_44 zwJw}6yA_KJ;nEYeaq1q~fMeP?+Nfa|y7S^N9X`Ld_`{LHlCN%KS7_utaH47tqfj=$ zyJ}TA1#XrT#-DQ{OAV0vwA2e84auMyOtrOYo%lSjX}WB5fP2A^nKcLyB!zNwj@gH& zLU$em7+ofkW~q*I4@kf$9-G6!2OlXX#wGP}?;P3tES!jIft;5X8`)d_?5C^t4|oyZ zdB~<48G*?a*5E&5@x>*EBV~V?jVA4KU6Ya3sA~1&jDxzMpsZ@s7uhv|*a(I}=1#p5 zN@@%1mp_}gp6#ig7d1A0o#2EJXY~*oeK*UYW%H?iJ1{LK`1$HSXRK`r9y2JFK9R%4 z@@>Wwi2O9A9KQZB#aS z!(OciQu@|)pWFs7Ze|ZHJxVXfFJW5kOVWvXquZ}C+IQIA=LHS+VmckNXTf8kl@=vk z3ZXg3%ZnQUBwZ@&&aAfl^`ItK2+S+y#qUfeeae<0m(V{h9{zr+yCG@>!<|gOzXt6G zqN&xWvE}gn_!>t2Ew<5J-XChWlW!Yqat*HJDTd(8oLrS{KL-znPzj=H%B->(#$n+r zw4y3>Nf#G9Z)Eb#FZKa~8XGLeNuSKNudLDb?cT*$DoRVYEUBHB{pOusSd*q9aaH2nYE?@hx zU=9%b@7)*%Y-^@;SP{)vB2sv(6Qja zI59F_hkVBriDn$GqtgS$!*S6tygbqEdYAu;x1$s8B%|mGE5tm8wiehk2IDvzaBKqi z*&`6wzX{s$k){rv(uo}>4}GtrMt(ZQPe=3#v;7Yol?a-*LzFI_(}~~s@m+6&82u0r zYJS*f7l++1PCogg9;R(xaX>Z7N(N5)j(t}l~lj&s7(E+JhOi4&-F(Q zuDD@IK&U3KwohJs>OydW5@LLfJSA|R!-|QiHGu35*`dY5f4BJsi%)N(J9#7IabYKT zPe}X6a&duoe#2vclb31~+@iv^5Owpu!^n(6{G?y+Swd39_RupRI1(+Lz?GGDFCkZyww=%+J5* zK(sLLr?Pzi|Y4ihB9{==|?WZO|tLIkU}-K=LJq7-QF)#X+jBkaNLe5>zF=ER|NF zFGFvz#+mD3AlA}F?uZ1U2=*Ur^&{=+fPtQcNTfM%aDU_DEQ*I zFE0?`Y96INw5muKZ^mT|r7T=<#=NgLJ)I$472`i%9I~ty!OrECVKowW@u2^>b<-9$ zI?U%8*6$mUd<0lbj5*En-$B^@o{B*`+RxX6tT?8vb9V^UHEH%AH()@P!LzNNkJY_4 zMpR#HeJnAm_QCISe;=$WkmNY6*g)%b&=KL0UbsV-~4`pKl}t%RgJe`?&jqYrKQDlJW|^ zeW+-Y_7Jg-(K$1xguGL3UVR@#s0AERO%@1nFyT|9!(9qCtgB(v8FBI2GEOYS>w?jC7pq$Imc+Lv{VQ7Of{xRd!}>>oih ziH&@W$4s8w&gQWOeP*a_-)F6V{gC7XYn_TCfN?ou3VA3;#vd$=!w@d0_x+6b1CnAk zr~QZi7bDYu6@amDaQvSDOh>mKr#;d4fBIkl#OE#JM)%f)`hPY^qDdeUY@Q4Rcfxfh zS0x+Tip$@|`+3XX=4D?R%)RPPq}Ytsg2c9M*feXnRLeE4hPs3KD89_msX7`V)hsgWqKlaMbWcM6Ao*f!^IOX4bS*#YK96pyf+38c5#3@ieC z5@#oD_`Uettwh{tbP8|Y^^4t(97%+0?0kOSdk+oE8Sf0eS}neylku2#z53mcScDit zDXvqcnin@_QhKoUwY)!i*w{G@B#0ZA*E&|7w+|J1o+X6!;ck}Mi_zbVy2Z-q#hG1{ z8SsYckl7s zle{xp+r0ucDKqeerOIvSDP0xkeYR`K7%pY95h)Mhi_Ev7KO#!CWYx!`aG?&iJf~v< zo*9M!aLMgZKT-g^NkV@zrWw;~#7%K;;jW7*nkNFFuJ78P-_I-jaRPk0m*N$*Zk50F z!8l9`5K;Y*4^Jy6tIn;m?b~2DHW;Tbs|l~ZA;+cF)o^hdxYlt+Zs|L&5{|s;Gi_hl zp8KnjaIHlh>?*>Cz@w$&Gq8pr!U3DU!}4>fflE`<^f3mDZUs9_{oO!1Ay)l!_@agC zRogT=x=Ao2FZ-Sc;c|ApJ=aR?7Ub`1pWEzvS61WBBJCU20WPouxn@#l|Fm3){alwjNH3|K~SPuRTBZc$(l+KW@XE;0no;2lq(d zK4U$yH1!AUNmPdbK+33z8$$RkkYRhf3z>Aae)_ao%FX5w!46|vLpFY}Fz$^yL%nSR zqiN!>8o-NlUC6WA zY;V;Uu5;$4QMc170tyOkBBq5F3|`s z!2={$*s2OXpe}V>CU4v!nfbh+Jomd#(E+0dmIp54LHuZfz-t5Uy3V<$tFJL4=27U# zb=z?t1@{hpz5f$zG%3jVw(A&`pnC-Z(#P|6 z7B5u|SOmqGsM!Mtm0Ljz7M@{}Y5j2FVfwB2`>YOOYVzJ@+a%)dM2%tjc5fG#4zLea zn&hwmdq7)VH@x1r`USA{Ep2OWwI1#kE;%v~G5YHf0rJ4`j1w)pTp%K*&ypT1ZH@0^ z=okOT=S^8ozm5!w9vq--DM!GH;nGIkzgpQrp%SB|5GUPWM{ez+1Q|h6nKg$ta@0a6 z*fO{bAhG0{+?@Pl+#(H&SCNF8OBN5!R`9SNuzC<9h}??49r-$4SDaZCh)U8qBg}E; z#|8_3mPIYNC4$O@6fH@w3rG_A~WkERqdu@(JGrssdbl!58)=hW>?)xNth?h_)f;Ivo1B}|H>=gw0mZyZ(y z)fzQ)oDgwgl$bt8(=B{+*F9 z0?IJ>8{k-bS8oq(zX3VX9(`CaxFAunXAbj##ahWc1|jT+m<-^gbuO^Q-n1HegeQ#R zKM_oVkk6pJ05k~TDs-&aZDF@h7$Tt4pD2wxND3)JtBa)0@4Z;L`QY>%!kt9TpJoTQ zC&LJNagj8}Dv=BW0y^MjekE4|FQ40kUS;Q1LnoV1386$5$roKW8-wePlF>;jkUwTJCxLxKda`bpO>-^L9f*{bN({6gC+n5YG?|S)BJIKVAqc+##U9MCj*yNLB;cW-VXJUjsp!*?Iu67yIlL8=&lErO4 zn(3hJf;gHe;X+Do%_RlBeb8k#Y8cgeOIPmWX4TzV-mWY-mt=NU6#_Lo${6;@EKBSlZb z-+*pWyYQ>jb5&cE9tmgPtXlmWNu8u%N%2riUs8s|jU`M38aVNlr{T&F2 zSKy%M?xp%z%&kRz7_7w7niuL0a3@?+W4*cY~_MDF%feWGr6kTDn~0L1wP&&50I0M zy-Df5>*phzkLRJPzl0;KLHcnR-Zn9%Ix9drWL(iEwf#SLAIh;Y$?7(ys^7AuH4-?lKKk<33a5wnH}_!MTy^0Qc{UT`~2W z;=yItMnK$|v1mWp%M#Rp^OFyib)$~^u9jWXR|%IeCiglIadT9_5LFXdHE})MdCj2x zx>VAX)h+i7#pWw^VQ91&*cWc-(QdqT8RBz7zBo+8)8pVKGSnZ|G*3qBi#2+LnmL_s zBVHZJRtp5<*pksXpP51xqco~1&Iv3if*_+# z4&+Arb~zv#E@*e3kYNLmvO#%$1@ccNmh89RxWLxHb0>mn>hAp%gt~mLQpF_!I4>05 zS{n-)pwNBIN(?pG0qX}H)iTOT_Iw0Hm6?4*ZzYqA7?u_}gd1K>CVuUD6jY70b(;5K zWZO!*vlgCqcR|=g)nuoc5yrExQc&DVN%xi%^3xV7HS*bOzuM$dGoH(13fJ}^xqXjl zA~<<8DI>%vj~ANEinLSKZ~k%WhGw=KE>an*g926DwM$yvg_5U;r?o2dfhX zcx+G0uZ1>lG_|FB3j+WKK5r|ibSB=W^glRRL;I8cCtY7Ip_YYJv@+%jvj9K{5+v+` zMi3(?rsN@dExw#qf5ygD`=yV#K>qUNRZMH;WA>jC$na-G#hc2P<`Dh8%}mbt2o%3< zAt0TYf=tcj?1bUtTXLQ#GI>{+njlZpz`VO9g{>PLN76%s?m=sCdvUC1kFyTIWwVPu zB@W>^WN_!0N_Xt2DQD;z%msrRxzg4q?w0)Uc~EYcaMS_1>YVi?>%BbKuA9tp*WK!@ z6E%VLo+xa1RZ!H+XWKnrh(NG&qQX1FyxX%T7XNF=x_fmcGvDq>FTdOdJ%w6X8QL+E zR#0U}^CJ5?^l!B{?a&7ap$YT!9>S>Wq~-9`IDcVnEeWFKa?xSqbyp$*bh0@ebP}mb zDTnfkW_nrNxGnNd0#C@H6z#eO%vjePZfnra&-YO_F6&%lrQM(xr6=2CqBUt3t~%Am zp^i7iT%zA%sE`T2Xol9(0kItT3px1SIXxYs{7BKNay@uj|LSNtJd+J!kJGRy zed?AgAE#y{DgJ@*MrlJDr)gWt%uM<(5`=ypzA5>DOEer;ct2}&9E{=pV-%7EL$aXVi&(FmNJ`DvgeYFk=g)fQJsVv zU1kP;<~Eh%>M~9wf`0r+W#0O9`JnqaJ+=}TInK<)KT${ahhgcoNA%y&5%k>Djh)IB z#;$1N7{IOxXO`AOV|H#ggHi4fAz6XfshwN3R_!fwlU1LNs#IOKARIEW8V;u*Td2b3 zE+nMmKjt$rELVKvZ6%~>zWoa~|8%-ETvMqq_3R@h&s%5HCv0$+Iu>05=R+ARSOFgW z{9VkNCUQcXiy`t-?me_5r6P0h0Z&xP%o~=dz>uo%V6u$K$+Wy7n>mKNmCMdv;W_=njUgg)NklOev9kl;cUhQ#Sl^AA^M_62cz z6Kt;*#towjm6veNLJa>5T?TZWiAzSU4P$OmoLIZAd2|`knXPAJ zxI;bo_wUYrFXzseY+uZxm7LP$5nwz7;TVQ)OhR;5zT?7Yq3}=ZIUiG|EBOm$H+FOy zk~+o1sbCt?rS^>Z9!P|vjMiw4)qwH-G?6ytY6cdoNHK;M23g-l_<*1NW@|2whW&VxTw?f7%Pw(SrX3Qy#iWz+ zY{{;yCcCi6iDAMt$ydRVXP9*e7LKPX;Omp+6`OvKGSNQqMhYl;1S~f9rN6BTP3;Tq3U@ zu9bCe6j{*UponJ4!EY{`RX?0Ta!K|52>*+EG=F049Z>wG6ZtvU3`d^k04 z4or$IrKtJ195~k>>^&_Mw>_KxwB!TSV1oe$ro^4Y99w-hOVIlJNRuF^H7R{j=cPD@ z=W0G|IWbG;b?=mcCLO5Hfcvvj%5Pp?lf67t@sxK7r_PK|30DSP9cD7CLiQ$D5u|p@ zFDspYQ25H&esJ7^H2BnP-4(k5`F&s9mFs^&FTKWr{iisG^}mU8m^qmL4_NG4M>-y- z9kK6JUB<4PAKkr#4fm}JhSrP~_a!Mv;N}eZ#{Gkq84Tu4_4wUodLkoRuHw zpf#*$DiAjDd&b{5qBPIo5-TUk+bVefpT+O>3Zep%=LZ|5s@}{R8Ekz@iXf=nFis81 z`j)5rQ#qh$|ldL_V(b&o`jOtap69k>7o#!O9FV$@8fIC zn9g@A7VJA~TNTXDn-{l&S6EfSN}%+ZD^xlsVbknrALnXCwJ0`%Ar8PlyZQq;O|`3@ z6bgsW37xQc6Ct-^$X1rnKwj%aov<<@V9fHO8=Rb;4xj z2v4Ss72yvejfYP+5u1`MGh1@9k4%?CSjdCBcRG%7TpWfacQQKl+mh3XsXt6*K3O?d zPL{)p>E#dD>0!$+(cp0)sJA)&)PjX~0V8j6v!O;f67_A;Ec>8QkAf8R`K zCtPv(R9q@;9yr@VEzs7a7j;EWgo`+@1IoA~jG(SkHzn?!mzIYidc@UzI&}2^rEIrE z*AEp3#5Eh1{hdkN?=|#(^xSAz`68pYte;XmJV2QAw=eD?evUxhMc2e#ysHM?sQVRf+?O|>tnCb;OE8OrxG)B-G8t!QMlt9hH=G~NX-bm_3Xzf z(Z#F=3<3a;GQUIAQ4)`)KY3Qzgj4S-bRysKV^5iJ1X}6O4%!tR4Bl>fmCLcFG9jguqxb!-mZ^vjD+A0-~!E!RID91T+h2J$gYZL}`mNE*V6KuPab#2Cj}0 z=dDi=J=Q4f+VTfRJqY;sp~O7+iB`esT#w?+od>1Cdtpy&gA4_kTrNv#Xurg4WPAz+0?g+Cdf6lO z>mSIt0V;lQS}B2YLxvYEk&q7 zmbomg~?JlM3xi zAldFKkw5jeWJFv7hlqjcF{G)d;X*?U5n@G2(loMGan%@5RJkB$ z-cnY2MaXF^URSUKigSmeP=uz~gmH(a*oE?$#a-Z=qYBivYnWbH&JMg)V(_0;-h+!H zzEe@Rs2NkwVK1_)w&j^sCF;Qzw9neRrHU`vF%b?mEmW181-venQ`<>2597YW84J<$ zD+CT5uYa2p!~$)aCO7X^3@tdmOK8~wbGn_qUZ2&XK+~1 zbGT9kx>M5iWG>0j>@&IDxYsUtR8akaamD(hr;6h=VcWb z$glxk>=GAVMVC}MSJvtfmyf4)0fe&YgaKtL0a`Lq9}xU)*h^ss&^1Yz6WjU$R(1Dr zC?W`szd4w-c|UCGIwFwyRCQS_G72GLtTQ%ZXKBha>s)u*{XScNSPR|_C~gORe#KXm z{P=vm9C7o$JQOoaW@pr*`~7MEs$hryV@z*KODy?wSY|{rdn0f4@%_sB^qP~5cuMjc zY~;hcQ`e*c>3DR-k-!C)aTY9Y=uQZW%2MzgN+dl6jgD~X#E2<9gHE`92xScoKp_E? zz14mc=c*a*fEF!)iTKZ%>AwBxX?&g4ra~TD%*k6W{nbB1wLz%}upCI3s&YBp2C@;t zHkoF%rbe|wdKg&`j4eCerSvWFrtDs>v)n<3SwC;118>cdF;5na-8yP{T_PYm!97sN zp-fg6#YA}CZ7pCsraKg7j&{uiQig^twyeLtnC+kn05snp4Z;*kg~+JjXkPsygM zjwn+n&D_79^n+AiS7&9ht8)XFNogJJ9oU{Zd*RhqjYa4-&9}5=h5wM@lPdd4&K1_P z#dqH$=iJJEyOnc2(Sc=rNC+e)?d5?X4EIC;PmMB!CnEy1!>N&JHZ0~0;5T02*8}1S z%9ft2=Wx7AI5DM2+N>ctc<4j-O?(CE`#s1jHx)J(g4H{cRDJjPwSbe!(7$QW5u^MwzmBXL)SX4S8k*wlW60>4&I{!J(<`2&`Y-8jJ&+-m`2D8Aw~DfC3j zTd7z2uJ%yn$o9DUx;O3kUx`k8zJ_7vAio5;cDoie&s>K(O~SPO)f_b&GmVY!oUZLY z)%>d?l%Bu8&9h{Q#=mP5;*Ugf>uAwn-R$KwNsXtIbg4yHXpY)id3|lH=RU%o(`q*I zjx@aPew8V6@)gRTGZ?-*>MGj-Ak}P9PKZV_{J;@CJP!#brjCbyn}leW=3h3PArv&( zP(C&a%hlQQcHTJrh=gm_HW#afAi|5G>{XG6hsP!Q-I9hv{v7IaXj}y8!}CF%-nv$B zkaNec@*~l&8JJSvR5)}GFiA~~^$YppbIg+yG*V1+f@C3VaTyr0S|HN8Y`t1&7JP# zHZCoK32l8}5VkRlz_FB8*H2>j{2qGXEaV5BCS>rp`&~JMo3WM}g{9(Nv9`)Nifu%Z zJ`jf}b4TtC+0)`?P6(QG#YG(gXB}p->Fv>o-)wvmaP)3)xq!%}{l;utnD9HE)9C~nauyIe<6)T9K;yZZMaW-=qCuTSJv{j%$5yPC zxB~|uYnOoB_lm*7n%+}!IY)+2J=ntQd=Y^;^vBSRVtS((-|mx&d`7}UUJQGuWg|?^ zx-4XI&0$ZVU3TQ}Q~N zo;FI!Cth@)EMGh&E~7V@IXU+|6bzN5eJ`-X zXcm}HHD9G#4K!j!=wVcNQ`(b>S{QRc@MJx5lnUw{^z7|s(a?;-(XcL13ylSCTJ}^& z+105MC@ia0GVJ4G4f7iPj{g{anOzW-OU5Kxce?3)5OkLn<`YD6W^4Q?94m2`sjVzy ziU;VjqOhtT9A6(hdSF8VkP{aCq6HEnSwlhLBcRaHUk{R3T^|(WBqbU5?ZWYg72hE?VU}c#)r^dp z5M|)(fEjsmrOiJ_j=qdE{-g#F?uIfSz`A01Ir~Y10~f%_-8?PDmdM~6w<|~i-O%^= zJ65QnKLF#NwxPArK}(PVGD!I{>c`2m(}VRg>2zT*pvn#|T+z^oqpr_rn(n_J=l9X} zn~C{^Lld*x=85y(nBGd$@@q^VCYUB%nzv6QRu|69FaF^EJD#qRX~n#v*)}nt3$lxa z1Tv)Aw8(J#3MrRYh^jje^|np(4f~ooQE)rP3iLuH#$Wtys2ntyz*|=b_o}=7>eP}0 zD{d`4aycnEsx^*2Mx`Jgss0%l;)gMrmsn?Pnep#kV@w;`b}P+pDC8O|+Jl6Soj^v& z|0Ez;$`ABvnExsM);9YM%oLLP`7IBJQ35)SUvO&b`W6#`%s)I?r5eGI(?oimPQ5n; zdLf;QQBe7m6R6>_q1D`(fWxxzg|Yl>Z!iD*HR%s{=BtPEpJr%||7M0}VPItb-<61M z9Z7rKvHzK&dva)qJc{e8^o&0Un-IYv5D3Iv5)420$g=`t*8+UTcjZ;>7kL*S*^<u67TD#Kf)AnzM;M}5q2WAL=)w^H$AGi76PwBg7cW?CkAsd>N9gbRedwsVsc{Rg* zddXP>h5Wu>_Orc9Bi_hy`n*3^b3?}ql>P>nxUW2R%YohW~yhb z-e-9G(DNSD>G@l_8A74eq6uAH(!EM31BiBQUmpVI>hRyepZv64$D2V-0FV;(ejL!X z?t{w`2aE?kCSdzcKJ{V8j7-xcu5_+v-)s2jg*4H0A52Eoe{vUX>vS3f|-NUSq{%UvGf=W0DngmDMF zI?8%KSvkeAH*P|!V*%6629KGU_^yq?j#4tv3$=A^ zWWB{u!T(;{!Bh2k^=x9B{HzDJroMM`GRU9-P~GmLLNewy!O}FM8JhpAP%t)LlM5Se z9F_#LHEg!qYL+eK0zO{63Xd}(TQ-R%(Xa1i_f*n{9fpo0g6Y^+X;&UU3lcwF$bsR| z&&lI`O_`w6+(mcy2EPDoX+$=@xEB1b{@uN`t5DfCi7jSWOrN1H==w!g_UA&n<>ksC zNFYQ*o4g+BF(Jl?3NkD$5~<{145gARsHlHZQHeQWfBP#>K*hpe-O#6dRa-<90X1c6 znxqxsl3d+vn8jb6SaWw&YcCdE9lTgYF>5NVub6p~A=4dmvow&=gq*)KhKsxSyaFXU zKElVbD4N3aC<2Q34K*p%B<1}2sC1~Ns$y#FHLLC=%U9+m|TXesm+Lt%cfj!dI>7ErcHy6-EYv z{Dj){W}>^BxF~Ot)0CSl(?+dGyWzCaGQAxV7MQxY;ny;K71;}NnyT$+M1H--ESV_5 zIW@H=DkRDJfO-rPmWDk{T!_wY0i6S;=D9g8sP|?e5hgpJ7T`OME&c4 z7TY`_QOkRDk7#&)H94~xIBQu&gDB+JaztTL5UX}3e=n@Bn z&w7AG4E(~!I#~^Wr4(EM@zD4lzO~{iyS}KhH<92U02@E{0K`C^%JIU0uE zAngw>SoJfwnCg+jdg1ZQHi( zRBYR-*mnNdwry2x+q`vqr*Rsmy&quhIlr;S;tBN#j<7FG6{OD&r}KekfYy0j7$)ve zokwBkkB+IqeVI_D6oqx*0o{P&{kD>O>lL80yAsK%*a2Yr-8$I6<;<|;J0XdcU!$Q z1IRC#0N@#rTqiIOmB1K*9E5q)3tkD#J+o8^Q$-cDvsL#Zcu=`~-$tY2hP}b<0J%Vy z9;fL}6wd>8Wca8pDchs$qw1mDcmCvqvzoKCgv&pMK1ee~p3LTkW&Kwem9#(0w-{}YgUM% zG4Zt~<_My~#3+uokt=GO&%iM!LiA%oQ1`dWb}b^DjDcm+5vuKzM~iCvljO1VQq0o0;yK>)Y<{SvxWrPq{@m z@baq(ZXeeBF>6vIc@+o&Y(15gZPtv*udA$A#7l;x&A>i=j`%TU5t`plKOch_8! zx*v;9+2JS1Bwovf#5e9SR91}8W@jFZ6wW2)oTC6a9uvcbb^{c5tFTZVQV5p*b|gIg zQ|BNh>!g{{HiOp=2wK+YINk|g)oR(9sKN7S`+FQ#iRS6S=o^lDq{&T0WS0akKQa%jBn@sxgHjmpRL zJKn`{I?eYFVlbB70&8_g&7XzIDqHm-dB&6J8Nh*YO}WJJds5@6q2>`A_0u7%Au$>5`xMC|&ib4Dubxf_o(O;?1{L3nRYR;O zvlV6|yD?1e$uj|QDixm>1nXF!i|q!RQfcDN4b%V7CJ_L<)PuQ%v{eX!Tdd1E$61w% zX-%fj9IbJuUALv&R0zFB$VyWM@Xy2)*5d=r{Zp$r#<=^(9aNs{jgg7ggGWE2dhRzM ziuUjWG zy#26qK0DNQ!U{TGaZk)8S39YXSvDq|ZC_{(o!;LV--cT{m%=uaGCss{@t zYb?5Y%-bBh$Yf5-U3f++t?wE)|%^ z-i!up07h8r{4<3v33Y7aCnze#0wJ(nY7S2CH@P0}Rd*x|;K14@JNMeIkY38S+n2dHBxY8uPv0m83H461P3=Qf<-D)<;l z9n!9Ca^!~$Z^P*o@7O6nNV$%)rC(}P@TM$y%&?xf&z}ku{Qx+fQjWoPW?s!y$piDi z0QtQz-RwnN8A(p0LJ&!MoThhJ>OTFqA#=f=e`dk|ySTcGu7s^wl(fZC%a2b4g&-!^ zj)q=Spd|tT>l}L6Rax^2T1%-P8FRVD&XTS9;HZIJES@61mZA~wS+i8r1YXAW8FX@y zQbWIH$0DQXh>4TwVFi&Usv&C5! z)WsY=cn|l_%91Qim+5m&OX`~=IEucjPN>n&|Ep12y?==P65Hvo{5=z20N!znlBchX zns`Ol>0m;UqG^REp)^9cPwityU$QLrb}^xBe#9-EH3rTHVv4A#6!7HQ#E{ z945i=s6gN>??V=Nc=K?0gIq|4dSB8-#|;?NuF&mheT_cOcZC!wdai@TPky@vdKSes z;`s_wd#whLrx66|lDt#Ro6SB@ml^TPZ0Tz1+j{9ya=!Lb!=e+Ri(?O$M;O*A~=IW&-=kUT-m2nvyiOHP=f zBEiIYZ(l0z?FjR>&B>vG$%_8^ULKU_PHIGd+&K;dP^D7HM3E_|RcSSov++fJGn$w-UK`O#r6rjGM$jPF7_Kk8AsQnMfd?U8}kb`uI zc?&z38|PV%TD`m^4my(dR2wnRpXNT9-VX*vXH){RwI$)1xT<*M3hEF8o66+NWnFYE zmlM=RC5X=ss`6l97Wbt~XK&>xzSc>>vq^(ga@i}H{5*L*5077k3rL^v`2Nm=C^DV& z_78p{Ic;+^DuLc5>IC2q)Y(1|FRETnfc2@p1uD|a8iilicKo5dD=si8NC1`eR?a+O zQ*{1F@!KM0Vyq(FJz;Gs{uInJ!-IOj>StsgC_mw{N|7dS5=RMJHFNX56f*ci|KIQ3 zZZvUEE7S`CpSw20I3iLU6M##fjGoYTrni)6L{}W=e0TMU^?8YgN5JbL>$e&8{Ysmj z#Ynl&)kjGYGD6p*s18lcu|n5$?P-ogqUp=+-9ZrL1eBbYoJFCJ*aWe=3S&7hN!3H3 zL>VS)Y5xvCJw_pT*zQxo&Fk`@wG-O*Sz+{f;OiEs=j(YrEy9Pqy5@d=2RIdBN;9H> z!S!m=_k-oOZLi&_bfpqCGoIC$LHRO28dDwzrwUo_jCF=Il7UuNFl$i*C={#FA2-uz zQe~w`&Pm?#25Dn*^^A&WH&c$S6`%!xvc_Sw~o3f_cThk+ga87XMT^ra(KegkK?r@P|Kh@TW;XP({| zTt&)1mPf>(IC5Joy%Wp&q`=4pG4SUw9mpacnU_7)zeyDmfCxL|3~G-FtiIk7X``i9 ziycAc;*z#W9}TLYYryI(Z2jWN)VB+oBRg<@gOwsl*u+aKw8~b(cH1(}#BiV!+o}k6hYM8cnt}KlJ zz%KR~t1U`2YJnNn>ioY$W-G+i#w{6?^5RKH9%7i>nJ`~+y%-dC*_~wL^zO367=rs8dFMXSY6dGiLT0jDeeY4r{F&b_nN$LaBlheFgXzJPM(h6-}t9pU98ZJBkVxYBOAWy7Km`FAD4iBeZj1+{V=X{5s!-b8JyI zLUzD{Um}oFg1r%O^-FX1D9CX)hm}x1G(uLDc7)c1;8-JmG)j*;*k6xFsb4?>o74?8 zd*Unu7rBik@A`lV;$FcYWRRk$Ej2|GwKZChK2Drp?!eyaDxnmWSs@Sm)m6bo$~$C0 zU*{J7J?reYdgpESdx2A?h{^hWM}Q#5|J9U_m@+W%QAL2boxUy(h>{y7R_$Q?=ugqt zj}6YXf~RUG&_hx8vdw*Jjxb*8&mDJAA)BWQeb6aWPy@7freaWPsu}|i=2QylF8~=> zK_3<;CVTqQ#nKb~aftn;2ceV5E%@IEu zmz=J0dqZnnd?ivdP^6cdMuUBQewP2Ly;Qy40oVB#Z5WOXSWQwKHY&}+p|2%er{W-9 zGGn6Q#8T->tj#=5zyOi*D6q4Yhu6}&kx z_vN7oW!$LU*hx3B7joLy!3+nDIpC5rBZ(p%ntj@n&-Dx5iIm^EC`VBb zpG1t56}H65(FP6@;lTw*5GUKg2o$V>H5iV}s=4$HTDM-wa+Ed6xk(*4U~~tR8!;P( zEe}Mp4*ff|b{30KBa)kx%Ho#&*F>x$0b@&~u^li4bV=2jvVhF5L|1NE;Qeea<|M3w z2b>k5Ob?`^2$Z`jmm-=kwGeaRNbi*$p8d+y%b?FSj&1dJU>ibu7T0B`k> z_l9u1IKdtnMvSGy)SC@S)=H4oDO#w`DdJ|j{@afXv$Ooro_A7-D`(nX(n*pDW?T*S z=SU%v6dG5*w7G^bPw48^X$%uNWtu|JTCe?`ZM5<2ZLi+&r} ztg90tC26TtmTM|Sl3WOKho=1QwVH2=ESV6Ti7>~P+CafCEBwi-Tof<4 zEUp`B4b#H@9lYi?o*kydM5*AljGd$PR@9iCq3!>0e)}w#^^jRN(2F<$0v{5Hht6Co z>Q#iWL(qroq)og4Q26nC{k$DjJ?1^Pxe5Jca1o)N5XUj|ttxXogZCjXyH-*$K;{tj&h{~W3e!21YHGhpfzI!R%#pp-@fH8-8t6yQL(N!l+_v-oWoU;6 zBkJ#p*QUBllrw~}4Xw#F~jPLrNCQ}&Hi^{4*p^nTt^lekIA3bel>kdta!0vk>0 zVpQRpJs+a(?kz$#2hKi@kjGTqne+Vj0*Zqfd5uv`RfM+Zv>A@Gx$QY2H@Ce%(L0&* zbF;VQqDQw#%3ww_?ZuGyrC>7=lsaJ1HTO|}mdE1J&fX>E|=&R6M)3Wa4&uVBQ z$<@XBbKVmTy;JQHYSbSS@WEd0T|n8zL27ZLSLQZ*Ec#;IAHWN8w%9UiT=(U5yft7r zSaLtX5gPEk-p-$JLjx4)s;Xp{w#-3ETx&oHuLit4yr4LqcVt`Q%(E8lb?5ox!bMeD zBoir}wC-NjGv;%(!67c2PPPTl_yy_uGt=+@N zc5$JUVixrFjuo-$K@{#8Ja-$z7kA>hjlREk&idKN3wz6M=fe;`mdknFc86`XKF?clB*A`~niPce8NMcct-qLra zDHqV$yaOF0SjVN&sk+~_)9*u2gtT!?eg|BS07(e?reRhYU(w63RhhVMK!}HMQtM1|S|=ETD|xjlU@N=+pS`kBBiY^ZNPi~n z#g5D$=ff#f3cGhIbEUOc`}FtP6PY%ncxY`w(% zsBP55g*Rw@-ZsbDvYE~4%vlFtx^{3ZVtRU(SZUDK#@~3IphCcSm zrykY^l;Kf5|o%?5Zp0iWBS2pOLZH)Sk zz0H^737Ng0rOk!{$nQTgHRVL;#{1^twv)4VF5o>37DpyYIR(g| zpKA&acHKPb*$yLzKJ6U-OR1CTaqV?C5OZ<)e{8$9zlF28W6$T-E5twS#hr-r*N zBk$fjX^<}k&9Zw)1^BSLx`wv#H_lSL^F*u0l}{I9ZN!tM12_V*3_Slv7w8~RobQEA z_bT({3LdbY`QVJ+rF^oGIS*0O;|0VaNK8>|LC6W(h4 zeJ&sE?b)3jhE+}-y3weZc5ju=(RL@^sh)gtem`1RzVQZZ`2Cwgqj_JD7!uh||E;B9 z{a;!N7A{7{|7U(CTw~kscIFvb$;!FJMMC=-{Qe}IHl+2vi}~1h{3ym z5ur<_OgX3H)1jz?yy>Qv8kRehP+krfK)nAa_x5xM_=z68*tuJseZ3(Juhqxne-obw z)(ckA{}_x851t3O2JB#xsZ#;j_qP35}d=65RCm``@== z{jz&t_#}S>d}2!sDFg#JQ6a=b-{Q0xy zsx=r~EGwm8Q4%ojQzU^Xi311-2=T^O-9uyl2qd68ciKd*z#?0hQalB;nH7skpQO(ds{ zDPx~_S7xW>4$+?&BkEJ@L5F`(A}<1x;R@3O=EoWLttF|e2-u7fqLUL4&m_UL3Zs>+ zb?Nj13#&~P|7a+XW1izhbl7ZYSfOpjCX4E|pf~m-v=A|OPv1W9!TR9)8pL?!r{p4W zSzTOVb5%*(I8Z|O?z^qDP)Z~mlDY6t7S3zZDM2bzCqex1#OkV>Wv{fQX&h9kZ`Is& zzgMx+;~6ev2ot>CAFqe-HhYx;hCewuFwKWJ81lqmT{!Y))syUoPq+=>9pWW|?bab( zCY_drXm;xNI|@##LtKV=c0O$t%#||*XTMBF!nD|c5cU*&uwNo_7$V)GsavBi_TsS@ zJ@*_m*ZL;GxYj+CtHi;M?^rLr^VM)mY90`Gg>qdH?*Mq4!CS6~9C|8?z_6=vk=FqIi_mmbkEAz7)DUWNLplnOmv@jOCa8f{ z4vwOXtCKDJQIB&x6C&iVmxumM=?*OHp}yO0|H$(ci@qr{sQO4x3%$#(?DvKdq-25|`N z9<2kK*}5*19J_y3H$UD#*UHpz2*5)@8jE}+b7nDuV=E=!Ecj5%+xD=^h;K=XS-W-N z{X3m)KCP?Zs(9?eFUOz7RVJzji#Fvxs+YIcTqxFoRto6i@RM#G6O2>AtXmGqsahy9 zkYc9gjJ-}KP2I~q{UatsIO1|DvK^O@n1LT3>d3)~j-F{P4o7t;#>u}7PKU&$^kk-L zDW2Q)9##eCb!d2;@vB4noV59(iOQ;rAN^MgcN{oekf;^Y^e<_U+XO+0ZL&~SB@m{j zbyk*45%cWpJ3PMG@?CAaMz?!^Q(w{sQc>II>OUCQ{$>MEVx-VJX7FU<*BKcPZI{tg zi?WbI|IYr!!)vIszvv1%cB4)`lHdISMQ$R~QKUXjD(r)ZqV)fpB^*m1G-AOpP-%i~ zd(pE!KWoJ_l{80tHRHtwm&-C;m6F*>@Y^*YY43|Ye#I61P!%bc3de)A7CA2o#$g0e z%2HoWBng_|q$cDXhV`hr=^zW4gLECl2BZsdnBkRkb=(Bn*a!9B$=cs9+>`6O?nS4Q z3`CfEav?1tj)&RxrhMKi0eC zEvh#1GU9vt~6G9k>WT)1%zuj2y#_vY_lj+u2pYK z%NzkwXs*As!iffGcti*uUa8_Tn!vs-1uh?jVFMulL>Y}@+U^f#Z=cqw#Wb4T&F7|$ zoBJCR4ez^pH%VONvRR~#n%%j7sw8EsEx;24QBRCJN0OC&N;+xY7z* zk|Hpy-nNfoaI?MaHd7MRP~vRZpamYYEk{Gvtege4OsGZh0)G=(=b$jbn;eByGl*EY z7@;qGsN*O}X5@+TVbIoR`=Ga$) z5-y#&(e!+RoEqIDoxu!exFiV@nh5x@4*wj!>1yo*`40Vsc#A_5sSj=oZ~0BA;V`eo zsTFv0gofO@Ph0UogMMxk0<()nJcSzm5I4b^ch6q`p7SEg6Gv}0xD^^cmv(Sxei4O4 zW|`3RHLXCJY3u&xj}skpu8OH1yCbEDhDk7Fb~oQ!*Cp=H;?BALp8rT`2#SWBULkjxoK9*hHZG~VCw z23Kk^I-w7njz;?AwNkDBj6*6ojo(8}K@(nn=Yg#ShF+waFUy)cnWk55PIOZ=`h&Ei z3{g-v&B^$thT*ImTp5ii+dcK8F`BNBT**Q&4BD>wZw23sV9W%87~Fm71=i8q@#jnT z=?XTYD8n$hBjTY=F@F% zkL70d`r@N*1uev@e~PzRc?IXgZ`r+8dl~&U1~*?M7MH&pOBLdd8qzP>v(~T8U~N~E zx;IXHa(}4~R}@kY-a^|8ZRi*bW-x^DLadoY+UK(Y?9Zcj=`>lqAWXJC2cR*%ud(rnN~^C>;_p2> zsGd&CK{v--+0OmF6!8l;0s1<$<#`^S2gTAx%lbB0Uo+4flTJHVw2)XOTWnfm^6I+F zpEKZhPXtHmA>U&bE!Fl4At@Y-DVxYNh5%905nMVfgfq+he zwhlBY*kOb=WYcn*L7$^Ny*WSGk#_xRnEs;7T(+Z|Kt*bkvThZyKqTSctYfcnt-#Lp z+Pzzi6juL;)>iD&t@A@wih{_Y5edN1;B96QmE;*W#PxwW9 zcj0tlHkI^`Gv4$c$6byi*OZ;=pNL9yoV##0ZwNK#`o9nGXIGwl4%HnE2T$3K$^vq-^%Sw- zhdrwg5ihk5UM225&iu^JmraWbB=qT8Mn)dU>_1vqSUb{EuI{Y^iEvuQm$rUdTf9_$cO zel`7kGyH%DOo>zcw+PPhzeI3WHa7PEjNnKAAHmxldpT&IZI&{z zwX_vtCeIm(LhZbq)^NW5Z?l`IY1NQHgJ8?1`ZwN3+8Z<35BmaMby6tA_zm46Ea*&o z$5dYcC3)yCdZsig%=D}b>my?QGkGIR54i)2TFV@wX`Qkf?8%_tt?SKV8Ljq?XW+yYc~J?#ELrwT@kB9fmOu~QRZvl&c-?t zlqe2G-B!LShUoBNf)-8VK?0|9DU|dC;v#lrEn^~VY{T?R>1pz)-I|u5Q7WPvAmtHp zdu3)^110XK5(1K|jKyRe$C|^osBvsOMEj8Gz!7 zUxRgf-y?)b(Gj|GYdsDZj*&-Ye4SS~a;fq@vVovH{c}V8Y(y$AjULU)& zR;25OgbpPV*|Ep1z4)%L!m~aNkjhU}O>-9p{q%4Lf4wd11TeeRAP|8-bOR7P{&qxB zUBh~1(apos$%#p+=n4(+3==gYkbCE*PHQzueSR%XfC(-@^KD^3LqAsk{VZt0*g`(d zdJ$TX-USE2YD|<*@+>AybRkbk$c^)c0KJ9VU^vU^;xN9zK|Hbmof~%CI?J#<)j63! zNjkAy5kIhVjgA6zw#?uHe=%C%FPopY3y<#$n^MiF$`v)ACvzpg!hgBd50I?w=355R z|IU^*XoY=xKzQ210NU#YF(?`J(P9-6F6(0MUa+et)73(KN=ki+o}sp3oX#~x>rD^Z zLO#J^)SE-+owci&uvk7D2T#Acno!yTpSBeA*rij>D$=;W4gOAlZ2WVR2EPWt za(~BomVeub15=qW=m!cGnAONhj@wnxxE(#;78gB`c3$c<8x@01aGTi91()?LRHJ*( zUZ|ly7@8BTZ!20Q#51$U%$1aNf>2q}ENE)ByXEjwc0m~REjoYi`{zR+L0V}~*)Fc) z=sOd)R}@1nMZK)#O276pW0;O8CrDgjz^GnUsd!IOMHXS=2qj z*R;J;rR-^szz#4Q-KuIHCGZ$#L86nPw5OuWUMyZ!q{_U%lr!5vY9En<4$D|@^QFEP za+|#Dq03DegaIn=bON0&G8CBVcchGIf@}^yUPr)U_2Azv&?4QWZw<;CGyLA%cMwo) z)z@`h8AsINzY8G1Sk}-@Ds-(FhzGfp^_}6Z*;DU8-8E7Y={iF_^`)k6_7X(^DRyK-!HZNms4FLdkMgGoY;ZioSQ9C?mxkt_HD>&bT|O zRP=AJB&Tgb^OUqMYQo4EvRy3FMCe|XK*kp?nH}L#Q(f^uT1uFp%)DN2dagTGhZ@ii zO8=m&qBB+=25C5wp8YF^l>VlI2Q5rhE78Q<)A_XLu0;h}iIXgILDlJk_O}qe5;xad zgWe6n40-u78FwUNMN3l(o|pDllxco2+fe>+*yxr>|ZR>Ddwlz1TZ=b%jwrn;DjlxdFRDD#&87={bxYG-9!%$Z;YS zb{o;Ej$8B65D+T1;^$is5|uc#389*re*00FA=%NND`FnDHl5~jY&Cs&lbX}A&GAiB z99IUU41M}zKQ$9Am8x{FWhrdux}C+d5h`TC)?O8T_wjFtggML-)g zC*=#CI<6Zk=WjefA`&G#B3`cacLh=gTLX87fZeG~S#=o`h}Np2pV=9mh8{>hw2cI; z?8Vd3$@{!_cq9%QYe;r25-$v!2-`B1+^;rSn$*xHx)#ii@E|&7`Px3$Nf#{%%b6_t zCdC5?ofg>Ghf*m?TA^3Nk_DcHKL%8cg_1fneSeL-ZPwuO|FS6+33P{O>U`wAT!ER8 zK##_?^!}>S2T>9D4OU7Uw4+d<-9J;MM!^*z%reXge{6c}r|ni%aG8bU zij&PpFomn&4Ryct8LZ$rT+ER}65yA8(*X~-> zs?Z#8plkhDc@)maE)2!F76sSJOtM1xsKOrf0FT>0dD6(lDRa!WmX6sxOK(aSAm2{a z>6g(Etr^a9N(^yHDvDVM-9QIrAg|n&p^pe&Aom1Zr;DW%g!j{fzGLoC&D*$1IXz*| zuwN-Fxoq&a=Htvam911xYRqnfX7>Kt+$q5gB?0KnF$cvK*;0tV`~#*;3@~#ma4!CH zY!MtP+xy$36J|h6u2q|?+%vi+Uv@S?*m?^D#`9hzA4nZ0c;*_FAY_FtnCE;M9)z}! z>nT4x#ew|cnsI1Q3ZI*dEnLppK^EyTMtBb70gWH3+C1LQP~I$7i*L9vw3XeyZ|u72 z-8__p?!9$&=YZQnp9ADd)CXf_7|q61dYv-G^=Sr0jfSrKRJCP5+UD4_*%(=MMHbmS z{M;;f$}rcwhR*2@NLorNX~It%Wq?V2F;$CG`dhFIn45b+eh7Pb=e5Wn)-aGy7~SZAK~sF#6?SW zhI@TjrzTUtHrxctd_r}wE3JiIVtu)>gY_Cig&D?=l-aN1_cfPDI`TYqwojS)yi%g7 zF!&tqlO_n!QfbfG#1kE{S5Gmy42o>Y6ATXdGlYfW!YPcBv9n@rOVEDdr-0+qiYIZl zQ(u`$xt+>1HaDeMQs>>Gpz0E>oR8|65FV4-0|yEbiRaWT-2CB+?zHu&_gA$oQ5K|DCN<9VJfmlW7^UX|?;wV{4 z;%(0`$2Gy5dtbJ~X%7dg+7ULsYac1tA@D}&%F}S9Zdudc3(B!CfAy*Xv$YI8z^S({ zjpnx{JH)=i`$ascU(R#$#hEz68@yJlqTkxzp@aqP{`(>2#TJN&PK#(ZgHJE+GNl7n?<3qT8ibMB^+1NiYM{FQSXJ;>Nw5W}*c! zH7V=<`qrqGhhq{x=&N@1% zS8=RNU^WsA+)>?HHL_K?D^vQFI7@?huw@P}n~Gzr%P^RHxeV3nJuqE}7=!e;y^Otc zuyJ;2!ZH0|PQWZG*Aczyt75^yUYT)5`U|TnGOP4S^n2mcG2!3Ytol$=j}fWqlupw` zPV_Ak46s6qU+zYSANJr@W>Q$>{zy%&qN@_I#bYA$YTo1MQ^L@zik>0OoQf7$@uPuX z6|#o+{6>eD&fkGfy^?RX^Q^r*QsS(SDJql6V$mq&;@UdaZ=~v4aBj%?g-Gwtqi*O;AhQgZAzL|17UkKZe@@QB(=*>|*HQ zd&qxnEpP_1$&G0S&8dbB&0okXbXE*2&hc(_`KD7%^W$P~=uZ_BC^CX?=oSi1oT-BV z#Ymgjqp3gMD){4G1mV8&I@)>mGL#;_?O|aYB6Fe0$4#(`NC-6lBH}ADUO|0G6-u%ur-3oacl|NY770B_XapoEa+yBMcHH4!FijA#yV8h^6^bJ-`dbf$0IS0+2Um1M@4%@OinuKn<*QQ(<=S5%_eEXd}jtz7n4W?V;le5!feB zK3f6Nf5ck#esVIF0w;Abfh{kG_@OCTrP!;o$Jm-@qz9kP-r{dfE8@DC)OLmaV@kTq z`CK>*KKY|vJ@zoDQloLBOW9On50{#@#jyEOwqtMiTFg1qJ!|wj6}!#~Qhd<}pxc;b zp@|#hx7)p?)zE=4%VD=gQ^M=BT2_HM=MZ;np1)L8bwTxxl~!fIme85j`Fu(=?M@z+ z^epRG@B)i^uZ8sNdwkzzvXIQEq@+f}Pu&w44K@US4c|jKfc~9zb*E%%PxcA>M*Buy zBX62~r@BrOtmNUzLc5Mv#@Qi%JiyL+9WtEZ)0iVTZiA)12khB%&y|-!J=q8 z^6?C|&q_T6!b@6$TPNgrxuIgaB{_G;*UQ+(M@8Ugj*gMpxXiyC)eo}SYS2PGVp$!S zfq|aAaW5ZtCVDy-0BSyo1y^=Dj!{uu3KG#ZmBQkh|&ITe}3owppTK81a23%wcuJ zLQeh3Dyl`Ab1|m{L2llN)1(tYPHOg>+WMuFR@8)=m5?P9FCf3)g>ELRWe+@uaN@JvX)G-L8Y>tk}pt>(%|zoi-*{N%hW* zh9CL4>N4T@zzrdKXFK+{Uy|nP>I$u85*X$mzp9b06 z-6skL4?8ys23>q#@9xUEkNa@i4P~wI6k^freK)g|7*qlFy}qxLIY<%TH`6=Y-+RSJ zg@RDK^80+YZ`&H56g$}|NbYy2y{M07K2LO?fPMX#`|4tQvNzNop&u{@nf+Pqk=5JB zP7VvFxSI*@pGY0wl)R^_$IjPt?p8-1VA-T_qinifN11#W;+!WNEo?KDGqT$KZbu zWyaG126PyT$mXZSH6-^+!xURrCWUU3YPrbbODpQaLwO%C;>9MboGA%8Ca-+tK8A@@ z25SUEDXYWjdm??CHZzofX+T^mYZA*087`cQNRV@{rR!O-|B?YZC=*4kJ{BS&co&scv zO2QSh45#+By>L7)$U6A-JY%UfbTnU>LdMD6e* z=(Zr8OShzd=+D`Jda_)*x@<7ZAPEFN8k;2nZkzlL$cwescrITL6SJ{@ZX#<1UsOvs zrK&9a_ruj$Cn}A+%tp@l4H&N=0SJxbq^Ll5JSHBZ6xTnV*ZKWsF|QDHVH$qz`qyhg zF4^gDqDhgP>dlX*I9)50DLr+At5URo?%_?e&NJZz=od9`7Sv>ZRrAcKhP4GuZ;qB- zOF$b?5PLrsOf}K^t=#S^YD(IU^I1)R&atKCEyNszAh}a$_KvN~5q|Q8msf8fGqRM~ z&^y3NV5%nFdmSWN8ux6)$)1BJh(vLogpv*vF4>;e)X>saP^3Bu%R#@Rh_WUnah%Om z*R0b5kuxx;g2FUo@!)rxUA>_wKE2SrM)gZ2EYMTH?0fI$(>DNAwmZJokMnyOaq|WE zr9D2v;i7E89Tt2r1q}R)QcI{I%nTF8ySNt?8C5qnKvlvxydL@+0@(fk7(1sOQJ`(x zmTlX%ZQHhO+qP}nu3BY#m2KO`S-B54IVbyJf5CW|$w)>|pREyB)Di91uckfNp+~b@ zxE#AQn=NPV@Y~&CGID1GhJsB=44NYR?9VcNvX5f=wl+`0Xahm;+fIu@yb3vYZcL!M zx%3)AoHs%?v?whxgqW|6?`a}23oF3wLRk2w-dVcr20>Fap(n3j1c4LN7K7NXH{5BH z1@qX9moehHK|s584#xQMu^Tuks#*S7iR2cz8C!2yD#GQ`DNID9ORPZy+z)8?iygtw zG4EuULu^aFG|1cuG<9}V*eZ5W?{A`3v*3g57flK-mpvF;diG&b@?7mA*veh+AJbhq z1$3ep+=V5x6y1LxkE&0qc_g6jQ|I}hCb+dPOF&PA4Z2&Sr;^{-K@W=0!po5mbBKTQ-*1T$8U^=V2)!Vm^FlZPnO(0KD8>sMW)tK8!xUTj_)hF@v2D!zqvQ* zfsRbEpps+~dh%5b&dH|`!!1&L&9}`n!U(>lmQO5vkugH;jvuUf`oKUobzDOItDe#2 z#>^t!zQxKD(~&#YS}WCPC0zW5k}UQN(#$Lqs5$whY!Nh-IAq3b1Yt0*fx$2a!BCn4 z(oFC(1MMGba{)y+IDDCIVs-%r{Akiir{f07H0ca)$hu`#GkMw}ue%u^`uOSj zHlL3fbiQ~8PBThr7#?x*4}jo%qHp8bpzUiwI>OfZpq6^o!=Px5!ptiB3+SBaDg=Ap z7i%d>G(*N373Ny;j8QJS20^OH1Ul%?r`~Srid0^`hwg?*aJ*|-v84e-1C`B93Z#;M z&cWf?HyJ0Q>dVx0jSnUXIVX_Z3Qe1b1mx&t7@uY#ui6F5L&TZ!_?!wO*2xRJjoFU@ zm*G-^9u`gN){Y26Tq~-2z^H}Qs8rBaQAX+U3AF)`PIa!!dc;+n$YjRYn`es5H6rrO zQfIL2rbD=mn_h8tAs13>90MfP%O@YbT!hI(Tgpy@N8jmMqBp*X6|xSI{=G*hBo%&G zP{pdEmda6~)jT1!ZBVg*`R-;KiNjf5HYo>dM-0_s3}V|5HFIS3)^?|X#c%=@koIZD zNY{XeuDuYv@k8qI2o=n3g27ia93JhS-qi_VSZ>R5|t1kQfp^ChqGjU|?0$WeF@NkI;R9y1&|A_a^Am zy#F{a&*jaW@T1*1_>{y-gH$tN-(a>j0I66TzrN(6VSa5#^_MTCMdL;|Vuqc3bu{K+ zNLYqoc~?yt9ognc-oh7sL~1j;_heiRD41`H5Rd>vhXbXp3JNhd_chl>2gAs;Qe zM5b3~bq|C%N|VcIqD5q5WF)xI)j9$j4fkq%MZxF`6@y+*)-qdYmg1&Bc|Td0<9lXF zegbwSYNaMHXa29@=g*QHsx#34iav!gT}LQP_YBa^+;{M^ee1au6$?pW%ugG@$fY3_ zY$Lm!SOL&fFUPNZesDYGCrGWkSC?3q){Su=2ga?(Nus;=QVJbc0Y*5v15MScQTqmgO~ z+RbtnetRE(p(Wz|oY|amdZ;F7C?om< zO+;C4T%4Lm8p?sF==W{iLdSM1MnDyOj7%|t+~TCvWM^Hh$st)}Y=jZ?bD%>{#mlSb zx>@7H*)~%8QDy_{V#!*cIvn{(mpSXC`eBT4-W!r5TPe&4cTGSV4_-#GI$el-e5q>( zKfV((E`)qLPt5p(bR+UG)QmyKA9b5`jU4ovS(=%%YTlO5l;sx92n;TJ<6LGAZuD!H zQ!K=Pigm=g{5H{y@-ykNXV!}IZ#6LN7D8{uh(N+7Z%jfkb2>;y`d}|ULNVeiDh*W< zQgC@Gm|@t3q&gjP)GVJ5BtAp%Jq)+|jbI@T2IqnFRt^%I{G22jb?|OgR|Z%_Y?O<- zllLZ9_yjIvNu5E@0Hq7anyFO4#CcBrwB-Y_Gf~}#IAYT=w5wpm_VeVx?9mPT zt`T&hEdqK>>+4IGya|oD7yERW@(fcB@U+3_3lB>D5|Sipe(q*OT-wHa*^R2h-j{MU z1lC#i>&eRk4YZOmW+*B4f$Hc|0ai5q>R>GStPjvBXpBLy#%>+_trg~}le=Uka^>Et zEw^_!$g_%NNyq4In-AYLi$O;E251^|u>q{`m8fv%3LOcdX#6?gR1w9Iegz&Z(X%2w=St8iVQ zwHY@Ju%7_W<+dj(TyjXHZLdDs;E^@4@;WIs#_9^Ciq{0;5!~0Hb*gTVZbV&q(?o-2 zqnjrMY%{opMTum(-HxcEfLt_BHpj2eud6DUmbfd&5~0XOJ3EW%TI$)15YSuYm2Aep=m8hX~3R$sVkY_cq1Uxmy4#Bdk;8lvjWmRdu4X;j|dKODPI z;#V7*l&eO|_4pl?7Z%rIEUU^8H@>N4CGD;BLd_Ky2*+RJ_Yt(TiQpbvwjZ1zdS899 zhfgd8A%)Y(UA`%@uJ-(J`Xf{nyVrA!xz=;Xf;$nfR$j;r zIs*A%^$c7Og(soNx*Q-Bsk*q(hru?A5}ur8z;aU=&M^#pa01oi*ej51A#dwq+OhSp z!M0xp0r}E2L0^im#8eG`S*#y&77vMJrVN)GeQ|~_CyNa02x|ERHsfiglD`>kXBW_2 zo;ar@DNNIzjeV*@8s@kr{JVLnTRrp2bUYYh=70W@lVBMl!r@~~K=b2aa3YDW0?)C@ z%Q0T%bv;M2P*+>j{4vU>PbsS8)2X_(3ZT$q3>OJY?Q9xc;LoOaJ_D(YZH?stLWhHC zJ*J6KCqg~+Bxa}t?bbk$P0INhxzFY5#kQ+Q2`$f(5k%dzdquJxgwWR;j3yJ>vDe*4 z3obkqbo_qF@M>3if$YA;WSWT>*rARg9$n5kRTCDgP{Rf1|J0q;TP7a;XDI<5n-bqv zA_1T3QO|u85PY6g-C>ybc!q{X6muKHFM-emCk>@7#Xd3mrmO!JqRRhudhB~-=FS;Z z`qP1!ttN4-4y?CqIO-@|)JZjeeV;SJxWEfSm%95NzarZ#K;04PFz#mMre4cmxqL|P z$Li#*o5J5zgeUqLH5k<*fk_RKC*Ili{ilb}jtCH3?uO4SA{(;@WNNb#&3eLZuLip% z8t{70KnTO|uSz@b*I?0V!`Xd@d$-MEKS~2+I~jOoJCSl+MjymCCY=}I9h?x;lYZ&r zJ)V?haQ^HC6qplW-I>FB%qJ@d5C@m|DDcU#<- z!rqfB;>oRlMiq7+sBWr08JAder9yMJ9_}?Q#!dXh*vVN>S%BN2130l1=H4!Qf0U5* zz6a?Q=#GzJGxI_)2EK4LG(8p~K4X#soX7`XF5Ke~T6F@LaUEg&uVfl+Dn&=_@68{J zKXa~%APe0Sc1b(D=r`wMxUeU)9MHil8y~9l#U_w^et!nk)!IZ4mFBu0NGG4&>w7bq zgw)u#{|0i;rdZCw$_$VJxqi9-c`8bw61#^CZbAoh{WH6zz)Jy*@lcf%vZcY;ex{Z6 z$|U8>Ce$Vz!aCtv1I6_P6T&vsNJ!#>Oib}S@T#ds$ITVCT3@!3zwf~?wFYFSUC(-? zcs$d5kIWKIpq!izy_x64qciTH^W3#G_q$?*{*B-pdZHK}{}-e0y15@emVB5I`PP*U z?bG9r1lf+y`l%iC^)V+Q(e|oeerq0c(Re;_(qJ3`8%uAJG89*<;TXK zmn|+IA=AJqwO}&)8pg4K()3t{XghlQg6@y@ygWoFojnN!g>_qEv+T9l*C ztUHb)e;00f^NpV8sQRBBhUM&HSHdLA2%DEYqrYA6wwsY9QxC(CBqisWpf zse&i*v|}@ew!#DUJMCi~@6Bad6H!Q?g0F6y{hZmiQ-rlNq3#CQ?;BdJtP(W|^5LXZ zdSvE*rn1HYD00XfPdJRK^*-i(0pTt~B+8Tqz)A(#SJURybjdD6ci^PHoLT7F}<=Xd%fRIgttfLQ;#hauwM|D0*k_yxMG=3;BJU& z)CQC@ zn!*qH&ZLk<#pa;gkPlOpeW@OwbEb|LQ=KqiIRIP-$sM~8OnzSYB_AUM`%Jz6F6Q_v zyE9Uo{vkdEKk`X8w!jolV)c>!_|;wLQ{U@7D3M<-nFEa&F19qaQ(QJwT5}IOUyd?_ z!7nlWLJvSe<1&$hVm&M>z4A;P`NH`Zpozll-HM59XtCy`(x$H$$I534I=Me>%n=ky zJZQS3OSbygkEche8+pxhr&D%qaGcutQ9ktK5Bs9Ug59;`G05(-tYa{>`R~5*;pR+8 zGl3TI7%#fwLM1sbaLVGXu7DN-z<<2CqWg?doKZYnD|yCT^r&$lT|5O{-f<$#^sK9! zQ?+WEmawRz3WKFAA$HVusX5jT1LgQ#6oT1YR3AijH$+BE@c6R%{~h|MhAOUdXV|3_hPWSFg+eA1i{PfgRPPTdAdkZ&RH5ZQN2BfvrHL2;!IfX>=Wp@iZ z#+p6LU1$)G`i4Fzqwf$-JqPjQVqYzDkv+ql-VJLca?qSt=j-mdw3oOCsm|D)p+E6_ zZM3&@72^`6l|YEI@FdQkXXve1kGCT09~n>MetdxEE!I=voi$Q?)huhs0A<91JP5Cv zeCO~9dFWvs~E`}YFd48s-g-< z8G|df%2@-W8v+4evs2I7i?QF7-`K_HxtZ}tnwcoCRbPDU=46dT5A3zzQ0LCxJ@{|P zay3UOhd#g;o&axL#zEsr|IZKyoe=)H+Xaqmh9XoYEejL#2xEB2M zhTikc1~@dN6ZEZRZm;XYjFBUBGB{0){zqW2!?OG7_n!qqY#w7*0ST^*nBB zmzXsGcmm$m=NAjthj*BNz{kOv{QbBaqJOv~e}8QsO2>!K|4xM$1dUFE!_SAS5JV(6 zFocxTeA>Uezu$e;I(*g2#%~QPUa@Iu)AI}V@%Pfuu*MvqP>+ZIeSdS$M1d2SOb9hN zY>74%#rrm7RI`*{NwwU6YrqhHi2WJ@x@VR{e&COaHozHh8snKDY9hg%Dxb?g$;cOa z55a$sd5`>}j%RQb+3JW}onqtOK(|g24C;_B?it#fqMJBAwWXL_f8o3nLJB}mo4oti zFwCBYEg;}v@RT_!_tco*M*mnV-CnWx*rF&s6vi^gXO<_Djbv}aFUOy+cV7FH(d`kA z&$L3*V<_R~b9T^%88q}9Mb|4&MHVz=MkXU{0wQ4oPWKrj zt?g+u9Y!}5!4Lys7&o16XV%j;h0M{{%=JWg9vBE7i_?Eop;&>}sI2!INrBK5u}pzY zJC=#S0A^OXZta+$oPn$xCy=6^&3#j8k@v_U)hwkr%&C>TAQz~4=$FL zEZK+GCY(2_=4c0{e(Q2D@rc(xl!I!?4C;cDKh+(l?&v15xcrikCOx5K@VB7+L-TfY zqPS%8@Kj!U9RaVM`(7W_ZsnZ>&6g;aWM-_Xg;6xCmJ+*+vUnCZyJXO_F10;3$XxTI zXagd*lu;|NBEKR*SthL`E4e6t{gSlrjRix=9*npb^PiQbIZr+p0f5TEM5C7r6^6^s zw{$`o{U;t8o2T2s*H3k2*}ofkm`S zW5#@4hl%}I-Bl?Ofjcgf)A$JJVXH%iKr- zBgkMe6cs!WGBx-^ZeHkz$it(`rom~e#WV0uwDz?$|6lz%QZ-@)ZT!iQj$%Ki(Fk%w624&UZT`I0Oh`!~|6d@013G=0daKEGHCq9qFG4oalT4j2k(B zn9XLb$Kbkp)-FDi)B-W~`uIT>k6JU>l$M{lHLL z;V;GxbkhBl7kY&IesbUyXX>6f?Z2ny8;#Bi+yDg3PcQ)E8EclL3WiAYE&T*JpkNS8 zp)}7#1`3MNmH-B+KA?`0%=nw9bo~+Qgl!cuWC2IzBOX(pe!BeM^_@f!VxXslA21AG zZed;etPqg^dMQz`mfoTC%u*T?YoAU#ug5b#Ug>j_5+yL^xRL#381hqcXpNsm1$Fl^ z7-H%4>L+yhq5y3Du}Bqgzos%9&Tr)*x~C8M_2R3Ayv(kc(#*Tix}9r?)%#27s~jxe zH{qNvz^5z8E(0Z4rhzk@OQxwJ7GfszaNCb-dS#`o{*F@{^&T7;FoqKP3E^3xGNSPu>ANDAL_}I?p_JV*I#0Q5b63lI`OT}QnLqb~6mDBhSsc28+x3cJrvAh*_D*5Z0)pUk6b}WNVqdn0(9i+gC z7$&W*nYU0>ynL;2cH>n!!;q4eY$bwaIxi4ZElBLD0c+#(rEWMY8`p)_jdV7`<)LFs zl|Nr7Xw|4&S3VZjY}$3I$4DW--tg)Mk~{YXv>*GK&@8L|1EV6q?uE9wEE{PgVz4?F zLATP}_U^`=XhaePsNn^q9tO-EcgQNrj@`4opB=e9q~RoU8qQSsbcVZ)1ao+c`Y=6S z?fPbPBi@e3gjNuW&D2$kbh~rA2KRRyn0uBq7C~!8l7*xwYj?Y`jbK{O8t@Q?Y#xOTogLQh zw330MYp{oqH~t#Xnzi3gtkodEmsj2mKDeCM*%RB^+xmLc#P!74YH&~4VZIX)-%stqTp+*7$oq3+KKOQ_K=v-~=KjL!g4RX7{IZ^x-+?s?2naEH9P~# z#bOU{XgbtyJ!ca5ZOmIuJ=V{rr30F$G95w=!Er!E)`tVRKBvv4!LvMU(Tk(dIb+EF787Kg#*4S!SWOoWN`ISaH{RSY#WW z!1xOR-0V|2wz(;(NE3}Fo9~`{!cM>Phj;oD2ZwkdVFRxQ-ExX`_|s^&JpS6cW*IC_bfvuWlJwr5j%R%#UwwsG0CJ zDQjv?+o9_Yl=Ybrzk_XRyP$l?4n5LOz-PtC_!n{WyF#f5TErb81`j6hkOOc zKj*3Ue#9&iSLrDyBJVf|;7>9u8#YU@>2S-&=#Uw4~sqYc^ks`ZDu zH&}1S34ye>i@B3BSp6B>GtdIgySaPzNxJdZofFK)XYCY0dbRvctd#KupY_Kd-vM)B zg4D1mX)8&iYeU{Nm&}a8@&3h@kxut-wf00ug{e+d?_;{WXO=l21|<_%zUbh$Ar_Dq zrWl-ZI{HY=!CF~n3i43^5KLnRkDFQ9U0-s=_;QY^E7xEK76C$Fa&kKf7na!Xni$qD z+-hj%hwVNeo-eP2`L$%&@Lya64y!sFdqby5PGXM3^rtrM{-?GvxA(qqf4tsV`h~cO zM1xQ}I3%D3*vV*~?b>?PkRJ`e2_)&BBa3T$XLCqh@R$}WYPgZ;d#yF=W6h%{X?NC> zO_7sAQdf)Nm^eUTpHN{95_QPkops77E-XS!yr8kXW}ixbWqH#AWAPFh^^M@uEBzcG zV`FSt6+H<0BmVFVwWyhf#NWMs<%QO3rZIPCkc4X}fFO`2tw9h>92cV)Z+!ZMoDyh4 zfYMoz!tpTe`0qI z3`lE5o2loU1mmkHzwX!7Ttdk{1I2Q z)aWogSl2wP_3nJr-Q274?or`!>C$;W4fAuB%yIJUbWv3I&rrL?D!czo)->C#XmQV( zX)w@35$c5s-gYUt>Vdy|a=leje#5FbXaNIX{9ufyd2A0xZ$o8d92(HVN^!ZQM3)O) z=)G5kLTr+sIp^UZOSzdnpaaV70``6Vu#dEb?2`Nu&4{ujW(Vt(i@(z2otNA~($Dp@ z8{JP{ZYo>f(@`UB8r#u^bLubc>n*8~I{{=U)(DVEcrzs25e{-6$FfsifNcI1hJIf^+$YiVf zj9v1AL?DCS5eC9Jnc%nJ)tdmbA&i56?v}sVBG>%;wdc)0uL%L8xrpw4v)Pk#lkMKez9#V^$mAlUZv^ztPR z`H+KfcK@82^2ZT48wpC0_*0VY;O@O76k?Y46Oh&QgzhH|;U0J+brG@w`Ap`&@kF^> zQhq0UMy*5tU8-Lh3PYQa*AY(~R_XH*%J(*c%|bQ(b9QBvJAdLJ(&>Sq#LAqa^q0M- zTNL{Q$?HAMs~m5+atl_SHMaO>q5S?_x%w%E)l+9N?()cpq(dgb{5HRwt`|DL*^lDol&!TF&a8ybc)w`dKln$9Fbif>z41#r0ER2M<~H?gisz z;;l!kM-;ujyibJOGchXAYrjfu3Ec_h(a2Fuv&Nd&%I9VMkr+eybSn|w!kiSNGvBXX z;{%XJP71j5@9MDc+)#nPiRC$3c~66Jd{;7NA4Fy3X#}KzG;%gn+>IIFfuU?uYg>)Mv}o|fg5U#ySryLO2# z)axS800 z2f>bR^TkJA<>-E6LFc4 zaxH*NNIyp;1H=H_L++a?3Ytg8mOme}nL!A)?12Qod2O3FNd9I=ScLh@&9#k9^#G>d z6<*FibGAT`$X--SBmp2rm)1s6Y_LyOwv95dpHq%ak-orX75w`CQ4z_#0PDlXHePC6 z+b67f`!(NFvhAW(^M#H4vAT7$5I415tKACATH}{WgUEdxwH75W?y2%;+)Jb{pAM<_ zm}2z!acG;U`|osf2@w4>sK?sEJ65#Xs4XVE~QF3rCOHHY|dr5=c!dSz04mp$4b&Ldc};|@nrn^ ztbct+G__3l{}n|>TAxr@G;$_%H*dIn^ggOE@^6Pi=Xi>{C&9(9(T{slu+s@yh>%h6 zBZBiMgUYqR1osPY$Vu+gzy0GlVT|C_ zA5@a;(b5AF^w>OeE-D6yvTUgGH6q}>)H~iFL%aC3%YSi*R}jkt+-Y_EC6BWZ9nk=q zzT%?IS4g0I`Y>(spA?96|pK>hiOS zjPW$idlaZYFEaw|gr>#;oG?V$$e`%g;;zPzX~_?P>AOqY@;E=12&#xF%u)|`e9bfjFa|b~uYSm<%?E#&MCpcry zm=*~vI1>K;v7dw0IU^T9tf%ykLBD9t4w@wBdBf8RAnQySFKuiI9*3@ADh#W-$bzZ8`gm%?^1C-Ff2zTMg}KxRYJ5 z7+rOmbq}R3~dY| z@IS%%Sipu^$IT|iREp3kbpW8w(5XdZnY24FxJdkmq&!5jY{%WPj97N%ywEuu^!9-v z+>de8qH(umv{7Uj11oV1V5gmXSr^=`ZDEJNO`osAT$f=T4<=h{sJBA-tBK1;DU`aB zn7yl3SZf-G3{HdPR5^e2V2(EMCt(DAboq8xpaQna1TvBXycgS4%Ug*6ZZ|pWLZU%N z-SVtwv04gd94y!YE1G7J&b5jGYS-r&|8C9pYO>Qgv!w}iQZ=%v8Hup(bYP!K7cVx<2SRKs9@oLd*_)xG zgqigIXovi+K}zp9DAe0pR_%Qe+9-Yn%giYoGuLlc%1h)=EvBTX@I3(vb?BOOu16)&u`vx&7a zL71VnhZJntsJDXJDCar}yQ7O)4wz_Nec(16bq41v2Afcsw&!_H5bSO!W=;V5>Sbrj z92)dbZF`(SkiC<|kJwqFf+{$xQ|bTbH;r_)X22sjCp1NC{#aiGk{@Qc$IW z3V9}p#fzfS$VOL27FMOToK>f&U?==%iXpxTYbC0*C$o{P3Vp=^RV&R|^G{BjtK#Ds zx?+OQ8SB^UvrM-bfpz_2EqB0yGal884Rf#+P;D5rGEp`O&WcbWc(ELtb5?t)WB6iP zn^WYq*)78ULJRVC$D*|^WOW@w$dybjD);@zB!|u4u`Gu8WA!kAhp>20Ri7y;Pz?~B zYLv2NxoW-EwY}U=+u1JRI6K;3Op&<57KA6t()iTHrvwdf1wRrkWbF*4^7yHJBG@I^ z4eiLx0|GJ?Agsn^CP22yK|iSM3klD5EySH+N^t`jPG?aop~$34EGH7y3qI{`BKo43 zC(`PT34aEI#<|pGQ(5Rulq+e!B|oc%Dyns~J`|DVgXX6rE}~g>zTIo%5KVoGKccwe z2_)_XG5H}KQ9&KCE97c{nsOuy%Zx0T^?K;Plbr&nm(H?IQdU3oFX+{<%5%-Kk*wyA zvWCQy!vJR&jk)T`nmW-sQCMwW6b6+Y6CK$*VCZtSl9St)jq3HM5fY=Q%0^wH1LO~szf^KFP-t=9enx>og zIiy_4%ksTFSJ$^>wlE=)p?vx2q|rsBd!XErwY_m)UhQG^>=*ExZ|wP>j#iBktSN2r zkkORF^^l<%wvv>7>E`ZKKL|6!#)L>ca_0?jT%=pF&vbrb7D>Q1fooZEoWt*uzvk~~~AAY0HaO<#F9 zf&?Wqt|vCea;j9U2(5He`Mqbz0pt1D$ve{&w+ZjmD6&b?fB?93is&j^|{$ZKql6Y zBn?!xSYcrf4*~9XWLlGdyIWV5}v7ME6iAh7}zmM|g_h;AD)}u#;P_105-6 zcnP?x$&?}!&?>LmJ(^QCNh*tGs!x-w6oX_zpMi21itcq+PXYiDz}U}infig-<2bI% zv(*tE>Awq3FsCg{01?JI^!^(>(3dY98Lxjb=0~_}(1=2-tSj3j-WPY#jz-tJw@#lX zrhFe#%tWoz4TPKOB(jNi&}o}k=$*h77I9tE_z9QkOqbR9R27b!cb(U?dzy%*c(mNT64;AS+BCT_2M!EnaWaZ#~-$ZW~fVF#r$dnj+nZqX42zb-`p}N}wuFM`1{aSypd5>#Qxv1pEiuP5g3d=i%?IPq;L)|MC%2?X` zCDc%O$&z6OQbd9}wAd^N$Ji4$su5SL z8J7r+rJHOd zCE9IXX&hsCUDx`5g#p-QxeX7>xL2eS+ zZuRio1wD=wh;Ck~LXx|0_4wUw$w)mZ;aBhCgg(s?^_@G^iC?%^y-;f(b?>?SrQnng zamszz`1JieH%pt2sQMvQ%#$Nc4^}+?_L^S^kvDh*Y*}z9}?k&=;hE7lj+w7y4((w_w%yengz_Ba zRtGFCHJ17L#o&8A^0A~XcS&Nuhb-5^{jq(MMJ!W~$^+$5_f|o}bbhq4DJIm82GX)d zof|>y&k21c3> zk!j8KTgWJy6v(ITU8YY12~YfU@PP~Vy$mE(6!X5YMypTsiC#J5>0AE>5-E(%T}I7* zaR8|NVBYh1sVOn>kgn^_+>xT|=Kbap?uz5UEUWyx^*)zn2FlYMT^&l}W zK~1{vS|;2Ys4l4luOmeGob@GB6Q=CrBypT|xdcr3%y$TP%c80PFK2K=?h#r7BWdyB zqREJKqAabOM)HrW+Z!+1Sa&F;IZ;ft|eUicq3I{*(^w_msN zb?xF#n25VXm>z9{hijk+3qYHXU1+$@AOmW%M8nONO?KgU4KZ>Jw$>_`=GKNCCale7 zYPB<0K#t&66ZxGgpNC84>q$KR>OnR;6;HgxMx_qyX^nXu8lpL^njiqL=!c8k!>ernUp%2hbH|iJrjSm=fK8hlmDRGSNcqHAQXEC8OZ}X&T72X0Qx!1hLPAo z5N!CLs=e^uD3TQ+6!5pw3(My^JI6z^N_9O3{=1gQhZ9XnN@8pyKuvw zwtPQ&Aa`&X48+j`J9?|u@2mE-r9xx`Z4QjAQ-bao3QKD zP8$-lCwb;Oar46N&@m_Wu3_SCDhb20V)9}J7yi6PE25_jp?JUgW z%md|P>V6vBxh*^A;FF%w+Ws=H1DIY3;_4MB0sT&jD3u0L+Sw?MhJHz>B&S0=A!=aGacBA+fide4};`&&PHY+ET!--j;xFH&|YK{#x z0FD-|wQ}#;=R~17cd27T_jFNL`4B2iLVEMnlBB|f<JHn?TXI>+%~Fatxj5qRa1*|f z{->GZ02rda#~Js4UFvitIHm4Nbac7J92IXj%CyaosU0bkEmKDX5w9!8x><}0up5cl zgcX80&BRNGatt!+jmF2syKQhS3aPBapq`c$QWqCnB4>JT0L=l+9~p?nmcIF3N=q=t zdK+MDy5Ctjw2jtmSQN)*6M|89+_Ic|%ut=kWy5cCB(=`PG|}Z)=38x54okZa_p~v& zA^{Rm-$MVg`JNP6A9|P8!&I-+pyW??1-b~ZoU{NJw9&^BTB3`Y-&XYQOWMNktAKl{ zOo%&qD9xNM(e0D18ndMPi7KzJru~*nt?NDvJ$1_5<*hbtNunDComoZro$BgEBn=vY zuNTt(VsbeI{pNw<2V0uP!ZPLG((aVAB)K&8fSCST+p9}XK3!CGHCtOu7|qSV!mD{+ zs7e-GW>_h)3LH}8O?wj1b^@;PM$z zoM{NRmmV5$OQ8M+0J}~VXNhcx+%bSkXihi8zPjxpZ&WC23dV>;G#(J^v1ZxxrKGwg zi)g;FlL9s5=;p{9k{w%GF;|dn8MdK~qWEYRl7?Sn0L=x?T^UEjhWHc{>-u9F@{wSH zORZm?=>}yg;B&)TLUh!RqZCG8x{K5EEHMj!+is8rB0Pa5Qu9>M=930^<>25#(B(?= zD_4qQPt*4x1400xI z?|D6kCwSoD>Tp~^R4tpc?R`Spc+P}+Hu0=dFW-o9Qr=+lV3mZHy2FVS6I1sQMKqU` z1jXG?ML7iGkuwc5$PX6%a7b5A(?Vy(raE3A%k|=ZG>XkKa!|aog_(mHVyTd6G=yy# zD_ZROTG;EPfU|5*IDID{8S-XnlKzB^CTY~ul0##+;^i1XmxqZ>lu1DfRf|GM)s`i8 zfBj)kF~@-JP3{3T!HXZ4Ke6ZWt0mp%6{wA3aaOA3q$`9&Vx_Ue{&}Z%Nv7CD_p(5@ zr;yqWC3~e$#zuO#ZG8GOZxUL@@jTgv;TAzsYY$!0PcaQqi}O&CU&9@?%xpShm|WSz z8ONH+NS-SUv^ASuuYH-&X2dGY+NFk!kN- zN#p{eUEWYCC5U4MM8X_N;yA>#?CA&;N_G|7f6XI9}Ujx7{QD{mT`wGji1oz zw^F)01zVfIGjZ#~Q5K7KA3=ZA&5w?J%pdXsGoa4Pd7%rMvE%_LkS3+US_xW?15Q7@ z4jvhG)`iqTd=}7Vk*`20Mtg<1K)e8x{t$z`E;1c~=@x#bE^jmjW6x{#alK1FH^+Q$ zV?e}>eQ#Ihk_LfL5GM9ne}>Rg06Y4OC1!jGFq|DM>`vKVLEU;8q9X5|z_&lLA909~ zJqpG@grq??>vRGN(wzUp*&VVd3JAUw3Jco0RjboF#0dXW82GCXH1nc!`)8@VIxd@7 zppF8qPJy1pXz(U-(=EZ;Bk_LAl6qX_d>1leDCG4Oqy-Sv1lGd8tlCrdYE`b5s8&oA zz~b_e5j0hE`_K_hR!J8|4&Q97BE7>Y)+jc5jH;*>SJumqQZJdqYob&r`8;TDBD{$7C3Bd*C3c3bIA{~APZT4qEBUH z$<;SbmqOHa+HFC-u+=QP4~ONpFf!&@_c-aZ@J7=%2{C-BGAyF2i#iv%&ZL$8B%PyG zS>?1KjB)2tvMeq6Fw5Uj8@Il+5MiZO8NJI#mA+AMJ?vvIlX;S9d>(JJ)gP99)U<0! z+W&JK=2!RS?S*j;{N8%dmYB^#?zFpcU8v->O($@wCRR0a@EAV}#@S^&mSzyC$(_uf z7LGa&(8SMf>c?h2t&3Gy>1dA+q!UAE*@k;l{%%&i^BbaVzWnJ6@sd@qy3Ttxxm<04)JK#ll8XA2szm4` z*d=-+#DjYKr?LKF-1+)Prgrl9I=%%6W(Q+#7cGTzDnh0ZvHk0=-;vSr_72o+!6?_0U7h41ZM1e;rr#43ewPkN`YdD4ub)rH9J!x8@zx z%l6U4{DxJ>VpOX78=iV+n>9^T44!jqaKVI0j#udJ$sjCbAt~~ea4mA*i(Qok5S$ysn#7Aw~@7e}dC2wX@wyRamZdgF%Ni6-&W04x`83oWlU zla~lt{f8WmDF*THjV+ya$fgf!g_`)39(jGnaiFWPE zxjVN(3e8jZ5zV)r&rLdWdf0`4t~NC-Bp2(cBFof?NiwEkb3l<~Dm?MJUXGbn%2g)- zaM}%U)Ap*;aqw}Ui>0ix>)AKaH5TWXQj(26FG=abgD5(Qpk<9BvW8i>Od8v_PJFAp ztWlPT>SRbthA}ti-D?HN4#=jMoqsiielhv#gK6Q*TUzlTm-u-F%PSV$n!1+QzLjf} zOH5=<%7-!3r_zW9rlQwqpNlW7R^_ofb7W5F-4kPMsFpY3(7vss7iWlnoy$>#;cnz~ z6(HxI8tbFyT9ERwrkYv@<5rRmSz>p1$-N9yrjr}pxv^S|raQokApQ;rgfGS}0^JBC zYLGEA&bp*WozE8L0H9Xa8Ck(JmY^Lae3XuJX&ir`bUzWNs_sjETV#>31l=KA zI>xkVBW(uZ{*r73fi@Y)wD9@mC*1Ar+80m?$iJrSDMFhFbS_=^$W#hbAcVn!dlpLg z%M>V>PpS4xKMLeaO2Vp(7-$2REO9^ z*UqjbC-y8lA7tc!^U9hAoO2oz`mNwr_r6@$4yxFJi3TdoV^8qDpAN$q>d)Rh*BOOP z;#tqsM5gH^I~v;WP=^`B#PdL(l4!5U8QkL<2mXZ$hA^`hD{GD$9lh#GSYZOnyW(Xl zS+Dz5V3QnfUWC z+rR}o#5z~syY8-DxF+3}G6nTD(m7E`<$bnj3q^t-OVcnY>nmqSZCuh44Xxe&`WIG+ z76%nh)@H3XC|J`@+V_jd@&aC}s+gUTBl)a>>F~#1kO*7w0|HHCs;=1%S{I z7fcWWv#Mo%D(>;&2sQOhuE1kR{_t9F)>CDugj2(?sh!JMjWs-O{gosq)P&bYOmG&B z3R3-^HPyfz*ixI9ns_Umm=u^{SFM4glLd?iy@aNN6(Us2^!q_nMd7R?H@wAVfJrik5SL3dpD$YG`az@hxRucOPZvtHf-%R~zK7VT2>kgOJq z83Hx;CE3~Z;Vr1~_)mqrUoL>NMo>3?=+3a1dgN_1^UKRPKs8?O{$ov~L4@|lMBRR$ zJQ&xuF8(ZJ@7;~~{`}f1^%e!{V-6J`-c;kZp^XXJIn?rE=>eT(37EHNV)4YS`XYn~ zBS1|%EjfcT8zo+Bes5Cu#l=y^EappO-z6xQvh}egzyV&=@m4Kq;nF^M1$4pNz2GwZ zWw^J%;^w5}zWVTRcxw`Y<$0dBPi4qj??&hhljTe6slhE&-{$QWM@VxLPG6ZiaQR`b zMz&Ir#3$9jp@fRRC23^La0Bupu$F%5yZp|U+7uo*00R7NeSTKHPy-F z58!%O>8|RyRQ}tiyXagIN*)QWHinNa5y~b|jTLfn1&1z;b`-aR@Kh*^oMc^Y%2Mf_ zCjL9Cgq=~$Yt3J8e>Y%HSgT%~5eMq@x#-~y3ls7*y)rSu2!8hz`3xhx1Tj;QEAe=p z72KmpU$Md+ZN9%vJFVCoS~D8X;GA5FX5#D_fmpJcQ{mL%3uV+8<1H*mbm}JYI-Q&~ zpL{EWe4w}ywt+ow-EDrMT;yql?xwD%f)VFJOS*H-vdlXiV_bT~bo%{?#c8uDzsqiM zMvFm?f&BZhe^7p_B-kS}pK}xb(Aufh-WXJR@=1X$aRVTg_{Ve8^!eSI&~lK8oSV{m zJ^#!NA`wH)Dzug!nD_jdndZSU`P!t}8b40vapqRWOk{DhLOC^2iAoKS&yk;OX)G-T zBCXBRFw^;7z+bq8(ZOkmW!lhGA85!tV=sEDmjB)M(iG_=?{vwN^66DSZ(S4G=n!k} zrhv@BYj!toh9}71F)+V4&wsKj)A+`{DX9S?L$!SWd{rZgKzmufBtv4SN%ZkSpEY)I z!PJ7eYckFfW4v}yQYq{S! z@^e<|5!Q*%6eR3-$hHY1v5&otSc^drt+n@3xs}Y#kRo8c22Pd(rz`p7vXm~jDh&qw z`!3`@n{?+6`q@CFKKd$9<|@=C{tH;ZF#3f6@X%ZvFX4GiH~!aImsSd=1b26fBb_Pg zv%~3|^+rLMDL>EQDtn}NO_5jOucCon0r1_kU7RJ$j>%^5UQy1f*ZRLp>#2P zBZ|LcG!$7gNU(L1v)x%;0|?qS z_lN`|A!#3T^Ea?-?|jz=z1C>B2=2C?2eH&}dVpsOHShV|!n^w$;4H!?4rzv6g2h@A zbl?5$kJ8v_vm^*mFfWN=*=LKYhj7Bx-@T%e4dvXElu}=;r?cLo+jXoCj$|+~k2s6I zuY<@|i}nc=c?E^VdiAkXU%5*ljZc~Zf!{CkvTv5&TD|yL^aY@a`1MQYB&QjrSqfC7 z+V-%dm?v|q{WuzvdD0PZ`t6t0mp9C+{8x{wRmc>VVBfb~Ka6o7Ym?{Bgaf)tI1qxD zG9LSM2<6brvaNZSUEoenl3Ye$5HheTLT(RxRmY|pr5gTT&aWHx-;gE)Ot}9cu(1Dk zu30W-_WwmS#hZ-7?YzsYSF&S;e7aZm8BXrM23Z5+CJ#V_-p8YxL_JIx{Qe;q$B3>s zm#w`s8Mz%Gkh1QL8urp`MC>Ct6yE(OnuYl%nhpQitN+>E$ww6IbgHiGsJCb)y{fx3I>tEAct|*z0uHs zp$-sxTh7nVOaS-G5P+Qm#8nD|J<|8r_%Zq(<&q+%H`|ff?sRxi>Q|ow9uoaMR z$I=W|qLK{g2ILbDGps{U!@iA9=`i!7bXsmk;JH`V-8`?nX}CfW^lobatoAkdof>2G zkUVMU>MQgD6a&9WT5&Spz*vTnqT*;)!Pig|9mGDtOiE0;c+Bje*+@t*NDQ$&#!{Ze z7A2_4ZyZz9H)R1%M0^U!a*-m6nbnyGdPU2dFqt#&8eue7)i#l{WLS!xQ$qO^Hy%AI zsj%P%;#g4$!q;yIvdR{Eb!Y<&1Y~!Fi(-Gq(wRLda8Wa2FNVIimoqeFN_+*aJ&nG3S``s%A`4qEZ%~=Q?Rt<9TcwE%`}O$Q~Xmx8CKz3sf)))H%|kv~GZfa_NXt zo|ZhrutGwX)!>jP5z=ta#wv%Ak;yQ4)yG@lEtH}mklstxmjtilWwv@c1!XR-{j#QN z#MG+trgAu&xs8F3_%62GE9}f!#raL6-578h1aaG?)Lz<9!mA~P2LwsB;#_h|Puqfo ztVGUdJIQ5$n=#PKM~k#FPfaPh6ev1p?=#Y+8x|YYJBBnG&vm)7{BqZO)I$e`G!8wo zBHb3hX|PVs0bSwHdMxqcX9^}-$CVPj-sXePawKQTT?D(AnQazzo5`gFt#(p(W18Ki zzrodABypwHW4BrwdT!2-PdH{U(q;BAs2;7)8y6oeYXv5F* zL~Ebgu$m$ky{)dcZY+?-8a$ZtNsb^i!Fwc#*D%Y5EAub9*2D{6#&8pz*@DFXdF|O0 zn8R60fu2gq4^PR&p1_G%8RZvO{?+n`Zo!2arIJ8fI3v@7fg!$tCvfc9D=BCt1PLu)X7u;R?LI6Wfyo>*d#dX9wZ zR83M;hQep|qDtM^ydH7S#@XS;n*EC)_O;b^f-NGVykP~RyjzB&Z2&tuD@StKn66A%@eH|d7FQ@+CWF?Ad7efdyGsf^8 zASE`SFsxfWKjE`Io2>gByppYu5jV8vHMR4KkYNbLd&Ky4Ua*M$zL0!b7k^iVb$uDF zyb2US&sn&@mOTH%TD5I7sOua&0#&@^UdF|mwh*52OS!Otxx?$EgS}7(&l)2dD~Z-| zh=mOn1_S1@-&H`=x|0BB6%Ai94ICfoLtGLKlles@r}TyU` zP-2(Gk$BUdSd}ELhT&zoqkS5KXXT}ETM~b$M9)SWy5l9)94nc&m4pX%;eg4iVJ%OP zgab+06Iw1!U0TMxFs3WBEgsdd;mp!-k3My3rUDqtNwC{%;6$;R3GBuXTYJJ#krL2_ zZ(gF|?9%*k)^~%*IPAbU;(&B;@P3xBYqb5KNefj(^bbHJx-TG&@p8rBxmw^aIaHLJ zi?ujh=*VR)*mhbB(dzxwkv)}t{cO;3G|KldC>Z13+O`m7`sxXntN@3~}A>4;u~(-av*#it@ljn6#=byrdR%SBnz zR2kWz`}3UK@)Wnh$6%Mtj{JTmei-(TEtMep-3ea|T95AA@cKNK+tDoTO67X_JFiCS zK29;nB{ZDo%iPKP`*)!(3COaJYmJdLZA(;60CSseRX0Uf`bhev4^`tYok-a&5nW($ z{v|j10XY#}0GDwJ06JT@t$L2(G3R0D%|%CNr+JDh`@K`y&`ZWd?)Z7-cspNw3Y!0q z!gjcoNPR1!fNVx3rCsyTY|*YUC53wxM}Jj?QG%>miCYNdG|cm41q4?V_TeX#;kB_PwhiOGOxvSKB=zk zV3syQ@2}d}gD76;b~W3R%OX6&Gho@YoahlV71A6$Q-xd{!q3XAivDLL=JIH2s(;2M>$T%#pO`vL0+T=LB;!H8 zlu*q|RkY6cMorX)v}y=a4~Hx?a~VZGTmlqnTR76@bK zrm)Jk{qQW*3VS>>3VxXesi^(=XMQo@W%7GSj$}p*g)5F!=BN=tla+ZMHwtiK&a&h#3o0X z{K4?K$8q()lE*)0ahvRtr7BqAbiaR%i#D1PM`uuIa<9|N92~RJR5SA9u4-vWhxCC~ z3GQ}rFN+}&YO_eMUOP$e=x~*&X-y?UPFRwbmt*TCl65nme;4$A)l}vQaTJ9&B|g4tffDCp2cG#VUs+-!KKf z`W+m?5m(fy4AI5pqwL^o3s-Z^9vFr|jy=S(Auy+oju)$wPJS;lTX|7Kd5;xlFUAM^ z#esmdR3l3gBO9vq8n7HYnZc&xM8ZoiTvP96nmb(AB=PR%gUi|Vr({yOO}=|*+pFw&A2nxM`U_|#)un?Vg+qfxJH zv0uBLwTz}cdV|bC&d+|F&tSsfQ@J?I_|c?jZAPCGO&dFLDrvV7cz>Lw(9Zx2xV7?f zHWNGq+J*|dK}rQi@ULiM@;Kf!X|uEst&tBZfk|_}9AF#_G;FWxS2sTT=GEtxUP~}n zkN(g=B5SBtF36C$kjX^MZv+jTFF*9w)6 zZc}5g$aUgU(N5`GwtB|}l~AP&$kc$10x~fJQ|Pa?8)BL(p{ogOF-DYl95D}xw_(8> zftj&~hWM>d1ECQ-fStdi{Q^5xnW&tWlq1FyzAj4TuoiL+&vZs8r#)iM`< z870SsL@fCj?(E@cqHHY@MFv({AcEH>AMZc0Abjeo+4^FqAUXVv*W=`E7-K?Qo^>c< z+%L@Z-rEsY+AEQanrhJ-&c}n`$=81)Q)Ko03l3GXPX{5WD`q8PPFKQB6GTb6AJy2Ao6fN3IW34AP; z_|WWlNd^nNqbY`YsCPH;z}Z9+i@U{5?S?wErc=uG?IbwCS-TWKsVZV5`iOMvC05PdL zvIJ`BGYJ@MRUtAZtAXAv+HSjf$1=0IG<_|`ooIf@h46h+2+9jM=^aTD&j~AubSm@P zqRGHqioX3$=-(ryFKF5=>;yXl%sPZ%ik`wEfpI4-Cjy9) zb9x<4SH0baBM&*QkkuZ9t<7q614|`!L*B^!R?6?h zbtUYyMQ31-TJ5_g@1GRy5&eI*et?n5HIV;PTK?~}u$-L#iyC#Mr)zI2o#?k?sQh6L ztDc1HX|YM)4+2=HMEVNokiKFzn39QUQ9;~4u|MQj%p0pZaPlsIWLs#`r&Ki9ComLS zKKoH{NO~m9!JGfNe|$1Lt^XG?MEL9^ab$iSI;`s^TI?t4lmM&h*KVy_u6iCZw_)&XoXTAA( z-Ro0~ka;!o-846lT9DN!4;TC*o{ay=P`wdirxy)63rb!tjVle@M*FBR=B7ft< zH+JCdg6Qceo84F_Fz!DW(Kh@JcA=5?PDT5GcZWTd*lspz8`v`7ttNnacingWK*WT5 z>=j7RQd%oXuyD%tjM#F-vKjAeZA`+gklpD1^7nj5s63U{=I1%D!{ue^3%dsJLCwi3 zQ^@z)wN~H3-8y?(r8G-`?!c-|oVsMY_{BfSLRr(M!hScgX#4n`!6oS*`YLCE9O)yi zHcFyqfPrujHhAZWR`jTFV3I=}rIa%~P6zsy`-kTyy>`i*1 zJs}?J$<70kvpGaS)?f!#-iW>bSwwg>C>g$Zk z(Q|Rks?=dNVJMy{3u5_`R`eL9-#79&zvdY`*T!c%?=LjdwC|iBea+YUjYm1h*wsL# zZQFCgBmcNkSq!K3s<;$ff=|p6k-YL;1+q3p#%?HDH z(Sp+EJB6s?YX7HZe|duRr+Uwk6P7_$<(RhcIku-IM#x}KHD=%$eh4X=EVm{BV4HJ1 zWHdQwp6l;mOx+~g6y_9P-9|GCSTs&-6MGb9uf$*S$&0qMCfQJ2jx8#Y={%umGP*YA zG<&WzzLU8$*!@Vof+*a3E=sboP`p-f9md@jC0z(c*?c&l9dVkwLOVy z=0_hx*!|A_tq7%KOLwK-M<{x;eB*{94{GH!s~6r5VCKBTx!yNP1k#M)R)h z+_@+-sdE`WsLjhS%T;DIveH9n#C4n!eQu=iE~WO3G|3bcaUusJ(8Mt8HXZJHjKS#t zng|HH7CpJJU$t@H1(SI9BTRSR(K4=MX1yrax{&!qLq%Dt)8+wHw1jw8d;=IWcIsp1 z+Tu2bp$p%!zSy9?oiPhR3~%MI-Zr^j(Pl!^$9WLclckEP`~9DM;h8E!8alvhNlfO# zgn=f=P?;9XuiyEn&|a_ufJ^TII48C71zOvn8e|N8b3y^{;~6%Gj;WgDRCI%j5tV-% z=HNDVgT!&oG?!c`wC9}G{rn8t^Yi03X7YCf(pSW2s5#@B7qMFVG)>kS=$@p>pRhK{ zq@Fr!-&l0ec8p2=V=_O(b>0#A!xW})mVkb@>-W61^kR}OmoBN;#f?^_iR*(+7eM3) ziGOj~0d^&<)Y|=64YcwEpN4oh5KL8etSc@ARF9=?v^M*9wUs-ZB(`0%9NWyUdbYkL z7;OGhxp7BdLX=V5et|VtxmhQ~TI{DrGP>{F3c-aKi9~84h*b%i1q&yDs4JbPIXHw4 zNevO(R<_Z%SV~OfK5dnGvF_HFm=p!@9gw>c28=hIhgD|#wy2T&>TKdk2LCf|UHui) zU{zMfHIx?Q`jZKR2`7%x9q)H z+Zu~Fu_^oXUIMHv>Idsn#mc$-kGLn%S{{ce`cuc(LaiJSUbrYaIFyT6r+Fz4ptv zuMO%>Dez68xnE%g!XR|*93`)3TC#wu+bzt5X4RbR-`m)0K^pS+_6lf~d9UbGn{3oa zkifVY2hky`Vn8+@!AeXWS}%tm8+uZHnJ>*BJZ=ngwGIRcM_SUpfcuf!yel+YB5aQ3 z69f|7k2$HuIYsdaH{8N>*o%w?w=@KPU}YmiM6RwP)$kImDJ$>}^|1>P0^rlikImVf z3Jix=Y;+}dhTXz&0xi~TKh`58sKST*D&~MdtqaM)t3E0Ui3r(Ia7A}E15^L%s-Yfm zWE&rVq4o1>_N=hRPXSkiZ8FL!6S3Dr9CLO%Xc_yqh!i7!rnPDsVA&V{x!F7_jQ|n0 z@&3S|_>n=*4q5Bdpk*T^qMl-1k~AB*+3zQIu7<0LEIFoqVJ>Ux(q213FOkJ#yVfdY z(kLBcAPih1m7Us_zf#-gA^gN8x#GM{(s!qo=i|5;Q|76UgJ@Jf{6x$X!&LV0Sx2k? zyZwv%azFsWl}Ed3Sqa=N@ptJ+5u4k>W6BP}gc0`{VS};Z%3s=%JUjBl6QAle=jEq};3+22%I{Ghc%S&j-7sq3L-E`kXvZ3i5adRaZ}3Pbpz$(^+qJ=ap8t*LRy5y-w<9 zAr6CbZ7Ut0T<|;+!lRUBxx?gN;EZcHcKyB12a^i|6eG*ORLwJRHE7JUZV%-DCgJME zkyf|{(SWSv>h=$U{@##qEy9TW{Iq6+GTvp)ib(wi~DoC;L`DwflW4 zpmK+tB1!ob^QRFh$^ive!!<zWZBrl}w%WN-7tCn`zDm+ZwzAp{9YqCiU=fs6a$kY>@(RQfL#hav zmXSmQw+T_6QTc}&a4T1KzzT$lYH@W~)Ee5x$$7=Yl>qVVzH+ADrYmvnp z)Wd|;K303p@c8=+3Zu!mTiHA8k50}gGlKm<`}Ej zKN`e$<}#v}WbCah;JF%*whjQv;ME^(eGcr$8}=#Hr+mmednRlQ<>{*D9|$-%YBSx~ zs6{pfX$S}Ux-^5C{|nB`D;{=RQ|WyIxnEFg&8s)pg{dh1jFA>g(+9)xRhv^mBCE$FTB(E$%%)R1~QV z0)4_L|FLuQ0w2OS!1MR=zIrsIUq1^6_>bNAi!lf^o|{X#|G7kWuR0wzywLe$LWCBi z1w36A4K6_?9p=1aK0xX$wOni`()0lrM1kD}r?m4hi$t};vZDwKi`w1lC79aBgpR9| zK++k;W)BJ&j#a={^8f~UYe#pIU+9hmt6$`F!iWXv`+7D&)mj^}_Loa2mzx3l-ob}b z&wh2xiQ->4omW!TIkb%^?a=SCNY|0H@Lr-}Nhc9*2ad=BMr1mQ7Lb8JPUQvozQ$W| z7VKvHbv6~}TXF>3@^-M1Ift1&`x8?;dKC^a$j7cq)GJ2{qt~m8b_&^xM#;O*DG3uDy>}p*Ys;(*pZ}D8NN_eNeVlsKO5?xOD1cK14-7(MGMm z3>o#QhU)s=5Q%!6x(}Y`X7afu1zABXmBNhL;9niv{-bsB$=o1+gBf;!+=&8Erg?Nr z$TXkrAFPVp`nzji$3C3+^)^yh2J7p!Hn{y+k?na+P!%o|42KO%;L=D+=wCEfjM})| zj>k8@yL!fYI(KyoFJZ+EHS|-J2&NDf4Fx5k7#W+`nPjG#8=gug8+Dp3R#aSnbsBi| zss8aNBJUEC(8?S!PJUu(SoXK~fDTDi=mKL@ma)S%FVNVFEEJRL!|#4{dNhqYduYPk z%UuM8{-mRHR{w$~ z#5jf)?dSK>1Ct-F;HdB29+o~PTw?$D5wq4=Dz()vcd8gIONr*6jl22Qd*I4wTyMk) z?oUi)7xz~DnySn73W*>#LVX9Ag$^0rS~6wigE148S!v^1V;%wmZ3Ixh`s+K43~T%i z!%|Y3jwVrhkK-TZbGRL`AYmG`lvKbs`aXmPEu^7NC-@vIAWB+<6EmPkfsH6KoA|ywoZ)W~;$0f<1HV_7!B=B#;NwBtM{XZ@k*i!) zt#>X|ram&1UdBxz9Ud#aK(Xi>Y^+aTdt!jzhHlCThv6D7*VDoxxGgB}lPu1ZL9gA} zHT#452MhAbS#F+?6(hTWP|4G7u>SJBJ&#r7NHO1Z;gn9G&zhH}YaRaBeY1eT>pkE2D)zZH6sYn+pz=u2YU!^zig)6eJayO{QzRj&Ku^qn>fB&_wyQS;s`jmBUWF_wd_j&@i zWvFl=|C?4c8IZ5f^Y0H#m8^CZYu|^#>b|R4=$nM&-V^}zr!;J zi98D;FOoc#U<=>Fnr@h44!dy8fcoxB;pl=Aj!??7y*$g}6PsF3hz?*=o`8Cwg{ep8 zt(P-Q%u{=*9e)2ld&!4-4f^Ie^vsb5MmC1I6P@=Il>wYkp7Hnd*2R0CSk+nj9OQKr zNepNe7jaDoCOsF;{R(`(*&cmL4TgW!){teL=?<$a1q6`}Ka~ zEr-ngBqn>R@{;IP=zaejWV}ge72X--4|jfeB}=*;v>5PuC(_C+&U(sV(uZ3E89Mqz zR{;tsYg{Ut2KSkJ%VJ*MFlb-*c5&DGuZ>&y7HWdbn}46k7}&=K$`%H{E;@SO6>p(K zt1Y!#s)Ug&zAFe;1+IEvK|n+P)ZZb38uTnSOfPz$#7mmfl75~I=9FSry60f}N?2BY zL@GX=qm-p-P9h-6ryI+NKoHAbIi|N~huw8pS=EW8Yc$qDhQ0xf-cmt@ zrxSt}`xNqX7|e)oW<0T|>zM&p`)wOD_^W>5r}Lote%W;^xaY#hFp(^-LwewQaB8#f zlb4>R6QEtzb9ENH2;j9@P3+TSTHa+LSpyg{8wR( zYMcZHi(G*|be>!=daKwp>scDcz2WWcU9vL4OSl&56I}fJcOS@Cn5i-Z-okg$FllSA zez8Z}D3HXXVDILH!TBZCuJ3T@m$uN+PE?76dq!})Fvv=g#~)I>*^aVYOArK!oe2U~ zJ}4o8yTrv05lEI~QKNe@rYB2L4@^;u<-VQGTeM#idI#fa9SYn+ ztmoE^0pS?Up92qxA6{waBnXGUW@7 z65WdCQ^LG;vezZN&AvJ+JXiHsOKk4B!{y$^c6fS;XTPsD>QA=1fkzjn+B*b87H8M- zV-WX-%lja)6}x8FLy4nYs3vmeB!fB*g%&*-rcUKTmsYO+NBAhx-`#yM7h2t&fGXKu zm7AEEc;``UqIyPJw8`c}`q3rX2U8y=(D}H8GRG#N){jo%W)V-DN9i-UaUis2vTNjds;Inu0-H`r9Mt?Z)TZd|cgqe1~|-_1fqkhR63DJ>>Y zHu*^_86zMIKB}<0{x$&@jihCFoh3k)B_wAa7Ah=3&L(DDA;e;f{a8`y0YiJt@INH+ zOHDJilgBH9ed}M{#o7F!mVlqjKS+J1)(OZ7XcJVWZi3{45?w0>Un|!eTb!NK9J2&i zyxL_WbNeb}c(r3ob~3zEHKs)JhH6tt0`M-nc}ZzPRT;|hXF_x5WlR^ZWBgj4kB{RiDn&7YPQI{b{d_i z+}ZbI>t{QG^s$xvqIp-r!2HndKZR5mc^OL+V+}Vmz9gJMOG}*ddGE z;xHsS_lg$~0UUnOmmO)hj! zAD@}uf6MS2M4rDr4r0k>iA@ zES`c6^)Rynb04($iR=pyZ?_#&cTu8-EFeBbA;m*NfV9 z!Mx|Vqg47_Zc-}lkitgz`Kz1c6e-A%h1GF_9b>$*a|0nA4R_8o;N4teVQDjt^O?Q# z0$X%M6${!`H+M)$E;1_v%YWkp;|aoNHtS+FB;5OTHsrIKu1IvGQ6IxGisO{QB9*@# z{}?%ENBPRr%dA!ue^qoOoFdgAM!i9~v_|jZF1s1k8JQ@sDhUO+Fvq z=vuO2$92HJg*`cfjc`_-8|{ZrA-yO{=w6M-4tW6m6QVeY%`-0+VSP>V=2{tgCV`3< zG}^&h8TMh(NGEaTO)DkY7Ue^ADgIklKO@LNw;=;dt>d@+f^}TRvKoQVyy}^f;w0!2 z6r^CC(q*hYY^<$S<;94_gVdZW=%Wz$bz|I@atU17 zQXO6G92En-c!72OY+~#KZn(Di1sIo$^LVOE^aVNZI2+%WCh##0rJVT}3`KdfR z@A4HX2rP$NIy?c{_J-+Bl5Mj=fKv_w!3RQEGSj8v=f2{fzKmV-TT0i+ViL{+P&Lo& zS_A8#@WZ5N1pa)B)Y;dfBS{4L#|z#n60O)mcPsx4db|^}Se0N|S#5D{9pqbiMwu=Y z1r(I}7|qld?zv`u>UQrSN7|a^(ZMdnjdM%#8ZY8Kw=+xWU)bwpQQ!=gojucOk+eP{(Dw+1E@E(xEZTFW1iH6;POmoai)o-k-B;*CFo^2*;gxn! z(crmodelpD>HIn&!&zY)Kyyi1c`=5wS!lI%>pvomwJl@ZTG0t1JA?t%Ux{vVDk9^l zq}k;5cdm)&kLB1+5v4D4Ds6SwD|2O7+Koc{=?q5;RKCHrA3cbrG=kR|gB8iIKKW<(pL)Ykgf9KN$=s zgq#}Kttzais|r>9cQZ^@!Z_4tS}iZ*vYmxtS*Kue2;@Btb7ZxpU^V3|Vvo#6p+?Bu zxTLH}p=!2Y;qxDYVUz?nvBLBQK79REsT#+JAm``(#RJOY96Y9+DZW+s<8dvmtaoW9 z|If#Ji;2B~y(Q%VY*pOWGy(1{P86O=_LjDn!z~|tWh5r4nqnIb<&D}+Cgsx9aKooY zON-FsO3hYXgrX-D@4tBBNJb#1gVeNVYE#yZ6Eb0)vB#nrV!uygTU?71;~GDYI8Zb{geUoYm#p>fNP{w?Cpt`7wOEF9EcKmU;Ij<0dBm6)KfROW8(}It< z5lHsG>3nq_@FCgUcdJyhKBhFVBxP##2uFIn1%@kg^3enST=iAv0?FFwY-Yk1FfXKi zqD-WsvUF8ryi6%oi}JsB&#QuF17I!(sl`>ygs3n(SevR74V?ZC%*do({kgGN7h=v6 zWnDJ>G!OBA61Bea;=aNpjwh}qi=X3&`ScwGNa$5x&NAQI5olUE4Ygfhb^gwWAJO&3 z@vTeQo>G+JL^{%-P;k{Wg*jKwjeU`7A(r%`pZGVEEmYYUMyrGG zon-Fz07H0yPLK%CGWOUAv50lfej)UtRAO-0Bh5fpupDYexd2n%NVLX@`&BjOuGcyW zvfy1xVNvUpe)(uCEu1jf)KPfvp?84T(!FP5&FB02mQxuG^mvxsdz|qd?&(L<6FZuh zO8m-Ivs@#gsGPsNN>br}Av?G|TSkdz2_9YxlmM(=VNtB5Y_*gH&9^Jd)g2RtyL(`idNB!c}rRgxHHs@3CBN|QKW_;v!7~S=d=?- zOMqlG`YlG`SKnIP41GJk7M5XGDc!F%(EQ|7#*-Ne5MihNgXU<*ZNMgOj>S>V7-!!H zp=2@K?tcpW|CNi9jqU$&QR+$8{|o&8rsZ;WicDb?)mnP{C*efAPOwG6z_QSvk9=Y9 zLji$!J`?tej?^4$Q+b)~R4Q<5Y3y55$12{wbkBR`!Q7VLD|mdj{_nTfhCWaDKW`6v z?)8ZIKjRs}s&gg{d$;c{O#M{2^oDrKw8eq>eSWX+8aD3r?4bZs>_ggD2^%&YUBmAV z_apmco!pMpe?x@6Bieu9wMzewd(QjTazK0ij~9>-dJ(KumKo89?Rzqz-!~yPf9Z^Y{N5XMzf1f-jGa@HC{VJj+qUiQ-L`Gpwr$(HZQHhO+qP}v z?1=kvCt@DvKdf3&ky-gA%%SglgolBxF#~XFl+qMBOmzNT-#=EkCHGc9FKUi4Ee}NL z0`97V#boP{jA6Qyw8-s|MMscs&0f#e{TAKcHsXMd$NV`fKPpTI-C*hNOMX|zKb8x6 zKtce(Su`) zb(@}wbD5p8qx7+Gfm-Jxgj_;$;6n)we+(~ycA9@!mmw>=h?taNq1LP+n$NjJ zlej?V(JXn4gcL1~%+-I<;oHd%WF1xI!J76;qX2cF_>!%qmDKdS6Js-DE=@)AcLt>) zilF%p>4e>zczD6!%B3mcX!f#oJJSxCh&fNK_LpVvwJ}cdqqQH5Am*qGQ*JI-*xs%4 zMfKs6&|{N@^G_x(T|lcf_Q9=uhntgCCdrJvK*+78=$oCbDYRLr38Le>@gnbW6?mq` ziH@-#9~kQZ%xE)Y??+2h)ENFg!I2(6<+Poi7){R+DC(03UlY&-5$TOwy@2!s&RQ7# z3?_3C;a>G;4Z7h%hI@brNa46lJWHiKW@UPa57VkcFXbxcQ` zz$?JmcniC6TAz*ZV{m{m+|4Hs0!OH4fS_8V@1N!Q%*cGlDNyW`jbfR( z>?ZY=$?MUafS5CzH{(3MxB$GAf%nu_@{Q-=tx)h8psZ$7qd^|(evfEtGs-F2bdw^O z`)})>EvqP!`m;x1eB~L0j$fC!1^CXtid*UA$B>ixDk-Kc*mb^Ot;?i2_oXdTzKR4i z?`sL-M-aTFto;<=WPN0f5&=A_qc+j)IvrLX3qGDeYNY#DrMSc7HOG(+&-`g)Z~^Cx zWTZChr42{4ubCDQk^W3{spK-HNhR^bSb7Fg!lOx}s1YkgB)<|#*G$6ik)#v8sh&z`n2iHOT+#7A0O6Bu)jqA5xP&o}aZI$Zj7;>RvX4@NTDs!aZauSL!v zm&QR$@PNDj6pj?JjZ#V75@Pg;yP06EF}HT#1iWSXXl(0VSa_Tjz%JU)z5P2CK8TsL zNX>gby6{Bz=pX4Z1%wu+FFKoj9)CETmQ}8_0lpPBEeVF_Ub0d@-jNZjH_eHibYdFI zgYmXIl0#%NY}x?ggn`DmisyWR)ysYo?BX! z?utn7{^yg0mU;!*8yfhjA#tGn*=GG1bI#>{oD?t4RO@qv4{=MUt4x@YXttOXUJ2sZ zShD+Xt=nFgg+U3s-C@FFhDF|Nc`ZCc6kyhlT+LS->f?YQ8x}@opp@kbW|~nH+n=A1 z-RU+M>y^UmmgONiv;>nu8ZZ&N>*Mgc)HX25H2Fc`N#MNL%{zVcf<~K0k&c8dkeLpy zR7au1!Njd?^J*mhDjM$A#gnS$8Lj+P^p-hQhBPD>$$o#p?~9DWlAmR`f%T-w)!sVT7N^oO#(5zSs(1Ux}u7Ru48@h`ar7noYOPCGR1*?lR{*Tal3 z{g5?y&H_-q7oLNSBkXUoV?gqV35!S?sh#RxP5o=rT1T3Su2?)D8woW*5PTNdU!XL}Us zgpP;zd;fsAqc2GV0zktZ%lB!3cw>qyQQ_xBTGH`n=z>Oma2G*BLBdW6$W&2lP#V_& zve+o2RJqatSYpXy9e~O=elg#IFIMIKz?EoBK-CU1$Iei}8yoHPn~tQ_DGMG=^;~f@ z>d2CLD|UdvNIlbk=JnUtPzG80J=`42Ue1HjEk zk^)x#F(mQTE}bX-yG z7O9r3%9A?{sCE&ZoigJ=aQb*m>Z|Jh=OO|q`So+806Ue#4N*Is4aq1gUWy ze}Yn63B|lF-1FnRwVXE@-deB3xS^g#UTzCx#g@(CdU1P#GB|2(6$V&*dfP%L@Ew4d z!n~$SJ<>xrBCA(JsNS%+%lX1^yNOr8dbLgx9@iaua7m8Hs=TyKD6d)Cw7N|#jlpDH zni_XM;?V(MRq=pq`ja0NjUmia&e3zwykq2jhZ}_0O;am#w*2c_083qo1FHoi3mNuk zH*iW}d7~-gLnd31xg#n0-t~GuLFwqeX(V)~Jh8kvI?W!#!)a#yP1^*bFPpa1Y~pm0 z-q<7@j_2u92Gk92NRuR#j0Jfv;+%9?MSs0f@Cuax+XcKiwxmh1SPXqsEUM-z3w@Rr zu>jZ9fxe#U1FRJcHqUXMI+IAwV@O^nh8b{HLb_5PX?*{zgnxbc>ekZKSW%=iUOu zpl^R@YjL9=S!N<}ay#;P{P|epucCpCU)tAF>n@ch8fJ>5{b7*g0DCz|?PyAuE<%jA zIkY|K1=F=vlaXy|NMo0-hwW_h$~8Gg)#I$AnFNX0t;Wd`T$IaCFK$kymcx#*n%PLY z%OkE8(8V^O|CrlLByzS< zPy1%++T(=v;CyA+9L{wtS02V^trfpm!5shS<%D2o`wKr}bw$TScC}8zA7b6(4(b&_ zaKjowBsfNE=cXD#bwGrmO?{bwcDN7cs*zgP>z-ULB4*mCPX{^qt9Lctj}*PDti`&$ zP2FQYH}DoyowjdYHDuZv(^*{b!;kEC0VGX8rK+A6sc#PGkM%jUxf)C1*Ml%>x3229s-=2R zm?ig3&FHaX&99#o;Lxqe34G2|D~g-q)_giJiw`UuYJ4c=>+`9$@c3Z@?$0D+6mFjc z;0(IBN6MThiEuC57gL@$X7Z!lD<4*lk8|=n_-4J=)k}#_0lD1meU%>kEup}K)^I_= zJ8a`{dKRme(n3`EFoppsM5)CPB`-Yz79a7N>oz?P+u$HyGi{%ZJYK;BuOLW0XFY4x zdSZVYv}Q|-w}?+P$+pe#_E2bcdQ+u|F44$HhSC^KFsIH{4MN4T!&uF&cM z_#=c7qj!9Q=`|c2$EbfSc;Y5SAb4`MF0$fQ5_(^OBT2sh$^&G+nvrf}vE`?heggve z9RE!-G2k*;T3jSbnk_ke7TfV%>mO#;;`7S)q{Ka0k`e)V>$c%I@cU|PIaXB$l*{`p9(IvhQDS&&NfE*&Z0lvtTcq?G8G zK!n3ijlkyn4#x)1OKK_3xkqfR4?Y#2B1nYleK)NV-;@>a=WZe_q61lPitdGhqow6L z@t`N+h(p@Xa9J&O6$?M7y8s7=pxfl1Po)oNSF*$)K7EW5)Nl1Kj?NZyz%^(H}E6 zm;-p`ZQm76aVOyH31&(!R~ai+0To{Vvb9!T=0o;^RV7u)SUwu&AYd!CCiDcc=GW zCgEpUcA;;JWvyR3I~;>-Q!mT?zZF#Io5_*=W5qyL?h|>_I6C>+MF?o*sZ@UldvO9YbCoKW zuyiG@XmR)`=TQR3cNM*GH+0b)0>wq&5}TErXB^ooNc5B+<_jAi-Sl2zi5rj#z|j@f zyR+$qUub;V34P{`MT&5YUPUpxjpW4GebTI%iS#XHb1md=5HeO1R7=J5AS;ob+(|7| zVDH=NDzI{rRDxvn^psWTbjG4OIkcYgIE#_*96N)zwdK9Eiu&wMMDxO<`iYLzf{5cq zKPfKkGu|E9wh^*Ub(ZZhiQ776A9gzAH1Kd7x4KQ{;i{Wl8H*t<4Few^!TlXW&{emn z2{hBeGVg{L{H14ODFgs8|3-CZpxpe`^n+^VL)YkkH*OYCM>7d7Xc`CeFg%^u{6;uf zAg>b$=xDN^gGcq=#3*!Y(VEPGk&ih^JLmCYprI{N0BAI77!`49%=pdgXgcr{|t&%R! zJbk!VzQ$x%$iwpm`N{;Mx`aco{}1j>l|aR5pedbDN2mLr1vVe0d)Xqk38%Yz2fC+J z=S}Vw%OfW({MKE*r;s|1b7)KtUV@GBhzK3!(B3Flbh4MOG;zMD`~wXWZQF;{`0;LZ zAmot1Zh#3WDo24mZs5F^sip?`B#)<*UXss+X3>N?_w)x#lIcE%cfAd3ano_Ufz4(3 z5;TMn!%KE8KdrmC8kqaI8|@fysRBGOXKxNX&qgfv2TN5gzKg$q1OhZXQ14OXhuY*(Vq!R%>*Q$h}l{M9I7)l7NXDsDJZQjgQfczzf5zTjCAH zo@; z#h3)ibFQ2AGT>3V-(OdBR8(jR8iH3)jutY(iiVox-POWt0Rrwjth7cfzV_}A*upGy zsAgw)EDiO<(B7)ID^d}2SSsG2=!k1AsZ*}$s+B}1!X#(#q!ARl0E?z7{JWowj7GQ! zKPdPuwaYGThxa2<6!XJmqove4_s9-k0}~?c3%>*RKMIA5A(-6fi*{3aiu3OSHZV6~ z>5A0_Eha~8WdE((|09gxQg?q|J?Fo6A>J_2aHeWv;2gD{dOy8|A+x?bC%9Uee6NcG7;$ctKjP$1I7dg7KTipMzDjgr~lH++alC+Dv2pkAtlBsaWK=C1w+ zT#i__$>x+RK<0wq=R^cRo&eBJAR!VP*nTUZwnsrRc5{WmvDIQGS*MrcZHiRY;q5jL zF!{i6X&|RU%#!gChyP{NZ6e5&VbHb8w6zvNYCqE3X1>;=((8-B5wWnbF1&q-hXr4F zAXALgkqw8?>xY3}xq?};at1^(0r#08Qi7CVWFo}=^TxLgG z;PlGX`^~`UDo{se1(}JT2D1zQ+{=SYDLCax0AiDpw}s!jTbh3*_tyVlN9=SSdJ78! zp2v3_PS+c5w`aX^`+)mmqXBQQbfoiQOx1Z%_^M%!o%lWMzS6{*0Znh4@f`S3d?ieX z#ikJu``H|ORFKN6J)*&k?SKq|Qay1*b4xjup&k2>fkpjXh*h9*6+k0V$S0v$N0OJ0iq7}9M58pvO#XFW-L=1V7mUz;sy`xGm?C3d5sjSZ5$F6jP zO3+pscz-H0%qm`*n-ylYl7SI}#RaF!Boiy8m^CD>FepJyULSg}T!qOj7~8UGKtQ9x ze-Mp(V_g2=0L$jg<&8Jm0S4~23BGRYjAc?8{-hmG)CoMe{g=qNzwQG_-Z-OM*EX0iCq5?qiGgBx?&gcOB*`(WKj%!mh239OGzG6wzq z!0B!`BHR%C;G4-pavPMsB^WTE%e&h^zhj%5jH#rm7_Oxp0@(xY<^-zViaU7+v1?$(p$a*H#vmP&aLqNdJ*aU!UtlF=4D%Zauq3|ZTb7P{y= z6MZ{U7Z)(rE_{AID%H+FcRt{bV;2)^0c<1wd*ZQ?rDOZ6O~Fk(>CZB~7H;6)h8HYQ z{sJZ!1z}}j0rlNfKSlCVyJ2MA+*9w>IIZkJBj7h!X*sChk{of7}86()nY=|SQ$U^R3%I#y^;u;83 zE~HV83QaqcFF?$k32{8m7Y4^BAIyoHmJvi=|?#OHWG*#c{CGWtRG| zGZ9&b1b#!Y5A(?YeihR<-IvpA%dm~u$86F}@0yH@h8>1v1!f?$y`)JnOEGEIFEz)Z znewEEkoRjzlLC{PQ$>D{@@$HxC9s9~{^g$t?_&2_MfiFfH9xJ-`a$0a$XX>d+d65= zcj~dGAFOR0Cv_M{>*It6L3xx^7I^$jqjb(Cm^tj_)ob8xUMk4$q@uJhph&zQTXCK7 z8v5ECfnMeI0vl&#s!O2&)lWMHj?WHF5L|iL^c?mX4}elQii^sKtm0z&gN(-@T{*8Y z9GDj61sj_C6QejNr5fxRT}38tWV0hOTzqPiDAW3|G-r2wfP2)6d`#LF<_rVRXzYle zo|^;A{Q;^jrrN*R;u##Cc&=k1q<^j=ES#5UDJc}huC4l6abU4fVw+orG!gCs2-I)r zcC;3=&{$i`mdD#uz-#C?`jSWyvaMcVuU- zmB%)kxNKXoAYG3Yo~Q*iRH%nUf2str$NzC@LI_jN#f$l~&Of(E$jl)R%^EDWtLS1%Z2pY}I*mTN-a;!) zLV{LV`Ftl71V6plQY6v1fF%OYl>es}SlH`X#YF?>l=$6OUa^ZnB)ix9LHb_*tmYCV zs-oe~gSGKucFISQwWqx|@dWiHB#|hIBXHxz1BTf(kbef(NC)7|Oy&(cw2)4{px28l zz338FHggYZls_}aIwmJ{RK`uUtu~&&gTs=meG(5)lsO+TH(s4ZEocIvw}y4coNy~! zk${KMWjl5MXboTexk%)Zax4<__na=s62s|kO{d+ajr@1WJ4$X6JNS7NpC*Y?0KmVJS^0dtvb=Xr1#HtkKdvps8hcl;J&IcHLU3jG0WxL?$PFw2{J8g|N5@@0F5FAoE=A z(UCtq;L;FmEARwXHvpA+RsFg;cv5+?cUCkpYIbFdn#KO^*S^i)mOAF)ux1{u!=L<< zz}??NloeSZHF)zt5@<>M$!o55y*T4irA5oLA?1FG zwi)~lx--~a_w+^PN%=SX#}A0j(sTV~6qI`N_wN>31Ao?zkb%0w9XiB++4~2pN{EM6 zbk=g+{R6VOvYwBZMX0S|2#cQN+WyJIEFgk28=?3G{Ji!{X``552ol6>22pQ%DI<>@ z$ly6V0}iYx319}^;-w7XzCo-}2e3A#i;q}>&$E?{&g18^y}OP>L0vztlLFc<9OV`q z`j(K=x-Jiw`*cHZyjW&Ln_9m5gU{)&Bki=Db6NS#@$9bi9_D|1-^dn(S423UP&#Gg z?p?wMzgCb7qz!AW$+z~IDc8={XC*-puTgrh5=lX#o5*S zoJDetD{{Og#j*Q&%dR2LF&OrX4SAB9KzW)G!An_F)yN6KU=EFB_L7jv1L*_k3-mkkA>GP)pXS6DTyLB zfMKJtam?7@lJYP>%pqnukyKiQpYJ=)TMy+A?#%b37FuuJIPdV%SruWQ_Eeec`HtTj zvnR%FcWkBv8tI}qfo*ezBNtwtH*r-7wt4H*ZJxA7`69@drVvw;I$kg?nF4H^&L~M; zcOI|w46rl{+{OnMtN^=ZuU@l*>ta%oRc_dl2}Qq*6(CPiClpxkr504w%D|H=T7n&X z%7Qx10Y1peGH>X_lzNPP3bXt&flkiTd8PGMw~Gvx7m48gsMh8uB^RCN+M0WSFo%ZGg|=UIPgSf zSOy%^d4bI%A@A=l*}N`2GzMAC2Er+*H&#$_jw{c)9FTf(S3TwmVr{>oa^&lBUXwr$ z9G~#vVs}_AZ8c9%^;LKNfnnpHgSEaD@c439K8ES7mM^n*g&UIzgI&LUUwvOk{oeS- z)d8dbn`FuHzetwM^vwT}7~9sKbi{2%+&-nUbu})gg<-~`%Tye8Js4UqmV{nUKrgW% z(-<=O=I`N&7Bd2XIhoPkXb@H-O3dni0*Lm_^3|8UmAxQ2_q#aq|DluP`%3-!K>z;S zJdac>mFrQwFcz`jDCFz*WOe*j&4W>`&RqsTSm*uS@r<)nO4M$dh_wT zZddwc_4(WT_s?fMD8q`MA2<`jz8z6HK@q9fVW_#Un1?V4A2@^21SVij22swu2kh`a zE_2o(<5`HtZwd7jrWe^rfYC&;0m_+y0>P#YHD&hhp43k`Q@;Rp2}%Wlf-Uhz`$#oS z+V3Wa7D!WZxER^l{z;r0;93fSW~;TE1z^kF&PjG*%bg_;LfN3YodmYCJBK{A)txe@ z`jg}kGwM4Q;=|#`CWAn7|7~PMS>HUR<_42IKu+}y8O*YC@7$b)m`u_*mJ4~f)nay!@?rmrq^%*q=zgB=j(+oy=%SOhI(!?;M}ysGJIRg7 zZ=^yXs%6kj`is~qB5Se>8MgDV5^p`OWpX`@Um7|Jt@tP50lxN2Ny7zbycRBSgDw># z@M69Cl81Vtu zaE*9qG-Rf~;oH|#mqz-uKvzs0tX!8_sk=BPO2!xJ*b?9; z-sQG7t1|>1Uz&AXeV*PR!!ktEy1*cv`e&Xfh|4&-;O7hX|LapsQ7bs{7RF}o5rek; zKwKfthv5)9muOjC=y5#t9gH7&jZe@Z1b!P6CkIWsqajd(qWv1$7pCS#Ni*YFn zjJ|M;<@^#cqq+3J!W0{dk2hRa%T*Og%RU-SU(TQ(3`n1o*eAr;i5V?lCh{_737z!B z?t(G3Cj|yt2@GT{hO+=ZNB=fWJ78mC$e)w)08lyxfi68WJ3#qOd9_`yZmYdFJ2KfS zGoQVWl;2;~ed-e*uUn3&YkqSR_xh%>yv((2B!;_TF=sbb_T{LVG4Vgv#d z3@039d>95(2^>b@exoPlT7yRcglOfN_I>iYl_(4-NVkoVOYk?~A$jQccvhy}&WT

sl>xSwA|W7kG1UOXGynJ*4+bIDv}M2Pqc^U zngbMKGY}C`x4f79QNHX+rj0LepB4*u>z2+?YZ+(5b1BVBlMF58enR6dguUVzyBA zO>Hj3f&}&nm2)r+uZNEUn}c1OvCF?fnN2V2=pNz05xy#IW-JLux004HttgER;nO5$ z1JEZB8xE9zW;~rzKpdU=qHpJ0ti;<+KnD#6-LPUUh6It@jJs-1IzeS;?}>cSfA3RB zPrIo7VD~IF8OM82G8@Cq8KnTgH@(^P7L9Xni|qJdKrFHa3akkm>gOJN(3z&+?4vOK zS`N%W(UpzS9>@udemwK@)V5k&%*2yY`4m{@g=56$(w{A0<%B`+O&GWwimI)KF<<)UkOy56i$Kjd*@YXhCyXc=u0T<N52P9wMZy{a1-pj7GUE3dJ5IDP;%DE{v~FkK=ImqJXMiN#$ZqOX86FscoXz z1jL@ilP>uB`p`JLS*FZL*!YW}#^Oy?inRKNy7UMoBBw@QX-p&_b?Y9fikhNER%Px{ z{ziXVc*~tYR|(+c%*%u}EvP?S{fy4fcQW4ZhEjSb^|pnkujOL6Dbsd~bdylsqF6G! z_is?%@Unip40`pO;A(o(YuL#yo|17uo^Ol&_|>vnPxnyv?-gb@K_gmqKTgz5AIkIw zH?~q4X16e1xCB8~3DTGpkB4m5GZjTRHjpxZ@OSI?@G)M&qvT|4x1?9*0>;EuU;locOOmroWe zdHX9`ZCcM#Yj9HoH7FD z!?*QwSmh5HcY<&YG7GdeBlJEc?cYh(8c_>j1%s*v{)Ahzqj_A6h>4=7()m|h{^D*mgaB2Iz}hv2uKta* zgUe{P)HgVaJ-Kpw!jym&K14&PB?_ol1z9QiLspTjYqtB7>s@?kN3ar8;-s_-JJIuK zA~G#29~}FMyup<^Rs&=v5Ep~*G4tNPds(^PPLof$2ffGq{uRFHfdxIkdpq7W*+}A^ zb`;S}33l;t@0tp+9BpAHIw$8q?3;l$KyK}EG+&hf3Cg8PM$?f8^FbMXb8OAkYkYCZ zvipe%YF@>H*sf@$_t%X?FH!)pCx2rtOoM@yJ9%&^SnIj_!U!mY&%im!7SoI&7}7-Q z`Rs%V7Uot;K+ra{E2-SvC_sA;kvLN8mk~-&H8JQPRoSNk3iG8>zCgUPNCNww`cW97 z?E1^!nff|i?#-8Xu;ab$gG0gDB&DUpvyPbe$xg=GSn(m`%JxcyX#q^ zvv9ULcIX?A#Bj~b6fPZeh8eD4$eQSJrZPHpBDG56=-6$3wg8lQ;%cL{i6TITZMBX9 zX*kMC#EdiRguC^e{ah3Y==ddhH{glkLWSdND3P<0pr~B0I|&-O4*T)6unegMzX4uM zOe0NmVXF3uu?nDAnrATib78JIFzmuZbdUNqW{zpPF#l|pmsv5(%tZ0s@o+BrU!4Ee zP@onx(BxI|m&h|NuL@PFl+1ATxoh`VpI46Ey#XMm7xQn(A&ER1y1@*f9*s^)6VuP(wP@UPklfA38 zn8C{qEh5jr6re(p-TK5wJ#d^?Xqo(xNHGxI5|>MAg^#~=x>QmI1imLRPm&Tp%l#bJJcJz3Vi)xi#QM{6JVQoGaQDk z=5c_e=7*buSzgo=X6QFt%nsRUZa9Rrf`%Km(Tz-C$grM0 zt9Pbp#34}92>aviCTtQ-?XH9tjvMMW%<1gKvZ8zit>Xd@xI71=qI|j&WYGFF*IOCv zuKWdugcBpxKEvi!{Zb#~jbdVORB)up6^9xPq*Hd#wEqZBdm1})uc{d zWzRNP;mker0h-!+%7y1FB7Es)Uv0LexV5p<#GhZit$t|Y@gfrGBPVSiwv^y&bl%?w zq}V~nji28-FL|16GJ7nL{Y)-1O#!w8lm&6W=ADgUFf32x8dUONQPsAl(_DwR7_J{E z)2kBOV|2`CE%zk1aDGr({t zd3`&BPINe{!Y0PFbP$c>sz=YX>`YTBP9Qn$I>?isuO(wEQDUU<%=7pitVQ!!s8d}; zONsrCU~W2Sf;#7}QEt8r|T z*MF@(#u`VF)5@5CemUaY;VZuTO(U~Ha;rD^suUjEI)A+HH2#Z~TL$=a_Jk&NWn~Xg zxZ#Y#Ao{tb+U;${Mc{#epC@a6ff9$IJV?0;!XNt1#}4=WW{ytx>G<~S-hbK^Fju!a z{N+f(-(X#7i!tT^`E-8P6i;*8=K-)RUT}e9Rr^S^{;{pT=8VvsdsljAL7nnxU;Ft= z2ht;DO%F0P?#1W%-W3D6Eo{(Y65leaYp2f)cAaB)ENA#x_@Z>&{hct#e(g#!ySAwz zouA|;bmEJwXf4s!Rj(7e4VpubiV^28$3bNyVws2O%pGz~c-pk-KaKZJDiC8ij|iRP zgE==l_0n#55$WOy9dh1%==4~_&3z`ur`c4zRva!DDsP7p$Hr~YiWot*D~lQ6tQn$cpl+Cil7K+ zCL(LGnu<`k2GP*%Vb$QjC=014pMGsleu)EGB5X2m**YyzrK-m-F|wf+NtrN!ONhF) zXHX2j4=ftDS2UpuifFs8Z|~-&JYqF%{;%ENwbS_?z&7o@9e%@NsWc9p zdX5D(+k5d?Mo|z0$OztD9jB0R{Iv{E8Ll=0@yB;Fe=L-uQPRr7@G2;@kNz6F`EHl5 z1}06QJRvOLBKmPFQD_<-71_QJB<= z5}<$TO3sJ*Gr!vD(QE3%D8>>VR$<6+{Cv+~5=AB!0Pg!YPqAEe;D}s>QJsb0_vFl= zIFg+J>XCv&W6;k~ijgUZH;g~}fY4`)^kG8Wh!cFEZ^Yrq5L^vEB&x#R6$D|wYHJUb z3;6?>>|MIKZxn*AfcxZ8yU`VK!AYRiAbF$PBn|ju=_?3mJUc^1eMZb1S6a7LL}iBY zd=B2Jg;v_>JT=*+BeB9Yci+By+y$<$z@;39PTT3dcgax8c4#d0Y6cbPs0Z9Zo{+-! z5$#?F=|yK)G;t{#Czne4o--ELg0%$r!#mbfY0cAD15Mu5)m$|=T)8@YS1Z5tTF8Dx ztF*yS{SmP>PkN$p1-zm6)xzTyXZMvUS5B^L$1gwqy_sSW%ABPRlo_kUn~fOpl-Ce; zd8wWr_4UBLt;ZVIB3r_#SpmJwr33s|FvROFMGwbodE?r2Ng&JC@f1D&?1dKNC}5r* zdhqF2-C^cx5{HR)BX#`br-`pchF)%_ictQY1Q63y`1mo&L1F?8Sk$D1Rps58~E`5+m>VhuQI_bES&$3 zrB&9+gyU|y4%60Eu_#5Wrmp$`M3oj*H48c!L9ijr-E1l%-k$g;cUkJcy!i(#FQ zywX)h(X3VTt!CvWaJ?uu?`L`9|DDzu=U3F)JHKP+*4wku?P2CB1PX)h=7zu%FO?7M zzs1jK*dMmFwU>oMwZ}vCL_xLGoh&A8!PiaW>D#u2Lsbz5WI4Qn;MPl#Z&{{b-bB3$ z>3S15i;jE!ybgUf*8#jDhWQu zz)vv0c)db>dWcl2`-pa0@BXd%d*~;gvPWGG6mEJp3ArD0IJ&Q#X&;u*29F6V9kIVN z@XsOoL~+kdQpr_lfw*{nTU$LFGG!}osGxzVcz)o9NIoa|H@5W#{74@8d~R^@=+SIl zQoTV7wY!z4l);5kcrQ$30>=TOn*e!-lpYyDF+J;KFN4y zVG}(lWskUG6z#?cI$(OzRSl@jFl|CbjMM?=?_V3)c5-0eN3W!W>cuNJ>gFLZk#h=X zk9&s;6}&bwxLHownb!$(z%8jAx_5Vm$6+72Wgkx#7bOW#c|b99Xr_AKi3m4^R3b4yTh`M;Nr*qU-OU= zzEO_S8B6u7&j8ACq{NfH%*JaeXj?ZQC6eF!VfuMGLuilIpJd2)X1g-|hFqJL}l<=m6W;}Kl3lldi2tuHWs9aFobOIJuJ zV7H4}w}2+#dH$dQ4m&8t zKVPk}0&^fZUk{@!*hcPcB2zY8GTRR|%Os9@T`_f7GP+_3{{B3VwyqzsKE_uli}4=W z0ctq6Ulow}$Ap}UHQy-r;{lpU$*Umg;z;e%Ma4i*sa2ClkFZONvTE`IU5|vdUW2Sv zE0G8CCKqM!sMep+I}AeQUr zdpTdLz4tD>W-Ae{_=Ts0*=Z)cB%Rqj_PdGJ0aGkF=yT}PmyGR(#|Um;!4cCalJU45 zYB+4bRu`_kbARCp{#UBe+Gonk&Ty&ezkS~oD>^bsPqa64QQq%1c1e>K8MIhbJV_tP zZ;Dket0b-4@YGT#gN3vJAC`##F`+-RcsHxb9ShkV8!!Fu)!c&SCoy?y*A&u$^Ik3C z`n8w*PfUNM1h9M?EnYQy4d!ujpQJGq)b9eAz!XvYewQ*sD7O4XgRx0s^}-~%e@$sr zLNkD9Pg^^b#Z_#$h-d%nTCi8J-v#(a14+z*l~P0Vg#tkb@_m3`G^iCy+?(YmA83wl zw>p$*qq2z1erh4eS|@^S?!byz*k?LTt~<8bZ^9MUbp@Uq5Oi0;l)$z+^44gWHAuNK zYC=})47AliQt=2-1D0#?^RMxzZ3Jy~WL76U<01?l|C>3^MuH2+N{8ez!Zbq)v?JpO z+BNHVrd;WQrAA4V!i{{-vf12L&vJ`0VEcQ)-F zICtk7{>;`HDCdq5I?e#HQ=DWu;{&1VNrCZahB*<6_d`idd{BDO<+aPLrGIsi`d9 zVHQpZ)qzd@4`b)lo>{mq>sXz9v2EM7opfy5wr$(Ct&VM59otTJuYK*4wXbuZ**p$#I)GLpUt7+x^4(@@Q>5e>7EyH7}DMuPJ9*Yx(X{r z{kAxkfF(?2T#152Hx((my$*4xKNY;Zg$?*gw@?FMNyfboEqT%us!#w0h^o5lQEzG4 zFab4F##LVz%8HLx+?G8ua_YE+(voEJvyi0zwv_|sPyqE8J~Q-4LwC1c=odxtQ-Rzf z75EzUM0am>ZU!$gIv5yykL^#N+M|2j>DPvm)jey^m) z=17rN71^$FwH7qH4ikR6uMwT?l3*=U-xEu5proDP%%IQdZ>gEc7qgMU3LtrS9i=wo zXwJOs+1$a1`?T^gg;JJW+cGteseI&fZB}UYNvC&u@7x7TAdehvj>XDiItt^8;Bl2% zZvsFK9lPJz#rdm1L2AtSq8HK8ZRr}Hgvb8)vLdGf*7!$%^TE!u!enXtp*0RDwrk z=#m~6qisnV+q%RdcPI3`Z*_o4OL8G%rF1%ILz1}csBdaJdACdE z*nZg$E;Q-`UTZ6>s$}KY2w1+&_1q&a@nOY_Ewq1+-4Ur(H-*V7_S48#lAWkmc*43l z$c{SG7Obf?&g}?H8(gZVPWG_6 zro4MQmtSpj925djI#kBQo~}18s``G64r!=Lk-GtR<{V=E$a-p9Q!D?pO;mSXRzVlnd!xPUx%$v>GRD% z<0h>5;M$~F_MK6wUQ;Q2x_TKA>&)ZF@JR*tPdj(0PX2~4L4BWfbHBASwk+8_zajH3 zJpH|>EMwjR0c{Z|5K~`qS(R+1u493b5j$NMdZX(GKK$tZ{qo9`m(XevJ%s$_M8WP~P9C?a zr)`$(X-2DYzG!M%n#$wX>2`@COc$3^350fdztLG~f6>C_<4uJ(y5Hj1?$*`!ZImCd z{~{;Of6#es{~be|k%94l9hv_Xaf#dRa_jVMf0uATbOt~mP;>p==c!amX@5rGp6S>2 zbc!@O`GL3K!2+Gq7g3_FY3{1jN#PKdDbhQAF@JfGyFvL`baPeiLNyOAT&Ql50p@>uX2zEtw8p`|}`@YCRRIee2DK8iRM`?G1EV53X-9&Vr zOKRId?SAp=;xvE!;NQj3Ui!$zxSvAB=%VuxR#lJ56Km z(pbR0WJ3lUNE^7yC1|BW*yjmP!PTvh~Il&4gN28_u(XIf!hI z1mrB2l0Lqu3$Y5tabB3Ud_T?MYSlt77=%Ix75a7u+kto zu`Y4-Bj_Q(5UF|dC(G~2vH6q-Sr)MNP=>k!yME%72`3-MA2*znzm5ru0uXJm^%j}+Rz}cG@5SB!YIpTFSE&d?AhPe>UudkPo0ut-) zCX8gsJ6VW*)09H(H9F^u4_p(}Ai>O#@3ZwGsVO_;pbz^6+NVPR4nT<8A`&y9fb0oz zp|!Jig<1l_dmmSdk<9emKokP7Qe(bA{i%OhEhPsDs|F;8#Hyj}Y9INQNOvnCjkWIod6ft4yG|d6etU9gZRK?rA{%e&& zotmkxIKy`N#gh^Gq*jMH?PTPyj_CE2AF!=j7Apc(??Q8>nxdjqm^|hcEU#j0=dntx zL2OatV8|4XPKCCOVB#8ynbFFCS(O-pw^GaIlsWE*3U8VRYg8zy6q6X}1l1+%2sUzU z4DKtO10udlE1FBfXlCgyyV*@2wlfa4RW_+dBgqbjgnW&!-j>L;@hbU%?Jnmr z@+1?~dWV^#o1`U!CXE^D4Pvj}USBBRh0JLYqdv%r^jOt2IrP-+#dGS3YnLFKB@b}6 zZ%RE$55?m6OV{R%(E}Riliv#}iLUR-+e$(C1pju`{(YHR_5N@t+Wd`M@w|jZOtX&h zpbMXclp3^IaU7dfi*+)iCKW@P#l!HKHYs&6XOk)saL4`Z#YL)o>{hh3I_oy6wFD1P zchRa~WSAkKK~-ohzg`t2WFxbwuNtKEY9WngQHAxotCYXoLAsJ($1?K8e`;CaC^&%b zQyONTBD;S~r8!ck&}dt?>2vhDBm;Qm1DthFCAsJ`4YNkWLHt%~&}TWz;9>9!ojNqq_`vmG|^z=^AXCF^>+TfTjX#hHd$}+Yj0=2UsjW9JJ5Yr!^2-v{P2(= z3*DPuHuhx(8EFsU{N`Crd*j*EHvlO+Mp_hA@&z;HH$}EKF^m4CPv6MQ`0{LQcv;Iy zaCcpTok>m|)W}7AlQyC}_lI0V+Lvw6v-i785CSq<4%~j$hLc@e#OBL;Ew!j6>4nZ@ ztAV5FLVbJEiqjFHB)T-dQDg>Q%I{LyoKyD*oKJhS;RWJyC){XbHUEJanhRga+Gkzx z1fqZ!I_=4o-8uVEI=XD1bTz|6kw4M@=NdzxTc<8=oAjV4T2avK zew*S(a0ql$R3Q&Ho`q;OZPI8X1$J(IJ(+7lAqBt|cTOs^ck$kfHrMZJ&-L=CRO zwD};h_9z~RjKiMD^nKOixewb*o83a80pfv>Yszc^>8Wrr@rh-aO4T@c!W>`Od@RtBD z44q-kd3}x+(!_#;60R5N`A!F>$*BFR3)KeJXp99|2lw&v(l}Q5K?*wS0TnMzSbEc| zSYy?&LkVH_^6nHZpMpca&NPh ztYk96UrtLUnaa$POU&Jm zmadwMkU;l7ajPnIyV8e4`5L{RwHM>iAf35Ite|q};h>T_=D+VJT)yixv$9spGl-#j z>WK?lB}76Vawm zX`M)iYbK;kO5u_M>|I(FR&q6;T}&9SR*s5Vj9aTrT0s7>&Qlc^nu!z{;K4?Z)+k?j zdbrbiD>dK>JF7NCdy7(^2CTnVzL{=dU%I=9c3X#e&3QG$#L?Ex-R9AqGJ{IHyF6|{ z1CxtNV2~dKo^_VNjG(tCr z_4c5m`pg5pcS_Q~ub{l;=)Cz|GOWyMwjQcPBC@J5oLNpzX_V2jOro-%pphVhMZt$K zAy&!RcVok9*Mu&5M}M9;meYSE#+T2^dx3iPYjf2g9&SaPSfxNTll(e9y>i=%^Her> z%E;>fu|H|1gQ`%AdqHN`--^RcTBWKtKT~X!v44wif_Spd>*zi@UuB`Y994MafT;p& zYdR^a!|3c*d)cnP31aj;>Z=a}?UACZ5$*3QwgkpNtXs7_2d*yH)}yrQ4KO)2acg%^ zb0Oi}kMtjqKa}o%G+Zx;Z2`l{q`tM5CwD(mog*{V51RPuT)^A8`uz<5yCo?%{zr|$ z_FvtSI2ixG9e3#@oHn@L6Ezvz4JkNL5budbKxO3N1R)(a7e}n)oO?5++HizRq@OQP zZ>Dk6NyA1;bL_;|L*NdK*#&5E4jpQRb#FM2orZ<*b1Nk6}h9`6>f_Y@^= z>OkSTuj}Qj8OZ${(5B5I6e*Ce&-2%p6QvDyC9EGqJCp@>Z|U9Q5s#_fz%qe~XYdw=r&|xtS!SVN?<3Lv_h5hu+0CHmGx;x!Jgw`| z^>&d6w#CF!g?TJ&%yaGZ7PR}_gmjTPGHabcBnd8l_;j3}xicmnrn$;^Fab<;^a_|K zppouGO+Rkp7fD6Skgle)QS!w~A+dHqy%cK0TD~4M7~D6&iYuoIU6bo54(2ZGP8TLR*2QbgU@ zi%=MUF{%QtZ`@`J+n3n}`#TK^JS{ESFK+0gTG(exu6O;k;iP>nOhj^H?W#@`j$!{j z-izP#oa)2a1Z7dxOE($D$qZkDqQzs~c-WF%@yV?r*?g=Bp@clLlhAyjFiK=0ErIiSpooIz z2IXGxuN@Jsm%lB)>Da|NH;-HT@&C!+D=>&Uo3*dBX82n=s7we*gdJ?SuDs3B{$EV= zwl8(tdTzU9AKaJX)alCIbm1T^D*Iqx#mhZu8%q)Pi)G{%eq6-b1!xGyOPI#bJ&X_$ z_9o_P4@hls*b9(4mBIJGTN3Y+9Rv0Q7#G%c3_H`w$z(zi3o}sNzD&w061`C))na*{ zHY*v(gdBR#!xvecdL{Wig72?BZ&>aD$@jc^g8v5ZO!km^6M2zmlAM_DpTaoxYVvV0 z`6OGfgBS?sn4f7&)X=W&`ZQ3m(gSV#C}ByGLrquf-R6K}tqIguYlm^uuvutP6`AN> zjDx3_$(~G7<_)y3>e#1i)!y5Bq7=9Up9P+@Mc;8)%zOG*Vs#ryi1Gtvdp5j~iQJVU zGD^)Fpfix4ZE_6HOrrl57|qtxHTRFhJw3QM=qMLP|HZyH_fvQP1f*B+%KN8^Yh{h` zqm3AmVIh4ND z(nO!{fD_U_16Ka9?4d<|5ZoSSFYV8Kqyr5o@ zXp4yooBU{_#&N#QBQ_QJ^#Z|OO(r2jkr#w4Rd;^ei&|$W!2X;YwtZ6m%@+`1;{y&b zSvxo{BaiO*1%oxloywkOFBD{yAAPoi7M_(~-&z^~(OJ}cP$P^-%v@%H=*V!mwlKIx z2OI;&e~&{rpX89JeORQROS#6wcmX&iZNm^ah7FLGk3~KU{|MasR~msLenQAjs95O~ zEJaNg7mC5#GoYqNr2-H}Li{brl8x0iwlT*(?)dV;gK*pk;KeM7AE2QALNLMXM%(Z( zHgAm0b4lVu8$I66_Q*{U!>+_c_oJ2(^o*jx0S+vG2_coA)w`IK#}r{h^sioRnc3DM zsfde3j0k>*Xj7u%nBAJhkq$hzH5wl8#(2@qI_NFE$H-rcuHu=zi z<@aFpMoCCba^!dj8G}a>`-he?3r!qU7bVp~)z*p61SvQ5LEQ%glLSUPa2MnRT`;~3 zUP9u`LE7_2WqtmT?!*y+ITmJ_Dc?bm6s+tpjm!+WS2D~vOfPVu&yo)hlWNt7Ju9d zE>RPnT#Us1YO>6swpfiv4W$G|SPe8!C7vn}qi4)?Ji*1_EL$sMh2vymh9o7rAx#Fy z-M$4?jBg*_bPCFS22#9G`wQV&YRZ9OrW5U)+A8n!+f-N`YBuY_XISr8$~t8GTBlPi z#-^onQM;}UP0-yc=z#3c{>H_Df>Tse9P(a%CSvSoc)bi*$xeDWa&y1*$Sc+Cd76iF z_$eu7i(3=`4k_P8;A>pMpPvxe(e{Dn3;}ZhC@4)S-2*eQU;pvTr;G;sA;4fD1JPBR zy0C%f$AKEElBdPfol(y#((;I6BO{+Xz`x}3L~aq|6M+3Etl<*MB>h)2llIF|T4RxR zh-j37A*R1hhO9d`A_ps%-WxQ{GJ}|zhHX$h7bHfp=~;GysIXNP;QCPRn>*4k~uq7mb$6~hSyS@;CuZ- z97FJTQelpe5W96e&|mK8h*AfL=9n6Muv_o72YM}tG-{mXY#t|whSV{JjnlB6@F$TA zgx5m5c;QVZZIlf%MnX{k5x7{BVQo`nCzpm*GTXevIT=)atggl44uOgXH1V2mT|Cp6 zv^3uIU!}*k?uE}n?B3Dz3;+j4<{hyl{3)|9`#tMsum!I;g%4F)cfLijId3)>&0agyzL_60J6<7?F@IOGr$)=(HvhdoJ)uFQ-!vtt{q$=EuA6 z?VY_%I5SPi6$@8#OJ9^uBA~jsrc5;Df7*?0H}0qdBWr#!&4+#Op0b~|N|ApcB+P_Z zHWdc=$@59#TIrs#1o7)%g5Q$2P>B@VRYe#haS-%VCu`=!tdy9NmZ<>51vyF85+O^Z zs7uRbG{V=K7tsFo^0F3zK$(wTMj+eZKu@IY6}#bGyu4wiFJFIKFM6e3g@#u@Oma{2 zrQ?|&=C6Q|>e;@X?3K8kpk@ibt)XmE@z~}lqZ>)pP*1%YY#1N_a+=T^0C-K*%Pz{& z2tG-la)BE`IVAb^>Py112CM9z2CGgb;$BL>$a5OeE&8ki`57ORZB({ST4_uEzN~?` zkndT-u#n2^3kE7{6_CIV_*=zafrcdVeQ4n;(QY%^ePBxYzFR#qo_zFQEaH(-`nbHp zOR^WH+&wD7%OCh4O*WiG(v;qc?DGg`IXOQNLx6IHd-VK@1rR{Vj*Rh|(g#qG>TZ%w zt7q%9;JDK7mbx;Q@aa6G$Nt)*s+OH>bWBu9b8aIYPEISr3!^-%d-Q*7rI1TP+Mw!We4WX-|@tdu)>8Rmo)KI^3K4em>01rcwePwPBm(dhj8AMrIPt z%Za8IOwCnQX`Qb?Rt$)`*Pb>JDS!6_i~5h@DyDx@={h=XVCwt7I_|XEwV)E4JqmE>`4geO-Y1uQ$JAXs7H;GYG-R?cU`BRbJ{Mph1Y+=8qu6Xg~Ab)jrxjV-%Y4oOFn z1UUrd^zaFh=jLX-@gh4&ue@+_@$=bTARMExte~SD_h}12`d5$t_s}&3-EEJ2X%5kQ z|8YLZ&>Vfyw>Uc4lVpN_oheWWDbouHKd-T{tg@eZ7{-;$DM^ZMNwJ2^49&6vkoX`_ zZPrmj_MAt?ro7)nh_9!w+6@{u`EkuGnrJ_sR`cq_BAGL0;}y9+dGbS$ac~zAK2;Q5 zI&xfXml;KJ);Rw^aWr7N{x$(qxSQHQc4EoRt9*pRS%*TT!vJaI(ngS?x=O*SUE zTkDk=s_!~e^VitHRXa$=JV6+@bLo=>h;g8v_joS$O6pg$vQ-<@(AWwxLcJx94pjEq zQlMfS=)5Fjr<-z8aYZnON?E%iETT$}v|{lXXQ$W`dYan!v?LpENj6WdTPn z&e2H7{Xwrej?R<22bW+Cy}cN*$=FEr%iFXTprQ>@y6K;bYHs2z%Socc_YgZKY~hn!8)h8;@S=l|k_>x6e7gxBN{Z8DVafk8EG+tJDynn|4c+RE zfFIuSpnqby|DRZfxAV)d@>}fV$K~_$dHtKB1o?l(^8V9T|Gy67+zqi*0mQSG> zYUVredzIXs?-jY;5gLY;z_oJDf;FFq3E+R^@2DuwzqzjeD}AS!VkB-hIk2|y=F8r) z4^Vk~CjAbTpHgdmzE3V|AT1%?9>v1@=9Ya8@$cj;{nSj2M%O7Sz$mI@OP80~SErJ5 z>NPXOWN|ATBaOE3`bP^a8lLIo!^mb}gLJ{JvZ;!^hhqwh?ZpsT&pA9qCHio-0=p`H zCzy;$z`3bWF0N`)LN4OSmqdLC#fmJfY*QxD&`PhSD74nU=7@2lu8D|^uuteaz{8OLtR-rw#`kJ0DdUJ5tBNSED03fe z^~H|3ar}`x{${p2*>#A$tJ$i(_qZZ-a@hLFL4=W?Y8rpJ=WdPuH<;UpY(n~sZI*U= zDqTmoEC2ff<=4f88ejFzvr4f~Le^C{{CvX}xDbfv1KrdUd}>EA)ItZO`=nN!&WgBB zVNy7Aks+Sb<{oz7?MF?09!`_;fNqU!W;SYEDUTZQt7-~fezG6 zm90zsh>(t{z~Y2Ae9nzHX1FJ>B~Q&(;oZGAv07US$#xzoUN)NMSw1@rnq<;59YPxs zn^g5ZdfvdaNc$%}G?2`cHkYMPa^3aBqrUeJ80mI|axF+oNF_%3VgRrZU{w|%;`&j0gB?*!t5iJBFH&FBgr9jreZ?sm8rjdm5h42pdr5!TelW{yWJ3SBLp zC`V1i=U7A=wQBD~mQ&?S)YI0cGMz^H&ta;rp#C;0R@MHgHX*K3{gnu$?aBOn4&l_+ zKwF_AD0XDIF#0y5Pu!08k?tu9Ha?WiwNbUUxQ#;H0n7PrWKw_#ZlwVQg$!KPA@g&M zReOA=hfAV`!gQ}mU$x97TMC;iaPHHV^=5HV&_+Kw0ORV&jT#_}ODTBb14-wWSRX$5 ze)3#Cq3>ZtT^pIRFRODV5YTl!oN8f%rkda;y1nT}MV$P+tLBRR5iLEY=5LeaCZXHC zSJYa0A9#JrpFqa%kTZUtGz01ITHIyuZN9NPNjDPaCF^S{Sg~>PXM2ZQzd=1 zrM4;_q*CJ7Q?!uNIDM`Y3QbgJ(vnY(vWsFh2upkeA0zfc7NLfbz5i~w^3oa@b6vWM zOV`B<6;!)lt}MO@$1mIld)9O9%>csQjhu2t8K=w%AqTpa;U)!58Kf5AM?^^1TqX>7O3YVaFU)O-&=yp^R5VhpHT8gH-I zk+hNM+}ifziVgE}UFTAHgy7|pdSEj_iHp|HPUf&Kc=PphQ1xeVtI@nD0q$;WZ#Nfy zqbG7pgdL0^EphlxcI8{vn<7tW`IAoYHZFNJP;1xrkT`P1t{1`ywX+Z;S3MJ)g4)esjudFguT!z1Fl8>FLr}bO8(CH|r?IbdVA|rgP{cL=UB_E41(_ML5>x z87l#RTsQKL5F|D5Bd>m8R*`YNwC&$h1{3{Z^3^=dFCzFZaaq~s&uLVY<t_;Suz%0te?I)NsQypIqQEh4$u z>qakY%Yuip0|`k|+X{zifNhTzoOAc~zE6rh<_6651ycJ-oO@@Bw6L zBU>vwrrH``m}VPw0Wl_WLLQvVfk`~&#YXbUlFtL&SF(Sl5KbsmE-V$|!K;I<)>Ub7 zlB%6hM6Q0gw}%BE11}A}I5bs9mH}iOZn;R4ii~P%GY0S7xTTA=Q7%>mM}%w<*u=BCl{NwMS6i#&5PBgZtP|$yHnoh>UUs*Li_#Fc&hhN z_XWi<09Qcb*?7reZ zkdEk%kB!oL?BrjSPpab;ofme`Omb~$giOBlQ@JOgKKq+AibkMpWfDRqj9`udk{}Xa zlI|J#A6|G{-csKBlnI3Pup&7L9Nx)*KO2!3D0+g(hYQETk*wB43NW-o571I?14?$q z3p8rDgtg3MZO6wV0#-|ML;!FNOL%%rD6d(m_8FwicskA^Q@B5uh@Q51&~T38(JlV^ zcWw5YgG9HJCY*dGaH=Bx105KPy29QM1;OHL(fw2^hkCzgtuTMz(BtFWqI(1ckMuZD zruU~B`F;jYHT;6I>aNfn+?JRT->ZHeQcQ|BO1rm<0D7IT8%dL<@Dj zy+_leEy5pYy$EMcwrc$sLDH(6&T(uSs_z9C7AwxsEVF#h+NpPVXY`w& z-NNL_QCU;l)DbI=c&Y25+R1qm%SRP8kW8oCc#yPflrJXO=9@^qP5EFdVrHQ*ha#T4 zghIEE!zXIQa_wF?NHr^r5 zcthx4AaBU2m$&D+Uys5WU^DGVg$Hpkwn{ZWe|x}7aC^Spd)}9BKtG9U(c;=XI3s~H);l~EVz=8%gn(<5nzCM|pXPIRkr8t1^L&GkHaV-!q6LaV4LhG3fY$pQfj92; zEGXnF-|5t@IMlljA=b;KhSpsV?k8vqvHdZvN8D7pG zaNo%Pu#$8icZhxEonW4D;A!00jL=BgZtiMU3tT<1Wc1dQ($m|q@ODkPS4&o;s=BwR zJ+WwZ$n^bc!K~mlWVk_ZdaAN)QoED5_83Vfm`E zs8Oq4iF8?6;VGJF6w=TxeKF2?A~>QZ1BWE$ur~X+J|w=xFQHWX8r!h{?EqX}LYnI4 z64Jse#XyP6o~tVDF;w7g5!&JQAUISI8bmLxlQQ=f{Tm1gY_V)q9nYde z6qh|ObsVyBf9vyl2u=#Nb#I>_0+7h<%Ebe|TjMYD7{tbuFg0vJs-BPn2x12^^`AWM z)Eg*0L@S8iK(mt|_MXqckH^{X4IE6`i>$A%sSNH1)ExEDt7YOo%+XXn+=TcZxAx-$ z*AjjRTHT$7HOy@1?9nnDwH?lCX>Cg_#r3e}Om{5$i(7hK{Qs#Mg5J&kI{6O~RCcES zM)0yQv9tZJ2&%T0-DNAH?@irW?>ba*yfA=1;xG(IGOAEC{+S2miZYTTHY(|uMM5$E z>+LHPg;c53b+t=(w2UH=cSTBD_xODpwqjeJyGQv|{)T7YujS*JxAzM!Pw$G)uj%7e zy2i~mdIt>K)eg@!bE$mXaSIMYE%Nqr`YX>anMsin&<1K1WM_Tr(atJWtMZNE#=VAN zmugqd(%a#0x4U0-6#F^gQ|`cneSMW)=;9C)pMepDxHmAasu?Z8 zEK(h*l}v;{OXR>rm}DVgH}+MJfIgmQ56i>Kz?^owW)y$Z=hEHA(&#DJDjC$HeS}%i zd@t>?B(ONXxtD$G@NRqQ_=P?xpGx>(Tzt56Z>!19K55FD=(chNaW!f__RwruXSW!< zxReu3xX8BH{z%~V;NJGPgm+u1J)`sjsl>V4E|3 zE0Iy4ruTWGx0>^G%F)>o zU=(+Js&!>FhTf5b8`Bb?q{Z8^w8Wy))gL4HHkDentLG->LX3S}Uo_7ZNyh5!#oFTR zBFzk8H(iXZrl%`>TF2Le*ZiQ?ckv{H#X@dXir?MS8%lD&Z1xs+&gj2&Dr9eJDo|*W zI5+_IWkcA@LwygO>TJq`al0KPLzM3sJ+;A}Y!2~K)Rc+7LyhJeb;iNLQ!9A~r&TC}5PBO0!{cBKHuh7oBj7EL)aV(LXQsgc_*Y4t{j%uG+(mKm`To{)~l zM#dyVEqI(W#ev*UV)LDAigcxiE{>wG`D_g2kCPzDXR&#dL1Lp+oWnV56C(z8Au^K-;C2 z&d+J>kgv-x?rEM*Z(sgS;@8Y2qc4d}lo{DYdCC4%5vRQ@26A;&9d_uC(-jh(GFOi{ z&8Z{&Xn(uF-+j>mT}PZD&Rjg2X~`@m>i-vdO5=&S@WN^rxiZ@CcF)`y$dMQ|S?#e) zBmqz;eXf(g88fdwL;MU=WzS}zRl;WWKj~v?uOb-Q5X-X6)k;?Yhm&fC&M})GcQnf7 zK0%C|M=Sp0pbJ!kW;4|nSZ^_U{$~H;L_KRk{ybUQ{UJ2ivSQbbqH#5|7{zF&BwQm` zM%MJuVpOp14uKnZH;QKVmfZiMJ%gT@y6b*%alRSk%A9h`JoP1Rl&6&rj~Bwv<4;}b z{{o{@Evfh z5Qm39h|%x3vkb@IbuBFBn0wX%aXgQNW5ImOSotujYv%BKPPi@AcIWcAbOO7&P`iBw z0b|mlXp8>|orX+kn0N(y7!J}6r65Oz)SBOGYgOO`n8=m6LML+2D>>|WQ2TV@t?uIj zKn!lP4G!)5{D)r70W8&4QXpAkq7=s>GF;{xh53k_ns}B>I%tKoE*(}=J6BVai6T)C zm?!(5x;3Vx6cH|k!#eW2b87`hY;J48@-D6duv<@fvV}Ae$XibW#;k0+wVBiWY*)h)D zO|MYC^kfSXYSL72 zoBJjlLt})m?o<_j+7aPOxYUy($B6EMYGMgd5z*qn7czg#uMkG$W(Uinmh4a!bqz^< zLO){|2HdFE^X6%$DvkJx(vUmI-i{(p4$ouKXT+zfm;DJ$c@M8iy|3-3(pXPY!z8E| zds}9LlfmjA3X3rbRZS_lMhViRcOo8zwVS?-2`2<&O59}GuyICIVv{6)ILIM?AvzX? znUR_-Mx%2kg>;`(^e)g2DRu)*M z@&Y@E2jfwBFHHk+%5QKg0c%b8#Hv>XpF~r(%#5LYGcsz8?m-iAOUDip3ri5rL^(}O zdpy*2O)fL`lK=7KRac$N+bP#YgQS;=$3lNIMhu6!!?0JXqBoQ+BE@EVG%@jHL^n^< zi}HVOw)4V`=8W2s3Y1|epyni@dSb0O*v!Hjm2VIqPo5rTJ2`ITmoHa*)`6O!jVMEU zERiL1HJg@|uWz++8cua& z8pxkgT`~Ywu#p)DskYj7&`V>`VY8i+o62s;CSOYg*A{=T38*@~g%ADKBXGbllc_w( z8P%lmVqRB~Bpt1m_2w)cxWa)lXez zK2<(nQgxLA`?kCT?Xw*ADXo_xc?oEUcp=EyabO{r+M-P8mk!?o%4ni1u@M0Rk^fM; zX1A6Gtj;8Itv;IvTK^tz`joH}!Nx*iM^b^rAk?vZoZTa)?Y3P4@D<%9pxKJsgRX)! zP&H9QBa)oKxJE-H@(zmUyeZXs_nwF|xF#-O~_<8AzaUc(L664XEUs%0OFDNo2UuQ|*D||LL z21AK3Ihh(ObO>g>=Y9dTcnfCoY6kMG*>@dE0tdPEy*!I2UuO zUPn?&O0V6QX8h`pfQD2x%gmsOM2`l5sIoU`uCB&Ne{W?q(hn1`!#)&<-cNibRk<(G zmYV~-6E6$oQX!zHWv>+di3F1XlwLMxaPh%wF69>YZa_^`mgSp!AEsp ze#f6ONQC_1owwzg37u&giyEIUPRidhHiqBU6@LH(s{lREnc+Wl1V&*Y_Knu~ExD{| z#$@N8bd(+|(oTR^Y-C5&`tuB%P;E+7M}Va|*<&MZ=8Ga5Sd4M`5@}nvX((YWj07u) zv$5eb_ZV+|^arrO#goaI07*-DUxfsnN)sZ*nP=2<(1vgxJMHDdko7~|?9HPxK<0=4 z=8za)4?KD{WzhvjSDo`AU(Y%bl8}z06@no!{hiwygf>o5PC+Sr0h(P$=69F>8MFxb z#|cQ5TfPZ=S5Xi; zL6Ff-42_Luq3hWIWR1kX1#pm+T|MUcDFiTycqL2V3JnP(UXd`0txSeCSX7B7<5xMY z7Xt}`R0Gw;Ff1UPG9MGZ5;lmGXO~~FG$}bG7f-xe6*1sAX8RLBgO)j&v2oq^MPy~k zWV$^ingOf~5Zf6K{hIOjLRN-5$-4il8nnBm#6yP}>Cs9A5Jhi34?f%IC3d6hA6 zzS8Bp_#osYRyTgx{;;(hx1FM=?%0!3Gh1g7$k3=EbTEV0BB~6~1J!@)XVs1mLf>+ryvdx` zlH}@2ROK53+l%osX_un0dG2pM14=L|k@QPP;YJGfUPevXU24Pp3jigNN-R}EbJNTu zoj2s$Nua5>r>MpSG|76I>U%)VsynS)$$NW{bS1xSWB-G$HwVzLDi@WG2sdx$*BqVx)z9Dg}O$=YIupVVCl9NRaxt88+vfY-{C z(aM=tvPRu-?fS{oI z7hS!xn7)vDMy!5D%RO-fDCj7<)Bf2jwBi7Q&1G_pFG5Tcg4mMI&?ofeqErAZf4JW+ zUFyTeAvgrP24zbo4?0w_*k&DK5hfe>(oP~Ktbk);0T`Xfwd*)D&Dya(jq%35Rj6I! zD+kG@@&fHD&3BgQ_g$v(`Izb3E2kG7M$Y<5OQAE`bwcV`^D z{kk<|uojyl36RE)uzpZoJA#8=_INs9_GcD7R>pkNc)6Eadvj@jsQP)%v#H!!F>>~L z76S%!fP2YY{QUcWz0mta_pwjZ?FtaoN|H=6OH}M=Tzs~!A7(1sX&7y7F zrdes*wkqvP+p4r}+qP|gY1_7K+t#hO8z;^_5&IX+i1jdIwJ}F;{g({-7_oT`hMgaW z3nETfejx5xC}8Cx5$TZp=L0oYrhY8_dJaI!9Y8l}#U82+pjP#M(j)lxM1++62@eE* z&n57APyT)n{{FhUO~nY6>p|Z4o5V6t=IwOjG8>u&^5&PE27_$>+P_=EJHh4{@m=8e z{yB*3A;>Z;BTHpf=!^{*wwp$aj^F{jTsCR|D5h=4UV*C=Jg|_*P{_m@Rd? zU3uWStKkrOM?yS7Mexs%>jAO1n4HWl6v5 z@}~(=x=^v=c5&hG%&$~hY&WZvzDA3E0)3hpY$U!L`@oI{|B2t9 z@;UfG47q4QGtD1UWjU)A|5mM&I%DLOH0nKh_>IOVO1u(aoGj|37_N3SP+vit{Hn!I zd6enH!1cSwJI{!|IY3qmYLTCG@<{hnduvLGJ4b|f zAUgjyKE^ldRKSF`2FibAF9NeAL_8eDn>$0?&ZIG}BIk^<*vi?3lz9rZg1GKRG;u)) zx5b9hwd#x6!fo{xQzgsmw z^l1*)kEf39Hxl8Snb5U%!R%=Och4Jf6w#ff|0aH#LrTf^Q1pygEYTOF&0oc-sYLDG zxPD|SS4wN)#K*VehImbniRqwy)h3VGw^0j>RV(9%CCBxQ5%;Od5F`REn$AgO9(&3jKhUDb{CeAhX~;qZbku%Q4PjLEl3o>5qlOero77HQc;c zbaWr93gbqV1F7}s#r$uugiaBFG#CuHbI@7#Rv9192vM{eu~3q*(M4g~j1-bXGlMw_ zw({12w%|n&2_cE{THHRxt4#2DgY){TM83Gxf{ocR!=*zRY=)1A#q=aapS^KbhBn6@ zAB&7gn9y|~w1LT??Ql4Dsdsy_i3L_hYaqI``J{v|S~O?DMHkM$3pAu9XNvLc&?b!| zMH}MEmaO9|W;9-99xP|M78>2O4(z*rfV_zZ+IsA}Q5m>|f5K7-Ed(){7{PWS`OB-^V4)nseNlMl zgU*^es~~u&^Q#;4Y8JV|Iuz`1QAsl*3ISqe?XE!<8e69{4gVpzEL}>It~6?R6#Ptr zu#ub2)A*0cs5^wF?PY7{I=V9Yn3IbqqLC2eDT?p4QU9E^3=TCP^c5440u_u(R)Tc<3e>#E=10PeS<2;b#5)?aXnN!PXw}_O zkqy-2sx#PvEiD-Pnu^jwOqGj?Al8yE&!e zFi1z11pzn3?n^r&xHsumm%A?Mw6cQ3Xd}T}{rmS8PM=723?N39*}S(mIDaYqNEcZ0 z9}>mG`u5a~D#r>SHFMfhTjc#rk)kuoM@=uO-&>9CyZGa^{I0SS2seO5qqeyrrA}?6IDx6MmP(V zF`ABMlS!F<1b}whJg1X+81YIUPXa|PWSA^bBvyO{-IV&s(IgOjh4b;THw@trDuNSX z_r&VdBgHlYq?jyjtVLE~;Y)w&QHEBZvS(BN5>in;uCf(1!VDs#)Hbv*2-!>dhC6IR zn>m*qFcg`cQMH&oq2y?jx2vRHA3+_;wH;ds-whbTFXcUicuey?gRklIURK6o*!B`W z5x!YBjT;A6+SICE?%zXMfApu_PSIE;r~@s8Rn~HTsS%0PH~Qh55pV`YK8Bllg~ekY zm9&+Vy$a_zT^J>m?~&NQ(Gfgzf_x4mt!<`+v0{9VpJPg=@*+brFS$e($BUotzANd3 zBh*n-n#rYXz^L;8m$!5&88;(yjX2mbCMN5_iW@n9qrS`~{-13xdgnW2C$dsBc$$h!THf^7q zi5&4VIh}%N?p_>bf8$W4dc);gY)5lbeJHtAJlv_=FcPs%^o2Von;dPBoZc8h4Wyoq z3&dh5V-x~N(33O6RiMF@5TSTcDdBqLg~NV_VF^T$!KD+4kaddpZU`6awKKIe*Y7Z+pNd*{N`7?dX9zVPC;tyEn<=wKDL3Dl8OLFN5l{)4Zd#`GV5rp*gZVLa)eC` z##lx}hoG*2`D6Z)0ZYulGJoR1%WPxLqTU<^eFedi>2Pd^7=9EnS}f4%^yx39a7BU%&jH4Q-IOjRkxNB zWGjeO4~|#f^ATbj!zgNsqCwkQEAN4l%~0vW_{f!Oa+`gjb=s;5;r3{5-PV zpN2hC;h;{xwn7pY085vZL;0HQ5SZAN*Azhiz$Ht{oxpWZmfXP-`91kGM$@Ru?_2VN zFsIqolD+rm`W(;h6ZEF)I${GC3&^5PvQB2e`eF5@a(OLS1K#(pSIR6IjvuR8!Dou8 z*x3w@tr4DnXj7383(Ycu+G;eEPiFlIT(Uz>bE7huJBUq3$TQ$}s_6c#buD$)n?(zl zYfY8+rA#ZE>Ms|vk!x%4N6zND+pomjr+N_uW)aJU!`#%7=9~C9A93&cS1O7D z2T;gH?%3XRBzW%dP+6264p1hR*f7*w$>SYiV7MMlN$(Kl^jWK(UsXoi3OFui!M|J; zKTN~}4Ll@tW~j?4gKEN5aJ{ih+X^decf4(f7yfv6c*vY{x}3&{=(uWWYu-1HCZQfr z_8Dvtb|e*PzBiKG4vz3>E}A#qYAG348u00+BsQM-_O>QB4Fab-zU;l8(Ph=tJKsQ&1MACPy^tFGnInb}O<1jG!}?JH zO8cBJ@M?V1t`Zi20cUK%a6TsQ?=jtJ9ay7mo$MLhEN%@iJv{s42J5Ff32yHl|NPwn zjn&M7xmIFTk%(nU8BRiYI^pKLg;qiA$gkyUZEzJ5u-gX#f3F%binWi9~V5sS+c# z$rL2yCKQ_DIRdd|?G{-$#Uy)<>TtV1x6Ux+<1*oEcXD+D96nXcFIHjT;qKp5=gTj+ ziC@D6%wH?g;Xvzk{Q<3b!*(06+Ji%Cx+48Fzp|MdG}}XBG-fo#wA~6<&sWC*P0V2` zu<&%lef5AE0SLb=fN}+y__4gNK)WhxzwDeOoBP*E*w1z-C1oYh75ZMR)#$9$riU)a zmSR%b)6MbuAom06nEccCpXiq3zoJ_f=KpE;{VQWz^e^}Qq9$$oJ3@g}F;{y<0NqUU zF+~r7E(3r0!g)>@;q50i;XOsCi^b5>)tW-2zV<6dN1|vn6oJYdz6W)R)z}~n@-^Snj@Yn9r~D+MYFR<1$>u|^>eYwhbaZYNDi znHrpP`GuWx6gb3rmevm5`AGJ&^6pX!gd=Eqt)k!SrM}O6Ur{#`-DodS2-ZQb3nwQ$ zpjw&_t((XXUVx}v@;V6ZczF=(Sy~jB8^TxGfA47cwyg-~OSKMezfy+BwCs*h@CuZR z;bJEX??zQXMfyJ;bKs7;I2_fsyVQrdkXxh+lS+B`wM?y?GT}Cp#>ys&Pn2%7h>sB}vmb*92ywh6jV;M&lxoR{Wm^M1nTKfHkO4Yq zBvyUNkbvB9`s!K2xaUq7yqKrvWyj2VMEiV?)PbDfQ>%+Ht|dJvGUk-#V1AR8_iIRg zVp@gOykZ*UzuGm3v1tTM8`$|VKx#MDvE%KPH#Hbt0YyU!-9e4HHENPrTvN0nmXnLf zF#bVt;MBl8oN5df4#x!%RI3bwoB;=E6Md$=sY(~7jIUfv?acXmG2ItJ+d;H%>`#8N zKx1RYkR{t~zQO~+&H&X-Zv9!VFKX4l`KDc{Cm{UQiB3sk?gKj4!Ak4;`G!7~7_|Rl zBT+on7gK(De<03J&1|zf&IqBY<#$qxyQ;$BrX}$fjad(XQ15)(bYuiz8Jt0ZTWgki zhgVol8ogEAvTVjAn$84UAcCD|sal96#omaw#G}H}6pAd!D$fWReRM*xf@^WptCVG; zz5jMv9_s6AoCdq}VI04#6wq=YW*{Ri^Sx#LN>Fr6kc#hu_joGQWCELkwph8ZRDbGF z$<;Ko)3GM$olQhDvelfrW;#!a-m>7Y_`M+<5HT1N$7&|g^K6t7Fid+tP|x!VovN#8 zPJNy-7^C(mm6D@Z_OhY)=y$)Yrz@0nWHS|G(=$(X`x(%}DN%GYPI?ZvR`L!RjJ()3 zqhC>5hr$P**c9D8k609@w|lm# zcy;BQDdiL#odQ^SMUk&MOg<@HQlBoU*>q9BfJI4s?XOB2q$;2vY>@c^cI=edVILA} zk9+|aG>k1~$ZCBU(9U|695lYmYuKMD!il$Nf`m0?%3h^P{Z2+z_b<)YzVSY^xKwb0 z6616Tc%9^oE%ukdwB%B|b$er2@4n+-t``w_4kG%F3ZFVV(+TC64iQM3 zY)0n8?gq1D?&`1Ru!Pk-_$*TMy|_ON`kQogWM39I20kT3ZfUXR9a0VW${r@_HsiY5 z(#nrENSP=WR|+!Xzu~224XXy=+HuF)rE;uf#Hb2ywS~}?$hmLykc_pa#9_*#?@=OJ z8wiP4x&hXNHy&4MK43T1-;G6BvU$+JExgmq`c-N+DwUdv7*)NkJL;#C79|AT>l0<7 zjI=#LMClX7A*eFN`BB+v^T@?qMU-Xo^)30x1pJ)34XZ;jhW{!a5nYH}7IZyRPdf@Li9MSIM~J)}{HT(G0%lP>gxs{{&3Ekwi zWpI@~c)oxw*sJu5F{A#Q#M$c9z7Mh74Y~RI_}(_C)f51%;P;3jibj_t;QZc9B|KFCBI!X9Qcq>vmo@6u-`P~A zBSOI3Fn=;t&raX7UKMAHHO}8O9Jhd!rmRwah76s&JN91qo;LWIcM2pt&vkwYRG7eHho8^; z3p=4+JaUlBy={?HcVv`siXXlf4_AQF-Aw3n3rmYw>NAJST9_ISLa{C(g=+wLX|oZ? z050o1$|;f147jsRuxA~YfUgVjVxX0Ik%L$B^PFb?cX}L}l@?7F>uyf(RY_1EEaRyg zPLL9E6oyLmcf&P&^3(AwdsdglWv0No5?9OhM()MOebt3BwrbGE@`v5NmmC3Uj>bAp z^ad3DNx!Wj=eC|k3`e{whF!EG_;-TWewk683R$@hMWNf52$x?m*3dhAG1=#ItmhFT zU7&$$f{@mk+$&0csG}Zy??`)Rw^4A&SF@wk~n?Ls6tj9(=1J&^3+2F2`%WZT$jz=c=T)Hka`3LHE z7ByXK*D)#g3SHjKYjoC~pnix07CaN&s^ujpUgjCD4R6(mn%wFGVB8@oByobeh?uxH zdv{6g%@Yl!qL|xPo_C*@bIrFuq%Ux|EW81Y{eH^0N>Q`p@;!-(%L7_+dsiRV%Iw zU)`|X9fUSki!j1pT*0pzz8!47x&oc&%G0vd2&u=y1^!8aUXdTlfXtedAzp|qh6anp zj#PTb@|~a~@UGADtDYFbEvB;_Zs*X_t?lcb)7ZP3;BjM*0#`li6VhrxveO`4yOGaoQ&NAwCOExiSDMB zCkA7tepd9AA;@d-TJsLuuayjZGD~i6-Ij{O`wiiC*hd0G%(X6ojIWw)GTT(m2btg?+$1Q1q38<1ZjGC{EPQ@J31E>VinZzUwl z7yH10XM9{caV=SP#oX1t-*&He|MI{#EE^yHfucB={ws=N=ivOG>(T$e2DSq#ggDaH zl2-tCl?mikPXv-g0X{?977?^rpD^_EQ#qdY_u5oWjn=ezym{ONj#UGgd`Oa~IhrRK(U8R`U>|EB4mKI{AQ{W_Oj zQ8RA7D_QYkphxG&`lL8)+AJ3DXlF@5vZk07W<&Dxg^ri|PjF9LT<*Ze!1kcJW~P?c z{eiwMSrhO%&IV@g&!+Wvs^+?<1(_7hx%Ll7bi()35vR{f%14oXc`?0Xzt6l^EqK-5 z5Idp^(hBhO?D~r;tks2H3nX1Z!g|tBam@7{LbzTX3&n$}a3X9m3);psE!0U?fF$7+ z{Pxc6M`)MoA1L9j&Ami%UVK_QMFPhg)`-CQjtee!VmDZNSD&YiCo_mu(G2yGP;Ok5 zO&P3K7n2hMJf0w@Uulb_gmbd7>l?otSsl zem{f?R`Yn2?7CkC3PF>d3`iu-J+u+*U{yZp}a+)i6Jz`x=o?8u5_ zybdm`?GDWjB-8Nyr>8RJPebB=vKWyoG~3fU5kzn?&h&{=+HDPtgVv#_+^e!W-Veb_65Mmogw1?&NX4?M6N?1wEN~>dr6QF%csyc-3q>yp30Zght=fk?} zL%IheKWPxwV4V(!8#sR~6yRs)K)^dGU^;)>`%w!#SetAP0Ns4>)IuKy>FfyJ)5){# zum(F=6d!Gc;2a^f>V9W=@metB#ZQBLw5YRk>W=IoH z%;N?I_vk(58JmyKT-g1Ug>^bxK>?X>DDqg7C2R|Y5dxq$wzKm7ic`23V>h29Xizd< zwI}8(8wTze(h$C9Vg|v!t#j?q%v+L#-l9*uxIQ zDC~WonRGyBKH$&4my#2$ZS;Z8HdW<$wxTXZqx_{`9;+UXF4L#!uiZFJCEjDz@m<+& zI5VD?Ir!Ed_y`VeS;79;3}$ZgU`zj%uesdK@+XwH^%Zd{EfeD+IeCC-10T++XBFvS z8K5&RKO|zM!cB#`IqqB=b~CNwkuFh}!Md|(D8hOfCo4+a6F((&1LINForHTYh@m3U z91<=hKe;8tcR5g{cy*RmdKux)H!v6IH#=;e)+WIcMhbpf_T;W3k9f*z)?qF{TGm>f z)i2Fy9!Q=`aeEkNJH+h-k{qr}BE=z?g0P>T{m-@LRDX5t z*#avlat_486?VDxqL&A;D}WfS$JRl>Yx#mR~$Y=^k0p?bppfICwSYzg`MXIjC#%Es|Mm1=GK zmj%}f#y+Cs;TnqQ0(VMBV2oMVtSn7UWjuX+1#!8&B_tF4o?=yxq3h!p%Mf0R7)Y@) z{oLl*ax%aQN>pQmW4{#ax8Ne~{sLjIg`9#b2nAPB^ADD5X|izP&hIQKl^yo=alh?> z)|=X;m$&r!ghrNC${-Hu^`_O`u0IJL$IVG~^0)3*BP>xM*|5}nPQ0{})LBHrbCc39IxEG6Eo10JT+VV^b3F$#y z4G>%b$Xo^gZiB0mBD-r28QG!0l<0sE>eE(ay?)fCXcb6S%;?*g}9 z^1Xo$HO9I3+%n#dbP}}W>5eLGS#~;{@wu(^H_gxZsM>rCL`Ro+T^f?&x?YCdq7OxK zfYPW!428fJ<8K{2#hpKLN-lN^)*d~$a7RW(`8vlnuPWV2F0N#pD8M>Z}Tpo zgO?%~EJIu<#tldQQ(`9|pg-}{-=)?iKMloP*NNdXf%d+& zr&wyL^2!Z)6oX5@HwR0Xoa$n#a@P#{dOCM^HA@k zp$f?ZM4mxeD5NVR<>7)TgP{O-$VS}%`%K@wvq@!U#RF6|!{facmIHx;;}2ls54?hP zLD1netvV{|6)-p353|B9K#0IaEEHQ=yx)=Vp;@6Ynd8%>nM+5);cRT{h?pIyc)jOy zcIg7&$C{l9-F@C4SE%^oh3xOdU44a)P4ptv^{RX5H194>77*Fem%T$unn>A9tZ#{$ zMrh5Hw7;+3w$D?n<;oH8agYSTr{TX1IY=Z}?&}`pxluEzyaDSDOs(dU6=-Qm^;$V$ zxNY^Q3{0XJA6)t-E@w)_RI(i_2YbsEMcX6KoC)KGN{#h&$fY>N8;!HyHXx^iUJGE& za)0FA$te>fy7;wUKRYDmzFDskKtSsI#7q>YSJ%}J=0~AVcn9qX9-yfa2?!RqFe;Bn zX-Y2>l)I6C_xGr_#h_3K3AQSzkExNAz_VvVH;G<$PSdk*Sx9Rep8P}(9ThHR+bXtS1 z6*zZmeqMI;nP?sCly}QMSJQyX>A0)fR|LuivY_TqpuDy&Y?PBA5AJvohXofA)Oc&F zJbbV!srund3_|~8%>`rw*~MU~RuOD_Zrcx()>!-)Pa<%zb6LEbpG?U~Y+DTCL&a`Ow4EV2hd!jh zRGo8t{JiAGhIM7MZ(zkTP2+tM^$>35=u?x%#P_sXL*x?d?YwCCy}+3KB(rjuWck~o zyBpP2hH5JqbU3{~!=5*u14_P{;r1=1+@x^)qq}9fgv;p(*Y{9MK(>_i-c(XG%5-@< zTp0wam`wL??^)EnlLFz;LyoOpItvAF?A1cKtxp3q>i8Zw#L1zd^l?Z>Ngnd6`4RRQ zd*xgrYOJ3GvAhtVOQWZ*?~m`oUkmj26t5Ka*jABqb02MLzUtCz_s`$Yoi2jP*H3_p zr0Hx*>h$MJaiwqqM;d-qsuIQc#B2mF;i0z$puHm78B> zLx#qM8tOgTENP|+W~9S9Rx zZC7DXF{5AzK7aAc*Hy1tgpHK!a?-Kuklo-Z+SUk#z=*+wI28y3lp=--1!ZAafpq}t z;2!q*bcPJHGtt5jG%;lEFIGBker|njCnT`{6BD!kS4_;t!Tf(P@opq~pS%(8Yc0E{ zIO2%7tg4fp!AabcMKll+EikYZi7%guQA6gX{>(I>aeiDeA>5>W&8lAgX-Q4x@LK0) zb9&r&i{9^Z=DORLs>dg8CfC*1t=sdx*pb^-u~*#w<glIGWe&ggJyE4s?kkB^Dsq$uezC(BKPKkp{wTVPUJ1M zWCyk6;-33S494=D4jzHxt>F9=CMGE>`DBw%-;KdN6nI&#-9f= zL;PA0uJaz{6y64>y>YwG{ycaM!tn{~*LpXP)XEcQuEkFi-d{P#?kek2-vcLY zA4vY57V%QPN}ApCu63nre@O(cSb-y5{vIW;BjgnB_h5%D{;$+hdx7^SsJXN0KYld>2}RKzixP_B?o$``4W0g|qerK%OZhC}At(T?!b7ATp#VJ>&o=!n7bnH*DG_`F&3yO5Iq!Ake@lc#}9vuGA&d*+MA@;a(V7 zUjmo2C;(MR^+Z8AF~s0<0g~Kb!PfFBQ0eh_&p-_sa=aF`$mqk41|)s$7ywfA?SrJ^ zS?M+gEsk{VY+g$pz+WVjFmf+85fj(7n-&xD9>m;=5@|T%#Er?%8@YvIVAa_=H!6-m zL)oFnop*CR$?C^%@4Lux*^1zUAmTV`TPoLgd<;1a(Zg!)k&f0i7@DJ_wYs%n zA!A5j5-8vZ(O07k6_73QoVh;)N?d3u#qJ=71F~w8r0-z{74_#jgzG2EE{{HpM0M)B z-RACVFm~zu*$9>INq2lO6L|L(vmGG^je7lWC{Ct-3cDEJcNYN7*R61(f5OE_IYPY> zz^^x&W8r6dFrS1%^6Fkh(`(ff^kDC3tva+=aO~l}MgVD5e+h#ki(VeL zB8y7vKKpzA8Sy9Owd>IZae&RoR+0c$w6b&vOR#oHU-=@wH>s1sept=WJHc7zcZus> za*V*Zdo^jb9tF;z)=0?Q(>|b%HeJH8l zNz(ls6qC)4@{CTSsS^;e}p|vjgjl9UTcV5TQuWrZ#gFDHktNJZPL2(_bhylz)&jl%SPL!GA>bRZ$%1G^I^SDSELm% z^!s$-kOWQ)C9CH3^>E4VXh=^;(~aRa4tQBPb4ykNHc*ynt499K!_W*jukP(5R%X@C zsg<#Uok}g|#7=FRh~t2Vga_d0*CBnkvpRz!{P&OOhKYYu&Fc~npnIeLmxLu%*ZN#u; zY0;EVsU>5Yvt-cF#<9sY6|W~fV;L3x4F*Q5$;&jmZhED2SUX-gQ>uf-=@gsaqYz=A zIxw21Fc;bFY+PFwJExU-`Y=Wvg-F^c~7SYe4m}< zv)z-VNmJADk!MGR6j*z?KG_)*Z-PO~o#XVijw{kds~0s#q)k)#$%$^rUN%_W{Enj6 zsQb>^uo{(Uv1iJwo#XfTA1O+C&9>mr=SOCXa~3C+EVY^uU{EcB_tCS|NZ$Lz+)#W0 zP^}e>9-H#}ZC!eUk&7y7C`etV^OL#D0(^NtyMIFGk;$5nLe#*A%`_#;eJYfZ14A_B zyXhIdw+T0Zs@nypp?CICyGZz)5ift<;6!+Y$1pL@lC!T#!R8v@$6iwf`f&q+4b9XQ zk4jcRG_^cf^;=jS&RjNlZ%RxA1gn4Sg@Z@yLhgDU3mL=0hF!@Qsi$rGRZeE(gfQ14 zr3@`?g-2N9!(4__9@GW4a;yqSxsc|r&QL#H8z~BpWNvm*D0B{?pN-NhCWf1K2=b{c{0@oQ+D4FQx?2Q3ov*{^Gt|yyUiY zY7Mg#PKGfkEHhoBZ!ggUH+8CzS*yweDg)hzMelYo=^qjZ*F0eDH;z8&qiLZOmZg~! zmgHx$EFI0*QFCrgq^0sJ52fBt^P6^vTt-Q*VoAOe)RY}FZV=E~h(rEwr9~>c-l_Cp zvcu4helZ+`{t8IEsufNU38c&66oa@LMTchXMz@v=K|r~z!X&fe;XKWA3Maf;Wz;kGekf? z5jU4}ID4x5kT3n6cyR~>#ki_|Z6}m@=#6}#X7X-8xow_y42{KPM7$J)D03oSt-Rs9 z1+XKmea4W}{jJ$_k)Jo2Ot}#m=a9ay`+>;S-`P=an2-S6Ae4Z>OK-k|QePk8%pbQ! z?oSQ}IC_mQC6IRBSYn*8_8*16ffIemZ_f?~*s6sPOx|0xME!X|!<-q~%c?#CwMv*K z9H`=5A7go$PQoc=*W^M0 z!F+0X_$Pe<_MM0uwvA7NelG=j5M4^9aDsLzczAQNNjY8y>vj2YVX+Hv{!}<)ZNaXa zN`Bb-;JcIw2Br8y?Z|IPaz>VI>tQtnZIODN$LUMCP_1Cxoas|@Qu3jg0&U3kFsIS2 z2~v6j-*T-O7dvu56noR9Ot;d;e>=Ceum8`Ya{j*o#CybLxI*Zf}f9}O4{1Zq1tP}MM!r1 zKX)Y6V0ZBs6&rW4!8Z;o*|5n5%(=NUIp(m!YYlizdh*1m*g^{wiof@Qx$`_3-euC* z%}49?g62PdV(4AFHXz-Q(IQ`j)$-0u!?&0!agd~+{rNw+LHW~-hKVMa$Z%q$w2S~F zw)2wfxp>LXro!eoj%rL}gh$wpiBStY*!FKqK>OdHHAl-_giwTYNasvU2@D>2*ZFz* zrj=l#V7d3?qlkew1}Q#$NI^~_h?K#IeLFakRVet!$;O@(USubDku*w9m-My< zLQegp3j=-Y66kym`hJc6e0#h;Gz=upM02|Rt6wi3Xy^!R7>C@w5nCKL+ufM4>FJnX z_g}_rg1>wJF!kjJt14*0bj$PF*}UalT*oe1`h5Fatt~e2!gF+S`}uBW__yo|w)=kI zY0f+!xJ0a^j_Bus;l5P9ojZRXHaRMWzfoh}RK5CPr!SewSSNqbScXSd6G3SdKga7D zKE4Hbdwe<8Sx!soDbg$~ec5QORTovt}EjfyNyBL!CgrsF*daw|QsJ>w(puS(t2u zy~i+3B(N)j=JxspL3{`_Fi2&U$p|Pv6{swz)MTWa1cBEG-RiKgfB#2Sv-P7_Pe|gA zD~GV=acTTV8HoK?(j`dAf)NzP5#vL>|4f`Zlg|+mLcCNMHT+#XFp<9LaHd&8vEAbb z_xEN<^f|||Z?^ysQ8Deuz0?Vk_DEKVRyXf$Qj}waNc88qCnf=2WzZcaT0qg~Ou8kM z!z8*3Y~&qzU7E4rxW>tzosme)bb9S1kZZbTQ7C&hscrotl0unHO532{=ArxNRRLT$ zO!YY62us7-y#%1dXPmMNt1^e(sx{-h{gAIjzZr#ObMKnp+u7dvtnRW>`q*Pey?sKU!(dmS&z=h52U zlAu26#lc<=B+43xM$LlxNsR+5JpWT_p$Q2=`s+?;4ZJRGoY5xOE%_*pDDem)8bJ=? zL=neU(A~J_OvncmH8S0yob2`PnAMw~tUC$_Y}%lb=yMW3Ua!cIjf9eGlh&7;6)&YJ z4^s(YrTV8He?~*IKN{h|=0WR&+5@_BBAOygrU=_>ULr8=CN0Od9%*2lYhL=yqzHcI ziN=F*($5?d8c{?1(opS^7YiB0z7jBBc7$wr#{>%*{$7ls$UT6X2kgW0=CNiH@Hs7g z9k@ByYCeZ}<<20xM(F8rQxd_ZgH;oaXRXrV6;k(p`Y-csY-et(Zg>j^A7qNUO(byqM&))VQ)pllOeqxhMQ4u%y|cwI?fPeWCz>X{ zpYvtR8WI=;rvPQ1uKkTI$x*5OjB8I4-vMdHX^jg?XSik)gn7k#9Qo3R|GOLfVdxox zD(uX@6NZ60X-e%+-uF4x1zKOxRDH)1{d(+itG8R3@mg)+piieY!L+~T{TW^sY}0Cg zorcq6iF#xgjK`ot{Ko`~h>ky<4p+_JFwWVq45EXYiPq2QUpJZgRX{P9Yi3d#yQftd zG|hF(gQ!RxW7b1K_Y+Irmd5JQpmQT-MK@Sh+3Ir?+-|gC=c1f@Af9Y(3B

_YrF4 zzGK|m64!>ik{CNkcJ&7ZJ%;KCLYguOo+l(F5bucA_R7JE91zVcfn{%hQr|rMlILC4 zjG+YUClJf%Y_o8F!NOT=GbKZnl+gb32^c?5(@;6kW2!0`GUhI))*SyHH=pt3b4lvC zWE|mINfw^oo4zpb^6x{IT0wY%__ZPyGm9P_KY5ifwtZ-dWe;|vhBDhqaRG;_z`s=) zSsO}I@58B0kqLX#&SRU~7E|8o;!*YMfhYGQu|g;S1ix`vt^BsuQLk_h2nK2-u%UuH zFB#X3zWzx2O|vMzV|B^zUbh$`$;^8h@g!|iud;D8;(m2Stbx%;>s;I_4H^T@k?>Usd+;<3 z^iy@Sj_aoBQuOcJQqvyMWI*O6^dH+AFI z90^VK0hsd3kLM7o6}rbqmwbpnqj8_XTtEL+v?j ziILeILCD8al53qm<`;2a?Kkh?cu4|T=UrgmUle*#03TXCM;-3y1+7@=pyUTA2Vw4TZPA3iEeZ5ZkW8Ra{GN z3Oy&&5d? z;K+{}P+?#L(rYwmo>a6IwW%Ti2+@tW)KgguCxr-Dz*4>U^Q>j^Vqz+#0WyfA(I}hV z%FhSwD`=m%tcML-h&J+PbcS6PL1|{UwqYP_TB9XN>f36PBzhJkpSH=FZ=BnIhH&zN zO6cbdt2U3xVfNWBb6*b~a2L#)#MIG`SQX})s2HhW$#rv(^xz}x3=d)An++;MHyk2J zlz@6N5)Yp%oHDjgjL<8L(XbsCA6_0DPZftPB1mQy^@~33#A-=0`k2E6F^DxThSldQ z{Eh?1mmJv|@={DF4xD#yYbgJ@?l&%o-`?JEV8(NY0_LNwYv+&o+j z*gnbaQbsl#fa6YkzW)a+8FjK?hToclNQL?HxNCV+7>wlQZPZqVO!xsvlqSq^OI_Lj z=n%6AR;H%8Uw!>uD9QJrX-&Tu`wDFuw~3q8=*d$_=ZEub-(N9dMER0jU!TLp?YN&4 zKpAe~DKoA#fM=C;Wx2#`Q{z*XqnD95mIZP(x~}^I6tz65cN_{D`|@6oodcOg$pq@V zql%qRt#3RQ3&)_QU~7fAP!EgjL~X`O1G6t|DcIS zgehNXQbaArhlTD^BDH@;tNg$>`=33gzhe$$0hvV=o9;DOHg@aJ+O`t;Hy}IAaZ9v$ zcAV)L#4w69Om56t!1}-%34(7YP_DdIn@`SA*;q{G(lEnml@x?|Xfm~yHkRy3S5cxg z_tg~pkc(md}T|oYA%`0Q=N8tq999vEUw%}>B>%@?6LEn1s95Om2#0%dYLM|BKM%A$e&0S zsjj3~7JwDIsn zbxut{FSvTtOz_B_X?^qz)U6n&ZKmcRVDRNAk&(P+<-}G_2F|{Xn`>z2Ro%HSth`15)o_7Pw>(tuedIk3E3&7gZhUVzW+piMUNANoV|tt zxsCohs4tYpDPVv-_q5#DOu7um-327fUNM|-392B) za-h2gTgjKux*!zWDW%sOor6Ao!-VC&F&?(PyMrw9WbI-+IJ^MWC?)lTWH+^p&-KqluowBww-5FPPAE@r&wdxwc6x~KT$Jo~O? zsnpza!$e-b>ihVg?GV)UWc?6kG_z|tU8sBkgca5%@&X7N{iy%M~3Ra}Pey%TG;S#o#${oWtVSp}iKY~Ufu zE|0Hw?cy_WM|%ocmq@Em#pGJqj=9m-sXALqbs=9aQ1R=hrlRDlH?xfLU#}ql)TiIs z746g1qT=zwfq2lha9@)*b0KcVv8&SL86eNCQ6Z|5`8(}{ndJ#MUwK^{Ix18}o@3pc zB$@8^3^VQpc)Y7ia8=~U8rX?4$zi<-q4hAkvpEYnz-IRigc-1*wcz@sa7>2NiMHgd zN3mgXaRi{;_V1{em6JS$`e&;vnF)>d%5}je?9f2LV4IifaQvu#a)Key#f6bXnRR(S zIZC+gz+`^rgW>22+YzgDi3dbOSQ%frJbnf1c^mu%&=cqT`Y&k-2mSw)masAWC#73Q zDv6j4q34k*bMvMkBw4b1${ki19b6Xu1^A@zs=lWl%QYR``=BkUqD{Hdx81A(4Qwa< z#xjL6Wx~yu5_T8&-~dtp>VS7EC-j?lBIMordU(Vp{c5spz0sAez z*exlNfj_>dANBBxmjoma@!~`+K1y?ohuWTGB!6Ti&YgQc+%U!R=1VT`UheJee)#1U z=()!w_LG$Z#0$W>J{B*TC1Z-B<2N+Nf_~D$0(kSmb?1|rM<7GYzXhNuY693FgfeWk zbI~?5Fw7lntaV`KKjIn*FC#wu?jYYH3#kB_X(fJl=Ifeir4AEl^QZE3G=5!UUCI1P z5u~#rMcKjqEgYPK0;WvIsF}j>13{vsKNX5lX2i>2#pVdfD;Rdo&q-yPs@lHZ@4<6l z!D+s|O3#;w*gs@9=@Kjod;6NX@6B*wzU&L7J00yZ7`|uJ_9)^!(tZqoW|&4UyIjQ& z(_x>UWvBCS7lM#7GVn8O_cv>{5Ch>HtTkkF*YrLlUgiodiPIWL69I9e5`R8oCeAp>T0vRTbKh+eE zu86k#0S5>Ao677IObKEL=4JB=zB0)v)CAdhCm4&p?kc7->jZwOao20LsoOYpX{yKI zdiix;P&1dvD&#u`n)G!$XeSdN1;s}06br{sXyUPExSr8psUM^+ztpqrnr0)8UM`J| zQ~}FE7)Ls&9k>>1gB8@ld`SAMnNyPg`DddlD{&H_d6h3Q+Fz!&)Dg-6GknWja_-m4yYSnbw*kJkrLQV3Tpjg&?8% zCH;s&-Kl4?ahS*9%D4j3!MQNp%T?)OJ9}3F19r4Bv%u!@B z&+(x{ErZfbHy~|r%Hu3bQ{-1Ld{Q!C2QbfY8eL&<=s!A+Yv>I#w(CTFIpy5n;o6bMtxfk4#^Sp z6pB;C+9~pzXOiAv;MA(fiukdbv2wqbtCm@5e3rEhVrudkE;9LFUpH& zO97EJp5sO-f8}AWRAKNwj6h0}x*xz)zl=cQ&FRl(S)2VcRjz}}PFmu+&&GR6=vH<# zM}pX2m@RA5_odU1rG^YS51bwV8=7%0t`*;$XYlPoMR5vyat-Bm$-gPl2)tieBVlv5B> zvsIRgq%B@>i(U?r$K}t9TgDl_C|JANrIR7WV3iZSL~%LPFNH=gI{Hp7D1kci_ml!I5zVa@ZbzKH zcd9@qsZ!#hY)ixI4RvDY?oUvFZBWvn(w62h?Us#2HQm!VdaS_D3Rb2&g4-s`bvo<#nG(-;M#^ zm;_f|fUq-0d5I$Ls-Mf&q#_2`si6I&#wn5}YVKx+lm(TSbO2Uq+E?498ziKVSNf<& z`5kK$P(%bFLm>nU2msUscS<3Yay+-+UsO$OQJ4myTM5psGE)&;agARn!}s~i;`PaV zwTJRP?XgWWbT*yS+tWWT)+j5#h z?O7KDe{Qvyu~bfZF5SUrYCl_%6klsEs3=^|>L6uB(59u9E049`y-2ExKJT%RDy4E0 z-BE-;YeKvD;(OJd+zoPr)i0b`U3U8|n?X7V(vgs-C;#}p`)Cq$Es@R9c2F7dZKRjy zcV$LZ!jWhT4y)sWQWIFXztm}9f~#dsy=j(ud=}BXZ4SSy7ELwkH=jRJRZ;_axMsMp z*yaSPy$On}e%%TY4dFnaaT0M(wdpNF@np8?onhk&=uA^9jWLjWl^p5^=;18O5!1^b z+RC^nwR_$JNdZbxyu2d!kCD0I<=Qj`y}q}MY~}m&QI67+I9W{qjuUMK!ZDY#%it;L z-@?GvGJfV$8fl2>(^FVZ9Kt#DvEmyA%vZ`cDM;wvF$kK@?TFst6B4LJRk*Pyq^3SQ z>^PT`779xY{1}M@!Y&{0!Muo$#up?^hhi&balQU4a;lxq8#7N^bokrYTg8(+<&Y9v03|$odDZ&)%ux)Q zK+xvRC!zwTft5N-e6P(Bj3h%h^p@Qe*LaeGy zY#o`61JDd=uXJv`CWm=jdEa=3BpuCospR%~F<#WK!ud2R#dWx&YGS{t8lg=T{(=u^ zYbbHXHLoPr(`95cFU-*=_n!V{xOT6}u~p%Ho$!Uz2ufbcR%4ZY65A?joL(jDMS`Jx zGOh0IKiRqcc0uyQf%|4}FHrq$IFd%DFn0XC)$~AsEp+g4_mg{gS9(ap&dR-jeUin@;B}id@c>YHL4^QD6!i3^lR&cj) z`r>5dBd*`aez-s0Z;W``7-~Z}_NM`eeMPN9e=GziQhGIVGYgD09g$wh0hKt!*`?zZ zLxC#?6L{5&97#ke-5g6?`nuG|@fD`uQ(ZG}oG?8awoRau|2>Nvwyi+`nf_g#sy-EB zfXoiv#3lf@={oLHf=r|Qqjq;Wn5ZWv#?iWecg_nK)j$RAy4tnhlHAR>R6M6i1 zX_5A}0X)8cL-Rb%WIoJA*rO1ODWxtMp_qjFBRW`_UKcyleOT*2C@zSgrGdc!Y&H+u247lM&6;M~$a)C2gma$hupNGwlNKd{oN5*I=;hpm?z+ykC4o?B~!8wx6E9JOHzn3#e#-qgg*t z(k^K7-SUr2nWG5AiA9-J1W`yOjJr-x3eI)m5p=I_^mYw{sH>3i#xoJ?u!<2y?xzKr z57U;Hm5XeC&p0;}e(1$#QIFEBxumLO3Yf~)cNtA92_SHa)jERDBipg$c@NVukR$xg zxg~e6uFzf|ms_JZe^$syR;NTF;ip)kM+|X7SZU6vR|?z<$hmot9112m3FX;dBnb|= zgy6~5*mvVHxq!SK!kqO188OQx2Wrh-#T*1XQWHeOa4cwN9WbRGxgkts)jaZ{6C~>(+DTsoE}C^*OYAOf&2HIz)rZfIiB4}EKqq+i zqASv5^5Q3rnu1foeHiDgpfp8caqrQUGyxlwj$l2y@pT%AUTyeUvpeybqk=66DYG| z^e1LEc8m(LK0R_sYJ2Y{7id+x zBr~Da=pi%U_)PgG5R=nPFHDpsE&$G3Wx^!<(d5lvHJ~Iq!P_lGVs+1t5+I)Yz1x+Y zwGH`AU=wCT7cppWCs+_Sg-tFlkzbcqsbJ_kVlX!B0SDDisaXlJ9j^YNtADkrEHU8)Fmb8 z-KzlNqzhZXM3!7=|72s@n3$10b%@MjHZt*aa*v$Ki73W;8bF{1U$B@o>gMSzG&D*my)AuOVEnq`iDG(df zGCDh!qQ*L&?gVME-Z-3Y;ucM?v0kB*^9l+q7f%)3ebx<_W?OsmQ_c}MA?wQNj@H|r zLzMqz-57^4-Njq;X*kX6f0d11GO>!pK?S;)Z@?^9N{z{cqVz0jIrD(T5dU_%5TQiS zWlT_YCXlAnTMa|U2?hNaPi5^X5dF|R@ZG5KqAhO7n$m@5)_0IVQ-YsPcf!SZq&G}! zD^9G+g@|d{Gs5~CSeL$)HyibZv>Kfs6a>UcnG_>~QHhSqZQ}{weD7#11vZ~lR}=UT zaZO z`EUa~LD=9E)wnh&jNL-)B++||i=MeFZHV$0jiRrXW1r$VpYD_8E82}Et=kZs1p{60 zdnyMpauPQDR_uB4bF{YLB1|p2mSekiAmh&OyHddSJG)`T*Lp5u=$!_)aY*%iaoVmq z(S7}$=_p0&?ib2K%T2z^wMFgk70r0kFs#UldWw<{pP@v~2D|Z|_30gGLf^g3Hr0)k z0l@QkTQRgV@}9Kx>Dw0;_YpXQj7h zggXTM_uz^{Q6pVg&x1EUxH5ZK522LOAA;`aAA+uIwRgUaZ?X56`+IYAQEivprIC>RX(NwUS5_42(w{d^ z0g@!Z_vh{9Iw={ncnH75$K&Vc5KmS%Qvcshm;AR@x7eAyM3q@}VOQ>c!%6-r>-nA2 z+mrVae!~1)Qq9+$7Ykz)AVv(cNax2)?{SxXLHmGQLv(okKI|p=X*K2YX&WP#iI**Q zsF5_2tR_r!h{yXGrd%oC$A8)4mK=YsR@RIkAz4`GC6qbtzAKa+X-<|#VMsJ`&h1ll zRrkS7W>scueDe{5hxfS3y}<7{%{{Ei1g2DPKtqBG9tHj5Oqk!klzO1zlo*(RJ2$ zU*U|=;2?AHtj$}j%hXL3;Ml_f#iHfdYfGmCHza{HVD+@g#Z}vh*o){!g90I1p*H@# zwZeix6%}=8m@y)THcGa4MWoE`B85+6U?{<1^4`NlLC?p?OG6$V*d47glIQE*fq)J& zL`By~MF=co#H07CudCveiMSzx@G+5Yq##{AQG}cUzjl|nRS==5>mv8s;}t39ApC9h zj9aTvDf3*G(*zX*UO+P#CeF49k9{975z*}9+d_g5p3}XE@;m(-NPswse`_Wb88r0M zmI?a3w&VWkn$?k!uZW*CC*Z5@V$$%0-3VK2tcNglMUdlqo7e`D%)x1*dOz8>BcUaP*IGk*0ZS$sz9N=%yc!$XYMP?glF-ck|~OXau+KlCApaqEhS^h z4tF)zJWEyeeu~TFkNN5z<97e0r$LV0YiWyz?+(rhVS|Y6--eaff!!-cWd{`2`oRa2 z=t#A10+4mjHxQJ^<$29vDhJTunBZ#aISi4jU?|ffR#ZLyC~-k$gVt zjyh3$C>Q;v7HQSUAS~q$j$qYhSD=-)r3r2CjrqYWN0M+xe;!OY$(s=Nb7pA^N2jO{$@!1TR!)7m>H!@lY+#MCSy# z9|P#42<>X;;kq7)ZpAynTb_V=z0^JEkatwPl^}SfQO8g)l+<4T5{_a(C~(kiuNbHl z!47Y`EZGHchCP_9S=~#f{Xj~oX4S%V=3JRRyz9NN-YpTNc;abIdmpFf7e{N4x>t<> zNGSX8x0zH2US@w=Olv^*U*^R%HA^=tv}TZx?%7%tM#l$F=S#mYE(miNVEfyWO4hB& zkw$7KJ-wP2443dGtv`X*qN9|=ENB%KrizwGB4DIoH&pP84t~W*GHmRPJ>qM(9+G%oBkMIKk_`Rox6z& zCX)%{?3K-(D zX%Y3J32`=7gzBfGB03r`=F-P{s*96aHI--bcaOuJ*%JVfh`KI;UsW z|29K|A`y4#JeU|EE{->n{jl%j>-&Q(k9%Mp?a1C#L5%zuZuAmAiiagl-$&7nDJ-qQ zH!!)$P8Q!FaEm4%(c}iuL;~Cb0ph6z%5B|b=U>KPkgg+@@xiD{`EYirvGmu=nZ@LH z*NTEz=286SAji~n$SWjPg&uT3p1L%ST2q*x!1;v@lIN@>Swyh7Ll51t9pqTNV7XFt z9xV35M8{^_vQ^F;NKo^72O`Z+yIr0rJe^<*ChfO5(|YXSRzJ`Hb0*V*N7ycBz_iJk z>Dn4E&|bVm>W2Y@3#9nIY-9&=b3*wlOFOTlGx>7~giGLW2|zSEnR!4|5}k|NMWeIb z(H1u_N)eqDg7;XkuIX4Ul?lzuzrYR zWyuX6ON|t);!3swBr`z@olWeE<}%1~A#~=WV9gA3@-KqxfKX4<^iYu)8%o{54X39Y zsGZecSv~)u>oJjd{=kNu({(8GP0G%%RqOF_8F_%poj57mg>na=;HjWOGg%GbnX+S+ zR}PSvxn%+lz3jRhvrD5P+{F%C%9)-?U72%rMju~hwO$`?D>yjEb|bQAReIGFC)0&E zmM!Yh#Wq-hQ>qFlBB`%r=Y!VF=t8ZP!Wh$vTdEeNKhZ0xUE6RHmW{+oUX^(zg@r;b-4Urd7TBUW+1>s_AG7fE`LT69tOv+_EjY29 z4nzIXln-vPT`Kz8xB^2gHkCXiGM8xT63EZx3Vb`%PwFYwHtH+Trd(AD)6o1ux`j8{Or&FVE>Tc|F3+~Q8A zf_iCp@!RB2X=}j!zyx1Et5HFqVEJlOjLk(W3rnpjrA4(HlFNuy%R(*kZjb{t#I7f3 zgKRm79dIS$GlLYQrAUYN&Z0dJ5AG~L%xhdcWSL9DiwdA($A78SkGg8Q?JWZZ_wc5>grRP|CeY#aC@Udaz&CQ@GM3 z=gjyr=4qq2#hNrwdbm7p3}c`yT^>4@B~LT;1y@Z{VVtj!e=)DOLv{@aW6rF(j55Be09 z^(acaWM!smvS2~1#Aa0LI>csXPDu}L)~T9Eqiek0EPktzz&c_Vvaq*TMuuxbiF%2q zSsc%;X{w4l=GhGQULvNMJ`_xPza}=e#Q>3kcX)Y3+NP7f(?8ou-&r=LNa4DySrOa) z5!n@{2&52hwoq8B%el2kO6y`BPIA%btd0Hp5HJY=-|rR$k}&)98G zi49)+9*}w`DLkJ>zu7@CN6}g17(GQN%1LrZ*kJNQ4)hS6fvLA(2R;_8jJP@!|5kBH zlfG6ZDct}zL8!gjK0GkR?LU6pOCyDp*-c6ksIK;uyxh|a)(*6^&KP>zLA@nG&B!%| zb2m+Y=#5~g|E$fy?s?}G@4I@9uX92caN9=(gY350K|_3`UnPB%9#p-Fc9$6OXNX$AWqBc2#;V3RC|I@ESRM)3-n!JU5HGW|nUd@X8 zxqcM3Gjc;JTfN$BH#6jVes6=&MLOmB>DW>D+8Q_7GIXE*l=q?W@a@A}h3vVYdCPsd zh<4|tmw-O#lyDU-R)ca~NmaRSwwj5Y=f+Q@VZd$)9gSMpx_He3>d6>z@yG&-S#o0q z02P?+4)Te87W0%bD>86E&EZ8xsK$xxsb!hiJ?yKwphS!rxKX?~c$MD3mG44A2L5J} z{^Ee7>rZ;izWGuFXh*6$JQK^s{8(nS9Vx8&a5~~GupOz^IlclYdC8V4y{b>Bq`3Xo zF0}n7!os14Q#tM%Sv+UR6Y+Ze5ZqwTnksa3O2IVh9pq{>^y4GD`^{Q*dz6UEKQDEs zbJ?|H*93wnr307xW1Ds_@Nwrma_hVVEqb9Q?*pPdi`sr!;jzK>H?zJ?5&r3=9+vG` zYZq-~!C{qd9TBH?PEoqpwTVQW9&2!^a-g3vi8{QT)?7T&w$)p9LWJ;rW&KdDfKyScMs$cDKhy^<{Hma@G1?zZ?0xoZ0P zM(?U?^i!v#)m)V$TJV@Sy9p77&mN!(K96ekl&H5r_Z>4B*?qtY{M_K-P=v! z(^ZDAtrO)1y95zDIDgczeGQz@=Uxhv!rRLhIF=1+=ArVef2i`6MSN4>mJk3rFcw~K)o;0 zQZVnLR&kI;gn7t!CHxzOWaYFFj~|#oOb?7Qe*K;vJw3?K?MaU}5YvK49;UBSTcrf?=e0(AvA@mWFnS zhufMRd(`SNEJ!GVUhH<6`>61%%oI8%cjqHzbkwf&Axh~8$t7l-DCU@r8#hm0H1Jaw zr#F%e7wBo*qU>Iq&QXbD@5A2f+r;*y<`9k&X0h9*^(C>|QN5B>d(ay&imWl}RjK7% ziI&T!^XG#LcipBFC>+Q!aobB|VqHGGq61vxUnjFBB24)6^|{6}v8otRCaC$@9)eF@G$rxN)K8G0kJsP>h4L0R0@TT;db^vBrJ)T&$34uX&G`dI!dp-WDH zGG1CKf&+^4tivA=?E`0w?OI0G^4ef^9B(!4ukGKTnyok`xiI2Wj5e0$?eAIL%^cWe z0Kd*vV!#n|pX+6VBP8&7`u^Tsi%Vv6?Ok3sq*vEt(LWKV;2gCQGk`AY```zMyH*pZ zjU{I7>}$s3Pu^=5J@*7}T&9y1Ilpi2A9a2oe)c9~oBu6?V*TGTC}#TqB$a6VU&G(O zky(1zHDNkxRiqg)T|9tm;L)(`6aG3PV2vskdpHslIQ;u=nLFz^shKC77NgNJG zcchA5&eh;25H|2H7+BC(FMHQ_Z0~o@@Av-Q=V=(39su^!0knn%+^ij({%~P6u^W4$ zIzRsJ&(}$onP5DM;CfXN;DMbacmR1Y=+CKNdpBYK^#@H`Z-fn^A>aGU1$mAas@6Hq zuT<}y671jY@~YL@U+29)Xi_Way1LoQ_sB^644sK4Ghf1c&2FvKQ%Coh``bnM15L6VVP?17u&Sq)nB{+Vp9h|SQ3{Y{e62hr*HEoAX7@?8SFYh>g7)CaOcE? z8zO8Gmd@EU70M9F+}d9@A;ntOc`77H2cp%~FnW9#GH33`9sw)V zi4TaH6~xo60h~5#7B}-S|D8O=`(ffGl%M+N6Z;`98UBd|&)VV6)1{V-#OamomR^*2 z_`vzwJZ|^UbuIokUr}-82ruq9J>-F+8+RT6tw`L%Q{s?w#NiR?*V8#L;fdA7!_xz} zX7m)iUj5YCFOf|Bsx6JkpT7XLe&YgPL9+rF4pepDbRQ==HkB==TI}gvQI?- zG~f@$16h|YLI4ThUR+NEI+6kzuhkIBh8cuau$X8Z4kLA<*1N@%IFWUboCj)Lr6?(M z6wNAx5B|)lg1L^~P*-qhRt8Y*I(sM?k|H)$v(c8)&EYSGj%yaUmF+@@&+R7v5m7sc zL?R!YdbT2U1Vp`w?my*db$A}TU|~|;#?+0mm(osII;r1P=`B024Y=9@FQCAW9H=N3+E|vOurq+;Jmr}p{7*(t=(vN89m?P>Btr6ek6tF4USkW&9+on=r~=;5^YTgeMHSP|c?LES*AY6cz!e>rgOF68+>u~)tRP!oXXJhnD1UM- z7zg051GGOvKBn_Q8=$I-C719sk~h31`1$N?km|>6QIPcTvNHH; zdOG(&eI9rjdrV8S#uvTqm+k@^K?vH&aRLr8F|(r5%W1mgGwpg0nRzX6vj0maD!`Wy z@^bH2@Pbpm?a`%3t3TK7505D1)c{Y}% z)4s}Tb5!5OecS|E7GOWsd)>==;CKy_XT48LNMu-AimR?WwF}CpDO5Qb)*IbDbbrb} zEoZ*=DT{L@u5iuVE)3x}%e%E*&yH=xUEVpiRVzQ~z9C{eGhn5Lo20JlY-jFX)D>v% zB9O;S@eh(d_9W$WERNo!ZjF4c&gSC$0`VoQ(Pz10 z)F=ktx@5epB6Es^G*ShQM@_dYc2V(e-D|m3uh$XwQ^4lbusL+yTr6QeiS5G!zNYq9EJ?!PE;6!5C0eg zEFm;3=w;$G^d_gmKN!n5%V4cpz#Xw~d z9akz?&c`AErYBw;G3^^HPu{F2k;G2v-v`6=qQOz9<|}=MbMK^C;u9vxN-xsjJ^er? zh`8mFm!k+y(5#n!9W*s6@#K}$A8CfsM-Wo3;*-o8C*1_XjpU2xSxYb0$t z>PJKiSHtY0q~a+@b43f)lOE(y?Xtzs<%&H)BJx;F;B1F82YK@g&w-j%vDce}#(iMr zj0K*y6wZn@26-PUinkcKeAe1s%TBY(T=f#V=4it zB%7k-j+nu+6>5{AO-Lgysrwu?m^?IQ8uls5hyDQ_Nj#&)D<9F@!jbxrvO&`M48uQO z91^PtOpzJsh6I|&Fkni@BQwXzjwe#Q<%EsXsWtuO))5{~yDJ%WS=eObOv>#|2>k{P z6OxN2?YN^y?hH)D^PRj@?9hufHk@b2)t3F{AP>CkOgIRCn!6VdLair&RiODcT8e32 z98n^rP_$)e8{IbDwe-EF*93`aCNO;S?*(QJj2GRsCFVhUdvRh!qll?#4=*E5NC`qX zl0cro^izhuOK^VC?cyMG2kz>GYWy3~^4|GumqD%}6=)F4DS_b)p^rs329D}2`&beC zuS$~xM2&oYeXj~A3w-YKZ$8Ai_#BX3cNMPqBDm^B?QATqRwye;I}D5>j_3`CrKdQR zTtaornhG=2)Xa~mHLH8aoruF+h<%&kYYJjBR2z${8p}u_94wJihodC5_rKX=4MUvc z8o=BnVOViBN_I8a8ZT|CH&xlXvBc<1l-RRUvXE<)Y#T_Z7L_Xg;HitxwjsnJEKu=6 zyKZ044i;x;1j%B~VL8z!zVN!t+>d9!Wa5a{8p9S8ZMK%KorZYqvpalNDz@A$rSGms z*F!p+IYdh}rGp-A29vUhpG{1N8I?FEdH970`k)y39DFsl2hh)Kq)f&<68Px zp28tTikC!IH3SjknX)o-&O4^Xtu$QgkdTZV97|0nQ;2?qNq9;Ki99;+=-}|<7P8@m z83D<`C@c?GwkKJo^ysUjd0rpHJzDwT)vig?3YvEVU@&8K!qp~momfD(G0zA-5K&eo z1Zr0b#rbQ=%-@slVFgAx)Gntil`0!wI;6V~$r(0GQC(=$Z(?@hE|Jb)lSV6rb)g+c z>rU`ZQtoeiauu;)bgN%VCfs$-XRcAW03gL|(VS{yOpj5&nAj9TI>zG~@o+(A&>Pi7 zfH?xcWUms# z<#!YwhNa=6(Xx6WU|@xKv5ubpJN$1pxR`Ge&@tv!0T0YJ^HjQiO0w>8?GddVRPRfr z2-e>0?X_+xv$*a}sn3P+EI@}uTQ(e+&yu$`!!iqqFQM1gurgNzxLqMIDlhg45(Wmk z0V$j2q&9>|iV#X_JFl3mEL(4?82! zb5A?EbJX&O>@K_WQZn5Dc`TZEEHsRT>z(O^nuW1-6|#ZEWKd0or`PZhk0Qjmkh-KJ zLH)Go+|$#OMkJ2E2Ol8k3b`m#+{GUFf=gi`^FlUxNVYJ=b0t;m1ln1&K>LwgMTVi` zqod&M(>4P39}7UqG?cwSkJfmK!5`aGwn}b;kF%mBxHMBuemiCM?}yT=$Ys!k7mdKP zwmqgj@1nQwZ%f_Wg&yl%Pc*)hrC(efjp`NE(12NWm9u0de>J?~gkFQN&Rl&kMV_-U znYdM6j7(yxJnOMiDFWV;DQ+s2&+Ui+XpEwD5cHYkvqbi>>Gth~eGRSOj@(ML^2pz) zoIKo$0Y4(=hnMnY5~XLu1Hzg=sor1;XSIlao_ILa7;P<=TnVn=>_pqN_Tz;4Dr(UilAL`M|Y2CZ)n&&`#D*6|roC}a|iWOnTPJMHz z;!=rAc0jo*J-!keH}mX1nT-Mheir@pJY6z0NXzu>Q}rDNq02Um)wZi5n2ry|-_%*x zyz#_a?UPiI+yCY?tR9?eI#eB0XWqh7YS}w5-3CqMto$<}`7uQ6EuX zb`1K#;p;0vey13j4E=MfTluUqH`xQK{|Wn7N%efA?9r)HX~6%-wH?^wAvbi<$4OBO z>{qv-ACNi+MZTi*#J}j^1rKF5zy!on+o(dt3Z&@yOiDubVEkwBe)&PhW4j#+bMXN| zN*aXU1U=dwY-uMPEzQ-Y1irKggYv=z^kp{vAP%#fo$H;Hw;=El$+G9%P}$vyejkYP zueBXaw%}^8z%bG*97ZiXYg8bHl%o5UM4ERR2iNU_m~4)!a-^;;h_B(Cm# ztv>%v9ri>PX@~a@~eg9JvVWmg$<%3bU!EjO3(`|@9Z`^KZpI6lVFwmU zzIblwXe<_0O~{@$&M#)E{>k%@UDC!nzO&!0-ei>uso86*8br|=B1+Z-)y_*VW<6O& zkfp{lqYLXQY_nb{)Hg2EDfX8p(#tlg*7R%Td?H|IoCPrTFQp>A7oCPqA#(y71vbB) zXt>!V`0FnFkAf9A7#(IrEIv_o66W#UfGBwX*0;^fA$FOg;$Al)Yn*Q6yMZ_P#=PZ= z-pECt146o=+0#YjO}YBkYbDj)JZION%oot%g7Z0DcevB7nKjrCJ#Ba`Yu5wtWnZ1| zGau}Np7wu>nK=HJn2G&A9WmXiGIrQ((A}?UQx0gu6JPP-6!s_b`Lc6b^E|-ePW9cc z2|_@~X9Rq`OXkf?npW2`f6!j|H6sY$$sZI3cY$E_{n*LZ`Jmza*6aALKk2_3@oH`1 z!5kzwKG?7FLicjW*S$yg;Ky2D!)8|j0sz>L?Y2Pf4Vz>DrT7iMI40K;NMx}hei)naAWO;h z7Ju59v$ke%i-=xaLJMKjYYRZBDDCU3}-N^&E1N znSfm}wueI)MmfV%vI7ETgzjp!KD{cmtKeEsI=mrcvHcW3H>>#Ti~@o-@BM?&r3Ysh z+7dPpU!iAUat;^)OLII}Nnl}j^Ow3sK!O^+atWhpxt>kB>8txtL) z`#sZf=JW`X%ZB4dl^sZ82f&bo@q-OJDmL8_Zf2ZtR^Fuj=at)PHW^rh zEP;P6iOU7e+wy|r^-_K`ZD@X*=zBGuj$E=Ll;dXa^UBk&@1+#*XOlUzj4u8c*&*6# zcoWK@jC|Hv_vT9n1W>zhQq?@SBjbl|bJC{^7sQG-uenaCV2jK8MVGPWR;*z6x?3P=?& z-j{PO4srM-h8lhS_UK-$eJJoRrCzV1#}`bGYKXZRhgh%odew4N+PIe=t00%h1&c*9|A2j(-bT;;Glf0O1&@=uwR3gkYu?Dc6(1FmoL`RqL5Y6$ zb>zS0gL1zqWqy;tejH!tgZr1a&;4{e`TK)mr$ChI=Pc$+OU!s#BO<-{7iC25QYlVIhtci^fsOHgEO<`~7jM;;*8 zUm)|Otj?rn3+yZ)ChN9n4za}~I_p|)2Fl)C>TTYF63EYWr)CN>ytrhK1|dUB<4ZqluIjGQAg^0lOOBG|&1o8#^Cv9C7%9Hr>GJ^EAIr(@ljtai_uGyW zhn$(z6Y2L`99gD(kK88FmJBOIGsAvGG&~I#I+#@3bhMR{KoUy!MLuh$x`v)~;)M@Ev}qdr#K)INVS z)%~_sHt1`d48jd$ z;gWp`m?L0>E?p`&e}J2ZNCb>j7Zr(SB~BTyhkEAOx)%nv&q9gwU#^VMAT|zgtUc`t zKX*bm>P}!Ee_HlTW3rupdhX=BQDW$4zuSkaw6;joLCxk|)OO)It4>xy#(NCj@XVOZsZ80;h(p>>Rh8b1NifHG%5 zON%h+Z-j)bKvvrLaA{?^C9kSQ%Wl@5@1y5|rY2+(%GeL{g5a>N%@F6-V1e^{NB-O{ zU<+rKE_7wsH|a13Z2u#~BF@mYmtBS>!H;^42ASjfy1QpjVG{z9W}SYI9wOZD!^Mfw zzwB?W&;3Pp+|y>jjB8BdNIVhQGjWg{q?Cy;uT^b|5{$I#bH}~MTHcA-u*#BNofj3; zGHVdk?pg&{z6r>^Zw7o$Jf ze{F>5r*S+h=JPCbJrj>ogSpb{w+6~by%z4ugBddYV>-BeYtyCj(86w5tIw1<9=;=5 zCneR4`b@Fk<7Y(H!bjLH0ADPNDoa*Sh1IiN!}I<|BOtr0N}HypSK`p|fs_sjl%^PNVUeYrfVB{lQuOp4ByTxV-xH*>QcKD{ zivwL~2(=+?1e_J$rvr=ArD?Mu=)gf9nzW0=)j!6e^DM$^Q$%h{NJK7Ch=CoeJXsjH z^TZ_bDr;jf-Pu(&yFmfaZeJ_EUrEDY2Jz_Xi}+hzoRgztbZBH}znqwS(0v}t@ZDAT zapPYMVuL-CJJjTBf;lIuBZ-uC2ocyZP24k|Yn8Vt!kfY0z0zDn>6FmD0^7%O6U@ zIs_PqG4fl|( z1Q@UqY}aZ7K1k@aSmnp1@W?GC<1x15Wa!^@>+?gKujA%1^i{T-M_C%Z^13(UW0ptN zu+?RJCi(3rXA%XGktxR4`|ce`Wf&agt+O2(j3kb`P=I2S?9MCueZ~4>NsgMCAwyDW zXx=Fc+~`tuWcR+DF1SQ$^Arosbpw*ZCUZ?3171{WgK2vPKpdt9z@XY8WIgE$og#N{L2N#0l%n1|Vk-PmKv{v{-{<{h88 zBlE={+`x`R7i-k|&BC){{m3A|sM-8u_E{g}Cvu3D*8LpWycP!3f42+FX!96zHTr#} ze@B~VDu6`+;2E*Yv8I{>W$X`L8%nq&Ne^+q0gd5dHQh^>J$3jo<79(Ja+~?xuV_D; zF$Ym*Rd&B=;{yZF*|+{`dTd5FnZiKx=ko1~f9GGaTRW;D1O$m*!(C0(zr zwIaZA?`a9BMDtJ?#33g7fWs+)SEs**#-h-f5Lec zJhzY2ZRXGH_zNvEb>}Y)wtaAM&P%*aKbOqLZp+c9AaKow8p&edIOKCHTirXD5C%wo#)u zDB<)j&Z@9fX^dPArdWnF_-Kr=SRbNQ4U8S=`C(E+BojNY-G)M(xZ%D?YapFTD$*L1 zaLA5T^W>edN#&M+$EzI}(Zf3eDDGwa$0B?qoV#S`hC=%YJgM|~*&9&MtQdeqD|D02 z02jt!d>X-Cg2aZ|5pFVeXhR>aOn($zoIK!Z@_2LAt>Ujg5B?#FLOB$Gin_QtOy%@k z-0$Jkwd{WH@YYlEBcL&^6Fszok&iODl&%W*h_K#MJNm~JzQ%_XM!jJ;f&?5;zN${%JpctA9E9ktA#%W`~FCcu7TFSoRm6W|{VdFY)Ttan#>7@sB6q zjp2*4xOGUgi_|vq8npY6`lHFsMZdaTX!`E<-BD$whUnT|=$ZrCbA-}Q-y{FEYB;}1 zBU`LXnuS+u!TZcdcj24POg!{^vIv=< z5Nf3c@p&2Xeamh&zZU{U@HiPf1rxT7GMJ-hcybvrh!Tr`OzyL5%Xxp{c$9wGJ@{B{ zsV)fL@AY^*)MA%e{&~GT{rlzKMBi#&C~WRbwYhC@OA>n1>TuL2_{YErjaoajD4(7J z`Qv7A|F-v&&qJn>_dkgYmj6m*&@(dqZ;^4WC1pqaKO#fg7BR43oDwyv$%Fu_Pj)XW zfu}0r*}%*Mgkz}hC*bP^S#R5z%?mfNIrX}~hW=Z>QDfNC`}u6UEN9)~-OLsGLGPCL zM{VYZ#?No}`}+DO$}VP|0|mYNxwAEnt6_p+>>jt75%cI}Gt6(>LMERDv>Ipo_wA(< zCy9}tU`+U(_lx*7CfaLhW1`lpiw(eW5c@{x%Y}CrpQab@cx&s{2Hfo(vg4D-0%?|B z)-kSQE8^7Sz&F?3CKpKOH~Aa>bkT&nbavB>{Q1 zV3kdfLU#=#rhA`R^P37DEn`vJPgz+Wk3TIn(3=9X98^`n$779j)B-%2a#0Zqq1xi8 zCnuLvbOxmeJrjXV4lCX4y=_=zlr=Hv6ViuzQ|8;ER1d*YHKjRt7Lf{swXk`88$?`B z$JcY30e5oBi;?Y&x&-4dYRjMW6oBc5j)f87ei9{5-BG3C+okW0_*?bd7LCUhtqMf9 zVh8w9bt|Eg>CxTWTA^6z3gDy-e<~$Bn2_tl@x6HDA_m)y(@8GR4IhO^L}~lxxMNyE zQ0m>29twY>TUM!pe4AainX9OYas=8lJj(52oY?$u8x*NXS?!a(i3mkPueu7BuRNFVE@}s8gokiMQIa)Bc!puh5wPY!dbT{1IUig3d^X!ZKT~h?zx>d zZ}^*A_u$PFBha)JQHG{(oG}44908M}k!~79LIlu=Mf=2g>nh^%N`8IycngDlFa1~g!P zhRE(SaHVMNs$8_{J`x8@3(YIF@9K|j&ji)(0(FGsmuBO@Nfij74Z`Ap|52!9C<(UI&1A+Q}Mk6@q(RRfeI}I3RF8XyQ zuy4M4Hp+NGu*VUL-u7{e=L5!$qTUq^iSO23Ds^rMPcNyJn`!i0lwf@Cig<#tLO<5} zVH5AE0w5DaV>41p#y}&%XGqEvqU25Y&~r<;han%lH9J;yA4KI3xc)JOgXhrt0H1pS zJ5T21HM3ER?>HGxF}VfyYR4W~!j}h;Kj~$7DcUjxNfoAqhrIc^D$|bzdx?tf=G;e7 z{W%KxAoe<0BDEl%FV@5J?7f!GlIY$`Ghdvp)C8a~kG0+>m&8!c<+^H>mChzY&AfY~ zXU%ixGWyW)jTo0@o+0RzV6;ZW55#%kiE#?S(o)!@N^pz5K^F030YFx=xqz)Qmri+e zcsjEK97fLZBPZa$l9YnR#IA6P)Ny+1XtW|j(PHCHU<1s}RDXQBzkvOb1t(wfMy-F7 z)Qf=42cdVP^~J5ufO%Hh9?vO?HZO#R3z3?6BKa9K`TyiykD3>Qk&i^p(Uin^Do^^; zq8^>}!we@BAgR+#$x3t$wPWTRcN~tig=K0^7*T!Of;$E&oULu7IULfw=Z!Qai7@a& zZ6M)v+&Ie;5qi$!uOjM^#X;*jAeL#PjBf440x;<-HUNygN&hTHqbwM1nqK=?bu%b-{5j%!xK zg-k+Q!%>a2nR47LtyUmM)@dlYFkvr((9%*XNL;{si%)H+5F9AC;@SkF*v&R4DfoS6 z2VxS=8-nTkAg=njuPqb)e6DVS%9NUloS;*o<5$&usom=uE2*lH&PxeXXBYtXqaM;< zepWeH4;ch76W$Y>h7R0h#LrzhfE9W>n>K6|cjJ!z9WuBa9-Jdi>)fr05+cdcY}2 z^tc*&BnG8{JuCaOZOGL-HD(|qob)w^<8ZAgFPZZAV~k+R`*x7L3GtM!EcN5SMlY6B zqZp2ZaS(NcA@Jh+zg;Q3A2Q-!4`H6RiYw%8Xs0)`x!jaRK_ zyh^I8MAU1x!xcl4eariqj zL2z>8L|=9Lv95c9CSd4=20$U6ATrk%(|03bD?VZW2;J z)tGM`sz``;XbZcTtdT|&F&q`MfXgRk(gVi-8h4Qz?nJv$A; za{EU5489@x zs@;DHkAKtld@OHPh;{%eq?BU1=+NQ#t`Uh@4E*JUl(6|c0si9m#UNpK7_%+_K3~77 zu-37VWtxb?W1Wk?m-e?GVQ~}b26s?0d1^KR#a@n;VDv5}n*4emGV^RNCw=Jt9>8C3I6@8mzN^_W1zUuKfg)1>Z!Zda!c zpGAn`tt6e%3Pg~~Yo6Ap5FhDCU)Y8(`Er=N{2(?nr-P1S5?I2>XU92NntjAnZequA zEco}UuZZ2te(Jw$hoNly;C@jKiUh_^jrW}fMZpOCY1@PT2huU)9YS{>FWZXa2{T0) zG+3S8X6=*CdlrPZwnSt_nf#MU369%3)>b1DnzuwaD62sQ`>tl40O4LCV!HgsJntn+ zC2dQ>xy+q-dWjV)+L=4LtaH2B8hh>OThr23btdtN=WGm^uEIAlK9eS}=1}oiB1*ri znuccS;=vS+++>KCS?k)WC?K(jmr1jQ+A#bBr+QK!zL-G$aprV@cB{frk1rN4S-)zU zV%0d&tZ}?it|#`mEph8} zZtdAtu@IB@tpm;^Of;yh{}%L=L9{eLoT#ck7RMXd!?lNYl*;f$jb$}1#0!6O9q#)} z%+)p?*P6r+oGa?PU;F2WUe71o@8{^v$Kj2gAJ`hkJ`KmQE8eZEzb-l>uA5gPAo0Uz zTo>gTD@m{Ojm-fTh9ohoZ;amIE?Enw<%fu%DUECb> zxVOw|W1rf+Ok0xLxsShiZ*ec>E>%{Z9|RTW*XJRho4J6xnLI-W1VjvX zACo-_82v}n;{X;jrG76Ny&$K}mu(y|x47c|WYjF;mC1)-D_*gb(*7U}-Cf#~oXOMS zZs&e3TC3ZH+0fWYN;+zd(4R~(vOcstPbVM<<_)+p3eg$-MKqOsx*`c~nqe}|I|w-Q z+5se8eRn6N9njc|rgU!9o>Z!!bEre8qkHjUdQbE)w`Z9>;N;pnQlIhxJyfLQ1@}ru z?<)kr5+w5yRwPM)*r8M~i-su{_z5aUhpSqiiUfUJu5K&P(BbWo@r>V00*%oFIQ*^^ z{iruJ$A<+wI4{CXcn%(gdmllzd~;hQi-E`RpKHVlSt!G0`PV*Y>S=*wlr~fqRAUOd z{`9C`UDs3qS$6y4xJVqxg`rBzVOm4)w7TJ}R9pdOP)`yB8(@O7U}->vGxeRyENKEZ zRk_)ZDjbFv;wpyR1J2*oL6h0bAXgqT@bXKqZGJt3v*K>0-GTX0&NXCyJ)<`_2L0$_NYKt)r@JQep;;7d(C~>2y#SHW5KdPQQh$WSV zSx^jtJX9-~SWk(Q(z8X2i4o-Ue?GouNB~V56h9p86M*)aAbufE~R(TUh#$v{7-AU~Vww?I0Zl*N_GD7ox!-1Q8f(G0pTP`+XvLNH_ej zfeluR`ASB{23x1x`n$4YkhF20MU1p`M7wO)Mo>xNMv`(VC6*E``%t%<5TST_2S(*9 zJpj&S3d?!mgys-UQJDhfT-2HYcwS9m$0pBTTgsnVE6;D2&yQQZ6b}~4%qirIQ9)th zp_77#Z&pARFIvgY;C1AH+T?RcL>f_zrKm3KmtxFHYSK^Kk$Gp?!iRLYv-L75%TA_>d^fRr$q48`nlY#|i(@OS@M zIH3V12zdyGSVqor1J;yam@YueUwxQOAWPX3QcG;yFGQz8;{2vqu%9{_q;s0s<&3wU z#J7@0qB%dQh4|86aec>tK&xq&gmbWz77<}8rL~_eG_t3(AgqeKGps&P6CIzR#AxT(}FQn5Y@E^GN-$PTBX^gB~aB8 z+O7^`!^?rskJmO0p#6p=yIJ0f#TVh7vXXV(UzLG3U)_`T{ zE=&A0qQw4T6q(kF;#3QUw`RQ`P?C`Se$r4p{O)^_&_I4%rCRHbi)DC;e53h{kvsRo zy%#aQLZW>Vb?Zqzi)NKI=(BkN_>y%Dnj8Zy`zSRx#^oWtB6;NaLrNsgA zN~sV8>DIl`fSLzMry4%onZH^vP$^o-J5sl^B_F|xN8MayBkPpPaE{=XIP9&7+M%az zh=*&tk^(Z1A6-BLO#p{M$%*>oE9_BkqroQbx*>^Va{iK)0d-B{>PVzaZ;s$z-Tdly z(Y!*?e%A{qLOAOSk{y-;UpR-y!3In=U>%eXQO+=|dVEwmvr5-0%kMmzo#VEOXXg0Q zm!n2_NLb3a>+>RLFh?rmT0(qH$;3_ryO(A4D9O!z4f0oMGpZw9om)!kercKbAf8Y^ z`(qX%rs1aLn+zf5B^;ZFb_+!k$NUX#aJfAYVqU@rR(H!G-z!-w4mG!#JN=%Sd2tI) z^FCQd>=JLHI~?80ms)k)nt8^#N(16L-bx1sYViq{~N3CZ+iy`drIj8t>#F zZj0)jwOhJT@a185Ib;Af)0MFOtj-E?F8#fK9-gPWFj1dTTXIcuRG<7tkL8rniwUf2 zGmX~_E|q8&mNNM%aGYLtrKHwXHUm82nqc-jagkAZno4M#b9pZ;^gy{`#vRFZmKhPt z*JlzEM-F5frHnOw3A2}=4HvxFcA^+7D)xeVkj|kG&MUOO=0wtzOhL7(hF_t0wSp3C z3*(Hw?+4hgE1-V1fQC{dFjP)DZWK~|idjv~_h^zmU;Z*&RVmtTus~y-OQzK+6Qf;l zK%&!$2=SEBkd{3Nh2(o8s}@9{sB%S`;#sD}_T*8#)#*dJe-(XZmWg(mKZTX}$ITs5 zRFydW4HcJoDV0gP+j`U0yJ_xX4|T44*ME*E#H&QOpF%Z#U+XgEwHaE0J^1UwMTc4w zW436%ZA*#Mh#(YM-r5%RIApjGpaz+$R6-%F*s`%uW_;wH(LTFELO5yxIn};Ci(2Gp z7yvX|Sy}baV4HM|aLZ5553KeTZsU|72%C@_O@1I5Fw8Y@ofS=7AbYeUhejz-r->KXhP5G_!J4m*?b zcQ&QkZcW^;qxwlB@jOwbp2keEn%HWMpjNxKaj1X5@NAY-dUg{)Ll48VP5oDbq3b4X z6YH~6LfchG!vHUM?8PjnDwwimzt51CO8V7NVDg=CRD4#8e$#L*w^b`NbkXX3Inq{R zr%oY`;u-D)L8=FGz`i&DwPUKMRO8lj5>5b$j1$Q-)`BHMlXV$khpq%3b@Q77hd?86hnVpP2{Oo%g^9oWLY{#wkuEF>visfH>Wx{Pn$k-Sod z8_o6U$t;f908V)C`D~H3D}AVpGyCVj`w$^Yo4ftm2{XcZ5h3>E^%J|u?GI7i5eORF zN+yPE_BK%uc($zI1jpm7kMaOReO=BSNPa_nJ&_}JfkN$8D1RbPTJ?zes#w-{Ny9?| z2e@;4nIin5*0Rio%vJZ_jO3T8aFqON7o=M5NpKX0hS#$;7Y)x2KAzaW$C2S5t-QIC z=utljG*WpM*dOTUaw}8ar^%Sg8-L-85oajj;Oh6KJtC&zZ8*S=N>BYqN)kL&etfl9 zkR3fO3?HW>)U$m;MB>!iH}?cMZ5W~iVO6tfdN27Kz~n*eL2bCJ$bA?^IEucNZk&8- zx_RYv7dCp1g&UWRn=_x^$BU8Np07amuh3+cmfx%;I8JwVJs7wt%1lS=T_;pKJ~c@_ zAq6=~mP&UC&aDZ`$r5bgSVYK2Jtqyen=p)>hiYwMC|Z0ToJiRqG|x6G_MI_E`4k`` z2G7gBlE}CJ*@2Lat(HH_eoQfLtGT*Mf{5$*&5J)-uLo@9xhyu$I~NW8jq&!(O#>Zm zz2w3g01R-w?jfG>A4 zS>gEiWk~NmwAeGl2##?Utu)yu`tMO;oetmL$)q}P-@M$~)qp3>90Xx2@Y085{hL** zIirzW|HbH@j_Ru?%YkNd+Bsg?)Hfla%JRBciuE9dTQyp}l)hel9naZ2onK4dc(fOl z6uq_V9UtU-Bl))MyEbMd@=fFZ)IV>r2CFvjB+_)Bab4b3#@PGyZ^$z^h*6TtjYq$$ z9w?y6Z+cnh-TdkfDz@6mg}&?SJ3_x!Z@;eGcv-!6H-GMI_()y%IDr3JZunTs;e_A~ zzpwo3GRaZti9B52H5I!Xo_}ZX6FJ?yRLa9^%ClDZxpR0u)cb*xv4!mT4?>dRzdA3m zFmN#ZU*{#B$ynmngxBxLjZNn0!ZC1Ayh_(UiTZSPZ2eC02G;`Bu5_UBuz=84w|2mI z8N^8%D%;CEi@Hz?`W5QZrt~{>jm`3BP;iy?j5b{r@gZ3=e|uZf{(_rtUjQ zE2+P(a%4b#eCc6I$-O#beDNo}ekZpl&P@zErwGnvL>5H5@~9jIw7p}mUG}}P(bZP@ zmw63*PS|aB72WHfMuN^+BtaQDQ*^HYIg3g6_kY5kNm~k$>9#bVKcf5lmmnE!rE;At+d`l-z(FgrQ=_vlTIq=|gkF$xJ|Z<2_~HrcV_`#s#6 z@fl)sYQ(v*yw@~Gf8adi02z3f&H+1Xl6}VfC~wT(gdZR#xG9%Eb zIY9Qb$rq(F79j#vRzysHj6PTJ__kzT0x8|2da7QwtyyXTCrF{R-To0=m5vH|;v0B1 zE42RZ{b7)2Ko9N$X-Gu~k5rJACo{^~g2;t{)Cr#wC^jUXTKlP(64{o4#r|=8>oMO7$dvVvqpfdLgr z*lDA9k_7>)Vu@7%35-NLoDJ-iMt6lz&xMvaY6YV5h8}rkB9aNeCt$<|T19dKNWYJd&Mi2~94u(id0Gg?m7vy9uF zQH7FBaykjrFEH?d>Ord-RIW&W0I(jeNupf&Ci%|lE63RaGKst5t<_6D!fz|{Q)m5j6)w{hooRX)t&Gx zO;$L4CW0U`Is;}U{wpi|#Nj&zfaR1HYdtm0?};^SrjmMw!D3!OG{oti02|9N!dqcq zf*yfh_+IGzcDbE!Hn{30cKDS|ewD+J4o~ME_IJ+RAwvR0Kj<#=ryx~6ZW(h^^E$G} zv%m{IXHBE!R}@U#6;_x79%u{t)>94q>RKbHHEA|40{Vyk`8|dmCAbyQ<06594lH7T zE*#g2rIcYaC}5&?KZyY>qmOpIS{N2uQ!yDPA%Mm|%-(FlBO+mIN;+c~;@h z?K1g~s$%W|vP619K+02%&ryj^7Hn0!l(WOQ&I#J8w=N(*E5)p*$I2jt_qfW*GH_ou zN{;EHa0kUeeBv2^9Oo{&I?|atC#ziqk>lf-QK(Hw<4*%Vqt9e;#V)X7EHm?ZYOv5u z6DzXlz}w`w|V7yMk`Zn{Ygo3Qdi^b zHSxmurS#9xKG2)mI+yc|;(e+`$ZjQ+^ZI&03xU;0#rXmV!|n%FpAJ>*cM^$!Ba}1W z)nHVACy<&wQoFyJ%;u-fZ8etQF}Q3=_e$v6wTT&D!A)PNQTFpYbi<6@Qpv<#(fU?T zbyQhy&+2dZD;z4Cl_3+o>58~jFU=o7DPfA&jC{9`;-qdq|Dp_9RKB(Wr5n?L*Mt7U zks*;qfGdL^f`8~J!a%YsgdeuDQnfFZw44`}lwy4}MdH%(=2k*K5`i@`m5x9(pV#?v z!c#>l7dJ;$dd*C0ty=As5t|A5CBijZtGl37c`GkC>*YRN>Qm<^AD0zT&p=IVeYUOw z4VdK;UA?NVl+bB}^rmDtPL+lwqCU`9c!SDD#!QSl#f=f^f*-rAa<42>Kbo+!u+#=` z^mxBJ(oCVc+EM`N5!Pu<^Lf)Qf|9(onHrx_5VU%keXKGHRj^P@B)Cexb($u_H{Em) zL%D6_dLC+{3UyA{q*{_rTDTVN&VSJ}rHG@T4D;i#sYInnSLTM%!lgC?`0Eyh4LLkv zXKHmzo~^Kkxw#V_+@ec0Ps`dzZPvLzmrNM$+rp?ljpu|e9q1COuqX|$csC2oTmHe} ztXX}mW;5|ET1kT1hF-g0ZN(XJR^0kZM8OZY!u)!(K2#S{jdWp6I5hyn(`&Spc2 z1T0SP4cP%Bi7xiSQey*LLfwfiWO10{YNt7Px%8t-J1e%uOv6@=O3c`N6%R`z_VkMa z&=$|L;+fhlNrgce0@v3llr&v|eH+Q1%Vo-JrZdt7d@C=p=Rd65cGdeqlst}y5oDZJ zTSIY9i>f?uRLvI3RP^b!E9C0&L3c&+d0y)hTdHU_Li1H&Sve$;;#pA()kt+Q9`;KX z5RoI+_aJ8ct1Qg@Q9d0xZ$i7VsHXKy9^DNdi?g4Fr%wcKZE|D0o!?+zd8q)^k!C8-FV`M1 zV56}Rd8)j9PW!yyePp5ta!!8ko|QYL7J~I?X>})}GYR!x+jkub`%GKnbwGynR}P?M z^-PPIdyKiYXwKNW(=CcWHh#(wqN_>zjRR0mZOufWDjTiwRm6|Hmwj# zD5$6I*F5x*i|Yeg)*0`S8pW6<)pVQ7VGHkathp}+4mv@N>}IK$g{k=ULy+Vag| zwpS~}RV6*?T8{^SDV#% zYh>1HJaUprQVvM=<$*9J^&;SyP9>Ny3bsk#MzM{r1fOjAIBs6Q3u0Kxn2<*t0R`F4 z=SLmkiEct)uu@~Qh;VHJJA?%v!SmK;BTMJY&t#)Sq#^DQwW>UU9ZfAxIM6NN{4rU6 zTaeH}ZH&;+dWau1m<5dP6)lT-5D_jGYnDGdVq$g(EjbgNy$hdQC3A2oI$B|~bXBOb z?PBY&@d$iQk_e`y@|4&-WeeD}#jCDb(K)PK$4_VCZ`a*(-6VS8+347Z;8O&^7CP2M zBg}Jglr?(?cU3LyG4oPT-x|!n9;jbL5pd20>QZBOw)nr$hHg%iN8z~sS|7dn z_Hyb69>Z`zW03{c@wsK{Jo3C^79G&f)P%U+H`SS1G~;$+R6f_KJRV*=`Ov~mU zP2-P-yL?JS`nZeh{cRwE{u&=`RUXlsbtwbsJ*w)F;K{TtgG=K>qPl5}p%j2c)6hOH zE4!2~Z@?k!RJQ2Zq?otIZd4!R+mU&sD_&P{GU8jrL_Wwb1_~J#db_vPG=!}3HfLX2 z9z7H-(2HJAIp|y|azG+awkKO+It5^%V1S#>UF=C6Y}9aC?;0ZQP!V%@g(mc4oumjl_3|?F zHv&O|f0-j{;d(ILMHN`hnfc0z+X;`WxsXoJ<96q5omOTI6W5tJ@z%v#Yd)6g3c8uU zj5Yb0X|=-~*L5Ha32lf^X>#lk^xt=I<%nMxLEYO@nF*SDG8%RBeA&RhzAKF|+tFKd z)NI&39%s7FO8f@yRm;#MkPArH5p~`r0k5%9%)MUK^K&hAg=~QQ0}E;;&f7FP`gt#! z2i5wn-&VLd(=wd@Pz}YInlM=q>~OyIPJQTHzOY2zg~-rM zVAceuotCBzv4ssYA#>}9x-M*iD+#8~yo@}^d>Z>UpgL6@b*n%2bSgS=x|E)H*!#49 z+f{Y~RtJG+*}J-N+@7tO@vOxtp)u@56V{yQKt@K)Z8~|F8Fb2hG%DA)n1-IbKWiVa zsy7Dsm3WvI3)JIWKafBT6_`3n?8_sZ$U3;!?vc@QyP_h;QY9cRFqG9Axzq*tTmH+~gmx+y~nSfeVpj+J4K> zi0A6Kom>MU)yf8pc7k)J`~7T)V@4`qOv6V55i*G7HjWiua>&F~a-){hjW9LP7m>jO zd!PAl-_BOO*{!yE>mXo>1m&sQ7)0Q`6sPlpbk#urBf~8Cb4dtDL}Bz#4B+sC7(ir< zK4XQ7FXEW`SX}~MYiV^4QL~+tH}BR_S>!Cs53EL|cvh{t7BjMzmq>W{8Y8khz^3Bo z9sfM^#-sV+RYUSSX(oqI&sfW_T73%9SVJUay+I~)`N4U*s7Aa;BA_f`Q-F8(=3jg^ zeRyBmUxPjPajMR-0w;%m7?IIcGx(JN<3Dy?iW8n9nzr9YKX;B7%ST#VEBhFJ&<_|v z1Mmb*fKLln!s$#L)R9HeGrIGP)^>L5i)sNp;9QJX8oOWNsXN z{gS9>&)lBnKMh|X^&ptR8qro^vu}zUkiEp4265HqRF!H*#b|~$Rgy(M$T>0@3#z&TIxwei{tX_}~ zVYY*$8F!E@3`ux7u99yMBQ?a}BuYoc_l0Fu(|>;r zIqmNhX0|j=8GH;;DON5%aY!k@Ch@pae0(+@Ghrk)Wn3A)yo{fTMsN7zZ-R^{&$3`- zkQ$q|c0w7aZf2M~X4)$7V{i{vSvb#1G-Hpa`tuJ<>DZAp3Qlr@-!OmHtwdF8Z-;FJ zJ#ilXlxJldJ3A84UG#5S4u(*mybOlKLZV^+8k{=DM%I%r6SsRuE)UrQc=i3Elya1K zstyP|I!e?qu}$_VhL`;a=nvP_6Vrl*w#L^1a0K@^n-mb-8Jb(@o}Obet@eN`pP0S! z8Q-4#%Tc-u!G9nR2`oJ>Cf(-lq21p#OweKPDP?+?F>_S7Ui5fo!Bk+wNqSK%#GxtE ztM$2R7!@zud&O~l*vmCA_7BEQu|K)JXEnK9mhIW7a{Xl3*Yn%@3na!1!~dVQ zk^h~oh3)^bwP=t3+eRXEe^O1f+M=fr617Q|fEo`r>}3UTfY*7aXXc_Bdl*l_y=~%X z2Wl}|ou7+5s22&UnKHHy;l}lE_-u{m#o%ssNb`tgAW$bw(ryl4{YU~~+;J|#Gdh1;Lzz*Bnvh5BaI zDUyC2&_m)YXf9rPise_@x%Pyb-M6uQg@GOz41WVh^3gS)04aI!FfQV+rFfUr_DIqLHrrFtyCf+g_D8K@Dhd zApI(~Yt_|tCwht)U8B7-f{Rib*x1&c7`CFJN&4-<`_nv41x}RjItYF)3lFEMW(`zFI`C;Qko(N(9142 zowT&`#ZTyywIQ)h(V`(Pl)SZXSS*U96}1_mp9RwVnhD(1!fhM@LHN-!(^-=>6i1PE z8_WR)5k+Olx$}B}TXV0zvUAV=lKWPrPe8%!J8aQZu9xbxWGNz)y1<_2mD*GV;k|p` zSyoOHqN5zY&(aKrNUGUL5D*0pBBrx~+Eb*hv1DP+9|ZK(Ix-V6bgK0)fqj&1&Ux$}tA!7BWK+!$eKO6cJQU*zD3lS%j%*CC;2ed_#UDd~ zqVdX_XkX8H7f(uY`(l&+_fLqMilN=b;Gd^h z6Z>6yvU0KO{(4noQn0OA5EgP=ztb3NR&@n_wgpw}J`6dU>&C?G31K#TiWj`cKO#Z0 z$p6A_T{SavR1XwSZL6>+kV3mk$;S{MmiR?!`Q7ByDZ z1kl>Twha@yv9UH~Vw<(LB#mr+1+q$<3yhZIa!apQFX7lM#srj~48*W%uY6i8^VJOG z6QkOyB~^F|yQUKyl26@eX)gI^NK#mBZ9KH}ZsomHb^eYHDA~6PjSOU6dakz@v!|~r z_kamN(==6r8M9PoYE)H6;-nlmYxs5_uw%_kj4x zjzo3PNtk2M1$k5s94;(DzFsz*1|i5{h%yiWD9u%0j(8A&c^Tk(CD3g#ikV>)vC!H1 z_LdmW?QU&f4|Fy@+V&>zQ`toGN_?qmb0!X2hCe6U(yb(hX+;=96UbL@b!Z=9*W~&C zYIE{3d-{ED{MXXw+d~+P3Z*1XZz>;YmrRodD|ugm^vizy$j}@2OdZdx zdQeeXyXY^9;~r~FxSLThiPDGu-V&-3EqB|2F&%Uy0cwgnrTQJp*P$SDH>wiCpVuf7=O6@{S?1^rkN7aaV{FAFY5+cXT)%ReCP z-UW%pvHOe`xuWO41KWr?=TjTuNvred(bYaj;jbwoRG1*Gn`+WAil;BtzZ7NYUoDP2 zc_ z!K5Y(85w7>MWMJe#vMUA{$$g+bNJ#BJ*L09<*)OpqJ#Kd1y00HyWp*TFIl~Il&S+1 zH)xW=WCl1hc*z{nDUlWmz^8==K~&Q-1&xWhGyX7sn}mt;9kd&Mqp%Q> z>mng*6(1sJb7kH8;uo4}F#>Xvl6R@>aK-D*z3hfcpmbmuM~oT2aRMQ%KjE?5gzSN! z6YF*AnNXlGB@(#A^a!c3>%j~o0D9@Eyob>)_0jpL%tVWdAiD#5_h5V&HU&zFj!H{C zrtgXYTaj+OD7cG0yVh|>RR)k@AB~YMdZN=_IZf!J{PyP?Yx$>tu$Cp&wsYqvUM&ge zCPJEp8*IL8lkj!rb+;Q24x~c>fjc~GP{T9QNaM@uAhL7AoWN<}5t_z8 zz;jX(OSd@0XWT}}$P9&AX#Kw|7!+#;?z)+0*wL!au9|h(;PW(Uo((v*+>L^?FG5iG zEg-z5sdwMV9dh(0?XqLbiv2~#J=(wM>MI z2D8zy5(3Vb64%XfkPfh1dykr)xN+>l z@G-!ba0RDmFzWS!u)*;<=4qgkV7ricqJV~t%(dx}q&F2@%UueFH8e8&K!KJdy3OCL z@xylhC_evJn4S(X@@sho$4PZnzQ~OY3(NkIS&02B`~>w4`SC6)v7bvE`q`5aWbhA} za{9>{RtBqii?GoVpd6?KFGBx^eM6*>y^K&QD-7G#w9FiXH@&lN#JhY&sa8|EPl z>K~++fu~(Ju-XPx3^c_b+%NZM%fUYr6K=#EPrhaL#q@x;tTjm~?%Lif=9hYPGZ+hdZS}V5k;MAe;wtIvN4i};i#!v0eaX5E} zCcbOSLp*z!KQ57gtS((DA&u{Xm_VWni7{gwIu8S{Y>wo~w;3+)XHz7GYU(c{{`h5m z_8BDU5p;N&C~yi~Ua97xz>6egnj5>=N}aQl9}*0@R-|_M>}FG0wru57adp{Go-d&J zfKRz`Z8KzMbMbVH(VQPe3p89aoQSSXkq^H)qL(vft0s0Twke_v$0*^i0-mRUncJ;CSU-DcVIxLOqUIV_uxLHPH$Myck~7Qf+aa(`=MCwh z-X#1^W#HofXjQ}qi)sU7%|PYb0~^3!>n|LB9$*a4_?ZTiLqctcqxUYC=H7wrEwC&{R30ju4#R-<9=i}UD@7N=rV3s^TH$Bk^kK6X7+FMLt*EAoOP_522Q*OJ) z?MNsylqCG!D3Z`}(NzE~GIuTOOUaJ9DKYUEMy7wm6w)xL;6xyMze_EY;vG_B9d7iT zzWd->+z}_wTc~&R5hZ1y$s`5n-<(~B5|JJ^Yvpb0Hx=hoV_+ddSVfG`>Xhnv`5&g* zP#fd(h)fD^OR&e$zbV6i53kSuiT7qN*ORdJB9F<{DJ!**bwhv0b#D@*EpWT$D#r%$k<&ip-M;`jIZ~S2zyIGaE#p{=mTKXwAHuTKLY(EJo zPpML%QA?U#<*VJ-mK4bq?LW__LLesbfM!iw8OLcpt#c7t8I*TP#+XaV@J^1bQl9qd z`c$lMfgyWvQeh#f4f{)itTeg-B6p8GTKlWaMlVvYS+|;^h_5DEok^{{0YUY&RgL3Y zUQvmVW|>XvTQXZXQTi&mrqJ9^rzG3!aIvvR;&ed05;Lv;*}z|@IREhNzmiF%zQUf7Z;`* zvZgZqia;`vwCSE6>yZ6w94h?%`+0KNcV_(J={1|{>x84L@9Vk`0X`q=zW`!prvJ(3 z!OZ@j@*KP=TfC0D+`9BFGO!`?s#onfobVu-z%BMFVT>;5zYT@j`$YUlsdjScyO*YO zLy6tbqV?c2_3I;*hCLd~*F&;bWM4`=kdJ!TJ3VD~KlynAmpfZmz3)AWJT!sAbzj%l z24>Cm2&WGOCGsezciUfakks(v5xSC?x<60Xay(|iAgCa~l5=}EkJ<~}kko8nt%!B# zKz#CJs{wvmc?4JzeY*>8Po8zcoW;n^buXg7zC+;-*(N`O`zZTK@d&IK=VR^8+Ti4l z->?#BNYBNM^}}X1p&}+oe1mn61_A-ou|6eEh*W`z)@;8g9q2lt=e-cKUPc+hZadU5_bw`kary(fz*NE;Wd24T2 z6k5w9I*6K+M9X@*-Xwl`@sRRE`L_l*5tsI^g-S zh=_6k8(O|))Le*YKA;vYZgeBe(R-^a4HU6@CBeYLQ;rUV-Uq*|o`LZ!uyliFyc_M4 zV)PO~o{8@td7U+inxkL}YZ-+M=G!ETYWzX|n2_bXs;NSuIjU)VK3;8Od3zqDiKCGF z)&Vw$5IzYOBfBUKQDo%^8rg&{)x>Hf4mKBfF>Pgqxnad%{c-GqZ1-@H0_)7$oh1rF z6K{Y29IV2Yreo!-`*l`s8edI>T7FTzNsU>PPpyZCO4$#hU={6Sut~95x_>-=J!Ce( z>KAC?7^`s$6E*eDEf)YhOMnMegul?PCJP2;Cixh+kl;TVn(0@FdbiG+5s)I34{=p_ z69p{uR~@uz+eqsqc6|U75v#tb`3#p~m>^iJ2r}xqfmh|`b!m&xwU==g065Nj!1&rY z{iVxnu)(YQwqq2_m0hue?)m;`@K`qrz0bth7f>jI9qDC~7*+HuDxdi?IFN2ER($=k z{g+VYgbjk3J$?`)7%38Uy;eF@lLZNaL)iSp`Lw7xH9pukq*@4cA-L-G?E8Bp)}z+`;q zDYhbvPj4-|M55~sVzgrr~%m` zw!>I?jOW7X4!t$;h%f?Fb%={QF0D!PcW6&m)se+A%ngq0UfuN6`I!f+Pu=|JOZ6j~ zZ7(Js$>@ITKQ>zk9UCFyJ=JSv6WwILPYTx{x)OQEhYKRDWe^~F2zD8Ej4Y=P;4o(P zb-moi)_DxqrGi70U$gy*SHP-&FxJuf;CrQ7hiS_sO;nZQd6}(Ip0Bw}br9hVW7Os0 zRfolqi$^f*_oP#ve}PGs#IpxK#@u@)!Rc0Y{TX#o0ZX?}JEzqN3Fhs=%(tL>7muvK zUqMNbFd;FLDhbK?`X`gcb4hx&0T$Et$-1R4+iSq97neqseDC({3*k!#t*H6>pk&IBtT0tOzv*!&%`C%T_|R7(gPUYYPqyJ7`UF%;hI9iXLy*>Z(>T?>=Rz z%8^u9KwlHh1Wi^$E7F!2Sdt;)HLyuL1V8w?f~F@S#3Yh^eEvucu_n@) z1lCndS4iJd8=D#<$dBSk0}cqy1S6=6M@rn{d0&k5FBj(D?*8^txcK}N~H>RPYNh}Q*czLYQCe6&Ns)(|i85dQMc{K$c^~QyS z5|3=95Q8L)_6RK-0e>$kYJOC5BOPhECa%xg+`15Xe(zY}y8f&KFFtEvgz%}8GU9~4 z@G$CPm9<=i{d9czzUXj=5hf4|i#C;WP38<&$g1bFg}nM=xl)ZEP0kmw z-R7`sVMQTX*bkznJ&wVAvS@8mE@aDD*p7Ye7LkAyw{>e3Hw^sKs|eh1WhmAxJy-RM z^t=q+u3xET>XHo&U#1w}pyf4xPCs8;m%OJL?9o#?C6gL~`!F9bh{98u0U5=&?Lawt zBv&N9at6Y(zxui_d2*7D(TsXWzJeF(IUO~rF%S^Q<1P()5;=GdG~r8pTiKnvOn<*0H8U*lIv z9BqcYq7=M3!{4&c&!9BM+(4_aPkT@5!>FyKL9qF^Fn^!?^_HpZ?;P%RhD`pEJGcW& zYg`yk)S&t1vSKZC=+SPSyVb6)N;PqqR@_%v3Jf?1eC744g+nGTf{*2b$|r`|a>b#% zY)AchkaZ|li971%wPD(E zCA9uvR$OgpuJ~wa3Xa5XGuTJs@1A1$Bs3UmwLqxU-?fLZI0VYpPN%GJi4^qrY3F zCq9qOQqhpWj#Rg2rdU)bTZ{W1*VtD8mi1qz2Y>K-Tr7b!oTkG4Vv;{7z}EHB#xrPB zb0Z}j*`nY)l6sUetz-Gq7^Gdz63S67nx99`HazlG z*KRcvy#b{Z&C$-foRxt1QXb|xcZ9R!J3PSSFaklpLT?RE;{lJ)tLqA)TZ({lTot+< zM+eBt#IUZj@O?XBTf|Y4d009%2PW2vTDW6~)p+%eui&_}#twhsWg64m09xmqyy z%OjQBhvIGld)-;F#hX$?wR84+n53P1{g@3H$pfEgy7^)>8wQ`2GilnHw+-t59jjvR6>FW;MY$gn>!bs+l{ks6+}PPSM!U5X}L zKeCDB37wDF^f~X%$Era;h!-?S1~{i}xg{Py;E zE?oz9Qgq<^&}#+g9+QxDG!Uw!cao=(>@u-uAoN$&8fU~zIUE^kb)uM>ih@hOV8Sl) z@{r=$d&MNxUqB^WS&Y1%Rshr8z)R@ib(FhNhxzR8T=jkcet-!4-SGb#24ekRFc32r z^M88XwIt$~gkM2BAkJQ&Bsd#}mPVOdG)XK*diKSnj(Ty4Yln)boJfs5+d|@IK7VC%nZQF3BKPR zI|5Y%s{+|`deT5;3v_e+9FdWCr=avDDfWn4$V)nY>fT*UEiH&opbh7#|2(d8_!*X- z=Qj(=Oe*PnHIG|EPw$136)zdH?2exd`rSJJv62n=K!xxP?XddW$5J=j4QP|5E9veA zlf*aPzggh&Dby*X$m_MKkWXNsAcopo;|H3RBf zP7sz0HM)C>n~1|}qB2POaP%B$Ung>2FHht-^H5s#O>A?xhWfwrD7SpD$vw&djF?G? zSp6lDB(z<0CBkBzwOm9Sw~T7r-qI=PLfV%8$32&q+HvEFj_YREe%q$!=FZ5?I-+#4 zaFzA+EBn2Ap%2=lzJz?Jwa|w&ncwz=Qme-R?P;N*wlE1NTnjO z+?fv3?J^UIiZ*@uhhi?;fb9qWv3-;!KjmE6FX5-l0H?$9r41%+pMrS?nZk18&6U{F zF!O#eZ`3qNUEU7pv209? z>;U@a#ApC!&&9#W2Y7jMcz;RQEC0V*^;Eecu_;=g!*1;|{xW(5h7dV`NO1>FgvAv} z6|PXdVT~Sf;0w=!g1isd(tVA>;CcT&Os0)T`-&?v@!3QSaw1+h{v3Cf4Bj6ZUgveR zU`l#IDI87bKUe{cU-vz($7GUFc#!inqE{;xR>n?iH_W^}%|xfqVKdQZ5_b6%VuXDe zKd1gq<%7YEqt5OcycQ;E!SGlUVg#U;ffrJUIp9HmmzxH&PB{<*UoGGggH>|Ig+5_+ zY*7RBGOq$dvRb(N^MRL>(YQJ3XcEA%PMqcUhwKQQL?Izjb_$p1P)qp=k;?Y$#(5yxs8Uo zs1j?H<4oe(i5wA}O-l4z^*uGzZ7ijLH-l8BxK~bVFRCcL>)r#gNlDRQOX|*|R4i#I zsR_{+hUUzweo>K@Sr6zH#!P2uT6s$T&GPjbB|*rzl1`!W{Px z>@8)U^p2sKHyp$8<2XMGKEj|a!#7Hn=FTl-u$5r`oj(BK{^mr4c$Q>%GkgQ*hUnX# z#|ZOR%Ip;!gA7GjsRXtY#f+OzXspAcccxSREh7|`HPoBrQEFNF^`wj_iIq564Y0#- zeZ(PBfNyh3TC7XnEOt(}w3LnFNuKSHp636A!Uy)nL3HYbX66)DRW9+%jUaFx7y4Uy z3F=uIGONR^_28{Z)^jG&O+U$>*A*?{J8hS;(LE}k1{fvX%Pw$M4}D6j1tP!(>mE{3 z^rURRZ^L(goQ4c;&J4Owf?Pep{`b@NccZAQL8k#|pTjffSO)NvJZ&JBKZgrm@tZ$1 zv3z}bH^Sgg|G>29VMY(kivID{hyXgJ0rS@}Mtt#2b1D!w=(>#{KDDYb^dxXEAYTUE zyIGAH*a?XfGmc?7-VFPZRT(V{5Hg7p`!*^CnPRGNUj-lQG`yB>+8YkGyrCMgHepC^ z3D2-Ta9--ZPXQ|;f`Az{D#j%$D*L4B@l^ZRre zF%hOqT7pa7=5^H6Fs5eX4^|(`Dnt!Hm2Bkpb9;kup)LtKbeFi4uxefCM5w7T(Y$G0 z#gS(XsJ}62XpP^`SEx9ZAKofp^ejY0Wm`qq-^Q%CckY4sIQLtGF(rZA$s1wa+?Dvh zOoHUGUaAYyC9vkXkYFp}BN=DA9Kn#AT^e)VB@@Tqy5bt0GDW)Y;uXhgh{=3ke00zY z!B`FUmY$s!cI&HyzCiw*1ab2;4ok-zPY2E=jq$YG6gP=B%Fg`Cpd%mNKyqq?T@U9b zP>tbpk%OL}=%FvasJF;e#o?zN(jPMCXp&C^9lhg<9D5RbJ7S}i-PJH~cr#w#(7H12 ztnAdamvOUq45U4K!uC^Q@HlQ6zmxco#LNCs?iv?6L=v`p#Chn8QHfZFg8d!O=OV+^ zm*8xlsTp`sRl&qHoJ^_&9s$VJq$=GACwHqcBA|ZeIS#4Zh}n{%{8(0l7G{8f<^FVP z?2s+>~q>3iguAkn{i%}uIjnzvoEbxt!^6=aC!u(VNw)oFCH zn8i?rsd$Or=7i6Y+F9SHk0gan999;b)L22zqvwfTsPd^Y5{C)jWOIVp6%$K$(q`0vHgbN=pWeJOMF4w1s5$%CMu5>kk{L$Q8zj2 zKIoQgczr!46W4>4N|vl+pi>!DSMk|gCH&xRhR+O1$OA!L_=0~lLBFTDZusqUy+=Wl zwPnL|xHJa@=(@4t2~ML=A@BReJ0{j-`l`uFt8l{kt-hG+T^As_uh+b1nMU0kIL+m_>Sc9o&=#u~90u;=(RgHF z!I@^8VR0p9xwI+`X=*}3)J`pd_YfNcm03dUGFav*W^>)9+Nb+!@D5hGlwKveYFJvq zp`7_^4XvvAot2IfZe?m#%gBekh%eI!LHC4yEn{V%f!Kr>es&#je2()G z$kN>4owtgC;Y3DQnRpL)?8KEsfO!hLoY)q)WK>X@_|k~XRfI*{P}r@?bTs||QsDYG zM`iQ!cl0)Ey7WGx5)k0CFa1DZy81eWRe|zsec4V5+GuDb#Q}f+k)O_eX6Uw4vkSi0M!_HebWjN3WpED7gjDOA1HQS7Z<)J*n#<5ogB-z{Bud@v z2KA-;Hf{%h?6%U$B;5@PZ#BBzZIs=W0bF~xYihF2DK9IIDS=Cd?7U0!x8{n6(=%(h zuAFffuqm+|;o`e_uh(7H=NkLs;@-u8KPLa$%7(gx{Oo*QzaYQh>BQSU`7qA`KD7+$ z{e@QO6Iz-ksuiKSB{=V)%A`#=Wq+QwQM27QXlg^K)o1%0mzv+xG+5g=tB0@ixmSdq zMpBg~Sm08E9xS=RR8$gd_0G(6inwplhssk!(g-EeE~IRq$vHmuC@MG|b<%&+%}`cJ zvQ9WI9GR1-vzkn%^ol{VyFnV9@$dx$@5S_`N@v%8iP9)s>0BhiReAg?4>OS{Jz|&> zU6&G#&%G8DD>Z-oV$-ghB)gK;l43u}(emx;sPm;-)qL|^Ki|#a6MR(|1Lcf(Eas1e z{*EK_^gAB{)v)w06OWAC&n z3I3VtTj2=ch1zZLgXc@;zhk(yStfVI?}Ynjt6)`six*I6bFeq4*9}d3_57)}!-lvr z6bRidVLB{$%Y8sQBA-xdy9X;uZxq$nKFhMplL@Bh6ebO>-1vK+{1q;gI&l&=ob{R2 z5r_JG|BzUDfmD2M@`D5+dc}4y8CWEOG5wFy)Lo}~X=0840r^Rr4)lLT=sOlFZ}rZC zz{#V%Fdr&&z&D`4u)+>Z&QfHOHX=nmbO?$3WqfsKCuPaxfeON+TJ>3~R{YVF#$`Hh z&@xtk9Zw07CImi1?i((_Y>cU3qy3?-979``U#^?U>&HM?xgV0p{+*mw{&Ux1ioZmu zVc?dFSVce2tf&+frSekK4RYc@9ZgeX?t&a-8^HrBaZ~)*2QK4ouD0Pvnza)shjq14 z`WBp;?hSlS)l~3eEPMCzDV?4&;pc)9v1^nowb(hTth5`mUWT0Yt3}s{r%0DKk1Q2W zCcZ}|6S9@XYABlwQZTVi+J9l5`@=$yC9Rq>DL;p*vqJg8_-6R3GjHVdFZ&m*OJUhT zTQ+r(4O=9$+@9y=9>hcqniQK`q?z88si?$#J=uzJlAkC0g$h+&4US~nA%s#J+J+z* zLpc$S`Dd*<=nl2RrfB&(BP+8Y%F*ADcL(V$d0iIkCqPI-hyqz0k0;4Qv;%kFmEKa@ zLUD|fv}@-Pp%2`(v=EVVbvE^C&*BOK?` zGt(DQPv(MGIQo2A_f>;aEVay21JKJY3a~=FExfFhb+qC_7S5lqmiXB~=bK->?cg6P zd@jbiAaFt7y+iY6fkG1&aofUO2}H)NgEXrP!f)Zpx}M6}hj-tlar@Yu{|ac9O1?>0 z>mdbUWXZ}9F_)le!-}La<&*TYTa*{=lRBZxSA(AO`my=QRPcBna-WCb$;3*#@KyxicW4Gq;EuN;1Wpb3MQ$ zlQn;^5l?=hvl#O9^?(>VMrab{B^QCr0}!d+FaoIy{?N~HDPLfJULn6f%`?nY4k#&5 z`Ew-cpTRJb0R-x_JT%DNq*e1AzZP5FgDRhFT?Z`sR`<0711FmgYb*)mhEz%v9+Ca~ ztfg_s)iY=)DoLHYdwoO6K7W}a?!-?i*pMotflHwyKm+V)$?4;l_}X1T>HsBMS%LSZrRcXr=aguX>X?*Q#n zuR9_daXB0GDHBA{kt zMgPf#>n`*vvKlMDaFTH%`L4dSe_t&n8c>q77X6+08iwvVF} z$Z21U!P#6GCFHfX$B`;E7PVcmrnt1;S6hB}`jo|+n4Z5Yzqfsm7%@W(LKDp{jegpi z2G;A93Od(*27pGE#9wiE?`Sw43(!A3Eysbt;Zamw=`Ba$M1I;b7v(Yv&ateH?2|Y9bRF)3Z*LK-s0Kj4m6yb|}?Lg;blo*2OP-)Fud>bK@5y% z^5|{*(DybF6aSK7w zQEzJ(|R6IwH9(Dxg~Y)#zUh{(%AJ0yPVid;-;2LK^Xsd_-JwO;49k?sLjN4AI0 zTkO6aQcCPH{w4RMO7QJ9HGxDLvO+mMEH!K45U9_;J^f^RWk68#=D7`Jpk$gk@v$%1 zx>uo=U4nv{JA^1@%Be728JqG?NfS0`2sdn7IK$SJ+R(m*gX4GsWELqcP4VuLs8~DX zdd{{u$v-u9^KOeQrAvZGuquhu#*}OMePK}vDH?(hsMJ2_z%lAmK^Lhqn6(dN<=w(H z>4Uf@Nu%X6M2K+hfnDsK3mqOmqLC(T7%;gA#W=Bpz3>*i(c)iwDAJ}RV=Y8#gXI(R ztNO|H7D!~z4_Xa{1Wqmsnn?UrJ67mFkA3XT5#N#~(Ny3vq!3M%l9VPf4wM=PtXe=w z5v|sX6ZDVs9G4?zqz3d~r?yt>2?Wl}mQw`J6ZU9O>aWr_^Kk?;sFaM0B#||gQ#yOt z>Vr(n1jkRL9skyN;TF=42B_Ku%y-x#nF;oHu#({udRx%IZoubFw026=qW*{(xG`>#C^=D^ zGnKw-kX#bumL?t7m4epIa7{3xvf#F2Y+{V^SJzoI=p$#5k)3wi*X319oJb2x-Xgv; zXxT`J&d|QX5%^cDQBnVYJcqUV@hGnMmRA`~t09%g3$EskK8u~xkKLs7U9dGL!eY1(;hNJ5~6&SCTMcjJ0A&hfC zy4}fJlnOaXZ6|#np1q7d{4;5N2}4ov>OF=T!bVIH5zxjUQ&+}Fx=fQt9#d#G0%ZeV z&i3mc)DS*Hj^Zc7ZCiPQrYwz94mdJQHnM@`14R^Sf3@A+)!Q}+!iq_247N+DDqOk+{bQ*iDduggX`Z;_7>}gpdO-x`FKuIl!`LfVvx}gu&zG~h%*hP zDccDblK6EKzIAkdk7M{r$SEk}yp`h(J78*LmWajM?BQ;>>zn%`Apc;Mc8BX)T>>S%#JgmKIWW zY3|L!ThC*w-3vTpkVSDm&DQFlWGGl2l5EfH6)8lRrP!7RPsTh%{5?Xcbl6HLthy2@ z94?^38U;Tp&CZYAEcZ=}>y(IHHcDX#XioT8=3^eI|AO}KE*}}m7x5tG_*ESYl|Ymb z>e1ggN;MH~z_=+@i+5gX%OrbNPRTeDa@&1tW^)agCu2mI2=5HCNwXg3)Vgt8OeA)W z!?l)r(*qNqcB=3d77qr!{II{u8c+nHct`)J;KU2t@}>gXV;VEloEobPm|zK44*Xd> zc;2VD+x(D77N#He4bIa4n9DlW<+<5MZxn1fji4=NP7Z(`ZN~}0TOJciQYog)wlbAQM)kVr58{ zro$;DbggYI_9<>QH>+5|4t)rb@g2Vyuxu1#o2Yo7>B@-qagp2J+5z&$unHM`aT+-Z z7F~{Y_D(%@R6Q&Cov|Is#53q#$+f!+Qt@UwV;ulyUyllB)_X?>fo=-#V<{w>#L{`|eoS6=dNv=9J-idHnir}q zs+!>M_@zupFO660zT>;wqnpP=|Q$x9g82EPAt;YW|Uz)fk@Iy z0SeD`4_EA=H}QiWUcI-~JqHk`&{9!xX6B z=oG8&D)Xs}r$cHziri(5#WfY-UGv7{sU{tQQ?@j*HB4VEtOen0F|{jt@T1U%zT~jv z3R<81d<^XAD&TisPgU(|b7sUG)gm2*2f*fV!;fUr4EmV7dK`t&XLY_=g-BZxWBoJ% zCUVygu}qfK1WFr5==2A7?rKo#ZH|(dcy^T$PVcGBR-!IQzAT!?N?tvx#*`)odbzKr z5piJlR+dI77vkZ~pvez#C|x>HZ$16v4KP+woUsI|Txsw%t5%fKV0CGW_*@1k`xTtS z1rYNXFI1@JQIpP>BsyJw3AWv$9NKVJx#B)^f~h1qI82vy)7Pk>%#y`fi47SBkMdsl zaHPz&^Vdx`i_5BEv9hwjre1`z8wq*O)qo2R7Zf^4CkMbK-nAw0?7AMQ#Q?$yJ7V7X zM#^l%l2whBMnzzub1vG3Pxz44)j!eDS9p`vj}}+gigK3Djqp<^A|0bvWC7CdtJHGU z*Hp@qJsB_S**{;)I6|2kW+$KuR>vv0+kz*TdCAt5E3%dDX~($dPRs4_R?^(#5Qo)b zE0brTb;pNqB0&(_^bgb3?%a!gaMj~so?2ZOV=V8(bVOCpc7XTi+#0w*n;T70A3jym zUdAItS%yHYF?;O{{*7t`WF!rZ5<5^QYTp;S|27~r>784rj;NckBG$buK08}>@#%U` zrM8R*%Kb1l{rPFT#JPtZYapxjG^yMzy;me^S`h-ER6pXi^I(F|FJm# zV#YiE&yUH$7ClK!ilxnqgKzB~5CDAXN(j+}SE`(P6$E)*)weU?BVkHsDZ%m^b~{j6 zLz)6R`e-DzD~_iF^;7N|?$)oN>j%;Ao$}|?;-w3*i{YEJ7 z>X{0I+Q09|{_|QD$_FX%ayysoT}~D16Y@vAmjp~N;5Ndq87b1Q>f?1Y?y=7UP4A)T z$mTPcdv|m0xG#(_B>p=heGKV-ZU{fpxy>)PH;%NW=VNb3&sETq7#^y-r`;SRH<@x( zAQV{d6ZvwMPBuu@x6KQzOWgwR`q@7!2}GrHNlwc5Z69GU@GI5&GvQ^glihp!R50~l z6yVh*4hDHKZB#-S4@_4`7azAkMfZ!Jhvz=AG|JZb833VILbyxj zz%b@_QtsD>ThkNWBJwHgVV#G^Jl!1aC}&mI(HE;0E*(sNhk?z_&Wvm@Wy^}n^KEl< z8FKlB`$xj{ner#PoRd#9YnU)!0i&nO@8bRNY5H8g&z!vnV*Z8Q8tYzC-^i1QPdfc6 zXg5@p8==#Yy2uXI$q{4;RM)SoXnxNHNt~?mukA}geWs1_;qqxPloQkxVu9?uqbe>! zE*g#DKXZbfSpk_NaBwK8EC&cn@CRanjT!5{q-Ilzfp1yy^!o+2K5aq}FTYOzfM)oe zLo?8K_=b~4a*Re;ukKE&*LH*%hZz4LeP(s-0gQp&J$S5GNGo2s%GIXg z0A2*vgZ;olM#F7{%P+z{_wK3j(=H@k*0PAdhq}-y@;E40O$^rF99~UCh7cO`qML$J zj*aWVM}o}@AI&2x0s-Ts#|e;I`nsQtF}hrYxKlX*8op}Ady;OaWqaR38BC? z_@)U`+;Qqe2(w&~ASa!5!$}!KbWE-d^@@$LI9*4c2EmDH48z9u)RBd#k%}C8B2E z?d^N8c~7aABY*W#+mBBDk&(m;`YF>w@Wz`#LZgZb{|H@It`5mpzY z2YKz4FL&mrTJuYUO<}KoUP?+k07o@-jc3~Wa~~B;w16W+MjQ zxS+8OoKU7cMW0x1*vw>=7;OGS^zt*R0_*}@(257BI3Ta&8F8DjIKc@Ao?{QP)e9k| ze0Fd7o=KGG7uH@`Opxj%acvtLw+~Ux^t+HPwBu*tFxDAaLZnT0) zvE&-K?gi-#A=*#>!C(fU5YtW?t~PTM1SLGB@}cTM@;!ei^Yh?_OzV}#Coz#{fcwrAkxUt`YoF!xGqNzpxegK9%|$M*cc z2dqXIgn}cME7(0KgmJ}p1+)33$jG-;@dfv|_w8i+jJH+tkV{S0n`?LQ9dH zk>w(DFi$tPsi1;E4sAj-GJ&8w#LaTdvWoxv>omxmc+?|(t;D1B%VKMR%?5%kv=8F= zisVvpX;#=j73W~#cPPel7Ib9h4(q=D{zg=w3`eyMH2K$!h6nuxMQSm7|DLMj6sTTu z>%{gG`x&c5Mb3*UwJ7Ua@Pl64I*gOmv2>sG+23ae71ufrYW5zyLSighg|VhqHT(9g zteWO%z{%!4j)#{+I$phwEo07P8=KSyOblLAFziB9t)V^;h`;x|m@l^KslUXo%`Mu3 z#-%poT*lkl-0ESU+AsNHzHK*`1E6`_ESn&d2TjeiVmNf#8*3jE>#{gHT2rb1IN`dO zV~;oDB@%S$uyL&hvzm6UllMB9-Y^{Eya*wCwCK#=1S)h<8LVa&sVP7}K5GF)P;IS= zSdDeM9t}rU{{4NwIcf%G1Y>&6^J;g>KGshYh$!($y{Q4W9!_yr&5q{@+3Npgq3zH2 zYwwT+7*GZlWY2~5PoYP&uC8*G-ccq&#u!&#V=eD@3d09P?fkLo(gI>6I8H?;mm;_} z0;NN;9)S7+#-Z1{DP?2(&5@H@qVe(9z4L5$6M)G^jyO6^Y7X3*1##r1p!TaQ#}SP> zmEdUnQ#oyFWZai>$=@I4v~oxBESz}~ew++XCCK)RTxUvgtt3C>Qa#jBA)2!SWq1>h ziYm{vdLb`GJ$t!$RjYYZ^PuVt`Po7>)qpRJswjPlKriXuI$$;9xZNgVbL0w%A?kg4 z(Z^KCV4N=(0@Tw0RjA5EZXIclwmzdaT_}b*Hg}amJD*06Z<6i^h$<|c@1q3b7p~kF zvY)^2z)r^FQK}@(D5F0XdEFdRgC;r`ON&`TGmN z?tkWD+wLnqU*+>oD^ATuC`;wX|DafNz41VI0AF_crvG=o!hHrtMRbFBr9j+%moL7}$&T^LYTxlrf; z@NjK8a}8jD%?eQTdh|u8#1fKM8+TZM3DN2z^-c+#?sU0+?KPmt8A7p%kt)m50rYm5 z=j($BS1BGKNZc5Gx0YyeG;Xb?j^hnL0YW0$>oYz;qRruT)Lu^s-88W&#V;>AxUUET8i3VG(b(tO zdc_i9hYaFOAth)V_Ttf?PcXkTGdYYxJsUi*7V2M$;QxA*sR{oBxX2uLe!AEJ7Kxz) z1v&4>w4VIUV5>C`T{DGkvZ z)q0sC;9KK;SP-SRv0B7UhZ*nt9t4vxhOe)CvE3zbM^|ytS>c_J4$@UCe=({efEc&^ zKgQ0fIkSN4wy|v|9ox2TTTkqcZQEvt9ox2T+qQH1)Twjvef3_vzhGDGeX-Y?Yt|U5 zBkJ?oEXuWVbB)1r_LQ9GUf7BG&0gnNw|mHq){y%0o7P|NDRG3rjBx#T|FuLf3BocM5f%;DWiRAH#M#HOy42db~89=_kNKS9y z`DEDRCOf`eX&`Yjo4NVQuG92b=8E_ zVG1+v*3ipe4$HSC%U!mHH8ZY<~ z#b2k?&9&z7XoB3ijuI+xGYvD(K3r?gE4jUxlC2a`&oi>_xCGP~8wDaaBn65k#?>R% z(4ZJkVt}Vv!#y|A)q?l0BLuCZLo{)z?Jr4M6f}~Q!E+^SuVqqAbRkEXjb7mzGjGb` z)*+9DjYVe-Q+)*uS^YL{;`|*!fdzVG>&R&~uM6$ls3p8&HdT3gZ3V(O)e7;K&@5_) z{?iC|gmBhu`OPd-F>D9~sLJ3T@K35qEO&lf6P)Sxfaz2Vd4NGu)pQXW(7f}Dz#|ub z$(BDb_VssXIoW|V1vO^C+-RTC^k(bT%|MA!L8m@tv~mit8BTva|J`#V#AQ+3*#=6u z&YDG8h~my9$xY%EsZ=K?MEIXZ65DC0qFO4}wMkPf?g89UB0xXxoEG0P%8&5DbqX}V zU0_9Ph`9|flPb9ex{uGIBR^Q`uWnCZ-61JvgW^8w>F268D`smusa=bPuB&Gz%`9Y@ z9{iJMb^3c)C(Rx%wvHE7iOb}-DRTd`CtGrP7mn?dMrx5f?2vYCm^f@x3M3RLo#Q`E zZP%b7SaxyW_NW-v;IALYTr{~(er4gyXa3wj=()~$Q-S088*iT!t(>mZ!Hr09sv??B znlTJhD8B+1gd88EUY5N$AdaSP&oi}sl<=GbA$BKf)lHvw^ z9SzjQ0dfY*)<=J1@b)4A?sPnSOjF{+ldlMtJ8C;;HL6b7(a8<){F65kmhVeuT*A39 zIXD&S8rRFgo)lkIC!|}7@@6SEwMO-S#+v-mV@0dFMob0Eru*=AkVs>mj|i`3t;3y| zHGUFNM0Vg zZ5vTH;daszD`AH{K$9t@W|nDNP=~i%v96^~_}A46!d&RYyZuuC2}SwF7oM?1*s<^A zokS_{Jx)xPi8Quu7{Q?)Ier)?&~tPH>XgN!y29Q4BBi^VsH}SPR(yb+{b32+uIU-R zX&}B`vIB+r@g&+?wgWxyK!K0@U36Tf&`>%yK7T)5YDThgW_3@bufNES86nOjCXm= z)p-`cfpxbp+7Zd}b8Ga{V(>+XO(c-;pHdB$|0dO7VPawYpWPH0d%QN}e}!^q@A_J- zOf}l>`bY%mdZy>*SOi#6F3ns@C?twIs_!?d?#%ydRE}(_JM638&B(QKt<(I}G(cZl zD1{~;`{^@D_(@v`i~GE?|9lxab8A`1A_O8Q=~Ro|bpBwpL>VUb+oqxtB>wU4_<3kb z#wk{f{rQ|Su=C3nOuU6!c9fCo4JP~<_j71iP!82W`;nr8e!U4we$|(5J+Veq=I=yQ z?o}RrNk=@xte4_$GX+h4RRX7BHciz1WROFNKoVF zml7=GmfF%!HFT`r@2^fCx&3=XYrRP>Y1RgHDrga=ryIwjAh@CEp0VrOV=)s`+0wRt z^rcW;5=k3U>o9goz-rV%B-HG0#k^7zk|Tnp9ZYTbUOz#qrVD|BP;PS6{*CxJSL$O? zsk+0$s6Vf_PvJ=A=GeEfxG#s*5KME8KF+GE&n7YqNwLUvF(yotveM_xN1a@DeD75a zWRd+clqg`6mOKhJ-)yQ2G(<`k)nkZ!udRRyW`dGRi)F7X&C1f{aSQBN%esn**H4QL zRv&Z7CRL+8B~9&t^fqkcY=Jb{&E)ej4_eKE_)L@OV(XDf&jHSP+!6LC{hReGxwba1 z8!kkjSilF;MuNR;DecWGqep?!j{(Bh3iKs)Lkq1eximapbe>|%AjY=e!9;T31Bk2e z3S<-L4MV|q{Z7php&P6<0ak+*-2v1@r4H3LDC-D$Y`ZYWVVy=(SmY)}K0o!8UjNN` zA=mVB(7MI7`B8C9$%&a3FF!^B@Vt?rP80$`vNfo_+w>Nq`7)Vu;m_aGhVvUzRa_Iu z?r+pu4GS>zUH4|>i^nvuP7&Ng#T+On6jSD+Y^HFO`nJVXUVs!*o$VCAkNhMtBRn|? zfjM)c6x8-kewVyA*)|T;ST}lHrzv6goRCMVGY3ylGMCP|v8QekXL>i}QDxh2C3L$q zlUb64{M+Q-G)jS?!_*4~zAfo~r4a9+n&&0e6v~ym0%w|a2$_~j>+7I-$Ln{)WLKDw zl-z{q0q(t~W3H7ccwU^PFE3sOxFi)f=(AV=4}nCU0sxg}=3;vV@$w%%5V2eSZTE3J zR(Anb5!k`x#Pmz?4hak;Np#ZvcRWQUOg+m3NFh+dWTgXGluvE|u4Q5{;IGqb{GM^{ znh=bFV28sCoc3L8yeo8%RXet`iv%g2MgAZ*@ICj-vjO2qcc`)^zPQh6UsOcln!x7T zv}!#wFN8AeIW_APDJ$3YIO;~;(7;yIdMX?z& zuO&m}10237_dW^JjIHo?p;AnOF!KdXO0TY6+J*Q~LP>@S>VEX`Y1$tf5JOPhfP@(TQoT|wKBg1Zb7^Vv~nf#mR*xbRvNslN#G7jG#Ahja8OV( zHRKO7X`CaN?}WdnICUI+4e=X3K}8npR(t1`LaCFRzCst&X)cHg>`q=rLf8y}l9N(= zJg4&lJt;5)iHyM5dax7q20#6p7>IwjXREw^n+#B!nlmsL=_(`nLF%5Dgzi-dzK21YA*HoIJz9)~vO5X(NsvzNXZ5EISO)&+@k&QS*j|{WT8Zr9; zwr4u3TvXH&-(sH5>mK>G_-DDE6bb|82=QSm`Yu^7&x{r8Wy+eCXA30uK5fNuQ7rf1 z(DwJ*1v@#sO_u^o^n0;nEr(2#qIp6d8JTUGf__#tB47iEgG3ctI_{W8**S&8;G

np#(e80VxhBiKV?X%VqWU?1UPAa>~dwYd( z_f$gfl!}~13kYq@QNC|4tR~43b}6*u^=PX5rm|S>iG=7Dy*iW9D^YINCGqvTOs3(r zxCU+btUbdhHjsNuAL^3r1cd9`(f5w}!j)A8UCcRaQsyKBHF=nRa^7GKBtOs4kAS`)8)c1gHbkxi=6Tip>pa zP6XI!P`o)J)ctfO?2s{3uHdcI+;#xlvVM%u-n&=*B|?J}CBbeOJ44G}$spE(vXU43o%UYsm6 z%e&saA`x4*G=f5kPKAm=6n*>_*K*8vcW>ncD4h*%c$7*l26r+(zAY3jhEzDuHrw zw$DhI%1CKvbKJFmtu~6aHSz8LV2e1f{M9DLgTvuNiF z)KPGQ6cKN>C1bnD-&B^mE z0A=*f5=yvD&DcHfyiVFc+KGWRDCflU1S|V!i_Ll_e~rq-zro<=P8B@lqOO z1enKm6~8!B0XokXD3+2}Yl2#uSQp2rsRIMf16NTv;PD(5uk-nm6K&eXQ>gm+AYr6B zpmKKEDmUjd4#*s?-eY5eyT}%vrp^Td7hOkVE&g-PI}g4ih@R0aV9g#-iD7TTh=#`& z9f+!b#(QL7+et(Y0F3&xh>!i;fip2(0(zM&nR)QHa~|qCyq%f7$nSxShMDa533}4q z`1Fo0m`Z2* zJ=#98`0%jeN&Uf}ah!=bh#)|WrLfR%9Gw(-dT8xl%a>e}Oy#}eUun#8=5$qiO3dkf z!^hR}wSQp~+9Avz{p;O^cl%kCeRRs97BcVbMP zl6!HobR;g*48eQlh zJ!Mi%x4WSTQb)#$TR>=H#(90a+Uvlr+On>)UA?Ik`Zi@Um;E+;cl%k{ z=#kyc-VY1rJ>o@%l|?#Cg8KJ(xqrf~SWzGz($dbOz7qWWNO6*}D2+T_bE^$yuWwZ3 z<8I&=o?B+Z)f*H2UR|xdANlok8aoLz==M>%mkj2X#>UjvLWd+=ydFtK{Q%^ZY07(y zlAOEAPB;3x&yoK6x-A?pbR-WwB`yF{Qulr?tcwK?xv7?F>d-ujfgYl}AUbcsOnvLS z>!OY-PL)f@;Y*=@_|godiexv=(|!s`u5yXHiylQpj$kqZa2bjvXbPNq{q3Ml!!DXw z|7^@U6Gl37VvcsdT<;8-A!sMdyF7zbYvC5yCk)MpCeD{{6pY2OmboI_1pYg)_}zvi6;$QKH(vOqQ43)@Ndq$a9n%w%0yYl z?!(4esgx1i;r_p^M6po{*Od0|sCv1nP3IsXh zoD;5;G<$$CsFWA7hPeYLEU{a2O1UEUwW2^-9KG_gpj2)AZk3pF8-+8#k^QwisZ0VU z-?ZnST=RK^L0rTsY?%|EoPhgQ)8jO!=Y5NE>rikgD$&8!4)3Bawwp9Jk+4*i=~y)Z zp;PIaQv%_i1pOG}K|J>XHRnP3Z4oa8;UjsVopQ0AwBYn)Tbi5tW`fi1I;FkE>1H`O z87m#wZPcV@6_jS2pZ=sYsuEcI^}2 z)|H|5L#iZ6{$(w1uo^_&)D#?&K-U+ZGDcz&-%mQ0IcVadPrwP z!C-AG2gi>L)u+T73Lmlxl1wMKCVVN^8y5$pgS9W^9~35x( z5+Qs`x=MsR(;}LbFXZto;*K2#^eFA6v->e6X{T?&l9+|L4)*D-`3ewiga-HDT>Ou0}R{5xS^wPbBP`DmR%Lh&nq!At>k8WRp{zhZj z1TV8ZAJ4GN>$#)u3c9o6Y93YZhW7S*8~dcjm!NRuvLB?C`}3tR=GvrCBNDSz@H86x zLPE9?aC11g_7()JAvaf{kygr|TdqcLJh&t~Q_H!1lD`(qCA;m9R^e88WO4coOvCzD zD~^)tykHIEZ?WL~lSjp9qw+WS1zIJpZIpMOcbDLbr3U&02zY#|-ObRrqQ&k_;Po!0hGNM_E89Yl-E|c|vn&|DbMVQhMUD-+=o3}8O}20DWuPEnF!FMOF2RU9JiAw&AU$M{;W!YhVT~#Dd|fOahIObz zlJ$ns7Kiu8M=K9opU@WuPeUTQ;6kmyOnC%}TO=k8q+i}KIz@^07lV3ZIA6$X@-dgN zk*j2Rv&ojk9dgt~IeQqUryh9*n|UcqVOMr!e}STa8TU`~+)C49g8aq0?vRWbTHQf;(}D2g5o|uLOezRPvX&?ex?f&HbzvC@z_c z>%%T6gi3u>_SO0Bzi6ey&10t}#PuSuEzmq?iKwkAWUeYOp9CBRXO*ZYq~-HDvszzQ zha(kkw2R+bSm%u0m8h>}`(5v);$T(r+h&H&4rkFsjbL>b2yy0imNWwy(TyPsZP@e;PO<6EpSBWaoHi%Xt5PPgJZcY*b|8V)Gn>y!cLG=yjleO zZaY0AO(pVG2g8^XI!X^OU#@qwt_IZe-GopzQRA}6+B!-g=Y%9s2@h2}{v<=Nn*E80 z@Y><)#I7-OXyzg0B(DWH*Ei)7*~cRzdwDvoGlA{y#0<+Q(5?F2j#HI3aG18b=|If) zJ%uo+^?`6uA=+s>x7c_&G6$tzy)*=2Jr`B7{GJF?8zD=L6+#J3Jq2yHp-iJ`W(bR)8|C$u2B+p{((CVtUT5u#-57P>eyezn1j%7V>!oRXjRF=vYs<_lx3VPM32{ z!H~?5%G$rU(x@mv{hYzf^w;;5?cTN&@H5T(ol2aq=D zH0d@5Gvx!=JJ+i(2SQ5Mf^~pvAyq}e@UdekJR@5x9Tp>HZSJg()=RUoVGUFRo{A>- zVF?9rej~*0cj$gbS0J!)-F!slQN-rTHtuovR&t45oN zSIM8L4q`3;(FJz;1y+yGI)XQzCEHuBZu%6m!|2G}6>Ef=qFDD##8(@8QPn zI4ZI9W$%WQDIy+;e*4VOg?gT&uo>uQQ?<}__h$XN_cX5)UtkE!ghc5%-;JBOo;HCJ zh>KI&sBe6b+EmfM^JTa6bJAnRbnBlD*vpNHA&jVm=K%hV5#vbm&uZ{_6MldnR{%OX z(|+d(=KT?(d6Z4$(K!ML$m!@d9EPT%u)Itl>?xx_h=v={G1D1~GbiieS4-Ljp%9|0 zd|9OqYsn70vi2m17V`Gx@p;So0e&r^(ECp#Ki7XV^0RVsu>6maUr#2EwC#8Iheo44 zOPF**A5l=FwhyD>T5VBKFtVZM#lUm3c03TnZdO5%Uq?{fE=`7(8XsQ=PwFrDcIv1x zbKY+E--O>6LIRZEdA>xuKNVp&-$^}R5kFrK0|LIDuWJlVz79G>2Xg}6o<6m$Tp-`x zOjZjpuO|u&e(tK{fy%=)N0$qJ-tQ}rRSvNE5v`@0y?1fPai0nTdX>s|=mS5=%4Kgm zZqj`%(r4zr&*h63Ep;i!>b*CuH}?#ZZ7!Elm5&Ra(_cd`2j-vba!2Mpjfh6D2zbNj zy6cPdhRyjYeZG;O%=g-Oyn4|Oac>bZTX!|L)IDI|Aulv7@O3G?OT1d%9w3o)*^eN< zjXIqr_3mXJvk8Y0_T4;&LSCgmO{FP*Y zI83`uFU2cO+8DC8T(`U4i?w|53Vlm!C%GR>=8zf_{Hw=HK15O2Vpvt;i05Hrhh*SM zKhW8@Hrz9x!O$QsTcN@n!f8?fvZ4|YHbwLnKlU(i!%t5c!XCD+4$}O6CLBPWmCz}*<&Plpt2#5*6e#~&$90EG0X9JJTS5}nnl4H^2Gmn zd@z)WDDdMx7yBxc5pre#)PpS?|JQe5qvc$qBF4SEZO*Ue*n$I7mT`V&Bo34G^ET>J zqKZ9ZC|t}@v4sm6gRd%#gPJqrC@)RsE~{Bz3b!S*h+5#=xJ`W3y;`07)tAjY7b;O) z0 z8QjO)9TTvGk<3C5joMgrOaJ{W)tKmePXrPo+8$vR4mlN==oevI=&zkbL#2<7{o#Vw zVR{9!636FH_7MtbS@??!>uN}-@xpBt)!7mXvDB1~Tn|E_clMMD5Km!~Ub2!Z?J@b< zmgl9)P5VwxVh-SLF`v_av(GN2EH0{5Q(sm;D5`w;5LPnP!&LMAc5zs%rcT$&59n5 zYCJ*DS?0h8H%c?|!kw6xLhEyC46MzXfwaBpRK3z1Hh3eYbYSTE|h)dk7F>QK7iHBS!~JzmkmHM4EN#2 z7tm?r1fW&;>64Oa3e+;4CPo)bxB z=8~vV&T7APe@B@`Sn;vo`oUGUj%EE&JpAUw9C~9+cfB6iVNha^BDm^7=-8vndNpg< z14)G!le1jH&*5Wtq0=PD1z!-GQ4!zml0YzLc5A*VE|XmmN(U*%P+1wH6(-qy@%6e$ zskXWuBwsKomwR@FF_pRuWRoD}rsvuRT{(Rl(Y?zWi?GzFd))zD7sX#Qx3mw=nzO4V zN9)+@B}5{t758&h#$gAbov9$EY@=m5z)UZStHX+!`6N}!k_W}409{v2_IcQR0?a*B zN{JNNoE(@qaFN;6`Z)t-`h=I#AgPy_g~JF9z^bP$RyRfVL2v^%+Bl>CBHT5mycoZK ze#0!Be8>I@G@G0hEP0o1@`_4p;($}C^PC%}RxwtiJ zFdnd|AK7cRs5-^37^EUq2)vbnQz^#wwD^@&Y0J$3{4f)Vn{LVrM)vvH{zrN<&>rpO zgN=tXH5aHcmNXhrEe!3a9V8Aj{eg?Wr9_p4p71_&sr?TyPJraLJpYF+tN7G77i^(5 zq?HTsy58aIV8#t8+*u0 zEl;XC^$XdDxHBqHA&c-gqj!hqSv2ixeAArPo&4a`aHP=U0#40+_pfp^kC}h^Z~y7W zBZvil4v|I{brqtIUT2qC*yL>?hkcaxbH=6KPOD#^d2I9BK_a%o^($P-S9;Czm*x&- zgek=chZJ+QV3q^w{OTjuLlzU|0<{rJx`V>LOpF$!jAdns8Z2}Z3rf7zV1MF_$J%M$ z{r`rURXQTYH4$v%28iX^#za!Bkn;Lf1f&w}%;VOO>49pCOMX1{;#PlQU?ulq4#i=Q zwg)JTma@i1LX|V@OMBYO?A^wgg?>R}Z$!Uq}OrxZoAAlyo+}h#OoO zd@M+wP4aXWtNkj*ztVW~MEfjb>T41T9%Mi8PaFIAHU7TkkLVUhDh?n$bl#pwHFYHB zh2-;;)e6KXh8Hbmm&JP~52qZasbCWGuVs}126n8>3ZQ4I7@N3 zmKs$N6(v)`l61D%7(q5YB#vH|U_A8=pQqlVUb4R_I#Qv@Ks(_h^++vgX<6=0u4gD9{1ri{?1T`-n9XN%_&i|{m3Dm4uZ1ogOEeQ^>pP3hpHB8hrZWc>{ z)#^#G|LMwsx4EIHr&c)x>lEB8dtHm&hWz}q(Np;|9o7^0fL*LFG^l7ctBa8X zK{l2E#*a|=UW2)1=9*w9kCn^2;b7Dkw`UrDZI z)b(jn@qwEv0_#PzTB4_U=RDZS*6f|vwuG$$(b@n8T}x%c<&chQP0OxGB?}gcZr=9M z@h@Cp^u>!~jyw(@I6EhXz8V;(A)Rw@_7l#C#GwU!vXz71vnHS@dQB|ye+{OS^+NFaE&3f$i%!X|v0h1^MolUyGsG)6g zPY@?NY8Awp%!(`lM7Gi_ryF4i`aG_S#+|0WGle6OxF;ZDGW9M?>TO1FE=JjZSd;^n zv!>aGja3Ou57g>pYT^DSfgxx*Lm2Qo z=p3P_>lr2~yja$g)rv|=!7fT0Y-MKu)-alXwK$fm<>;f&RY~V-x8JUN+kAbFe73Pt z?8x)B8GIG|;@W8aE|2iCu-0y{6!prhi=bZ&t}>`n$~4LqMzjVjtnljJ*!3&lPgj1A z)5-`?X#JvA#=u^-J-+`2$1H zV@IpM?xl3|BY+|acdt- z%E9cmlYCJQaI}iqtYqu!RYpnborP<~05~5yUHianHSHlYZj|a~UT&WRH^1(!uBm zXF%GvIBaQ?J+m_e5Lx{I`+bEg?u@zPr!~nZY0Ps@MES&FY@iaYK*ze1#SU zQSi-jkGP~N;R+=#VG_7=&ss_g(Xb%hk*L2^YmlL}F$v^w3os?C5emcGNZt^uM|&YW z^S+K32aS0~$7Io@9@A!;&nRaxcEj!-5ipZw0)l9tGzV8RzorStj~bz-;&g4IqlUbr zRy9wSbOQkplqC!iib{mz{A&wRP#Z-RH*YM;{A zkg$pjmwZn_VYL(GFJYM%x5V(6x^7PD6+qX2|A^mywy|6qC&vYGe+*|~-jGB4I71q! z$5D_Xf4P=psQwH}^;?9j&`F&D+pQ?SnB0$(li0(S$ z}i?eG|48)aVfskOJ+KCqo{ z_{3aP21nu*y(bI2b?C*lVL6<6CcB5*`L;3-p6@s6#b{(|pEA>Fj~RMP7*C?Viujp3 zP_gsMY=zBJ)*LLUl&n_8f8xU@07BT9> zI6Af%?+G>}++TOPqF)94@a~{8Ghwf*sl%*)x6TrLxzXM;oG{|STNBGTkZ&KqZg8*9 zJSSNOUaedtvfN86EYrSUq+M>rwB~fVZfj1p6i!fr=-fHXprP7(sL^9!!FbM9!+0X! z{4iLL%FkYQ%je{9mj9eB4A}o%`vDiT$#egQJdKt4zsl2?|F6EV_=L@+e8V8iI2BRwU!D^2QsiSM|4#k@b5Ap-g|c#4@+6baZuj`G zJjCPtw>&QQ-Jkc{y_(O9p4S@#grCpr+o_uvE>3hl2wa34ege3}dP81<*s_$l-j^Ld zZ@W_KMPokcCHS>GIl9>g+&W{#Q&eGQsv0TSoC}57=0i)0GlwLPe^KXVonFrvQkC(#bv#N*VXr;}l*?%&s2(1DY|9d68k zZ>M_UTHS-vG1`|yw{xXV}892vOggB-ufk3etMZ$r>i8CP{Zv5bCkGrp^MKW#Z@<% zfiUE+rfc@!W3(~C9Pm|?NDK}eTOV0xx2m@o6Sv(Rd??%AS>~@>S2hv7G?5p<^M@2) z$2De_Pd6<*6)}Bb^QT`QS`tFw#1b-D0+S^Z(ddm-a@#xdD|FOB2$KQH4Y?M@7d9pm z@gXEmoCs4-Rq&h?je8~2!LM-AVY$o}y7?_)12+b#!2|pFazIC|_!UY6(xPGMD@P8Y zk@DE6td$MLwItQU)L{ubA0aACk8-QbVjWsOmr_L{{_B!iu-nf=bUQ5REtL7Wm~(m) z?Xmj^7m=dwjRs91o|YucdDGn0z#?^9QJ%n6Z#+{|^nJ=lHd zqi8szqNI#cdGn=j@j~*U!fh#f{)pRY%OL5qdE}rE^2kH4;*WVP+_`(dhJ}YmUsz;C zPeJ+3hKLXJ9Pb$P@js)qP+j?U_4^#Oa1`#kNGU(t4lr#jl+1-9AHHI(tsZ&q_O zv*Hv5lRH~qsU>2sEfO!G)beP2vn`3xE@a`W9!?_@U&dsF-nyW|Y?{tH z`Gl0*+DJ%-@C0;j#pjj>YAh~Emt<%z8T#I$R~efo zm%~7Jsu5_L7FW}`wI8dUrJHrfezCkAz29!&AqtDS+a8Tun3wCCi@>C+mG_lO z8mkpAHa(38qf4k_8lNVhaX+&{G+&VsQQvaw7bO?Q*b5bP8Gq}q93v-RfxbCWZZMg* zO6akvBW$;xoI^Y_z$5Eb;nn-Ij{h1X5LM3A-7nF9ZmzqSNC^`gs#bz$>x#YCbVwco zzCm~I_JsGs=?#cXAmS-lPlN}Y8t)E;%VSct1;geM_u6R|yPIa$=xomjzPB=?wCx~}7pK%on>K^eiRj-JrE*=cXn2Bc)VY%U)puuvbVTt^_9UbAK|<>__e z?nc!51HUS#p?Lv2K#8_0h0=bGHK%yN-nFqv3+25qRW=3amv!%;Uc2~%+0FhCuq{7g z2^NT2WoT`Kubb@@ka`qj7UnH+BKgaDEYftLtf~J;g4b{vnygDjPZs>F=5aMrNBoGc z7M5Y9VZy(`XTF+v5_xj-kMYY?Btqk7M7^sbAOtrA4FHAt{d_+L} zELxHAYxQWaMyzDI^d`g2Fr{rrJ28=nV3QENMJY{G&0|w^u)Rcgz>?P4sK?Rw1AukmbSuurC8vq>iTF{s)qHU(7 z6WpIt6~?TbO_Oidz4mdU{vv;xXYGNr&^LFt6u zP}QQZnp>HA`>N7x)7CN9mj@G1`hl@hZ6nS^DL#b@VS*=B=k|VHJ&EEH=!N9nDnTQv zotrMV+BvoR##U&7hIm6ns&XEEFKOJ|KrF9^6q|llfY+!(jEUHu&|Ba_kWtxxF+h{x9$G6S1<6m$4LGF=8eT{Jngg&jp06X62xqha$o#&GerUOf+!rQ=~`$EfcwZ#uiKr znqC2HNRcIH9IX>MM?ZvN&Mru;H%Uf2aT|r4(9#l+OP~KI?NoJ9Bu75i0h4M%BQsei z%T>WX07qx)ulI5|(q&QPai+_q3jKz~Zm!2;8D1tQxnZ|ii}|W5NJGoh_zALI(b2o#&~qA01?(nO4nF3B_7SPD$+wayW5O=F4`O*xQZJGDBv zEx=&WZqwM|7@B!NR-9l;1KpYz)?_Pt?P;wYXH5yk2kqcw$Krq3m%$(8MT&4YWb3TC>>$hPd&kpS{4lxM40b zDCk+f{0GtPBTU;JMe3zuqpDQepjjmpXM@eDqC-kso`!9Zz18sSECuImHK9?z1m1nc z0Ngvd->%HQn}SA@t31Ah=J7exb9$FT>;3^GFhxCN!57vmUB7Ap@-h z4C+|iL|dJWx|Ib}`fujyi$QDmqvbROYN@ai#X>aCM!fVSDpLw2g6B5}?-;bxobW-r z$1jVdgo^Xiz4|L)Ies_oq)N5L=JUuiv(<|z>Jo7D=zH)YUhNw8F<^WV?lsA2^7R_q zfHLpiTZ>%kt9;g_sdVykMKNELhPT zK=g`8OpYot@P~*<9{^L8bX9aQKVo66d9-Mzy}<0^nh&o1fb0d|13)jijC|#`R19@tSM`=dTMUK zj*VfOE{z=Z`{CN|PhHlm{nF<4Hd~(&UpDM656zw>cOpU+Y7zyusLmbOhGw2#KvziZlo zzGO$Q*2d_y?c9@}oCG-*u2vIk+Rw-B$pGQQm`{*zU1UMS;z5$B4w6t$K>QaCm{yHp zQb4+FFqXeLGN|Q;sx}Vfcm~p@;N)m#;;QfsQUhT#u&bf}Tf9z#0Um@soG4Q!9b`+IIo>9wgbZuo)2w)5cL%)t zgMc3m=*62RW3%ZmBkn>xuY0H&3oaHqi<`eu0JurJ${C1Zp~0w(FDhmBSsm7Rc)KWT ziD^g&dbqxH=!u03?Rbgzx67i;UpcNbDOMP$>`4}oB0+PK9{I^;`i2&Y>klewsg_VD-XB<-SD{9Q=t@Ys)~9v;^dvdkGE-m>hPH?aNq(PE7Tx~}HF zra?%CZ`uq-vTqUFk{75L1m9Ph#k+DK#n1UX~XZB_$Gjy(;$`>mk^JCW|jzw8;V~| zjhR3mZGvklce`3PIvnrwtW54oc5KaA_|ZoOQ@wmnB)}PHTrT$cW~WlLxpBkGuCNZ7 zx4A{)EC^|Z09Q0T{-JunS}`isLMp+U&4<)7H2J6hP8UlvM_Smm_3Xx+@87JYmOiiH z@a7Y=rQ>b9U9A!Ik+pl>5PeijI_{q zA}f95$KGwk(^QC%h1;Z@TO-TcRa!jOUj3yk{z*KBCBlHlb~E{_(a!fP;t%42U}e~U zf*@@F4Fq9hVgCOt75#%CNZe^~JwcUfgLMQLT?fIJ*g`?0;nlXSL~B|GT_8>OLcO}k zKIG$MjSW_2O*qxR7Ek{NgTxsOVd{hZEp?~#M0r%m!JG4Ud_Q-8yyAF#U@Z0b^L@WG zSI)WI&lZj;U1g*!#QYaZ6`-n@1a|p&dhq9mF%*OfeJsrRzIf`*DVhU7p5ZN{!D{rp z?L3m^5=0|?MidYdhon9}q#)h?n{KkJdLbTfi84|&;E&N?G~4qGsmC2z<4;v=qwlYt z-&MVEa&MRBL<)X)7*)p%ya75@5-yKY^m;JGDyS)?;q~RIl|iMDp;5S1XEeP59eDwa zbK1$Yt(o>KFL69~CU31p+o$I5`NWM#GI!=ZB{MoW87IcmpGMzRv*qd~XUS}^9>mjU zLLI}j4iv6YqtUsI{CwsYCu9s^(nXdXAFUrkTgr?xz()Uy%M}oJ35<7|=86>xIe-`> z7l6;;_2ae;BnP_GkH9mE_cvpcogDF4lGCNBjm2GgujfnDD zWutM#g`*P>Njaj62XRn~4ya{SEDC%<=mwQau-+&UkrYfVzCEwRk+9ycZTw<;#h?p! zW~KHghg z@`O2#)IY~dO78d)_gP=$+MQ7Vn-O!~R6$Cr3(xjc$tW1`dgOs^-ZGP(tUP{9tUQ%V ztn?EXlr;^TK$#;Uqv0~AO&uB&0}E+}#S@(EhF3TQCR(nJaJk0#O&JT`G{s2Lx331C zD~}mOO~NmY_g(Tf1P5M3nt}@(CRitrCCy*;x|Vjp7{sBfneEMI_`KBlsz~4sDJUp( zWo(Lcd>K?1n3dU$mN|Yo6jH**EEZA)OQ~9o77EOm6W?x4WXlCbV$Kz?J>8vzU7GZ# zP3OyMDu2)bET(tc-QB&VetTPSuW5vg?zeyjt!k2gayN7lu4VvhSD5IzvPZv)PycEX zrUw$#5xC|cFr)eDm3Wu(Bth0c!dK;P{h??T_*;*>e85NDAB>AAlhpDYtOdnAMbL*Y zLqx<2sO!f9B)`Z!Fwai`Y#`C|aC?b6%;qx>n2g(E{QMeM*(=|k22cSFAW(p~X;)R* zdyrw!gq7=BSV2qvGbLS7{(*;%u^NAYV1>vYLAerQxt?EhRrVUaE{@~Rh9YE^WJ0cj z$(k;*a!Jq%Q>9j1L5CRuJ4nuxNepTN6{v$lpe~56#h^^93c5Yfnx`z*u58#l_k9I= z(Q3;gxA4~x1!ZM&`oKzmrady+_H`Ltcql&(XXjYi*#(P&Rq!?%^h3zxq9idCq>zAT zG8>*RbHSr?6#vd@YurN&9b2Q6BTfK}1!sEIDy$t0yAzDfD``pr9!=4216&kc#`Fw! z=Mb>25Bqm*WW|hpqBv^vcwR4!T(vUkC>!20kOK9tt}a&R)8}`cl?I*!Q6!9uyck+0 z8AZGKr|1IkxT+P~@j9Ub&RTrAbv6vaAl#A+{sIS*7Q+Cij%rzh!c0nFQEKEmH4F*E zefnG(?p^xH>G&8`3n`UwxU5q>TZnpKU zxPl=VKp{ZN0e2nVA_B{J1pn)NYiusz&mFS+KbM?x3ytqV zP7vT_>=FnoVwz1LhoTs?Jh{EPlz-&uAfm^&uYP1jQK1^r6$Dv(u>d756BoYoE`Sv$ z(|m4~M52lIej@DS*F1TNNdiprqWiCo7kam5J=LNS(NX?@IbN&^>&Isd}}h6pOu@Mx+T>qt?zr02=e&znWblu@#qCypOqGV93p${4e{ zN%(bfv-^*S07bE40rS>7Q#Xx->YtRbWaR-2-+|n8Ef=Tm99yrGjtdi(S!33MkoLN3 zDNXLkRkp5Xp<_qgqk~8lE8w{`T>Pw!EJAq5KWJdo)SENCtn^1R@(deoW{!(s6?gCK zaKbfuJN|gy{(_T6jXl#jM~3#|m4bh#PR1FQh^;%^TSF?Ct>%@b@PgWbsFl>?X<${t z)cGD#b=zKl?>X4?3=F_nBsLz~?B6<=^%OY(l*LV!KYs>YPcRbMU`N?L<3@3|=}{!_ z1q#A`p30a9a<}ulq(QK}18(X^L$chaMo;aacl6tg*A0WFs)1Gib-Iq)~_N-Q%aRGZ?weqV`xZCgYZ25CMh*E4`dM6rbA2(M7afn zH?k;cO-gKLelBcRPaj;3pz(}>k17AHF)v|3)(Q$Tj$c(yl5I_&c44AawMEktr7^(N zasZz|$S0D3qx;jP3y{d6D(7|uzQY2!QBG6#m#VkO6HGt$rMeZIc?;6ph;^iL*lEfG z!Z)jI6_VAmc?JJj+b4Fdxv828A>{Xr%#AE=NT8)N_WafwtO%k~4Ra-v&Kr9K7$G5A zegaX`v4WjVX0k0Rv7>k}1u)-h2cTucJ%F zeYR8jJd0ablvTw#F*A52>DPEvUMpSWoTc4}x(c>B%4YmxP2e{3u_h@y_}Y3(h)<2xKjX1bhjx3Y zIWbNb`x2ip!lo0I0kD+GBq0Vgjun^`p_=$SbY@yJQSI|0nB1(3My=AOo9vxRE)K<` z8FrE}+`bD&bke#xk%DafyoC#5+vQ7zQwzfx0Gf<=Igr~16 zrpSUD&v4B9m$N;ouJo=yQ6)yJsgo@}<71>-%X24DY#R4GWU3p3K4FJ=3QFQfVMQS& zTCT@6&Wp2f@GqAX=BVk*ys;_QK{YuALSIVA;vdUP!3VnVa7C!1ACF`eJMm*Nv#)wm z6^CYo!ZccSg~?Pa>GCheKT!41td~KztpsBDy|7&X3S0!?yQj2+nd-$n7=&hTKEVPM zcQ6dg={J$ZKfPo69z1;{JOb7#<%o@9$Gs5@Rtv9}J<>tG=wZ`{nWn1RWkjpbV;UEG z7=)BeLv+)T${L*z)WJo5RLDwxl4%;9m6qNsn^@I_?^`bB}3#eFR{Smthz z#Z(0t69u1sgX zLqFQssc#(C4&2oW!bGwdjqlN_;0XVpu6i$r%{oBpST87)QlN-THyq5zc4LaX=a4|V zhsxW8{EDLuyg~XfX4Wtag8L%T=9RWNm~#Im>ir&c-r z#_pwHc%PO@GeMUDDMQO;OoM_c;{e!o=dh;XQ%2JS!tgJVoCA{u4R^UPAFMq&l1dOq z;=%fHRhTiqK|;028s1TBC-*M%(fDXQ`Nv&mvX9a`>C%)dZ75YmvMQW&2N7jV>2>wj z78atDfBKA8Ik|bq1zc_A1Q>)VWiDwSc_v&dohC=Y8bqJ z#>)Z3Lo&j&fc%UQ!{axx)-qM^NS3yby)RHoGPrgh922A&`%iKUT&efz`H7Ml>s+ew z&RJz8^78_cWwe{`$EUL`OC^Hlr&59V`_z1pZIe*R%9KLnUY@`bH&_ter=uUfuhBD1 z%ThHS92B;X%OVoi1M9#A4p^WLI_!&pk?TM_tm3L!WR%v8PvyLez{kTjPN|H8z!1lJ zEfQtKib*hB%+jKHS41t;l5u1SWd@z}k)43s9rryS7HHpuPS6dw?iOG~R^+G`ad2+% zm=vDYD^aGa_)yRBjC0l%wToK7qd z%;Rph(A`gPIrO_3)I`i}UBLq@Jm^}Z<{rJA8W!60MuYvgS`(dG!z#CmHyi7#S(rYyIAEvI&su9Pc78$)Mr*L-lk(s5Y zq&HzON?+27=^m~%PK zgQbl!6S`1zh0c5{(Mqg3zK5=#FFf+=x+uv>!fp(w5_u1d$_-i<-A_&9W<`!ee5rtB zyj0dB+w|*!?I=fx!O##=ovx+gliZNV_Q)>Gw(CEyW>xOxIL*h)VD^ru(9#Pk+m@cx z6O8bIu-mGwG57AsdA8~LJ7}n4q%>}7ooq&2axre(7-@IYK8#XVNiM%Npi8l(iY#30BEfZf zgCCOu?s`nYq})u<<8Ojt8rIw6d#azwX6rB{5fB%Nu$_u+0q*7FMyH_OVw1wKNR1rYoDHdnCzYW zcR8>tfR8RW=UoKCFXV%E;-=Y%4Q@s-ni{E9P}eoZ&6N9~A>CBJ9$79MKPJXY6 z*L(MbF5r%(JakWc@~sw(!w#}FMaQ|CE$`VLO>0le*I*rHUC*Xrxqp;z4IyZ8tVHl@ zZP8i@or)zq*pbnoOMjpFm5H9k1Qu5VwhM$h>A8Gb5^MJ9#a^{@CK-TM%#dhD|J-IY zMSf43rXYbJkze_w+f~qlVo)|aM;H+V=k=4{git$thg@tQdNmule+RMcKJ9!@`D*a2 zGa@s>=T19_0y|@%5lgxT3tjw$(F}eaDd76@ptc}D(9=|r?a2mXDmNau#%38W&Cz81 z!GU;C1Y%pjKGq;9(&zLXzkUlIyVR^d_Hm2Kc?)*ad^mM#NPVJqCKZ2a@uXnQJldo- zXE?GP=H17=Z(^mKuv(j3EXYB25u$FTF{3nwU3f0*j;7ZrVnsh1kLEwU7tHw zGlkvYNMZ%Cuim<)y!(|mm0MI8m~jyP7$PuV_ZNCYI#M^p6ypBFhSXl368Fl|^`3~N z8P-ZOwg}6ds3NqwItywDr$nFQFW8mVm5$DArPVOy&4)I4(GCJ~V?Ep%kMNzFkLX{s z%%LFx;xZj49X~FqSXS0`T0SnxXOcLmiWteaSYL*&OQ@wJ5XYRM%GC8%kW0mpa&(}9 z7UrH+1Fo^QaG8m@vT16ReC1hRr+>8yMznX+> zg}9M<-&=Cv?F+eB%RC6DPiT^uECp1=Ga4iZ&*BeT4Qh6SCUFE z+naj{E{Eo`GwwamjX%DZdV=BVU_Z~n5lY#26ACsLUV3Yvtxl+dh$hk3`% zvKBj-6sn2SL8q#P;V47I_n$lY8F*hvi|L|mE1Ic=CGk_K>3YAy3bLlf^iKA5;oVI^ z@b5FGUFsvbQdeM`0g{wve)wHan^G$O``P-_zGK541=#kHsodZwk5U4PmKU3p@^Y7u z+s_=Ttt!)gt$8QMr`NWYDVhUnMw(_eVUR(%-iw<}px{{+`tx3%4xS%hqTbX(W^C-# zyE&T7@o%k+XIPttao_wqL({=JaD;!L{pkJT7B1}YUSTiqZy@c z@PSLeQDOflMOE`1x5~`NT<}wcD&aemnTZqE$A_dv$Tv8_7>2$k#|>kxFjL5Ut+Wmnq<9 zEN05IkG_`E@VvNMs{c8d3*3i0ob{iGDCd7eL|Ivx|F>C1SH_u~1AY5}mZ8(b5&aAg zpAY2#JYEo36DY}snQlKlUm3g{P7{g!(=E0rRZCgss)s;u4`r>9lBI@LvQ$5WEO zo4-8i(Er>d@Mm&y^=IGyXE%2z+wW`taj#T5JNgzQ+pQF{R$f|0XvC5;TM33d@TRxz z<6cYpQ8}@bD@pj<3{U@!=ZC6?gj}EaUjYaQmcZm=aLJ}^PqRX$!_jgK$S&f!n)Daj zzawSJjkjDngSB=u>mMb-N2aw4=3mRxJ9?jcVB#sC4DIDG%s!NMPRjDrycijy$6 z1Lh4^%$LM9_U#nR1@}@!yLrprgnTK^8bxUtYIx|_`>&PZsm%7V4DH)NP zi&--edpdF8`k~{j@a;Xo?`fA;_a4erfbw}6rx(t8N3)#-WG6Q(d*t{MkM)QVdAk6= zzs&|0?hm7<)Lk{hOz~>`!pZmgxqU%|CWuGoKX0sl?Xy6U;)k%+WPJNsR^%CqQua~X z%A1ont)3cf*gI=mty>WUx|wN4rt#huXWM3A0~@3dmH+9$krjuv?5;IlZBTs3w6n;`*V_}ZvG1? zth{DsV(osMF1L?}0|y>K!$Z(D_yUR>Z_C}71PjAz6=m=IXgOjq1!Y9T7#2_{muPVq zp@|OOop;YYvA55e6La4Y5C3Sf@M&f@EV~KwR6-lRptrJoF)!Nep!}hl+s@g|f-*a% zq@zyG>tClC+*TwMbSSPV(RJMmZd!ur8J8ixay1wG7)xx3o_KM*bq;1&JxlL5oMmjQ zX?=d0-#sl&H+@m%I>%{4kEerabl;Y@09c!{D9Nkt0`|_<9z8KU15LyT>D*NCKs2yQ zc-q;0^M1O=_I!>q_gAC)!C||$f~w}-DkWZ!crvDeB8?WA!vzPfQ-ZCmfN~#&3BuOl zIohrXlk~y(J1wUMoorx4(;;CifO>?b#O|h1uh_-L)0GjBqX$o}7t8HZ^)jxgKrc|b zqF-{c2Q8aUYu%5L;zF^KXQ=2@qopQebj>D9i|X!I@X2-vQZL}u-%Fq_1X@> zUaBMb&Daq7nDG;*fZhz&?Z!eZApm+u1Jz{H^)(84>1m&KA|w(^8*`MyfL`U_D8S~O z+BapuLXSw>iCkasMouznVjeXzyVs+;R%R%u?)dB)GDl z$Uj5y>&@$fgX#mpv|XT6{h~-PgSI0+M0$2&3~y8Jm4WS$iwAdZJ8kh)_Y@afE!F9r zcKkYexq8n5ie3TQaAG8r)WLEb(>;CGE%XRc0*Rgt{6QJM*`r`KHb3tdEy#k4es^Xk z){o}%hpy6os0-7XC@_)C@XRTyqbeuAhPgDtzTIfE&J_rxk;d*hi~akM5;{-J^!{#Q zW(gT-p!7a50e%G6B=zEbr z@jyJa50oNv8|_XQ=B^({58-w5h!t-`(Le!2n54!if#2+SGHd>698uM2Bb%$=4@rnf ztRB&dv`D}aPYYOLr^E^st(8X0#30`${g^UD>wfiNY2Cy6Oc3WjJDD1ds4f zi~ACt@FYlI)rNJ;qUEjYe*v0)7L~#=qnb{7@I(i-hqHaWZME4DMhrm5KC1f@lbnj7 zuGjpR7Q3Mrbwn%apnpf@@^2n0%VEq4mxV$lJ?jfk?bl^BeN0GRJ%!|Z1ImiE&Si+ zobcFa1y5Wpib@#>O;Rmb3Hvif+c*y zc@?me+a31GRh5u(pxQafFKegbr9EYG6%1B$L=IKmBaI4}(T2FE21@7>KUxcuxyMZ- z;{@(_@?y82peK3RsUD_rtz^o0k|hIRmwh_6WsGf}&|rFuN`V9pIb0CzOUig%)xdcn z8^Zy7kr?X=2ZPR3OMiXbOVvVlDYiG7ex0MOdinQbdT8(bsSOg@Yj#wq@%`acQ?yC` zJepXw+AuvDxsOau38$gB#FC(A)tp#K|A`5)eKk3J!i@K9onR0L*5(_*yO?Z9>Kbua z-d1(nS#_6nHP`E&REzc{Jjw%=%?;Sxz$rJ zGGy?8vz;mkpwmdPu0Aw@!7!yEH>_FpLjTmUY7=!Kl0fm&&8n%Y2iGh|_Rf6LeTH}k z%D%_qglnD81=hKR)d`?L>n=>Fnp?os{xTW(8L5&SAmZL=EKoL6gw)}u<}nj9=h73yYRgL4!pGuOuC=vD8@ED znT<{aY0UeLYG&vnG%*W1CI@LVAda<>P^*56gI9frmlyeC<~q(Do$p*`ThUsN7cdi+ zt<+069%E<+))^>MCZ{y8r|njY+pl5&B#G8ovl64<DBMl!RuHFuk5^t>eKC->TWFav3?3b$HUaBWQdY}o78UkUc$Jm9q%MBrRbdg^)};#BxCX<> zfU>5WtJ*kg6|?@N8FvjbpU)CNDG?DawnCZkq>^y-5{tY{rCo|BV`I}nTTc$kl%!#T zWDTzuQFeZ%0(y*yEZJ4l7#F#_fpy?wypXw4n+z|*^F&(+UN4NSKxgJ(~KzJDcfPC)t=nHzjwb?>JP48oxa~d+x z27{1(8qz-8NWy7tmh7Wm>Nz6nVZ6d&=dV~#NVa>&n}yD2RBT``#O7tqB9DeDm;<;q zfuaoheZbyoD~o>=43HKHKTg@KtK^1Ab+%1gs+qt~e#leB@4_zc)QGN@I`haif5R#% zdp(}>ex6Oi0}ZKzidP|dso~J&Wxeu{(8cCuckN)0c$I@NX}1#juoM1+#=3WUF8D+! z|2&4#h7xxR_wJ(KbJLBR*T*z{%lrLcbT12#Uk54Nz?n6d#bV~&OQd6l3RIob_naF+ z37fZaH7MY_6SI;0!_x zb`&%NIT8*~L@ZiuImjz>BJQ<=T&7L!>CKgfpbrWNjD z>d&DT|Daf_b7G03g$pc2&*(X{(p)K755IIZE!u2A=GMzrm(TvY89q2b=Ava1Yr@{G=xmaS{p|(f;BnwC{vo6ES!> zq6!a!T3Wjy@*0@u(P$$6cUp@k0xp(X=lCz;%IEx?l?#To`%u^8jP<6RCfLLqc5#ZnoOOH@U86g7<0X#ya=aFuH=H{UbgC~BG(H;R+)O5#{* zmYr0Tadn%1ye5l)g4;wZ+pu@*5N~Jk&kDe*l0)KC%EcoYGC3*KFvp?8d;pPOepoyg zz7#x_TEwkRWWoj{^FqGoCsqPlYfFV38@9W}Mj?~T)u`1ERJtoeI*3-axw2qF#TI`8 znYh3_ zyoH(H!$)ffUg_Q;abvx}?uYeH{o_i7Wuo`ij^?nt9(*fhGX>}%bZtnQtU2Ska_Gwl zF>u)QTtZ%@c%rmwxT0Dp>jsYFu+tWRP;R*PuY%T1|KANnEy!u%Ew^p_s&G`^i@Kb> zh&mQhmdDi3kG!if8S|TYH(Qv;@H-+o)o~UC%ZCn5KSC?^&9O_t#3^r+pFVdxBAFTl zN)n6bvIS9oos5F2%!%SsmzN~W(pAc1#L7?Vf(BsP4y z&Nx?0vcLeAm?+KkxEF^d$n3xf#DU$+(!%X8(GK`lMV!NmHXW6@!Ne_h%a^&$;UF*v@w#2#`RE~3@TE>zp)(fwyPDmIj*^|iTETHtZ&i}q zs6cW%|4#dlJff^(9Rorsq|qUPrC&zJLqGonwhon)Y9dL4qvZB)^61IfA&Q~s!xq2W zKUWLi^E=FVV~PkguYUXP+?^0Jl)tj`#i$iL1p35o(8U#Oyf}g1-W`J4sB!CKk9W{}L^6omp1Y=$rg=Twpo0lMl=*A0F`#u#e z*tb=Y()H5jU>o{Ea;rPY!B+9WC)#$H>{d?8?F>cJKzIpOrDHpk?z46C3qPuVUMYh; zDl|AHz51$9W$A3^+h?sxkcnFOLwyx?W2%|4&QvTe!O-et2wE|cBgFmyjDhS+MF(&5 z3vK=zq~5%G?93Ruy<~87p)fWZ%Kpie%&YFH@pE3Ck~W0X(HSpvf;uiIemsMI18TuC zD3~d$pVqB7>%3)17p$CJRDBzruO}Sw)wTUEB4KIvZIUV?c<}ZG?1#^51?mPh53dz? z%thVkA>9LV5rTOe=fU%Ai(nXsUo89N2WpTbDVXsl|GLTabPjqKp~Yf7LOx;SJ?XCS zdffMbvd+PqqiB1It-@~^H=3ozL=YBUq(V8nRJ1cnMtT45;U8eRvr_c`fMnR1{wpNI z#>)P`%vU;^ab&~DelN8az0>?IiP*@Vf1aQ;L9`)4>Q=kz{MNP%=}a(&h)MN6H}DfQ zJ%6jJxxP%%HDZBPXaD=>lQPFL#!d~kLORcV{@sD)F**I`~_;_pg*6N#}B1i+H>og)xKTdCyl)X(G=+Y9q8V8dx9vR0^vLcYO~5qk zQq`!OBRwc-R5T0o>E+`BVO!}#5E?jqCz>&xi2{rl=Wk_& zc|pxH^0xfm%xi{v*cxW@1D>~5qQ!;IH1V#nZ-TUfQ01e&$>sggH^D&$=>-ynR4B(S z`UceGs)V$zD=w^>+MD5-z=yJ0!nNC{91U< zE~h^4DbMkm=>qzurwIP15fv-U3CQ}0hlBzqaQoDhVUK7E@IPzKm7~v6p?ch+x zZ1Y{`rY0`kFnOd%UB3DA>X-5C0nnSCj+u!=QS_a7(Qy32Jj6pA&)wgo!e;dwelDC7 z4m8}0%|2eUo4m`}c^d$EIkC!mqOYj3A)Cg+R;NG3*hG-8~I$Q}6 zqRtBs=g#n{e~&YPtqL~Iq>7mgIh;|nlh&A<#MTt6K|(VfqON}JsEAE{X8qWL@Kn4# zY%gEdmCwd2`>$;`A{*-z0K^r-hBWR9YC-O+Yr{)jdQ?8Su+_aP8}vHTO|<(j>h~Q# zuCGbyRD2mwW8{2yBIdiApec|s965ma1vvIRwFJoi43dc`yBpQmsV(whoF-5`)b6M; z@Z*Fy{-+qisKS91h-Q84(zmsb=mDKJXp;lkKo~ z$?ggu>j0y4O}@QAY|0{Kih_Zp8$0`bWSX4?B{MUAswMWcvCBu(WD+Jn2w8PFD?bQ2 z$F?GhSw0`nZq4I5%`j)}b&QlhJ;6N2Hb`b*jnCCazdK^JM9FnZXg!FvWhgdX5&;f+sbY<)^|8t_Du_s8uebF2Ex43@$2QD}+! zqqeMC!6K3=(@}J5QSOmKdIi!=sAI%^`ORh*e&o$W{L5Zse2hNbQ3sLNv`fLw{9!zv zT~}W;h$bml0MBRl-Y+wY0aV>V)Nx@gLwh28qC%hdoKBLOw9`*f*I$V-Q?M0B$u2r8&IX}5Ag`M zC;Zy&C`~U$CsKx_ZuuErorIbMcPl2nA=-NgCp(>)M&w2NKVT4!VKhETZw7^r7+EV` z!ZKc?7>?*uc#GQ+ZkukaGaJeh!R1JPL5m%qE}|J>A?v~cQs~*q1eaRIZB@ZF{WcU= zlI{6ffvpu9p|L37G+BOq#6LTG`gYb=9OWpGn~PmBL5=bREDtki=)$R_0V`-aNr-u$ zNr_V|cylDfgw@Vt9hYOyA4x=s!vtufU6_2t+y zXUPgN3MI+N)*oipOuvNJE6KP!E;TWtn=(0)B#U1xP)Ly5NLx!Vhmc{)UvYbd1 zl}s}GE4bj?vC9;@vjx3vd1zf?K=PVvrCvdzVdN^JY4QCjF8X`QD<(6Q&Ypf7P?qVL zyz>CNr27__F=4C92E`{gUAbOUIW#_IkLV)zOx4C`(>rF3{Vb&P@lh?1b;~`ofVUIF za{*`9urq+}Jq5fUBFbVMi+9u#O&vt;PVijhfc-2wtR{gu{W+)z-vEHrxH}7bcAH7^ zx4HDx)A}V{KE(eT&1U0*cp7==vl*UqGQmT=@`OQv;r0FN93mxVdp_FL5!LIyWCM_3 zzC;O%ohaJ8!jOMB(LeJGJB7t9N&=x6pld@(9a6KmKB(8y3t^%UdAhqPfk(9~?yRF~Nf!bCao}pMy z13YbE(N^Y&jis90#|E3T7ATyUDrd_7dBgW4eqmw6WGk%OIkSwhr_d*Ozs#m>TlV<3 z{)Y$3E`cUUx`9w+A`?#yVG`RMRWVBH9mp+u4sSB8DHzB?`7Ks$6$CpY4Q;>aSfZ6O z)m2uAioXCHP|3pWIRjr7regddw-bmyBmFL|fBAxQapW{93V4blu65 zWCel^o&;fMjFuRomcNYw@^y(+Lm2q`vCzhA166#oXu%Por z7sVWk1~&$cg2M{)`*?KF%)*ApYxYrf3Mygnv9@sl;6zRR9*cU7GAbycon2%{*Qjzg!9izVc$q*I?RJS&flV9h(Swj5fXVPe} z7NA$nahcVs*4p5=303$5u2(kF==yAeZ>DJ856`aTbF3jO zaa9NY^*6SBbyK31?x%s?c3i4P-c$M6)yfo!PV@{$o;_$jOeh?+&Jnv*MPRQ0=e`6H zHUdclPt%v)?YC9?wD@5p_)4g0$$_L6Vg+qU>70kKR&qzo(Dzh9Y>3#EZRJM#Zxs^d zQbMP_8J{u~|0x9pTQ|Gq67^?Ff!r1z{iyufYH#keE-6Ox{gQO^=%n6^F`vdqO_^Sq z<8ujIscSOZ&=pd{B;ccB8kc36*d$gM!$M9&r^s=xAi;9FnuU=z;mqHmD-8H&ocy}b ziD!-o-RauyXKc$GB|+VKd7XcT@Bi%qXO^s2E^l(ONN=s3Wv?%Pi=TGd1Cbl^SMter z={@R0>zOPP^`^p9Z0Q_?-KJNC*iA9?p{iNh$HOf^5&v;td=t|$_C0&13uOfms9*RlBR>_>!h&#=}O1`fI-`XJSKR@XdKmQWC zjW=!T)`3Mb!fsG(m$v;Y2}!%5ZiVoKa_>?B_F-FBf)G5{3NUfHZ zkfy;cvNyjWTvr-FX?0ude@t; zTTzngM%6`;F0~lCKx$Nb;)@c=*ZDqWIdTQgr`lNk&U&lo8gtZ-$w+ex6VK-T*YR4z zx(HBFFA7~ox9n!G{jUC_E3$XwgYve&>({3AMT316Hi;WEAk`A*`-O+mThY8eLn>aH zINHj?rkF|+af1sQHJ!?h@n@9NdtXnIqhW7c&_iaup zxW@R2;?Okn#HXgXcR(B98HNE%Y7x&`Xx;fs>TSy=J5!t}DbE^{?e14HbTS~Cb*@K| zb9~Ny)R1C1t5FCorBv`=*x`?)V`{_RpWmA5mf5A&9UD-vMiY~?c@+d}q!|yXmD3a3 zhnQ)vbgh4rb~pF!P~c8ez%X8*BVn>=hxFd0ywad1Z=Wot&3cZ{e&=nX=L6qRsLp9- zAy5ukEuOQ`1)}Oe&|5$8&My>Jw5sl-*-r>H<*O|UfnyfFE(viFZeC-rmANbt6C5%( zp5+wUKcvt(ac8IF$_Lfdc>?ThT-t)}gFzaLjJhP&@0Q(alf4HaAK zs(z9##ywfD-ZI_Hzd5jur_YGZgO@Ju;G1O!XpqIcl-$d-|8aG=IXmvI+^}k&MVOx7 zTu`!7u8;bC?Ct^?n;N*rK8HtzP!pl+1wx6?)CSL#WL;_@)uPXGQH_uhf2U2(f02m* zvi_rR_GQ5;Mfpe1_yu*qAVF+#ym%aT9xpTv#;eF>Chx_^!WAQMT{C1c)z+g_R53vO z1F~iU1}2-uqeFVkxN@Q+q_48Dir+1bd-oLtp4}!DXeX>$k0cI28ffuRBLj+R&GCRMZ|TQ<)0+H+a2$_$~j{gxB&aBBqmP!s==&i~x1x7@q(&&mz z{hXXq)deFYku-C+4y|b}^v>a?9xW?_D4&wAhaiI|szb-^=c9ta%x|Z_)UG1Cvqqgw zn(0W`QQ#yVEk#Lx<9{465X8j(|9~K=B=TnDe+qQo9Ww+4 zDiv**41P`^9vdP!ILZT1zN_b9q~nl5$R9UztMbIh-%qLehC~#3#(JvdO+`*`%qg1T zga{6EpM-cI_y2TF?>s&4ls{j0x8dsHFZ{rq9_YcuGU4h9kb;U40Un$<)qJH7h%_q!&($5V)@1GZSe|{p%P@Do&kV8|h!?di=Oq{Nl zNFGsiJ}=rsP8>2ZqyjFy`7)^WwR;lY%?FjqUbkA#}V&j=0zTGgCVe zTU=#ekQIuX-Yl1cWES>h&)(N6R^Y`J;6l83#Nv65uJ5$nFTl<$H<%_CwmOdgw^M_U zpy`~bPMK+_mImfE6Qj=ce$u9^69+SOUW<^kzbMLg|9YRM9ho<1q}fybrjF!po& zb~g;uP+-O`H-j6^I@VS{72?cm3QoK0DUP?9#|`bBVT*v8CgGpoqcww=EDbnf{TUtL zxiek|=<#9Ful9N~RD>GOL0fq|{3iR*2hdEWh=)0GDMJg}{4=K~VmsjGyR2uO>gUdjB)+_M?_0X2VJi~5zhT+#@Mz~@wt4aDPInb9+dC#ha%fTJ2lB% zB^4@AERuDr2x58@O!G>vcCRFCj21Jd_WeNNA)!*%HX3fNng1WhyWiD26QpSN^c-!uUumVk~!GoFKi(0YevFhN~*8PSFo~#d0cATgdq5 z3c+smVsp6S+ z)vWGuPbuh`t5D?N(?26CkvLX-@`5lL)c!pZ7pg@|Z(2)KX7Q^nDI2CvSwg(Yuc%-; z)l69ILgIXF7~<{dp9Ip*(zjCV;z3%bQzO@Olrc}y??N1Axp|lie!`}6x#r@Av+?;+ zL)}iTFY9V=1!77uURHZ-TyJ{ID%#ZXSm=5nfS<-{;;M4q4bfA$BoM5`M((;W%FXX) z$S1{dT7*K)kJ4UnyYEv^xBt%zbfrb1O$Dbt^G{SpVueSUcJj?~t7sR~IdJIFd}YE+ zBab6rRLugV%MK*7%57kjQcPe0UvG}Ep#h_KCOQn}bmLMu0cnifC(S#IM&ag!}Bo!$OU59(h~bW6|G zH=2}Jk{~`$$1UX103ODvxZ1zO%T5vY;g2O zZeI6;(|oTtguy;9kLLf#4%8us z7~5~%;SDq<)FCPsfUdxVnbtXJ46oP{6-Z<>3QGU$3DEn%NU}bP(Rl=5i$t;qbx!R{ z6)j%(O1_rz;p87_Vrn2x2_h=)2!&3+M=6?B-Dqbgs3e|GUNJWuzoFu*JrW z!BxceuIfA9G_e1n8f-|Y?vdG=!KCo4!dA$dEU~cW@{18zOd`vyYDdg&z$D9cWpYGXw`~FK8cbsO&6W*W-$Ol`QVyTzi(@mA&Gk zl+E5EHV0Zc`>37HYExKJYv2^xch#8afL2}kTZ|CfpjQ9$5CmVgqurCCL2Vu1gg*{g zPK#mNYdnK57__J8^`rIQnkm-q&zSM8rUa*vdAi1^%+F1r zDY^?=aq;s_AA$j1FQpX=-+NHA?l=>_ zAPT|SzUdRr?@zmlGd3&QLuhlx3GQElN0Lm{C|lrj07m zla3Zo=l|(yCNHpSk^64oI${5`jal$@^wPHP^gXt|8~l#S0tsiwWyGE%6KD1G8aZyc zQFXCA3~uWxXUC`xIpu5dIz{=8U9bbQ01wgV5Iv$?$YL=ujCxEdQQYEOIFT^t5LjS- zJl`AWuvOF_ybx%S`1HDRBbV~vi!B0hXQk*4nR_qBb^u04XMjUkKC6Sy56FIFxz^-u z)u^_wc?@OqsE*1tnCY<)lfAAUT9F6usQh+Z!E13iil0~yGdB!0?ol;7hHf+3rjc)Q zSd3Z4y+BMvS(sSBCh-YiA}DK!53av;ScWJz!P5H4s)w_z$;@@teAM&VR75J79NKcH z_Y$7q0!wAFej?{Um?=FBKj5e`VA~M}-+p;I$ zg=DHeA|2bglNRDK)%fHvmDmYgCUsBJ+$%R?dy3}*C4R16*hX1$lk}k@m+0cMRFs&U&ZVw_vH44qphb^4dl&WoNbc@$LsZ$6hN+Yq2`gw$cS zE@m}v$qnmzy9t}Mx<@QGe=vCoyuW95y~ZX^rfsg|8AZ zp;L^OZWsQ^lIATbKf_d0&G)w|X9DZ&NT>L;W>j#tU|Q}=jakEHwV`04Rg1SCy^DuP zqV6}x3kYUPH=?cXfdcvgFPq8(PuzmL9(R*U=U9@~)lM$qIzq2%)jyKIhPa)pzP*)3 zf^DH(ry<`h2hm+OI>~PvVf1uXmeJHobZ?rQ_Y(s&9p&t1J#g-MU=j^g0f&IG=Ap*a zXs^fQQLN?M=kkb+2V2Lng+gErAzJ^qIJV~iygs*oCB_1FDuGx0DsJmsL6x&~=Q)zp zLfoAenp}*SlAUbb813Bp^u96=6-(L{Hbk2hKQ&G|G7veJGIo^Zt~1?QSu2;%3&N^& zJyd6!28;pSOon#V5#AM$k;R3v-!52M^M#7mMW9qb(Wv0OSI^av3N)wCIPkaHFI^E` zb_lNAxyOPxLki^zAjAh&5X4nOYol%@TfXS3I5&B<=u%Gh>ua;&i_*9F8Q$QgHfnM&+ogn)Q;Kk(?Ar+s8^Ni{e z7Zl3jW}5e!13new4VMfAR6O5mUK4l1A{@xK3E5W$tU_0mbSQFbYpLkh=87Z$>4b8e z)JpH!;TD5UsoX-y1ld$d?!s|mUBbmTNYtfc^4ECpE-&#{RIQodePkx+{RoK>;kp*) z17Y**(kV4%dpp`mzA4TmqjxwAbQ}-W-2)ENq;*8wnnhso{~5)r1rnO5qwn(kbFF(P*@u!{WMSoXhgy2VZUNusInf=F_&Wxu5#367yZzZYdpu-*h;^?EcE(ie5?8Z1copAIUPgAGJnMuzz`e=AXufOgk>G+eF4zF&^|=<^g5a`v zD?Y#e?2yo2E4F&;w_Wn`TRbk#PaVLSJ*(Hbo>f^4s;&T#Qu!Ch>6Y1+!KQE^foJuL9ns53SS$KX@U~H0osk8fEfC&6GpXZu({PgNfQV7X5 z+#?-r5cwyX^*~<&%Ugt`ps*M0;u@di$rO32iOA4(DJ+BNHXb7fbvTUiR$>W%Hw%$y z!wJXoEOFU$Vlf}kS4Cwx2l{B_dd5kg1Xkwb1?l|Qq(UDmGXb;x#NtUPSDOE>fzqcrq!RY|*%?F}L1Y-2VLBAXEE4cZ|8*IKIcU>eb3nlCJRMmnGfh`j zmmMNYest}G>V^Bwf=6n3K>m`{f`FT|;J>0!M8eZ0&&Sv4`7Z|rgKud-3VOd)!q3yo zkEx<2aHZ76tcvcB7!A1gyu1Yq#AmR@1%;j*bZ&-fiR z#Pbt|i0$BIjHS^d{F>(rdSjjiY$4<0xVaP$@ar`f@#6pKEbjZ5#`>B*aeXIDZ4){@ z&sG42`W5^yJ#N*m`tEnGh<#HX)r1%)IEeK;-*P#=_QKHWB)X?aS8^5)ef&Rlw)4puX$D@s%lLNy~P_j}YikI$tq z4e%^!ksEx!c1y@t82*v>W^J|s0|^ymSxxnQ?Odw-6M6Ev}h_5WBue@nkq4QtWKTF#pqF+f~W0et2xA0 z`ej~_RfV=yO22c|S%f5P2nXd;m1&h$Up7N`%s8}Nh$^eQ*ItE7P5Tl}f)SN8hJ{WE z@p@+eaK4okt8{P<>)z^JU1HHf0f}srs7QM!r)r!;wQ}Vf9KsHUKiEh&xt5n|bu(Z4 zce-SBF1gn|=uv1pUy*hpal2X7`mBMV(L9aIc^H)?0;V*<9z+CoA)=57Cc9|TgB`pekBLV`>k@}L1XO~dxpTvDt zkG(s&O8wvkBx#y4U&_=m+-bDdA*oBYPe`G!Mr?7#3g%X|zX&*8SUJ)=iGQdy6f6*I8N<)axwV*BiW zVJx&|h4HSFVAtblQS#+i3OZny2|Ga2-k1mo6jo(-F#=z(+bdLVlqJ^Z<*j%vr&oq06^-7L-t&QAQeDM z1gY+~>`q;o5WYkAUuR1wFHT4cIL;X2rzP%iH(i2w8o_C|j50i-=lKT)KpToEwe@Y@ z0d;Hf7F9)@z3>KtlH^K(Av>{xWd&8niqfzA!AA+BB>B~K^)FhQW9?t4I73pa`^C@L zj8+TU{w^IyPzFDrBHKb1@bdvTLzi@3_%{>*MeZ87`(yo*MPkmS4mNd8S}lWmWK(4{ zrZ1k|*U80)v5YgMEmufIzerczc6un+n|^4`%$#{-g5B#uY9_$&0rGm z{D{k!Lhql^lvmcMiK>^2UHJgcZ~mHkYtkRY6>E#bSkwrV>$M)2BVL^cs4h1oW~cDA z8LR>^2^$gK60a6Yj4uhQvo7zbux5_ulZ z$nfKyZ(Ck~7+$MQKA}o^8S=h6?A!}g3jt;8ykK@bHWaZ-_2cZcO*}g~Mg&c5BT7zo z(3?QfONwwqHdP~U|yC(c|XQK1bj4|)NJdW#7Q9d(XZ1dS-^;N~Va;+I2$ugBJ zYzSXymdEFGMeJz$CFG*!sZW$TbZNr#7k*|Fk`%*tYD!M>l&Niex%ye6R12hh+jc)@ z04cmM^H_s7P1@u#iL#U)21e>%V!DCb6Sn*H?PkqVf$6&#tv?j#(>NXK{p6NkO!&&$adMvn5fl_V@@H4sjSSGRqb)L<=o>c$6Sj}B5)kO)j`dWEv!?SLkDv#i}v8)^#KcJ7gdY`RT=lxe%ocBM89izVA@lC6c;oGx-3%%1H; zY-dTuRx}G%qT|2;1v5VO;B6hgf{r+^?<~k$zuXFvJgCyVgkL+%6tbynfel=8Cp~l9YxH-R7(}6t6-l4oJpRqX)Q>oD zQxY^LsADFuhXUdXP<3hODhru{e~F}p>hMqTi_!CGt}47=V*M19!XjhvRP&f__dp^QjKs@IC6Xs!K17_C!gAh{WfV~5_G>y`0lAD#lAk?a^mkHuyP)H>xO#3CBr{(e8?32(~j^kXnHST#~qk#yEHi`m6AbXl{kk?Z5-ma zLjMbTIQ}TSi2w?1m6M?26V<{<`I zR%muF8PXTfMrh$hZ@@tEDGgp_MBM}gb{}uc5-10(bRZKy2?F3xnX}w2&RQxRWoay= z5vS`2m6fKqMgwsRMvhEo?#OSJKG@Vqq&x*AXVhbmJ<4h7GBB8bBiQFOCq-ufihTqJq=a^~&ed6t9kNO5Ko+U;MngGL zFW2!$f~7gM1D`gboK(yD;g|hC!SmWvJJmr82SBk2ThyGIarpQvfFo&2iG1!BunUE9 z{dmHflQOF3`7~E%RwB?NcUdu~DZ!1hN++PR;$X=2o2-sZJCXvhCur}^g$4Y8$2UmP zSr<~g?(7>F8@g@p7U!Opd+$5rF*J&oIbe^m5UXxo2!wlh@CF-xGLmLS|3tp)P9jiq z+`k8>%=83CXXwUUOM9Kq-;s^sA3fp!8)kf}@4=wPY{H?Ib*wmNccZE7e*#l~PD+)Z z;^@>#&LI}Ze69c-401(4N6&~^7QQ+$c5#~5Xju9FvlB^IJI-n&rW1Qhh{>5DJ%#Vk za!L>7fV(8HE!&joHItpLE~~bZOq4dA8aP-&AmT5Fuz_|m{%%{;R9(3?!cv(y8B7KZ zK52k@)*PibGuft*9@pi!GUYEUH2wCE2nq#x(o8-nGjDB%D(n3Z5 zOZxun*IkE7e=iLj4MSrQwkBD#z7Ms=mGEzCjCZf>D)!{xN5ks+ z6V7rzI0J+P@bx*zA3ytAwOra~ya8TBlWb|3X0j(dawDd_Aa*ww>hdwlqz-T;o?wOF zpH}ph=!9NM&VK*efZ`W8GAGQibn-cDg)~uEQz$ZXs%4ND?=WOU9N%UmVMoHM5;d$% zV0t>xeR6>{bB$Rpz1&$7flC0t|?WaJ1CHe1@nki>x) zrXoNmvDT0`i!(2=-urM=Xwe$a7$58sl2{f_r*KpxibYC~EG7Iwy!qpt&hoTL$~STq zLi+=hRJ*fTJe-hzB6`E-Da!P3zCSD9-M=VHG>mvj4J+oMkBe|4?k@t^F++u+s~r2v z1o7)xClR8;>DYut#MlyHT;stDaaE30*DYKAMK?Hb*m9=|H8;bsK~F)F+w(S}d?-)l z*-*ta<@!&J6?~%jMwc#o?RN;5&u!yk=5Y#;D0~R+u##IwJ(rolW~|&vBexaJBkw|N zbBver7V?;Ul&m`CA;KqU<#LnE4th5^O%pP)dCL6rfgL0X?f{-Q2I77d1k0nR0RA^$ zwE7>3XD2DYHJOXU6sG5L9zN21C+39sw=?+DuYb8ufueFB(y?{GKb*vQmWx7Ca(JcB ze<=@eCU@dpYv1;T^Ab2DhEXkL!!oYHfGp@2$d}R#v|< zHZTnh+wy-!^zy;n{t2==QnS)w zLBQTM)s=^nrh5H?y(2fO`;zQvJl-GzyMZkwF!hez+%j>U{?KcB6VORe3EHBu_})Qz zPjK3xh+SMUH<>KIMv(hUqzSp8-%rqjpzR&tR`PP*%Ag;-m0_HjX?ev^yhy;adZ=I9 zG`&8w9ARn(z;-nTmM44c;(pTy_=U)l6+X|~z|RM69Mj>>TWC1X;+__lHzj2VC9;fg zO``(UG?CR(?$P-7ZZpdFX*={e)b*bVIw^lxFa*!5d6Ht{Jwq|cyWv5!0!TL7-zhg* ziY8_yN| zNQH^NYs08KqwT8E4LPFgjVLPx8L1Mnxkvp$e+hh-vqvpIIDlSI3LOU(0F9cdR#k|% z0@&GWQ>!UL(N#5y)5_(7OCF#st;_7f&?#i78$K$2RthW*bb?J1 zFyVy3%Jru9FRmcUcb%WrjiHe##(AcjXupCu){!ogEHJKgb?NM6YX_f9CNU?`Ti1rO zJse|tFFx$jex!yyV@wc%M5kZ6ah@pY)l@kVP2?EVhJH_B)v`y8Z#(DHl#5jjNQav%>BVI}RhIAw7aA_UhMYG@7i~K-XLgA4Wnr%>T`$vTJTB zkK=tz+U7#c&PB4tiZ#~DG*od^W=wmo=B&X*Jswl9xij}zO+K6jo%@zloWm_3-#%%b z22sksH&}e30&`jU_}n=wdAh{OBr{N^OJ-nC6v~r*Vh|Rk{ElBU#gdU!EQMZpe7HJS zr`b?aSbDOuvy*PY)9g&!)~#cr zq&f{NrtY9#c%}{fM}^K9rCd?qsXlT&>=1D3htFnDg|TZV7N>CX>_j(a`@vQbu$G+D z2Q#91XQZiwyJDs!@|fMmcV%4k?>eJP^+qxM(CB>8dhy3Wy3tWcDzMpE3WhVCt5u$M znS~{zws$vHBdzJ^NT&%#GvNK@=`-Lnz{wM`k5Llp>AvpN4}vF!c|59fgl~-lEotwZn}uD5j%5?YC)qrF z(4)3Dt~NGa^P|!!jhsj2ICM7f*=7fWLnL^ zLjmi%0h(V=`%v0oWGz&vh4yxZHvmZ11c__j?PY#>n&(pC&5R_Fei^+!Jc?;hFmIf9 zI~szdh-p9VpI1@T$1gnleSBpf)pPpX4mB^0uBXtCF%Pt)DMiGYbe^x=5$!&seCfVp zo5DpmT%obY`fJwIG-6B}#_7YG#m{xqG!zIW_RteI*F}Uh$0fkzw_on(U~L>)Jm)a& zHW@YnaLXK0Bu>JTf}kpWo8!g&WrVCA-q}QMCV9f2$2is~k1XldR;R>#i3>)b_lM9` zZsnzPjHYogI!oKa@Nrk!(&qX-xFhzuTMN;or4dg)qz;m3)Sb^pgeYxtakL%LRe5*#~rucLwJ??oHX%x71DX?0oB4cs->wcgKmZ@6=k7 zR{=8pSu_D^!J=TqOSXh2-cvTRtRTajuB39aY?6k5W0(t=iwyWGy#dmGoGBZryHoH0 zvGfv>H}TYkVjNNE9z}$j>8h_)_!Yz*AYBrvttFkcG*Y<*a-4qKXYt<|A)*ZVT)E5! zxvNXGs5{y$`Mj@5`DrUQ@abF{P0}2jDJ=4o$FA*BnqFZfyOyN(4a)E6yLV$G@S3y1 z)SXRZ0)Ob&;h{t!+o?T*44DiH<-WUIi8OckvY zg7qZ@4=E0>R7FV_q{ReL_6L}y>Wju?P{M_0D}WEw4hm>x#KHv41@*H@XRb3g9fr!C zbw;Xz%&J=Rtd)%+u>?1US$|>KuL(@sD>AXT&kcmYUxY7r8aLFo0ZAnYn~|?H2`6dK z+4!w%g&RYXsN_$m2_ZYud$^9-CTX*O5bh@7K#}+Gi7=jz|Bfny1%N@E`*8bEp_-8#A9OGkx;K3YS7kU`Lk(k3i*+Tfs{mRYLsm^5=~1D zX(m)cnb2jBvifYYEM{i4*G!q{qE|MSp^$;`dl+5J4n4L>Xjzy}HwC>j{Kzg*jVP#o z{(deHs`wPGCvPU|u5-Q+f|_~061YB$B}QwdS81T3l;jpV8b>*_!NA=+V=0B)ikF%q z7{a)7zDjEj!)aJ#5~}qg?ZJlmj9PzD$VL|;Z$*q>oe|^T$hPr5w2rMj_N3Lk?R`$| zvUKTkB*o%3Gmm|j(GXhIfi-K)l zdjuEkA?rB;FROfM%3-0N5U|+qQ3mmz^W#W-Wd&yHdTGRq4Xh^hJmUKBrVxyCThud%$wI!2?#E99vI zCiqPsX17k!6vffHpvu~H5U$D0UqKsi^O^)qs~{DzHXzI{zT^5*lyeQie~GY-!7|Hq zv>&(VK6{ER$*1nPey*|hke5X!!QNlJ*hyoK4w615MLu3#B_-V{L&-4Bj>t+gy=Jn6 z#>)wlwYfG9(W*WYUYmwui;%U|38+Ux&gbCYJ!@!&MGVew(dqJV;j*ut;J8NiR1I-K zkC-HzouGE7i8v+{1UjN-u5D<|GS$bGw|Mo;MW8-Lm2T6II z*y!4oKNQ0)dvcrRSXZR^wKX(7PMr5Uk>yu;P9Kq@ibQCy%AjiTY5xbUmW`2hS`xw=pN8Wx#D#W0B=VL7VEQq0Wg*{3d3 zB`u9V#O0XM62ug<{aEWT9auqq2s^F@k;4n#J1`_RHe4%oMuuRKPL5ogbL~PN*;o24 zt$7zGS`tO$d-LKsI87q&F^Z6<4@V9b*EcDOm}bD&_IHxmbB(GuHb@zLl!)y4gTHuC z?c_nIxTHF&V-9c)aT6D2rz{gL()y@HrE*QH|P8}-qg zdQKbWBR|oV>5WIxLV*^23d~N7e*o&BDq=fU67$k)aU$g4_@XPBs3YT@>eUtxISMM#%svg_238 z@GB0JF`V>B-`qlNiz3*i(hBLQy^ZolTQ6vZM?ukvYK+r*Fksu&NBxCN)LM0t9DUq>q8^|f6k7-5fm8U>#k%#R!=|S}0A?Riof3Ke+Xu6ZuQ#GcjC&Rf=d%>7 zqRZ^=l=>!&P35|854x~~nN0ZI4ew={OTRuE^0Ue1=hvyK6Uv#>iJz%KWDnBVbY@Wg z`k%282$i)4J#k!qS#u|&je}Ig_bjk*3sZ{k5<58%2VzPZ>ZIOmWI}o;@B{+ckiUDR z9X$xLrj`WFuuU5nrQEbTdsjwoA%a$wcHUYIfATSdJR!)Xob&^k!z#{DrsiTgwaeDh z_TU`Q+LhzBS?9`BpQXz8ksq4paE=RB7qih;aphnnGk{$445C6;&T1Qr2e&o_SIFB* zd3SOu&sg!cQ0qFmB%Jml1Y-k!r4zrrdN}Ns^*z>c)@CcqJP#l@WO{xe%=DRP5mx^G zIFV*x(%>P)qGdJG!&(jxZve}+;fI)3lloet4Wqk1A@%p|AoNxd9yxuQKHKOj%i)e( z^61U9(K?1k|HRJyw54grNOjNHqwAn#FYHTogdh%3YjZfoIz`H5?MkDG=H(8K`Xqy@ zsG|{Lv=zM=Yl|i9*YxOz;_eI$N~bv%YUg&H04?2|024PquXILp)=SXSprBpv45pGx z0g*n3bP($qv*SfFdL{>rZJn38<7K@xmlXPhDx|htlH`8ndEa`+A&5TPvjOV9VzSI0g zUKDR>aApmP6^ODVxX-hX2o(7i^4Gs7j}YV&_st}t8pl8Q1e4k8vss?f)UgN++Nr@` z%087lH#a7Wg@)=a`l2^ymBR|;)O#`@yEdYplsj0;7OomAPU1UiES`2GPn!nuj}do(sxx(ULRK8Zhw)?$hatXT zQaA7vaj!!D8qK)PLrqr}B zonqsIxx((mwe$DJ^PeseDWr3RVf@+8ctYf=(2Hi&;Kdy449zg4+yHY&#_7MCP7*4y z>uYLO=G}`h+R<$0MnOfKc!N`mjg7m|DehZVGw72oUHUSWvvNwv&2GUjAiow@hL5(mI2QYW!ml*R=&$t3UQqaeg#ucX< z38p<5PqHS*0&5!{&pm*^?sHrF1zc7D88g)ONZ}~F57W`GG)1N3J;yaFpG{gKgXYD!Ze&?___uzmD&uHU_Rf6C;Ub zjWOr2ug7s7cD{c6MS-1#7rmC|FYAXZ64Y5=miW6dK)G>0}|BV12nAE!2Qs@E9hKJjMxWAybM8G!gfRCfZmi}y5@%!Psaio8+t)byXkWk2ah*fP4Tg2@21|piHxn%X&te%b;==v8Q<)tbC|6ElYhycO~mZt zQC*Q<_G=9|0RQR^Ry1SeJ1Kmq>Vl*xvBvjqm}}a!M~=0MonO4nrKlle4H$FN-Sq z?8|_&CUT1x1a|gzvRz_{e$8XMPNN*BL#Ga5sxym<7b_n4{PNe3H8C^ieRYaCj>TZe z^**j%sTo7GHfGD!`-c$%q^+a1V2&SMv}6BXyMVD;%!zIY^@v@*e+7}dP)>%Kh#@u4 z)-I$~#}3ieLIhF`Jjd{Lo$Qb`pbfQQrK6K(kI(#}yx%)it9~ccsgBjwPL&w4AH0I< z!!F0t&F5m7Oi$Y649Eg^-tHk^PAbwWoPoI{ZF=8JflQCkE7#mxQEZ2{e}6rPELE}? zv-%k>G6ybmm9zkvi?l?UxI`iPNQjNo5X+oOEAG?vFy)0adpTzjk3!wjCb+AsqjlNqpIyRYV?M%^g66{hz--!^QPIajjwuldBtv_??E%2eVwZ< zM<3QMw_m5VCTlsrou&$UWU>70P?`=BU7vRmmSgs5Aw{J#z34g3axzKR2OS@^Rx__> z5f7uS2%>F9tBV_bCs#w|$tU0?(LNr*X2$gGZhAju_X|-XGYbDd@gbJ~iVrcea{O;T zbge6uLdt>O`$!YL`Bb#9u=qe~`2iHj5}=Q_>&4yMFh;^qHet%YcL{BM0#Zf45K)rMr9rEU5&udBJnYLJ4rri# zLlZTZ^hpry^&mY6&*q1D`V)vtVS_*6eP;5{XNpI3%-!+2ov<3b`Fqyvj@I}-v$dxf zbc0t7BG1Gl9CZgSVl5q%Dsnq8+5QPV9|jFA9kjV#DDaJ)rCV@me#)9mk=d2EH=5Vy zGKj}(tzt}QxmKjI#KBg>{y0JOXnHTv&rR-4R)XXn9Mpm(h(|b&LNHylDz`jW!GZ$K zfFyatRXA7Z4~a4@berN;E1z=;O=FuYlr83UXvROpL+r~B`Qj{Me8?LW zNBUuTd|-*c(ICOF;T=})zSqU!kutn|ph$yzb_#)AoHVr8-P1*t%&_G?~&#hj)?^Kd`<4@!Ahsx@8x z3`YM1F*u)>5E(GStW=Mr!gDQ1k&fiH4>z*?H*bspCYY}}cM$%Qu$wUixNjqu}R6>r~#oF&SW zIsT$lnn5Z=oCIx|t{`YUwgW^b_4RP*t~y4T97;icHQ*jdb~Xzw(My07ydRWXbn@UG zG$sfOt~hc3DbL7P0(I7|xF|0($L{bl+pI*-i<^ShR4z4|;M=1W(4?)1O&DbrfzPrv z?E1O|anQP~vz4CkRhezhJ{cm_I+t@4RYUYtOOmd`iUp-(xy(&yHe^h+7Ws>t zu#0m6j*FA9=`C7u&~XMdY1RXXU?IN zQ0LI~;=09lN1=YymLcapV&&-hBP9ZB{e*OHT~mSB`84%gSaU6#IBVE7Q~wnWjEl|2 zC+?vi@afxlW;gH=1@bk-fA94!RVc>$Tnchbsg!Y)wm=zrF}>u%6A&o3x7MQfP(&fl znLM0D9L+1Gc;nuA#m(@ZgIXSbl&Z^RnVAG1AUcwfbpWcp;7g|2^25s}QZj@tq2*7kyBo3aF2D*jj%Uj{oPf}yT(Gcbw-MoO;tpAnF)$nUQjim zuI(DdXAGswp4j7TRPKR#SeHuS^K%`7xUC9;K56$2qEl!-chb~@f~=WRa4uXlqBQZS z;YlPQswQyyjNf|nTS&$7#WNn<$#5{Y8dB}Q5n$je)jROWU3XaQe&*9$tH#xUJK zrt~;=@zk%&I%1s0ocG4gqq7~t*T0c2ceMwm3hN5?sj+?lBV$R7lijwQj1jDm{ca+j zCssYVQpG-;Z?RBBH)yFer$6rrUN2XgJXGnyV}BR37WF7b`5gfrJf?$WtBiRs$B8TP z4~5=;22r3*o!+W;G$>rZ3frn2Ha5EF(~awr>8Hh0!aG6u0o3^b{?7nlCDjG=%^fQi za3okF(GmB$k{NAA^%6`OBS{ebINB=wifV!&3wCnBOp9^6UzCKcu2iuDEsH0&@t#M@ zuc&VZr6j?jS#nSHNCMKnD4&=2zPfl6R3u@F!u*w`Hfc|ad>>0X%cNQycz9BfFvLB1^KX5{$h5~5m;ih3gAk#Yf?%Rx}*oJ zEBNIiQAoK|-&}cmYONKQJs7PZj~HxHx zI`-Ik3YUZ%fn6*d7D9BnHYC20DH!5m|qHoT-@|F47jN$8cRkR=7V8$#y znGE@3hJ=GE-7Zx$Br4h?t8*!g`Z-Q$9Zbr^OT_*e?r`_qYzrNdpjWGM$&>C}p7z@2 z2QyI5&tH7Dc|$p4?QHpB9wx=J)8u(5wb`WwmXsyICAz<}TX9>*L6x_N!c(i}{l0QWTD4}EJm=W) zhRiG=#SZeEeZnUb2|eq$O`XXCXWrpqlEVx%ID?bUAD84(4XmNUaKDf@N#*B8Ymp|! zz|!8i#+zd$5Y`58tm@wImNc8s^MIO^Ab&?mmz`N+ksG07F(Q38q4@Yn8GW+lGN((! zWYQn!#vNdb{n4BWfP%OHK2H}*)Poby()iTIz^gbxJx)ryAj|10{iEwCRAp^3Ev

8Dt539>{wGwMG1i0Q*Hgm2frEiKgBK+GhwyPhG zwtV})Y=J0;S-)>+ATA;&KY>cbw*o8~!HF=S+oN;$ulOT;zbwc3VceG3>e48gz&5*q zHiKZ}K<+o=X*D^$Ev;rJgYoVyi-7%Njno3dgk{pi!aOyd6KL4(6xh`y{oZdy4AMrT zu93FJE*-X2>5SARj2=U22Dd(Wf6+q%ZJ^W{WYIIhRTBZ^4n;KYvjQoW*5i3C?XW6N ztEXu^7C=$WVL9GrrmK`+MkBHVD$h=CoE~my=>3GkuDY9zpfRJlPM#Wr48}D_-jJ$| z{6sP`sAh=GvG!b17KDGc3PzEU&dn&eX>+w{+X#~>mA<4~g(3w19tdMl|a4h zbCZQGcZ!}a3g~tUXk-V8eD-M~E}}44Wy{_hRO(0u3&9ZGzyh>pbAC~}W=DX#fCDgR zgz2b3+sE6s`h-Hn$C-@N(6(No?s)+AgKX%yb<=o6R}-_#`%AM5jh{gd+UO!rv@V-q zkSqh&g|4WD9zg_{9t1Ec|kg;4>AiQ&mLtgK_Ug>mqs?J5$CN?~Aj13^DwYI8^4ylAR;e+7eaagVIel5-y0lj(>N#G@>`ap@l`vO{or z4+qsCwC}0G61Bf@ zc;fgs1w>Fm0w62CL4i;1(um^%BsKq5l&jCV4XkbYg+d*s?I}-!kaFm7e~j>Hbwq%t z+S?XbFxA%piZ&f&bB8lMr_>9x@Lh)T#=ANp79@&5th~w_8?OP zgJw)X6>@oGu-sx8m`#6$9X=oN-`Ma*csrEC+)Vd$)uD&v2f`QjQAUDG6w7<1WD7dS zPH^wG;<@&;!7e^*fq{O+(Xzi}H?S|s#KM4~FL75Z5AE6EdAt_i5**nqO+%g{LX~$r% zKE!>|$Qy5VIh$rv0&lh1vYsG*_BStMTx&3?^8geDjHrBheG~Iu%X2z@i@n9Y4X0qj z!l*{X9?8G`j(9pQ%OXlDTTCmUd~?UA;DG7emL%lM)J}X?|w590w<$ zhIPyBPB59U7FxVsmNZ!2Sv~2t?ptgonhhtnm{Zc!=jZdWIQs*c3bADKpQr%)e?tXW znA!hdDxf2iK-vcXe^Vn++DVdp*E?LKk*HvdNT4o^D4%;fGhqC-fnR@RDj=ULl+{*& zc-Hhxj1sohhLb6yzn+qm^L{*(DWv{Zq=0^Cy-5Zcw5*XVV$s$5bu)gY;*iUC9%& zUty#sEdl-zwS7UTrN71P&N(hwiTK=y=J3AS&Oc{~Qd#S-?O;js|6%N$ngaolH5w-q z+nLz5C$??dwr$(CZQHhO+c*2TRr_%NL|6CM-RDg9JSBNZb`6>lLIs@E@u4;-(Q8B^ zV2O^)t*By!QQU87GmxhQ$Dv5P_$5u)EdK4EM;}#w7Q({F30%~%hU46@NVD`&mIeVa zIZZ+ALm$#c1ue)gBP65cQ(*fJW-B}#zchIh?>f|EX;>QDP)v_o=TELPBQduy zG8Jpt_j?mtEKTT0Vk@2TXyAA=yewh_t&Nu1tyn7yF|^bW?nBygjO;4x$TJO88#t6v zs^Aclmm*|d!;=oul=AyFaumSCgTo^qUqD0=Dnoitgli3B1dOw8WV-9s>N~C1EGzR91OeB8QW2Oz1nda?-{%JCx@KO>^rXeaIjLqq zcMXA8jJGq-f5MIrSX@LrW{gJ{WWhzZ>&W93(mx~xO#K{*-TGoq&# zSog+ocT)|9SGIlWD=*= z=0ks`RKRmP3Ze8w`GK_9kR-Fly`}mDUE~!UN3RlfDlSy)< zLq2s@T!LYfq<+%T!lGwMCe0l_S3}*t7RjB=Z)Gvu=U$#vG(I2eAZ!q*$PtJ_wHWlX z%(o_iW;1zWvOwAu3y2()0F>uxn`4M-R%8!%6HeBfn};;cc4DT^JQX2b^H~r&FK_XO zYR)1@gfKE6BCk(0uj;WZ{OU9sN9Ce z@v$H40GU}lJRb*{si2D5yo&5RcWeitNXFpp&ovTVDnry5If&e19g7 zv)`y7?OT99<;Jl{Vp7y}(nxJ0YQ9~95o7uu$-xY?KMpHHg7Pv$9<{GJFpL`?h?ENt z^i$bhL!za2^6Q$f5P4ozQAcdfCJFh=tr|QHWz@=Bq0sbCiaOgnTqXJpcPo)C=*^a0 zE3__pOFNa3WHcI<`vu3)LRxXh-uz%U4Mb5LNiNU7=@wRI5EQT@g*mAeAe;B5>AP34 zO*Q8_u+k%^-Nf$Pnef+nK#kP=w<*dGB)`ErN-PcKnHoCUA(tf~@I0oAD9E z9vjFdsh8wkC@4V2nm*4EJV6mZD`2Q|zco`>DdBJ_MYu=Vl|V zf+hive!}_4=^w@1F8(@F5jD>m#qfy-Pxa~OtxeW7J)Y|@(g0LFgHSEekMSQSTq=ucE-tdnX&F1OpSKfdE5 z=l?irpEfOTrdyBt)33-!7!rcLuQDo=olu|0$luaX3fr9s8CSVr@(b;&%2P$nG=R7A zxC-DQ1CBc9xa6eW+1oN)LHx+!#>g&zv9LRf86$ zIiKcSl4Ek`mzNoQof``Cmq;108n*hz^traA&FMTWp0UJ|HRABAr-~VI_1Ky-W8P)= zWq|%V%S1+@z2Wou2fS`MN^p$%<586A3C6;13uO~CT zuswu`I=kTXOwyR~8>Xg*KEDX{?n;Z7z|f@o*e9tFRR2>E>fu!mPf2Y3p5qg{a0UPm zDbR8yzol!(1eR5cy1>u#zShihJA(iRp44T#t`vVqLkX>bXku#RkUn=lfP6*%)VvI^SZ=>oe{o*P9 z7JY4g8J2Z6w~%>Hf=rP(2gLPN;Cm_w9;+Hi{M`5rNd%EV=?DXlB~kBG2`yJ@Dgahnvp7cVCFHdoDIHZr z;1v$d)d?qa+rkyE2m5~78UqEN-RWk#yT^%cF^fHy;+Tu`ziNyf6)oe~nqV6aimQtl zN9h+K%B{*A`XbJ$v5_0|^SK65es2ZyTS_G4w zDIYv0#`V-Qy>$=dj^)iF@1e;8rmb!C54IwhhFL+%Oc9G0y;P_w7Zm{EJv~s@jWPo6 zqMLsXW_hXtq;LOfaTLsxEFB*S%iLc%x_ExXRe!&qRUGb9GU}yJPy?4rTUul%Ryyu7 zvzc9OF6zAt?QK;I-cewDWMwmh!n&+=i1~iVO{BOhRCOFq>p#qfg7n#G%qtS|oC#Uu zRVAW!CNsw%0@@kU4mLnPq(8wnKr@28&&-m_AxewObiT{Fcjbz&BBK+9mA^mEki2eUF2{F^NF#p$n zRO>&JP+a#-&1shtF2(P?!I3g9bmek~FDxq9LBL^v#zC@3Fo^2E%0rzVK8CkRUE}4_ zbpt?urqgmsl7tx75wyyVo}Ip|+@IZPf-lR|$}ZqYhl-uAEKt&|vkQ{?{B+nX~Po9`Ft4$#VYQJkWW;Xn94{6D*A{8Ojl zK<_V2@aQ#=dPc3ld9-{gl4dU^_`B>)Ff+3_vaAzwYR)u}FetHLu1nO_@ zT@>>=D9vx|EvFkH9+>kxyrfOsUL`%_Mc@27QyqED(1S#AglM(3s=%c>CSL47enS2; zRft-eg{TpvEK4qE?KjMEk}|1Zy29!3{vHWhmF0;Lg5efAt7FtHY*o~i?t@N6+8A2YE zi@cAYy0!?y>^(Syxsnyhpm7ve14~TzojZRpcVth>Gh^$6rjV=DF-RLDo&mFu^1zU@k!XkzsrsTJ%;e zUjz%NS=)vd7?dvv)d7(R)QI$x6?1rOw-9jr?!;}Hg~&0?*nJ4f7xi)6bJgXaF_q2X zDv(v#n<5j`&Da-|HjyN`;dN~LS7?{XlbGLME=|QQG;WM=Dn$dvs8Z02t({4Tj27Fs z(hAK;_jO&X^u=Dq^sd-awVNRGO-mwR_)!l8bz->_irDHO?js(xnIFQ5*r-%iDEIv# z>0)H-wkQzy@RTS$Rjh>O2e4qc51cz058U19$?{XpbJVPtjrqiC+WP-}WNLBMscIG5 z>L}&jC?%OIN+M9LqmZwNu|-?ZBBH^FpG~%a8GAxeMzK%xCpRWRCS9#Emb05Fui+Yo zc})vTq53;(ec?eUY~bPLizODJ!1SZAo2GAt4=4EOugK7fOH7(yZ+R>;0JO}KrnFqV zbmr}$?SYEfPS4to1P@o4@xIguHmWnO4@oL&$tobO9Z##z*UQ0&ub3_$ouV#{^6(1}HPkC%%Dd`$S?yk!a zRLI4V#6wrv6xkkFYTkqIe;Bz-C||v5Rs}xMEN|s|Exp%8Cokn8a^!1NJ(>HM3^*Y} z5}|~CJHQ z$x>Puf^0CikvE80f|3!Z*K~?eOFUwc`)g!YUp`X4b>UCCUlt*?F;FfNO9a_83O&$% zm#>FnLAoC2D&)4oiGUpt4*`%vz2D-g(uj8b8E=%4Z|gToVt$;azY9IAmwz^&Vmg^~ zLUnq;AR;Z4&lusWA+2>lF=b5DKp73zK%a@SxxQ0NH%=o@7SypQI9-fp3Z_Tst~am- zobJ4q8ej_(#(+No@o$ev-_}&IE@68*(-kgiBeD}q#yh#C0|zu~e~$0MFM$5#hkY&@ zHgoY~Q#6s7>$Wf`RSfD#2{7(c&^{PT1YL%+zs?9g-Tdh1o~6<-X*)3Ll%>L~3$h8y zvObu7Fcc<<9cxR!nDGkTGDy`g6^v z-n}>g)F!2mz6p{m2yy4IrFZ&d@L?eS@SzFgB?e=bjcUFfRGFzl8_mXwSjyG<*ca8< z`-^mGhDa8v$AtWXM>pr6L!)b}t6@o#=VxwKoa!6+Ti9|obHiWJn2s|vrdsK_nsQm6 zJO1Dgf08PJAAvA~d}K$E~t8%&Yd*@*dEVXQZuRpQv(-yKlp`>bKh zu`++M$s}_tnI^*76%~^SrD)+4o562hJCbAW-6WM{4GEeoe(%j(atnZRjZ5>*A*FN8 zibna6VUrFRzIc*gR z6MTgR5~wz9^0DHSasl^{`c5EBiINg{`SoS~KkeBOzlhi_A3ycBZM+rx$L|B*c6hgR z$w#pb^7i1a`gBRb#2j|z1YY2l+$TRf82m*Y{RENd9OQOUV(xO7gG_7ovO(Ijc74k^ z1u=ohchQLriw{1=81+~xyaN{dU;99ZZ}YO1LZERrLFbmBcfQr!OMsUqd;)y%J={eKmJf<#AI}!#aBzP}f(^MlCj&>%!^;|Nf zgXE`S2{kZvtn?%lZJR*JMb~n;K#WYw*5z&xOgA0LII0LYaO10BZl`gqg=(#n`$`Tx z0INdIljqo?OYy}Ml+A3F+dQ7$JSPz?@M{%yaD9dK+X|UYneO=0dNVYmNxQ&FFyG)e z3<(E+NZ4RJR3Q)xodj4$f6`SX@pmhRJAMIIYysJ)w#g)miedBw!sf~@J{*Iwtg2@~ z0;_t${_R?8kV8F~>wAWoFd=mz5_21zpSUGL`#E9V7;ydmsHzG#A^7qeQUx*d2kI4= z_$fufeM*XjZ0B&6FWYa<#co6Qc#|sW_WjUCWl)>@aF%Uje1B2p7OhY~r%)(SxU|D= zv6xwCyK4(%fs?C&AdoH6O-P;DSKYl(U6l%n{o9S=q0MX&cW zYHqv#7qfHoHTev*>LUUHWtE^me~~P#YL=hHFKDs*hL78LgVccPeCL$0oFxL&A=C02 z73jICF#Wo9>nQ?I$sPrj4X(h znNf`VCaV38L)&ISyC<>%6Mz7HcEztPhPoH&1ON4F)c3ZaG{Q;sHrYi}1TdbQ+B&JB zhVA5*dgQdJyzcDR^>OKFL7)ps!hW<=@535#pO8jtVKvaEdcjWk@A{)~KsS^_&T)9- z*SkIJ&xr?#2JeLNqNdO74mW^Ngu3fihJw0G|M#1h0Z|i)h5RBxu^=ae?vuH=`c7yjy zzZ6&|t}io}^)>e6C-nFW2cuU(W<} z`&ZXUQQCgX(y9OI9pIOW5`;(MZA zi$Ad($`(EcsexSha)UOoRbtGB&GW4qf5!+1N!~J#6Ot0n#qI4~|4n}2RL}@132oIVnN?Rw<69nJtuuK9Sah8d zF*j3~cnPHVG0p0GZ9$^ZVZ1LB8%%T(+-@1JA&VHV|D*Rvz367X8?FV{w-7ias?~BM zb-2K+PfbR%68?p}ei)jw&qK`G_|gFzuFyaCG z@h0eT14_Yi)F_KdBLFXR3G8&wZzjZe5wwjf zoJ)M3rjxIm7m&^il(`lkki+np=aTfw@#`zTqoZ4mh=90rAO{(Q7f%{u`Q*HrLil;# z2&qjhul1*gD@+1=s8hHy(NmB3q90)&a8$Y3N5twrR+y$)&|RF^9!VGGi_(uIZIHQ2AB=}lKH^tzvYgw2LrZrz zvG*nsmXjnmZzOT_CP{3eQsb^A@dX|+okcaf5zw^7zO{Tpjcq!ytsVU-MF>i`58yvK zcsE<{2b4w#=j0=MZ{PZIo=;+E=f>EDp87J7AFzqE@qMHJ#v0($s+BlNwFrJvM)FWb zb>+JeRgAKm6_bLE3tgDU-j!PrS^bhp?~Yqzt=%Xz|C!4tHxK51pG0NOMl(RMe`;J0~*go3VL@)w6$=^RlqTVAMD6V@o~EDicWdaMYzqLt|eCut+9$U*r;>3_!4sEhYk&tz8P z8Nweymxej>!8(9Zk@|5%{-p|^5z!f11$_39e9Eoki7unY0HeRHHXr(wTTU7`6A!M- zAMqdqG)3(2lrRc#H;M}f-Wn)EXOdyBf9*On5C>kDH&^^Aj@Or(Je6Dg)yVG?>`bJ7 zw9eIh|Aqx)^nu09JXBvFSM?y1nr&WYVf_2buklW2)s-MP?fBr-RZ+g>Oan@A1Fi=0 zaT}Fq56$m}Q-#Bo(u|qYMMRa_r6p1|N0Q(ePyA2SM9M8iiJ#%uLqozn?{0o2dG$pP ziew}zSWt_|F5f$u5kgQ2vjj)X9g(yo&90*WGnedS!q8m$52>$y7<=3${kcG$2rLN_ z9D^^FcRM8S@h+7lRWldAQLX?OY;tziKws}cev|ylLEr3vYQ?UuycrodAvR9465Ieq za9T9r$tH=l)NdA}WITWWAdX7#odxlMv90+*+#OeXY^ z7&)B8gg`!QAU3~S0H~g65qcfXzuG`rTmKu_Vyrg;PJ^loC1UAA@M7?2D0!J6(ce)5 z@sNVLzGL9tows`~6Kuw~lI^xQY|FZ9H?rh8=8G>F1`Whrpr&_hP62=c0)^08H6YFF4KgYO<^82)A+uN2Bx)|w?2{sXaI94K#!B2 zS+sz>hQX|cD8i_xQ` z5*!C4JZ!2ZmC=Y1$kmw+4hTGB0;>&hcI&@z;2~xmI}|o(>ItK-+l-m&_uh#I+l4^Egeoys_6j zJ?8~ny7`dy1muI&15t3{&TeYq%S8W}r{-o#w4$mho#1!akZ)wGLwa6pKOUhMwyvt~iCGz}LK5kc^KH3&$UiEmK7NMXsk21s_}e zV2=+kZT&tG^`$a~YHGeI?h)zFnY+@b9~t>li{j3UvfW2siqSj1`bHnUqb=iA84N4& z7BeC~`Ehr63Hf>Tx%sRd_#c@gE5rXMb7W#*Wc%;TaVv(X3BhMZhu&=i1=Ap9LPt;S zPkw9+r?j{u9AB&`)j*#gY}jGYL5)n(hV{nQb=q~?+ExdY|J?kRb&Hl#_4`uD)b&Z$ zy4btO74~e8{mT?(`+Kyv&$idQ=gXdn_*Er@w8vw|39U0^=Ip#$!-fTUB8dC<=j~Bc z;_6^ILcRd9OAwfdDby$c=oJAnUyuT4xCHu&-q3#_2O2Q z@>$wb8*vK*ZE&{JIk&gUoyzcy_tXuXjDdtl#lyyF@SUpDN6m@PhMz!QBE4k1o;=to zep4elmgg(RtJZ(u#l^$g0chH7xh@{F1Y~9OJ!NOqZcujq=C5XGVoZ;Q=h2Svn1EZa zdu;M4>Fe!f@%>mvm$Q%OB^S~zi^6UZ?T#Z4z8l;?gLj+PeT>{Xg*$$K@fmi2yi%@B z-2vgcZm?*H01ET8y@UoN1x!T^KuxVAt(}~<&cvZ^WKXjH-8cy_+7Zd6ezbKLv#(af zyv20HcZ~th$&*7J9HKaU_cC5hffoWupq)YaTt)Rm7$rf*&||za-Bm~ir=%*Jmxj(J zmWDkeA;`HipwHIt6P8}5CPCnjZbG{UKoeO_8^kqt2oGCxZq1v|A$k>aJhuxWe2P|O zSjo4qUBi^#0`y>1kY43&$7lYkW0e-@#Q$1` z)Vi$*l&0iMTzIBupDoBo1QSS~U-D^R@BL%bgwsK|;o7C^A^Xnt{`0I-)l^8&0Ycq;X?@!L~)wBxFRnfn9MXbDnJ3@0v9{VBMGobxkQ@p$mQ{3Z`7)6h4UBY z9^km9+1X=z1WOFjSnZTSBC4oEakg0-AfY_jM9pfd2BN!$8Cx?W%dOVRX_qHB{zjf* z6&(-#M6HsVA46_BUBOV5XenN)xZ7qCeK*;%%uW$|qTK);iFf~UePsM_JsZ?t$^}5Z z#j{uqSY-5UyN)~+56@sxeSc%cpAq9zlV+YM`ROa3oe58aa8mL$3*onUNdVXjHKz+F zeJTpcbXFN=L;{O#XEy>!x~K6A4L}j)=;fs_Gj|g&Jwrz?g1(MI!c+Y}Raw^z$UBpK z%z0>T<;*z?SqV%>$?gq;L<_}E5tGITs{BxgEcGY!>2=h$c}E%*$IW$DMCG#Xf+$Gf z1hIL`(l+mx1N!;dC0Z{I3RNTm;>%d~X))BKTCG>$fAksYHgOym@#v{6ygk8--%U(& zl0jYudCtvT(ZYk5T;9Gurz*elSyIma2}-5C3z4O_CGU1B*E^2Pc{rCjrW0>cm4=~8 zn+t?)7)EmO|22}<&;A7z!bj-=ZNla2k%OJQucm4O8D&1)jB3(EPA^wRx=l)O%xj2K zsFO#}l?Pi+XvVj9?2Xj3Kj*L0C&=W>4z&BCIdPq*NftNrG*=YLZjI;0?7Lfa@6{k9Fr(m7>qk1szf$9+H9b7mE4tOhQN)gf5WNoOluq8=cVv&TQs_XH zHT*h^IW6h_I3%qu;6~Q^6}Q7+QlI@({+9+5P@LIre|I4pB3_OIJ9oKr08yAkF4Ht_AC}3c!ZjT=oyQZE*td&cM?j9LmZH=g1tE24C zf*MX1!o}2B>zrc+dAczAD-q{oZMTA92ZQNq-_C|t&o4DuRKc~0%0M+$UdjS zT74k$IEW^`{uLH? zlwwgs;Yjidi?Ipq4ZIn&p#fs*lNLDI)UEk2B}wm*#ESc;n1+CD?BGHOtZq)~~ zXJJO)o!6L%0{9G$P_7_`%2%UiC5}&-U=pTADNzc^NBg8lWrLtE0PbY%TMv6r2Sj}1KyaC^LBSMU%q@hCcv(-(uW};?h zS2H^J-*^=4LpBI}X&$X30ySWNgQo5&O2f30P^VwKf(buSjK?(+xh=NxNqi>^ps|NO zh^-{V@_QV872m(C0o^Zv9zuR=Fiz7}zZgTac&#&wYP-r#+m!1DP!MYTaf?L$TeCc= z=DUEBbS-P-SkhmicMR8EsZ*xWYc~^_{;b=EdNC;abtn>ViPtI&S3GF$5RT5RHlfAe_%?b_I z`M@r}7DXW%O&Z$`S-wBfiY0>QUrUq^cXivW+ykof-J!E9hvZpQEhnz!wW-4R zxU(x$n#O&D1YYHz2Fe;kTpsSCBZ5VubQHpJEo&CCnB62;O&t~&*io%u76@9hSa^LO z^VN%V=8_91YtUygR3pyIVuh=IN94d)sD6sZgfH;0QO@JAL~Auxk=T1MKHt`Q+zMQw zOm{?o;`L8@U3;lNJ0i(hdpVwvp&*2uUf>6EC{c@~O(=3$T;XbT-ODom}j4wO|uFY0Q=S4S9PzqH~U1NNJMP}-OiX9DIwhPENpUj;R2PZ zmx6^q*g%Yso1MvBS5$XpE|=a|bNN^<$9-kv=%Ss>A4<;++Hx+OQp5Tnf?du;r08w%sb+)pENZ>A%q6Fz?;>i_e~#CU>~C(Ct`5p16+pT=Tchh3!X zm5^y{w%?axe#~T(WbwF~ba4%fCI#$bLVq!)Pc#*9gB~cB(>UH2U3`7k&t6Ki3cu{| z_tmfs12dy2A)oZt_CR(7El>>3cEn-0JbPpij4H_ z9+ljNW#0yPA$~M32Ak`!`Mug(KEkTJ?M%5)Os03lgSAZbLqf;Vl{15XBmAJkyD^J( zXa89A3QJK5gC-ixi-F8ac4G~Li}LtQVds>Pw?mdjJH+Xcir1eq(%h%Vb~s-}JA;wr zqg(_0dNc>p+1~R|vWv{9f384ehIpO8m(f%P*z))TV=*T)IM`}b{6GaP97Mlq7gMu*NCJW!A-aq8^fVa26KZN>l|a(nhEu73HVF2QabIf zVxn!j$oSp*GSJm+TY0&sz{{hv^7P%>3q=?UA#7>8RXZQAkEuQGln9K=3u(~cTE~b} znn>^NOV3GSRdrrQL}$6v_oCmnG!fPwp> z3@L+ccEJgaJ`^bsG2BEG(nT+mpAOXx=CSqE6_q1d~xVu zn5VgmN)2$f<(j-7!##huS4u|z9(suJW`I{pNJ{I`xO_;VZu9p69_>arduf7HggS`KR?2V}Jb>+B;e^cfzQIlLv~ zRdpM^#Cgh{!}DXy-@f4zJ&63zCJ~dM@N9d09oxK4?$dssq#=kT1zND8#!zzQ&6lV(5fTl=UU!K!}uEWG|D%M=YVcN6B9LOd6c`)7Rq^ZMs{#`GHT2uG`uye6z{ zJlIEe{Kt9;E5Ww~tr4z9u*1>!2JY387mR_nXW9h}kXFm33#r`q0T^h>Tmi8N9jC zjtzLlBRg>Htm*#iS!E)`Fxd!dV_2lsB}Y*?-m1eQ0}6gHupqZl&oj9k|K?k#dh5qO^q(x}Q8 z$bHu0yVqrX_ngbLefO1Xp=_}P7Q?)Y&FCtJeEgHhhaP_rTAh*%2F#`d0?7_7KJ|mV zdg8^ZO}os>^s*Zdv)K$(&PjK&JG*_JwLn4Se04P7rd+Ge#Q-l>0nr)#s&Qw0B@ z2=KRCq0)*K_tnvMjg?nERfIBj2q@`%acXRS|0ah#jk#3bl>+@nbhBs?vGpPwl=%|F zyIujJ!Kh)t)OB1AuAaK}nB;^C;llB@Rf^<6Q(#JHGJ*wpc69?11mEhA5RV@x0VvK?Ccy`a?HVrL%=4`Lnqswz3U1 zm1v@&Kv>x}EQ)KbNUWH$R}5wd0quYc$%p9r0tNGtI*H9neecefCN;vUw}^!z;0o`go1Kr(yX|-7B%g)?v%{0xD~1qpk7a9-h+twp zh;o$-@)>>%H&pGvFj-jege=xaCsr0&TlkS4du_;xORQknZI;?}6Q+UUP#fuMGz*o2 zIhYng%oB)AQOk$qZDEWKidDe~^Z4fjUZB(0--u&x*;eUOHxx9{!T*h5EcILIbpb5c zxSwS?vUJW!BLa5^H3d}%2l+!J%fwBT66A$70;IGJrC=+wCBYehN#~0x%?5e%1YrKz z+K>0k_(10-z|^6&OMyUk1C3PCTm}%k#YuJqz|bR_jtVWUMTQaVkvZk{^Dr-0?vfLf zlG-Y>QRVHfVc36EYNG&Hl(7i+LkaJ9VTElgOhZWTKcjy_h$#&mYcoi0C!E?=Wr6>*rRz(mnhg8*rZ(nutj z7&wW9Cku#4^S391^e`6gm7H?KkxW+h=fW<~=^nvtRwe#YK5-PnR?eUeH17fCwvo`x0kI}(x?I^nnN9G*D>Tr2`wQIlB6_i0zld1ZK^HdR9p|7N0Y8$iPM2K+XWi0cc2#Bv)1=yYS3p= zXx3EY_TIsBn{_d5ukI^(; zpBhzA1ok3Gf2*F?)G15#0{&7w2WYd9=Um^TEgzzr_}vOsom*@v>x#5}%#F_mlU88=CR4eR{ow%6`Fct4j^Oc?m!XAnPIq!uR@N~&DeKIp#*RE8rvw2ZR zN9GKbgRw7%mYs4+!}lL}fwiNEw(@`}g&b3xMn2RZ<;+gOau|cMtf2>tbe$uq{w}P6 za&0*b2h%Z-^Py)6&2s?kTiS7|_9~Ib_j^rc0rnodJ!gJI-lD(Y?fg`|4{!KaS z<1G`r_g~tC%5NE3kQXW1ct))5IZ!`B$g>t*ggr9B8>jXw)%253_?PP*1G1}ICSvV2 zntxKPdg(NQa<_ZCSj<*%Z#Sy=R(-CP`|?S1X;fkTJg&_6GG{)r@^IK}9!W8tl>y4t zg>5`<8@FgG?U1>ql2PaWJnRF2Xa|5OM+>DZnPwlsGXn8GKTKnnF~F z37#AXzr3x;_tpBOIn~IM{WmzNBR2bD<8?l0#MjoWmAAH(A9GcV_L6 zEk)lYKB^O*tzwqtBw=azVpC9Me*St7COjFI*6&YCpGq`6d0ykoN)a#A{R6Q|fR|U# z^@wWC2>R*9$I@jYO0r=?U)dW3^t3kU+Vv#^HA>&`qFPk7i!cMdgE^WXvn@0Kw@~mx zZ9_75k;p*U0u3KS3K{5LnTJl3rQ1Jihy-)Jx*dQ?S-=5W(XPtt{%SKNzeLVQ+s4kT zW>(Cd;XwmqB|Ok~B#4&?RjiR^V=+yDdThSFii`o97ZP+`k5t>knSG|cc?eTPTOWd!n_ELb1%^EyQ?&}c>9;F26Bcp)3T z(dmz`%TI^Eca%1^DN(hees!M}BoHBz_Pvu4lhjnlwY6&h;anYA8@H;-XYZ5D#>ec1 z1Q#D|m7jQ!^%T{SFi74W7*7zEFH5Koh)boK$!*GpAM>*t{}g^OQqnA~rPLYl(J|VJ z%y;7%1~;rpr5TBM9NSFp*VAJE-&#u?Kp{W47=8kWzz=Y?3#QHu^U^-S37n3@M|3m4 zrmpzC?$73h2^6q+>>3nqH=I#cs`t!}(iZoflmB!Uk^GsO-}Lz!G+1VDbhBCrfxlU~ zJ4e)hK49ol%@*HZ97C=7E1sk@+fj@~^z2JJ z8?}KL7rolw@y(>;hxn!K<`;}U6Qt4PqCRor`54Ug1SxcxWPzd5qh6aBh7fTg8IU$n z{c47g2L^~aJ;6w(Ry&_gUQRkkIXfwklDW-rNwPBRvA>J#?9=f=4sJokb>IOE(U2dl zFMLO4^+!o_r+R?={&f@PzM_^)Xoh(yWVB*aVzlB@>7D|`!b79!$;Rd1{yZOiledpU z_3suTF2%W6>1}GvLkEs;*~xjN&K}*2R*Qnk5!@FXa=UjRMX!iZ&rUh6EmEhR{tii2 zg<|0si{6Mc)AwcN76`A;bg7EdBkOUp(}|xB8*&7TK49}KElMG;%Pd6V%){`uz~LG< zdplqbq4$4`ol|!vT$pX+q*5{8*tTukwr$(2*tTukwr$(a`OamJ(HH$M_MXpLYX&=Z z$zz)P@GGUVqM!R{WE5ckT`_rm+TF?e@g>ZqS^o1&7h)?A7oNDyllhj|F|-I@s%{qz zm}KbK{B`;`JbxYBBO5|(rXLBSLd;3+h&X%K81-tX zK!7LgV3Hi+Kh57kPLUp zITrrG@ARYAYb84T+lumVLkf%2=8_Ar5y$fC?!GjP2OyA9cZCXfMaJ-6618CEu79e- ze&^T3FO7$O#MdEAN=Z)vaPY043Zqi)5&Fmk*G`X<`Sk4eH7>Kj!ZkUTYWHY`-xehS z;82DB5dU7nf$~*}r$v1@L7v*R47fbU-(j|zzc4R^l^qud-4XfXU@`^6x)YNt8-S~g z>Sd~}{hwcBAhy0vYbYr!9#O-O$3SCnN9k04%%-=|CnEx&&UAa>P7fo!z;cD!lARvT zy%v5%4s2bAv-^i(NPKrwhgi+)`Xi62>?fI}VT|})OFe%izIz^wHAlZ3#EIZwxc}Ek3@=5Iu_5#uHf6+q{V}H=!saD^Uw3y{PtQtEdi-tY%)VQrPNC7$EZr>cPE_$u;8G1e46;S)@SaiC% z*ybVfC30~yh%~(V{oVV;_sin7@xQS)_Wu)WV`BcFdUNgn0z_PV0Ybt6@kXaK*_S3@ZiSy4^TyP&_~G9Hjq(^<;3U@ zCXF3cosUHf33Y#0y& z&8IP5(8k_h1CC^@nmnfXZpa!n^1Fa1gnm-O)?|&V>Q=Z69gAQTvHy4!1=^A`O;V0| z_k8-c*i*r1RHl!^wzIvyPDy&bdc2Kpmw%3z`=h~iwLT*dwSv;+ntChCsuM}{vg7@_ z^WZ_=Oaa~ptrbMg_o{90&0Dl|{r?l2fPc~NR*2P3VEQ@vJu#m$XF@sR);o5@8?Yk1 zB^{;ZjrqlyCcIb3IqLO5%FLfKGM@3b?Uo_0<>iIIy@z_TYdn;WD_{#ewil3?#wZS8 z6<$H6+~l|@*4fO@;cQE*cIr^j5hJg(O09*hNwHry}D~6#edsGn} zXqaGLwr`*&C6iUW7_6(c+=*F*tPZhuC$5L(_=LM-)lSeD5N|xtR8eX(bP%9qDPX^} z)iL7cQ?;JI$Pc2pwlhh~ttTJPueZ}&$}UBAkeN!SLavKcxaP(uUc*KRCx;Vf=W!B^ zFU~v!prECArJ{mSiVQ$uqDJ?oG^0N2 zry{>9om7UlIz{k{s-Mc-UwfK*G~dY@FeLw`r%Mt^0~IYBSb9iMo5qP)<@@iu<(ya2 z>_$n_^l*3`n48Vjc^GgRsfL=?t592Q=oy(8jA5-?+JB+R66>+CWn%T{j_WRDn%hR< zQq$mF1-szu*ymUDo%Bu_Boh{Yg+H5PUHY&P4f@V!h~R_J3R!@-ib%LQM(PN}y?XZ7 z%ul|zvAH=)yibl>e-<$oh#An7YW}88H`|yJnR;@W@{(7C9up|4>>dh_=gI_6eJ<=8VQ;y>Q$QhgLBuD$Viy2iZKw;EoNuU zaJ2GDW{ku))JJ=wA%kl|(S zeR5ckwEUTa?zag}DTa2pr&yFLZVuWUK^uus$Q;9~FD({D0C@>}4vSb2DREGW;Tn-| zsts#AgalT^6zFS{W+~4<985z_igg(-6S%?8hn8^{II*?J?YJn^pKfxGRKg3_kNA6ck>{yi?o&a1ZMqr0X0j7c|C53J=ckr{03OqHUaF zI1A7H=Vu{Xb zg2#UHt0|X}?>KMH{n-Ss89vLi)_{M&H@nc^{{{sXm4f_b_-5E774Ljob@LpfrI#eh zmQ^@4^4hWm?=g2xwc`v4o8!O6opL^#RPO8l%Ciy4v)NcS4XCUt4v`+q>@z=2YAV&hGr!Bz1H z(;G{^4H%~>A4KN$2;(@O&9~ca8F)#4a{*ig7RwaW+;~M;rh&mLW9cB_v9*hjD6@_H zTd_-m8IB{=Sfe7nXKYEifGI-p!>w?t0%KZ>=5OTJhi?lV#D{XC)8`r(SfPQ%3DU+Y zNV-a3eyDaS+mmTQ+&L2?Rrv<&1dK2DL)kHQ15*@9+1zj*>9HglGKaZMM}fh3*QL|p z7vZoHxH7VPt0qq{O8tw{OB=9RVFOerus>2pcVYJoHaVSDUEc}N4F>#JXQ{=L0T?9c zGVU0~IB)IG_7kzY>VhL;)`EoswlqVb0_;UT*lU`4?M{juiAsWeKjDpy0nyttYi&iT zD)WgjASjw6UgX80$qRQa1AOz6y=m$i%5j7pBeHrTPOZ}*Q-OG!;K&YDmzR@uW})Ne zj8v&KmIUuUItx9&+O-9H{npgDX)kU8mGNTw`+IAS!>CGgbFgQ~Bn@MQW0c!01({tB zg&SQ)!C-tmOX_{b96u9dV9qK6Tkje1A>eCj0BDSA# zRfEMUm}!ZwNr%LShf2!uY#|?4yr9&m<6*2nbqI2UVLc2e6=qyx<2gPwXN*pt0nGa! zeUnSo8SK`w7xeU$1RJr0T~1{SsVz36&&8te!Rkhq&YQQIa+#ju@CpPm7C7}8r>@Kp zsI@7;NsJ3uub7wpVU&=CYZl>QXp6Q|N5#uXUUv5n<2gZ28@ifYY4Kq&Hx>s>AbU|5 zknmgWk`Y=y4AyDPfz|2VRhj!Z;QbxBDU1btj#_@H;%~JQx8?t>Ow#h)vpf*U(HAh4 z!s&z!%N)$ska4`KtuJS)jKXD|1Nmdog~N2iGhOM(z~uorbiKz$q)HI$2yO*bGMj17 zEda!5@0G_NuF#Xm=poIM(SGBw*Myq9^+#Im&8UP0@2>d!4ooDJ)_G)cs2`>=GeCsQ zA8n9TX`E%gYns6lDa|X5gRem6|5Me0t&wU=LNzN888lVu^mo*<1xgaGHwh&{d1{;Q z=FVYMMytX^NTT+?J6sT}V@arp!@MpIgrrEtn~~A*a(Rl@kQ!xEYTC9@_*Wb9&Hn!Q z60x7k&0M`O2X9nYjv3&&?a1frK>thiVhn6=63LQ3IIZx)jAk&*L3vWLGA z636veN4w3`G=HzYbSxjQ<@ljUtUo*0PR-;QLJXMo44*E> zJ)l-a;rbHF{kCmJ>ndWXayvxCulPq$lFz&U#^ry#S+N%5(aD_4;qex;)5>0p(xz7_ffe2cHc9h2nc64@M#5QBw!qxbFT4sy>!M z*KSERVvxZt=*5mvkHJy}y&}Y??EN|FehON@Yb#TzTCD9~-Qq!}!xra1PZI&+ZN87n zjPn|vOsSC;@~`6|LD`|+><=CTj=<2fO^%|aHZz2^woZ9Wz6M)*IQ!IGN^{5)Qg%Z? z-{M!++;dq`t{Ir}91z|0q}WJb?mx$t0aoZ%Q=AvNDkfF-(rQ=KOt=OrK@^tvt&R+E6e7Fq`03 zQwG`eZpO4*V4BSms?3e+u^1FNyv)bOKOF^)C8^mu?Yg0}lDZ$QgPcqOChg(5) z2<}})_y9|9g5}S9fw)*%0m(K$=8m*>dyC060!V`t{_oux#n2jvsqgvRnTMdjs0KLzVFJxomO={H{js)%(xL# znLw8)L0tuUJVSs{p4wqB!6u{i)mNYk^o&A*fT+T&V@RpFbWJdC--*6ZGJC3Q6`|3$ zx|~MiJJLK)4nz1@ay6OWCZo?N9C*`V;QpVWgC@oR1sy}b8J2H8k0Y6HzT$81E8u|| z$TCa$3;GRrDPT>Oi`0;PjZsUYOYBznfi=^_49hKcDXDH}k|y0ci=mWpTaLuK=_=&Y zz;qIzaA4urt7rO0vMzi)xUa-Q>ut!y!EC8o?mY0EuK7ZLaObBc-?Qr6um#m4t zJ5@qwUSiY~zvp9=^vIokKCp>}rc7409R>gCsFj`l%==ZX=iwS6yJu6%VNm|f&oTD1 z91++F_Dn$cAJmrDB;e7J91V_D7 zVdC8m+^{?|nWAq)(kyIEZakO3Wmf5I8kyTRUP^)>=@M-93*bW(PBh_4A0GI$EEbn@ zs|91#DEXjnb)I>!PgNA?&YPj&jn1M4E{W|x+YjWvo1PxR1v|mH-ryNza*~6OdCut- z>sQNv>1c(a>?pk8mu)YLMkhHjcKAW~^vI@5WLHFSI5OPlK=pSR^uPbxK4{#3rq|7s z=u_Nqm;g->Q9W2M4x`2UtXWZA84W{z!5gx6gq^i~E4OJ|>z<^2s`rwZMkHPRDOC&W z{k`zBuqW>MU+4)t!~cn%uro0KkED{0L@aT;OV6iTk)2Lh6v6I*2qh}mU;->C5`MWE zE#{!SOQrWc)XMnFmuD|J45K(H5m7@*&P@vaVp)|qMCxd(w;jRd(`q6Q#`|mz_t@{r z(>~<;HQ(`WZ`RNG_j#tCmY1W_6M#Hxhc7#g^i+U1cV2qM-~0RL5brkHfPN(Yzu?r@ z=cgZ+Ls}IX*g3h+Z6L#&*}ECujCB+@0o5-r0Q6DG1Nj-N(g(xiK(dn$!w64F%SWt7 zps|TCcgO8vYv0C>JBvcp2v zjML5?b9#6<0t%4Y{^iS#&c{Kp&57J7KUSncP=uJI2xXzmm=T5dG8#4xqL2GK%FWA+ zUDL$x;o5>MGC<$@eZ0NCp6t0MKl>+QeWBbJ_yz(wE|zh$E$X-S@O}`iKf!ABSITyB zTf1the9uk(F;+tC}ts(Zs8$TYgkFe*NQ^1*P5<@9~B%>u&8~@{3x0mDwqp zGCVG)gWLS$grYmu-Fm-!l$qtaa-S=UMEGcf%V)PGQP*?I&T^J>l3HOSv3vJG4J(^m z>vFFd%v9I1(C`5)b$3M2s;?2}#;sH|19sKqzrwaq0(ZrAPNe1(u|~M$bjccg1StMk zxHuf0I=I%r^!*>mo>ns&5}WHD8^GIfaVx9w1Eo?Nsd(W6C}b;IFbw` z{N9w}JNgQ<=ktAgozqXocwQD?`}9?KB~4z#bxgXtGyOdKmGyore1!O7E#HD=JXT01 zF!3*11IXv__S#&%3u%{j`>3rs1mZx((JRvmz+pQ0Y%9daf-`9v&0hfRrwDzvJi zt8>;`>pUy8@1NyW$pE{@4*}>acOJ(SmRH2JGt1fkf78{qu0F^B80# zc@|Ed#y z=teW*E_}mn^6ZO95iV@b-pXBLYIeI)y&WixK+`wfeB0yFbYR{SU;UF#NCx)TOSNWo z^4ckBi)$#)7G^N29V8`ha6;EJF!O|QAo_~Z18ypmC7K2!_a1%Rox!-AKFjblx}rp*Z@PM%D7B| zpC?ln<0{PZ8f)^F62YffbX$AuFUA4^ri;0;l<=iab9i+=4S~A16JtavvEbUiDXt=} zpw|Y&cf_4^#8wcQEBsD=31hCD%6<2P)zC{`(;nICNJP&rZ@*?l43WqJ9wo-n{E-H! zzm58;RF+uaRB+oV&9jKLLFwZ1ENDs0d70iQ@w4QQW^O{}NMmSTPsbqhaQJ)v(*X2_x%Rkou)G9e2#sLS86~ivk zwC}3ajl_Q8Q}4l3u@Qzzm?_Jf>v_vb=UTCc*L9nz{7x!b%4F>yf?vpG>{Q+S^R3xC zozh4NaThEJ&XtGZHYFtW+m8zGw2jKMWmOl1?8TeB1tud+AH1?EPD4$4dnBYGp=Fx2 zhUA5(amxzkxW452(;W+Dk}_R0Bgf5+G8~7NPKfZA5J8Nh+C})*3Bku!g8RFXle-_| z2T6WOgPiWgxrt-~XZ~&Vm0h?CXRsz_KK3PJ<6mL~=};{uIi8r1kzo)zmu+Bgk?Yw@ zu)GpgE_8gX_+`l3P8c1Ik?#42nNXNU((qCChMfvd0R4lmf3eCl2qKP&R$D%#g-P9UDY;^x4cEiD|1@8OIB7GaO;Od`O8DI$^PA|;hoWPzx z4X{TyXb$$H*dhvu4%0wC?5@J#k)J9&=(m**eMxWY8^s&IPPv71@2%_V;L%q4$ukq4 zN!?lU5S?2l5$cOorsGJc)hk0yA{?071%EGmK0j3sQrNdlWcZzjmSk#mEVHU! zmsWM2P(cj|tA2^i=kKx6Gz0UP>=~MlXc`UEA0tg=oJlqtN+`$rK;jkgBxI7=aM7uZ zKl;Qx6-(I{*6!NkxIjxt`VvRR1InIU;kI%ATz4=IY#idJxxBDPM40x3*I1Tngn2az zuBG#5t;)GV%U8!L5ieHHqY-QuS4$0rgq`R7=Rpwf zxZ(WcJcLl3vI-M_N6qo5f`*!to?zkhNYtADK`;J$X3s`wB1Dnl^V(}PP4*b=uJRbM z&$dz(aH+Xn{7uV<8|sdrpxnH=i@8qDWQk5@<%ITiPuPey*Gyd%Ay_RnoTGUa8>^s>^?`KZKg)%rZmeX@Wip@rU3mkQR9Xxzgq@j7=jWHevh*qWU&Fn4F-f||nEgPwF-Zkq|nn^0Cjj;dW z-ktJ~OaLLOnNQFpqPoH(g@pd@Wx|4M86W&rsba;*3V_dQ?_|Q z+sC0<>rzcl(~Y!~MUN>-l?#r`SL+W8IgB8hS|6MSE;ZuNci^;M5Qf=C+XT6q1|6~h z=osbG?X&?u&AcAGUBWiQ%9N`-_&ozCtO&PBl3Y*otRW{Al$nXhlR58{{#{Ej@URj( zV%~+jOaqQ980&2H*8>E)fFuTkcE26+M<9o!ea&n%xu~Q;9j%94p;BT_NG1CF-qE*B z4Ay<;8cg30%4(9J&!~^3R%g==UM;&5XqIg(wTO`z+!X1Mjv73Bp+bdNMTFO4rhTb@ zR==SfH`7de-I)Y$tC08NONx;jaEN;6;er51n5m*arWTPUGD2w=n|j@R-_OkX zZxggRKVsTad>*G==%}Q+C1f%PzxcShzA*)Lm7~8dAA{#^ll|{8Z>Eu8l2C+5sMsbA z%?Y71QqQWW?;73^bvtyM`rpgvsSw}LQR&!~dASiLR{fE=UqX)nXJLBf+Pul=#Ut>T z>B(g9JWq;Q zc9XsdR>z5WGQ0^Es?bl(*k=TFe3zreLI9a~nZZ_g`^fbd!!)KlMP+jLEu`%`>L8IN6{ABlmA|wk|^N=r}mOOh?l|=IU zp3!1IRs}Dg{!jI4leLI713!i7PWT$90`g*| zgMBkJt6=0T!UD1F0bTeZ2JPjiwmVcgrl{Rb1^j4LSlE?Ma+S}-yT}fY)b(&a@ZsTd z$G7Cm7&r!a5VYS=4)JYaXu^AgBbpzY(I?{SAdJm>Ivzc@KWn7b8bbOvu`y zkh?}EO*~DKY-xyAut7F)Ym-U|t_Xzc8dGpSG(u`1JEOZRvLr0e7kJB@>}1U~-;AXO zURSo-TP?K{Fl#T(B>dJVQDvP`R(f6Rl>QGNQWRE@y=I`op9Ov^co#$Paq>~-0{dMm)RV7;eA5nN|S2*v1I@-Qh-R$PJ9DQk@!nLCY>wgAj|-C3JV0S9f#d z%d-TLYo+4XwvrwRoGX2w z;V`C#rcdGXn5b&<)V^M0u|D@e@xQ!TQpO7vwN)e0siiC-)}d{sO=?9p=mo}Zy5yYO zMkQ=F-2}RRQE%M4Y(zklKo3jyDyNdkt+_Qx)kuu7DSdL+R>?l>$2jthzYVcaxKp#W zX*=Z{2HT2EwQfN=fi6D1X;DYL(pZ1{GB@Z-BjpscCV6Uu&>=ckXXZh7JY5 z^WN%B=GOEIy#zvzKC%lrV_q=%2>echbASnY$;46Y`X<$^^SJ5}>^E!0K)G4>qTXST zcVl{PXdD6h;`QjH-)xO8Bc`B`wY8yJwH3HGJO{e1csVqK)r!G=7hvUXvXFaF^^(H& z43WVgKu?;hR@C9Ea`uN|7aB|Fx84$=g+|$asC&#i8U{{!5%2PaS0#^Uth1*)v*_?- z%V|=n3QeMWci6VIU*b=daS%7`w=#%~nW%Agi6lLVN>84q_WK3`7GEJRT6(*KywNT@ zVKc$SbL@DjWgS$z@K$;Q>(G$lyGfCsI)pH{fc0=Ff=hAr&7Tl*9l$LjZEms#mqZze=Eiu~EWWxlTjH)yY+{ zdwZJ)l^Zj#-XV_T-dL==U?dsHhxNNf=@;W=0WoMSFv{mUXh?Y{5&IsH==gkpi zRvRLmlM`q;9iYFc=cN_X_WTKs0)K^W?}9T@<~M;6pEW_b-nb%Ohi`&4v79(MwOZfC zZmvuRvSaM8tSn5+mDJqacNqV$Am$_P&5@x57lv*vFNWhU>i0S{^5h0ZYe!XmyE9_s zge9_~@w)@wnS9cB>+A45$8zCd`5I`&t4tw^a;&+1=^&MG4ncM18YQZEfo8NG!E<|B zJ2&EZw#UaxuVzou@-rb7(yD!-g0axs84}>dtXm|hgy2-t+4)RBwKy%cSnv-WUHpS~ zxD?X;+I_JTIkewWwJd)qoAM?)x()NfC#=^k(KaEg2TCpUp4!*Os>>ir|4&RE&j+^E#nwhF@=uj60Fk7?I4R?6E7|fo3B4;uGf|A94)$(?Kr}%vm z{eBIe-|FS|e9-ibm!HYx*?WHffR(8*_lGU6n}cJ%zhAojzAIWGH?{09uLth$V*i@< z?BngBRkw%u`|Vgpm#bLW9sRjO_N|Go{Qk*f(RS4H2+IX@KN05cy16Vd!fWe_i1+q# zDn-#f0$zMH0=R{y3fo#uNIZ@fn5H2to_;;QXUSkR74VVM03QERAnl2NWpH{vs(D0E zaX66{vS2xmY3TNyMGFbdg(m;uGxZ!|?9$P7yoiKPxZ6qRoDTQ$9`W`NdCNEWuxAS> zB#B6}_Ij%3XcJcc79T>rSqm};hF(_5;jd_v6)lOS*`*?vMyF2f){>+~5%Jpg; z^^_)vp}KcZ0nJl@*gb0c^60oK;|Ax>Du9FK;M*t!^>#dL7^r*mlX?U3%Fe}ja6OFe zvQ`5t(^I!yUqC`Y@-mp26v|>yZN6z>9Kaz4y$@+2R$_ydTwf%?0b7vN=g`po(ouKw zf_LnFJDcHHMc_(eK*T&D`2OsjzwhYf)gFj$W(B(9xiCv$CFHXAeV9DQ}X{@dU{<+%M77-c@s;9 z$24;cCi5&aPu3%z7A#>XvAPW4P)A9oc#37+pS{6*I zP`MCKMQivZu-<~Z+~mwka)^i6*F{>ZzR{JEX9!J#O#0pg=7&R9qYQmQf6Vq+4uc{& z8wM`it1WsczGFy2p1ai{&}dy@YYw{lG{Md3iFT)-Nz21gw6_C!i`Z(*kXAQ~;Gr?s z>5S|GVFwchh_nD`&?p~~&BoVs9~d4$Nb(!Zr$iU>SdaCj3A$Hki1%568!M_KCo96b zA4fXPJzyr*3WK1!hYE}i z4H2$Y4Vgxoya32B6qiwrlMDbJlE{S>Oe!>xz#4+Eazq0oIpU5WA7NiAUc6vyW|2*A zC6zp;3Bt2jSruytD+OVuv|h#))ces+k^@`&&VW>I+{V|u)y)$sQDCA&VDYZS-fq^} z8BgcqCPrWzbCLaecjRhvF{$n*nbNhD9h}j;Pbzt$FkH!(lVb_fMrH2fu}!(ipE0W;x>=8s!im5j2i!D@Bf=C zIs)qIE$PQtZsZVkI@{VxjEAP`6wh?Bil3NvvVwgTbFt0s+1~*!+b^Dssw zX|q3Civ~vxa=V$V=PUH=VVqipe>66WYsx1M49F&AR7UEjAfbv-^L8PHT0m-U>Ek1& zNys8O5BfShwyC3$0(|Wh#K~&S4ABh(FTXx~!dH8TW}N~M5G8HhMqxaE*RFyJOyb? z(==RyA<$Otr??G$p&q7rO^8P2+7O$YbTK_C%t6E~in#s^2<3YkaA(f{_9rxj_px5hz zRVAniY3$*jGoMMP6h)vHhHO0ghgsblloxPQJY7x@zcJA3dvlws{vzmYeyUdJ|OyKYt3POOfg4jVtz}a0zCt17LO5Y)$ZMe z+d`JnXL=+KO>=q3F|$@aU|MX#Otgh1z?6yRFb)9QLX2RURD&=&*V6)zi{gsJ!jOXW zKO&=A8{6Ihq@_B3GVbD_SchD&st9kV@UHJ(y!%ifVR8Fs7EdWJn zb}Tq2Ply!SRutc`0tJarM91R)&TL7Sd9?9WwkF{yS_<~-lv10E!&O6SqUig+Ow(j#m!V*5OAO4uiYh7%&+^$FcGY;G4NLBPr!dVQU^baVpJS0aU8+4{|=>+ zWYKY*XXAxgzpGe0U-m`%LT?T;atgwU?DjdjI{>^uc+Pnbt5vLQ*LNYsR23lJW3yAu zqaQt}DQ0-6=YDI}b+zIYE>_&H`FM1JG7>pNIsS^BP}9=3cZCSY;Al1FN#XK4K)`2~ z9askI`Yx;}AOTpJzCfANao9>N^;-T@zMFp$%q**x9jAFyEi2v(qPi>lAfcV4qS=Nk z1u?$M)_&muNb#WwXL+1|!i<5P!c5CK^hW7jOdln4V#Cg25pE%5*Nm5$;@CzsstGrT zzXI46#dg8B{P}SSv$}<~FwwPC)ZE&ZlE^BR@xO?XUtJ%m^9CXq-T;Y4%)pmQj_&}| zI%rX>OyuBt)QSkdIpS$~}I z-g1i5YlT6jLyz)`pt;gyacBLzu1Gk{Ii zP06z)@8Bqw!NR4XSVDo&aa}w!p}tj;0%>%$rSSF7p>WDw^v|z_j+^jZk(0=TCG^%1 zap`5u1Cy^UCAE^y%!i9|!v(-rXLt>-&Uv{PSk4u}o0*%;87J-fZkl|bOnl0U=;zkI zDCaDld6R93=rnU_##X@MnKi0wdbO)7LYXNo0NEULIg?bqxIw_HCmsc!FuC&*S82V( z+1McCkGe>_Lro+S<8*MuHH+G1u(r9Rg=C#H`1qL&6(nBP9|9Z?Y3dC|>wvk{AOd=J zv?LEBRL6_AE&t9TF)bPWk>$f3!?^+>++YT`E>mU{{&RYjZ99W)v&etf5@W9+rjCSx zhNfDIX;l*SYs77K+H6$>*4PRD_3XS~Q^B|{+ zXEnZJ57w%NqDN&kCbSM%(acq}1$&};>1A5ykQnHu+WRcnFeM zZuKvac>Ny@r75`24ARy&!V}Spch=3@jV2~9yZ*H{2Ac}wCNJE2pvd}lJ}6krsHQ99^>RJ80gscK_jT;S zW=;R~M{Q`1Pz|SLmnckoJd)GiaGd zk}3{Zm>SmyAaqjcC2JaL*iyHu!-iPx0J{8*6~F3ZlQka#KJU}d$bUavl>^` zlh*u40bBrq6>47^*UWC*63!Nu+zI}HF*2i=;`I%z5e`UKHlA%n)S6DIUF(uBC2HG; zmP-RO=hdH<4g%Yo+?dbss@oXI|m*|1vY8R!NFE=q?)F|S$9gmMic!=U73*>mbxvw73g z|}2ejd-H2=#+FHr+x_%7Tob z#gnutEj?2sGjQtEbqg#aJiWcwv)>*Wy)>ysxytz;F0@r&p6@p0jbD$lF3m=du@CX5 z8sNh~c7N)7cQi`A97;7q*7pXlPDZo0#nVyWx;+t`thoHL^sJW8sj!r|h4}x~3QL`J z=VhYOoRF;|m&X7+#q#>$n^v=SmFMCDg*spRKWQezZUl#Bqos14YivPp%1;Dy+>5S^ z@l&YfT@F}Rg9t<0DkDhOXYD+hyPRJ2dgA%5UXa{=&I07vTHv{wJMaIjgL97~AK53b?Xaqi34j42Z2M(xHa^VdwI#73ynO}k4mqvPrt`UMEd3MY9}l0 z`T-#AI`F?q>L;u}LAl;89~j)lFyNk$#<2BhC-{yCm+%q$Nm<#y``mF+Cj)8nEcWx{ z|2@dWbN#7MkbXsFYcuE?G99nw{mJwg!j6Wue=UNnx_?Mbe^PFzM;30+TMyxLRCT$X z>nMkb9InaqLTR?1wU`gsRC6`(C*63b1&Gu$@D}IVnJ=)VUs(y;L?-Qa=&v` zbdZ4XoW@nRU#v5vgl3yV8AVg)fiD5f9!#B_?m$5mN5(wRWIbC^U%DAQP~J7D<{zc- z5XQ}qhWGI}lo3zg4kGYoK++u{ZxKh{ZlsVjo{e`Ft|(Cr`VP^MMnh9DN4#}H@LX@z zKn9LD7rVCjzy$uu53TJd4qj?z9@G*V4c>8lwJN_Ta{NHFI+y8|o zGIOvo{?CZre`8?n4!*CoVBz1~&b#wtslO$r|&K zudwuN*!?LD&&kV6^wiE5(Jx}N-?E>kEGyNd5ET*b+8iUN1j_W=H{u&$Gf&pi9x%^X zq|PjEwUD+OWh!D+6(-HFC?a%Sj`LQ;W2pM~(hs{DXNWKi6wFs=-YIUs*CFD^gvdc+jkwKF zZviZOZnl_V$6h!fl905xcy!R5;#vd0bdWtHz4=Be>)=X`QNir^;>vA_zwTxSloy&PE&``@{L3T@SSl0EPF^l;BXBD$ z4m9pom2T#yo;8@=W1uCGx(CBXhV)e0o0=t^NJ9}+;Nk1VDIhem9+74H(~Y zdS(Xg$%Ums@*y3lp;4sETPNN(3@5D6@r5BMeMOZa7zpea?yw%W6&X4 zaB?ds>}LxNoKxk`nOv!^ZOCC!bmP<<09R$2M}?q~(8cr2*cAieK#c zr$vG<7^%nTK7>n!nnGX|L28f+1cn~~k{;D%887z{Q>+ddXUb#^*nlGtuT(Z`Ru|bu zT%{pYA6^NMU}yoya#rR_&=7gg2>1=R@Y_R;UQG1L#NnyBvYEWh=)e?K3zKN<&}bKUV>=>LzgbLbK*Oq*@mwr$(C zZQHi(%t}<+wr$(CZQHkoU$5JP{sm|949*)XVsA^q&7b7luuVxm{#%9D8U86iTWiKd z4CG+W>MyZa;VOPxK%=^9qTshS!7uhn`c2KBOn&gY-}u`(ruW zq%(G3n-$zD-uLiQu)vRhKTV6|CRHNp(}NE5z_}9RFh|!Z@)rv?1?a2QH#az`{91%5 zuz&dM9Z?=F62#Yi^xs;#TWi3yUmx>N7se+Rbftz7?_+&jk3uVjHjQTgCQ4W8Pg~_w z0+FK$Yia1ZY+e`4CyyB(w%9ZAHgFNs9!wuY~GyLe~xA$HhDNBiYJ&YDP-NX3dbQt_F7f_v(|dt-P+G;sTUov*VnD|M{GQqR@;V{wL7>MGdepV6m6EamZw9fYvL61!#f9-C+<>!uz#A;fc^7F<&>1eRwv zGI7fdTrI?9ekAs-A6AQVBB)$I&mXfYT0+q{!~AFXkf*tg;LxR8I&%IQsu#q z47U*NVDdm!YqT#Flxqa6%D^_b$!_8h_vsPXBn2eoBne(P32hoM znPLV}N+eR~anF_RhG5=@7z*)D=FLU`7WyQT>KtO#7wt8j_&@1X)7(Sl z?o10#1-V>UKWAOgArT+}gNAV&EX~>O5jw3@UI%FZzV1G59BW78ZLXbwynE#z?JRfc0O#yksYX0jhKIS*NG*_AeFD4d0917icFxb`&a zm!c(X-tK!lQ)Jb%g0}hQ4KNE2=V@VBPEfec-H*NW$AZJ;eiw-HA_k;PZ`2Ca`JuYO zP%Ao-hO8d4G18r!dooeOb9vSmiZ7!-h%fC^_oNvnyuLFmg)U&`XrrPeBw$4c5l(jl z?~k}m!*u)?(FW29QwWt=GuLat_HaDRGWID4G1L#YiLUWXL?YJup14+BaF!y_rVRg8C>~Ru4j-rsO8-sFpVVGGsY|@%gEiph-3q^oz17k{EyZgss<{gTk-sx7S>M zOTZ45U7ezc!X!Gi!j*gr)G1&k`T?&jQ*Ua|>3cmZy%&#y^XtF5J&D1^ytQrKPJ_j* zGcoV})nIrM>ShM3nvet68i=AjgHVRYm}5XL0R2MM*W1T_^afrS`G_6rrL0@;->FXG z){`L4Gidgsig@ySWS(5wk377r-BEGRyfY(Zmu&9K!?D=&K1v35(nInme5 zn;TX$jU{9r1kE^GuUn8j^o9g-+SeL-9B6|a6^-6Nf-oeMz*MNY%^UH zOMed?UXJo4qK80oR%AN=PSz?9cSqu);g&2OU#`7%%l4y!YK@Q^RS|GLSJNh6% zZ~_Bg!?}OW^sy z;`IO$N~TmSsNmWjMPB@DloeT(?;HiK&xU$jDYcv3L-+$b2!YZrY;c(XkxLCE3N;;| z-r0Gm))@>H^SMQnL+)(|-*5lQu2(N=cqXJP_>SSCu{@nEA^V zweDtA7M{aDa60N}o~vC%ZC-$DZN64(vttR@chVK;>IgL1R}`Gh9Xpo(qPzaNISz@i zK~1QxdfQg+)vIv7BeuXVYmlVc!ui+AX+}5~fyX6H(h@B=4Qm1WXORofzH~CdrM{^Y z(loK}ql$tL#yUfSY-}+F{7f=;oU$cx$Td%r&a@si?pOe zlrSBEx(F5xn14s|#2+r*p*rhg`bMi(hLf=u?z(DH_T5yjY5Bwu=fYSeJzt&JT1c-Y zVL3jzr4;hdb(h`%m&8Z6w!DqZeL}EEGH%}0HjRJ+TYpv`NE(rX^7bqi?Tixvd_`E} zDi`GL2TtHr*^apoulzSO1wGjG@Cn&OU4h1$B0W)rFvQHbMBu`h=8FphnOdl=t(X~Y zfefeE>7^@z4^U}2;S$aB#Y>+WSdGM+1*&|(V7I^uG5PadDLjli9*ww8u(lr#8rts2ffgG z>H}9M{H=u7($zx4RZMkxkqhspo>yxwz1weL9wmIfMl%Sox zSfhAF$2u!m7Km?(Ww<=E;#_tM4o1Ni;$K<}rxC^c+J-R-E$++2i(cG0g+$Lu;i92y zLM4(l+QRtjZv;0_9+>V_CzhpdeNdi#3$R*9SIHKpI${5$OWCwU&VX7$8bvR1vL!*X zAh|6h*0SO2fy`FyM`i}|Zq&Wt3k0KafL?^akK1Lmb^NRs{3pkWHN5cJBfx>jS5>BY zvud?lhJ|pRaDB1_18bEYRri=ue=^;&)VkMJRk{MnqFj>06Q~EAObF|cn#^%saL)&S zJ}m$n^ahB3xWq-=vN3GYgJ*1s4bN&8Ad9a(3y|YIm-SX4hpG+4Y^4TRe|+vQ;m^Z; zUQGdyw@U7{@SQ~d+*^<*ZY`r#k}YBSW7n|P72kZ4=QD=&tu)GW97cdBJYr^5a2l~N zb9hWPE9ek$La5#MHs*2t?E6~_Jb?=@qH0`*I22opLAkdGa7An3_L`S!#y2I{Q!UlJ z+U@4Zx0Gk;8YlOUK07V26fZc6w!gSLbT1_AU)$y ziBz^+SlrG<>E*tdk2alNhJAKAo3RD%LUpA{h}pz~c!e#PkH7>H>d_&rJ#jrDK2=#h zsdlLM=iIpFP4J^K!sDf*N8lZE(_Ly~!$l_ZQ$D9)m7k?%0uePlBB{Ltdcq*os{Uan>H2R2l=Qu(j9aF{vCpH#fupPKg1wj)n>b(2i8tMl`|J*2?FJ0YQCmJu`}P zl`w-rpI)@)L;SpY)HnuQ)c_Y+A2~qD)faJc)eiP10huGl`7A>%Pp>^56K%>E2XT(3GQJcfE)MAh@I90}bon`FdXApyKV|7ry|Gm;c@1b8c zCkT;qf~Cg%7#A9F9ek%cZ-s~Sf4_OU?ES6x*MKRjG~D83M_MrrUJFP?yERcUYt0def%9}f*OfLfs9F)5yQ0_`4N z+kzXQh1lW}N??*sz;HItlmDPfrY+B(-ycqePztriOsv!BpXjtjFC{2^6otjAgvM@qNW)k*l0{}n z5m6(IeXCoOg*>|9T!KTnzO7HDCJi>HMlX3AJi5)L;46bdl7?zXc6EQ!Q5;69Da=Bz znOmpC^MD3#JL~7Rc2W~!{57Mh%IwdkiPNyHo}9O{@2dQQuY8WuluTAfm-{GXv2OyK zv8QDcuD*GB3`{nwZ*pP^nLl=c^$uxJzE=T7vuGE zGdo-Cn0#vw*Fk|T5mmjBk~e*XqVfRKKatJX!p*t+lO#o{9jo%F%OkkEvPr3(UjKGs z{<_bmr39@R^SQ&3vU`yYp4%T4#fI^i0=_4`s8QTtQYkgMeb@cR{WjsLdbIk9>nyuI z1S3gnYB+oEKR?0}#YXh+E#Qg9Xf)r&csX(2vh;|k$-n-H(SMAGCaS;bG;Lcp7G1mG zPw$?m@sWQCivQbnG5;^u#rz+c!t-8{q!6p~3LS?S_$L8Io(qq4~;vcwU_J>aQS;WP))Kg|J zDfwo!o}S|5_dZs-ujA&K*eed+xjY+}`9>8FEqH&ws^=|@*?_42fb!)YUk{zv(P-Db zLKR~{-kf>9ubX?DEdRHkJa++8oJqY5UOqZgPM4e`I9Js{u^hs@1&|OLCzXC-nC3wC zSwcvNKv0qU@`yzr53pRRXXX&Kj9iT}km8}!za(;$v;)WNm6w^NO8RURzRvYN!RVOC zdeZVgN^IoGQq@}zM68b^UYLa4oVpvxNiCir*{wa=^QZw!TDS~Wx9&hR0)QGwU+W&I zh+W6zg$2!Gb-XTdWRU10A?MLOWFI;g0wqe;5og+))kV#b@7B1Ck))BFv!qLZV3@+n zpYNN08#ewG-T^NoYhFE%6?5{~@|N3tgf6--bzH02`O^6G` zw~)2Ydul(~afi)NWJaWR;MTf6z^-%H>sRZGWV)Yw83QVTAtd)RZrqNvLnB?Z(=hZo z7jLzp#q8TmVhg@(<+`w1EjM7TXQte?ifFYybu{uS-18LyDv#vinUFrCB4YO)b)Qro zai9jTp*1o;sJiP4^HU|CapS18G1IVMZy?z0+bFH|qHrbEc-g+g)=HzKtR3dqZu32x zsdjGlSIPW#QYA5*oeq=rVe_aS_OOCSdRvxz@+sp>dV7bpc}4c%LoZR-bp}$(3|VrU z|Ard|2*M7J+dn@QGDbEQy<7=l%eWP?I0F&0>Ridr-I-kb78de-a$6!Tr3rI6c8cL_ z&?zafIVmTPIa0Gc)`w2QypRkHgNz+7RfKG7A2|ML06YnAUsXcEhOIXxacxD<`Z1_0 zKBKKrbirIN?%yiktdM=A!>qqLE;W`hm0klebo1{G3->uM{gcE8?_&7bD)uO;;Vq-p zH`rr`djt4jl{9$E!vKv1;p4xat2#~;5L#G5mJSMuXKS+nLZ=F2`m!F54J=^>U9x12 zhT=JIeF0M^>S#H0M8jU)(jJub23s%q9UE|9h(_o{J)F$n>#t7{L|XYjPCia1)a64| zxQOIX!39vjRzEc_X`kqHiXvvVt)D>k3be-OuPZz)KTJVJnf|UHO`>+GJvuaYl)ni}>fH!DK0_az4UZ-7m!tsswG_k;jz!YI~$E(3k4s zp1H36Ip>BHM692juP+`r(BU8L;=X5|=CodRKd+|anKKq)eT==hPGF7D5`TK~!HY+< zpYxhJSmV0!mfoS?SsBjzo0nq=4bYj))(f!@OVc+85W#V~IMYkD{m7Ps)(KC}9GLZ% zF(XpZ!dh-k9)}utLkPEqTH`a(Dq13+*gSBg$_DxR!e<^^7^q(^uOTJf&abUYu#~fb z?{~YYaDeWL#j$ ztYVZ%&l?U~MT9%V2{y$?k9n8t+>eFMIXKFSGjo)hT|D_1;z)DMr7(2wd5Xzk?M+>g zZl7DUB-AvI>3*T00vI_&H}@K4@0NMoDMQTaNW%H{MzBo#G@XI|?SZGx-e;kb%oWNQ zL!RnXzon4g9Gs}UU{I7yYv+)hbPFj;!c|_wM?o!kE`!4zE~qAip3pRtj-O93eY!GG z*S}0Hxy4LDF?qqH{0lkMF({rvfS<47V3IQaM0~bs&*C;tX*i^XKqrJoOJ(kv(JaBd zP9hB0l;6{`1xsCuE)0je>$Q<+zXJYD0Mx_RLG*veNIYy1c0^_SnITjIIK5Wpi4v>~<8ToHeCPxnB=jDWX!$ z9ViytySZi@Pv+U0*~16XUENaA{Gw$CRg~+~%Fx|_182qzr#~j9T_D2@Z#SC;u33w6 zo&c`@aOE-1S64KZTagfcG@c|T3JkOmmnLWtZr39i?wHujvnQBuCedK~UAqW|=#b_W z;&^#lPUR|2Xo!uOalyA70p{MP*VU2qLg(DclqTllQVfHaroNPDM{s%5puV)n*6cn= zFN%Q7x&CvdOY%}X>4-}oW(m9MI>Kbz#Yl6jp`R#ulV0Wf=ETZlacuPD0=y+gZ8nXD z)!~j#8RqFgu}67dmpeBu8`OsZ>|^wBs$av3a}=#r|A5J_0Z&Fr?Ol`{83}b^_zp&H zEV5=-+P19YO8eC?WyeW-vbZON4rywB;J{-sbpn)t9yirfYw9Ouks&;1m7SSANEjg2 z^{Rn*KQ^E`yZhQ5V}-zfv&BIBdv^fd@z*`|Q3r^}U<$+~OI>TP4}3VQMReX@`v#w? zPO+{*X>%PzKmf_Yx4R_HhAzmG*NjQvaa}>P1i@#g3>1Ko;yO_)dA>(8gB&i2H@#(q zIbi5jzgA$HI$}dQb+;O=FADchzb#;G=59jvZVJO&Ws5My7kt^QF0k(QCU-$yl~f+D z^oUpM6h?E1N@@XjhgoCHOrzf1WJ;s%AvM#rqk!YUs)f0SpI~Wa-~nHgpUJ?}-Q}_w zmKaT@$0wS{x>zE-GqFXAxqn@k$uithM~r=^hO$vAK5-+My^?LLM)iQf0_iv&V6I4o z%?2Hm8#Dd1A9tHu{`56nCTAD3G@}? zA!XPNk69`$=5%kpjGIl;+T|xISa1{y?AH0AjLNvdJ9Y^BFkdVgchWM3Kx_E?NOb;e8tQoOu8qticL)Co--*9@%Q#ew+^Q$|VVxO3r2c1HduP~oumjUpWrPz! zi;@VXofL#(n?_`qDDJ+R9)mQ7%f(YQTOCsdpJANq zJygFDLw>WJlRB?VtdN_1$52!eqdxa=Svl1m8E&13H>)ZszyO`7a>Vr+kf9}l7wGkD zP^>*k+|mbKSJTkmx0y}00I6R+W4o9cMGSfek}g%Wh})v8j%SC6bXT%gudb_!vN)~O z56afv*dT`x>0z9PM%%!^4e+mg$3fn|^{d1$dgRk!uqCy=qf{E3{Rc3F5pDwiqypbbXZ@rmvZ`oW+%%#ad0Xa(%VD*eg_40Sgytl2Ke0NN0_L|gG2 zN8f-xMMdo}S}wTWYXI(#!DuH~&diM0rmpA?UC%2iY?t26b~81HLL&LjZjU=HE{l$L zE6yHRkFm;G{Vz79PNx?BKdzYS$L=I+??Y3JuXJP`{B2D`+_8=F07@a8`XXJGDj_K= zJcVV4QGrcU+w1u@J|PZfCVMt|HSW_ha?a1lxFf!L*4IOoOZK6(>w|4M$M^Y^31*zo zu}jyG%Nm!x86Q7sT(uM5Q1H=x+O4Qr_=vFbnW?`Vrm=AvQR4kd0Fi{h&Fc!ylVJ_0 z5`Xi;uKIVKt09*aKWOyM)h@+mlCep~)qHGo<< z2KuNgKQzHeY+5G}sG+KUS}{p;L*V%dNG3_)vmL3})YPDl-dXvZA@n%*@XxTBths1w zPmXp~p|>8;!fDI(q{-fdI06wiZjK2AOZM4Kl?DArA%^BJF zl|c~QTU{yHKfB=Rz>iwKtT!IaVt1E|alHG>)Jfzj*}@3$VCtuNPJha5iH<0Dry_pNGm{po47H%>V!G#m4ZzQMH(v{ zPRvCTVN7s%j{#-`&UKt(KYRGlhFY0AFOdQ&h~?sr8vXqC@`tC3vn;sC|6(uTXL8V; zf4&y~>^3fZxA)(h23`uc3PR5NDSTBPJa~XB?^c{P^shjxKL5|5oD{HWPX5tN|m0{-9xwD~PgCHG_a2E5xKC^9kgfx6enr!;=rq}TNy*PV!f3Wwq8 zT|0FGP{L-$79o`Ls%#mTnOjg_d!p^djk9iv+^DlS$D%)Tm*F73p$mLw6sroHv^)We zyo#&woRJNJDZ7$)Jd9>UB==FUh#g-)5Yht?Ti(6(L3UWmJF_xHPXSzrXU7VLAj)B| zTlpqQ^0Qx*sh0wXT^AhHh8+FhLw9Iz%v0jBNcM`>-W*hkJVo4u zhq>Y;RqtF>_fn(Mq4vbhL?k}^JC$qLDL7emR7SUD3LdvYK$j=}tLEHBegmlQ4#cyQl+6#`%Y5sNrh?2rMw$Now*(V7Yb9JMW9 zTrwt>MA24-ZciK$VQs+s!yc!eeC-+XNbnG*HWFOFC#qP&Fy<)xPXf~9B~tD^pR>LG zUzUHA7c>IU3`8zwD@C~oBLxgatjIGChr-@=zfC+bOjTXJUqva$8c6LIbh zBA^C@@uXf56H1g2%qWBTc4mx1%V!yqF|#?wIdSdT49f*DuQ6P%SgWcL6fh;HQ*q0( zI7>LED(0pVnl-b=vLe|EQxpT;}r~-tA*Z%l~KQ?Ccf_7 zWaRwO3TDZ0VT%nAY`kYygcr3A&3=izo!U^aed^Sk0TLBA3}mqMKQr^)^4ISQRs~yz4Fj*1wHB*Bjw{c@!gDPr#e6Ynxf zCd{1E#%4aJ!j4#v-5#@XZct?mOZq1+Rz0^xIdjMq@!!?&F|YJmBuXaXgzdX!yP?i_HT~Q$Bw5}gO^rcw?0=-mvXY-2{-SMlU{1%YrdFU5qT0^x8Jw6(v0weva6+48AJz>$sV!K-$OnOgyzPi0` zg?q0id$=r$(={5p0U_Z)en-HYep(T3Jd!e=njbxSjFG|l_1*G z0`oE!u$6YGtnK|eef&dKtRK+`Vi<7{A?KLe`L(q^C2Z`^iizXu=UVUC4Mc@Q}X9F2m1~ z`a2Mm-omsz%aN%iomTiJe*ZmfXQ=%Kcu z9f!3})N{qHN|;6{IHa;PYB25DKy-|0-xBulR(C-ZQz`DPp6<-c)UMTD zMkf{5q|hamXx))XQfi;gtz4s>9X#RG3?t8JoTXCvl9lT~Lfe^;%~gw`TO0orT~q!g z0hi91_U`BKms-!rR~^o>SKV(n8Yp1vGC9j* zrA9&15lwG03vNNGDdab2Uf~5i1nSX<8bgdf z=+lUf^0cY@s}00~%*{%I+P-a-EV!dCO2}*yR2eJjHSLz1DM zK*)LCW&s}78)gqN~skK&A7C4M#Lol4jo{p zp0WX{oma9!vtI(4#+GDy|3@aAi`q~Gx z)dM%VTs@o*!E=;xvdutJz0CB7XK1kQ@2Ie$wP23n3^s%2)+rx|^a=_Uwm9B6rP4ZHv!OpUraMlV3PH?zB6iANX3G4GTI zWViM3+8&B())8O!QB7msARX`IlF(m@Az41J0Bb!$_Vc~uM|!HxX2;X|HK(>DoLbya~ny)Er2yo z9rPQ_cCmujC7GOV+d82sLook}ihSC_U| z(sJrvg=j+EKb^==_Ul1H(Tr`A=bx;^sa}l%LUKIJ?&b|pUMmf@$28=I^k^1|`BY67 zUKpZG>L!|oW_2IphGw@;L``0n!OQ4Y@nd%R22QoWS5swANo%X*$H`D+PkvS4pif1N z=&|O*gTe>ifAQvqA(caI5MfkD5c?fasNlh9N3w4%Lt1ZztnOSEJ@gD|e-BO?WYv^kI6s`&bt>f^JXQ&P$c>M{}I=Ad#EDSub32G4lMyp;Z; zWl}fX+Krkqz$XJ&_b<|KcMQ*JHh;I_jntl}#uoEaPK}CAiB}vFT!iiS8A?-Dd*<#D;f&6Z z@lQ6^?t{~9kuG)X`SlZrE|h+;i}_uL0{(tiVd{QsnVb=gcf}c$R>Ow?6PL>F=Hl$U zUM#1z*9y3L0(~pE`b^dVh%+m1ximO_gXGqrAg;^D6`fX+s^ZIUuGJ2#cay<2khf0y zTyTAhG^CQPi=(#jD61!0n~OkfbZ$EcPh>w>?PMgoG+NP_@Gg`7lMXod42#nG@yA7aH4r^5J-G!ev^OE3dK_0EB8^D2-7qMReEAhVzkh_7v!aM9=(AIr&1p7GD4NCI1s?iG`7c;r})*j&&sC zNW~F*9;xxjJ4{voVkT5>KLL&h+<`_XVAxA^S+))XN~3|>eYp|67BlUxESiCtw4SJ{ zs?jCX`_!A@`f)`7m;Mg*1ANcI-~I@y^Uv+x!uR?*zdhfEa9EtcXj#JB=fDp*oHXrS z)DfBo0rUDlK1~CkevGv@#O-#!7y3hYwBj^A%_-I{z1&29u8q0a!XTs3l(6mYY|DEK zk%1IURdYmr!Y*%{zh*jI+>Bbz0;Ml(9l75)&l+tv>c@F(p`1QR&rKY0&+L2qi_hV{ zVbg{?$L@~$n|7p-ZI@aX0?~#Dmt+f2;8N$!6#q&O0ZD^6VKqHHt|8Dg{^Llm0i+{m zk)iHBZ4-CX#@)+zSxeq*=oJ}AjhU$|#f`kpgZ`PqkF;2!zt;UJCVZ*Z?K#vg7*`L7 zqe3{;wfigsqRjDyPV`b}XbCd5LG%jck+w0X1Tlw7QnIwqSzI}@qny%IZ279>)Tc0` z(ehpcNt7#qwf*(u$40?~vR%%%eINWziZDEq684~4a%!qM6$q8dHP&tSiCTL6l`2bu zn6)WUU+*6PpSuqP0}~76wu!~0I}6V}&po+(4MEY0*I1x0Z@;F@GY0|C%4u$pS_o>` z&|p`1DP3B5ITAW8>uoViI5Y%Xkzk=;Q}VVGuS|2#tW8fTC<8)T_RfFarZ-PS(SxC_ zP+RRH3;npBC1H~Js}-C1bo?#UDRmR!%$}DGUMjrlAKDU>PbTWT2ID-#p}`z#G{ijN zCUZZ5y*R!BR`kN5P-+4JLu8hX-Yh<^u2=D(>XTw}o#vXET1Jum-fknSTx)B|5>8^q zQbVd5LUpMXDkvW$k-=a!Sc1PyyTq78Alr=BLIpwE)%ICwS3u`VgWu23zR|kWbIeFP z*y(!>rZ(JVl(Q{N%>g5{*mJVh3y8b|E9#W}H)T4k15@JUi9H z-?wCrap)Lq5SX(#Xsmme4rs153(TXn1nttuRS48T3fnmT!n79wDmc+nviyGiOby$R zecbzmQN+R=2n!OmnbItpVt{fuP(3%IdKmEP91ylAna@JYFOkrn34n#fT5kcfKJg5Y z$N|iB{xB#axk4YJzO2r|b`irc9|M6bJDPfeGXUf3xn?V3nTw!~sEYZz8E0rRk{!89 za?3$|H>nb8^#EM8bWo_A|6PJG!&nAhu6;el>LOb)OLa@<*sbiVH_-qj+u4>MSh6eN zE7U(CPZZ%~5hOZ#YW6-XM~Kl?RXLyyR;nwLT$N6}E)zEuhs=vj)`8>Pa7{o;Y}B4g zvEes)nvt?JTLMrKB-!}5pvue2zqn2#DUAq$`p_-Az<{@>#xE&fLh+KG6v#R02BQ6g za&2WYJQg-4DHV8RJ{!hE36Rsu&TuPM2qz}a^&GF;f(gm8uSn_22F*{)BRW}JNfn>F zKhN>UraWTMtcl#dA1Z)};kvNLyR9_UGt%X0kpSY_u=0jS&57`}gMQjzw6MEVD7F+x z(U^%r+2Dwb(p1Fi>2N87LyRSG<~Acn+-=5bl(~F(K=lkvW(iKGfVsIbzkH5>?iIvM zEsE2!>Sye^$Mh&P0+HLD3Kxq2R56>CFawsiBtd`)-($Y0h)VS=m;Z$ zy7*~QbIcobuAmVW8n9f@0~YPz00ufitd%cj!(mSUg!|$c1%N(s1)+`^Y{~m1vAKS3 z%jL(~I)OVmImjECPr{u`E>rlW9i2Lz$;6dUMFzjewaCQ7P!K3Fk=e#qHDdLXd-}67N9XG1zU)LlT#m_|w%Z9?`gCz2-&n*0ah2 znvoo}&N+rt5UuyL!ZoPwE=rO3i%-X04n!Tf91`y z|Gs0S>LBC`d*}SGEC(Hj-kgvXKP_n{B`Q22O!O#^%oU$;GDpbh;WE37A7R9bf28^- z7bs@J@=D0NR~CmmR%yUCV|CTI$M>}qe&B)^x zW`T?H+%2s*$AV@Pp?MzX3&Voa?m)sLzl`*(w^2Z+*WT9k@mAJ<$ zxOH{X(XrWagb0Np9Rq6+5YP_@2#ijJ+`LF2f|}sK#&fs(r%GltbwG*`%76~0TtS1s zWyQtoqb8EfD0WjG%fItyXcHR*Pw5HjJ;IL=?hTJ<@7P{3n5V*J({8sn=YInYDp1!K zpm{sa7de?t&c9VCeMQ0z^fiQVSw@ibU8T79Sb#(UFnzFtVltW@zzJiJ|5()0Eqi$L z(;pi8^}ls+oI54kffZ6JBuWu5Nf)Z9!FY9`*lT919Mr*1zw_=_iRMd0{P+=YwcbWF z{R7e!+UG`yj>%|-8mmT;&u5WZbj$tq|8=|@0xCe&fElmu1hlxc3}@lejQwRavmiY| zGQ*gn6<0Ox`xVu{L^ULI65`+oj1e>nYZS&1jxMxiTSiEs0W`D*PSHG7pm?9SY$@$yJf8;= zG$sYL_{EaxX9KNZp8ysx-inik02J+e-w*O7s`c)Ie(aU znbEcy{?XV?MX9TzwkJ77TFh)E&#L3>SXQ%)Gk7rEEr~Dz^OiZP) zS&UYDj#2f@ZJpQMsoyp_O;6_uK=oTC`vP(z^Lxy#ZPB^dDz=ozN)n|5k!pxr9#-zW zL^JKK652|jZS1_#9u`<&liCu{Xy%*icX_8l&prrgL z)pZTBo;ppnwNEi)8{QfT%4aM$rf{jFpCh_@1416khhLpzsFC-&iWFp%j0Lg7sIkKp zaJ8wK-hPBR&v2**Bl>{T&wMTkE74ccursIOih7rKa6nPo zCG9%?_h7ZGt!W>gI>AUrf?W^B_@@{duGZJa2W(NfiRC5Oqe%Ayid0(u<{Zb25HUSr z>UCYf7C*~}G$nV1?(~_xe>vn?3nLydH=INd4qS9Le2*g?JV=$(#BlA!J6^%5*^|&tq!?81 zo@VJ5-{!VHlJUoBn;C(f+5}c=Avi}ccI7FMzP91-Q~Diliw`?Jf~#>OdG9BXZxXIX zdTm=oc$BZd*SAc#hU%v92KBOBBqWNHcEP248*a-fWWr|amlHx>@52zVKcJ4GgxPpD9 zG-bJT)drp$XcORhk8LgXDf><8rVXVamxYr^fe$!&^-vKesKuh?nP|!iUm?MK&L*pw zxtQgtEiQMhcw=>I=RL3*WTdXG6SUgU-XLDm5#r4h-;f*QTh?Pel7ksZ>yNAgU2GFn z74<9}=Rc#W$^e8;>}eRIn3?4 zjdKDQ=3bO%UI|SxGXc-ghuKKfxTRE$SHoFi6H8vBF!#I%t=5(X$q7$5mE3iDTJp3m zsKTzC3YVM$93(o$zN<*I1KtKlD-lISzzYX(f!TUY|F!_i;m9aJ$-Mttnl3hZv8;Y( z>&wG6rZ9Ir21BMG!#Pt`&eWbNa*<{bY!93haqq(;%xu+A_wt%KZL*-N?lZE)Nvb2w$tbwA6q`D$fJTNnp&wH86MB zE4A(>LoA+D(`Pw4d-XBy#5QPG{iGeUp#Z zz5hsmFKJq@x-_^$G}g%?=TU~X#c3Oy**w9*M53!cduLbVwrEtmsbx5D;0wgrI=m#M z#8V@MY7U`(&0?uz@GGA7cl@sU?~av?%HH+eI7PZw8<3p^{u~l>o9m`2m3>zxK09`O zrbJv9&tp{|?}eY;!vxZVnQ3}kaB8?un)mc*l|i0HL3g|%ZBBf5WjbasEgD{$J!^Puhz3uNP0j z4mo11p{j$c834=y`8N>|m#6*|;SbGVI7Zs$TKLxs%4_kuedCoR&J={bC0l0Iab@!D z$v5nl#1A+-+Iw%8=PUis6YlT#@risKyZ;+=-yg)Czsff!_s3$?hBObKz>v!8oxpE! z9tV}TZ<+Rojh^!yG*~DQEE^w98JoSk#fEMerl1@yNuxf_-mO{DAOHzeg(Uskflt@? zw{UyU*YK0+fgx-QDc&~|Q+52zw-W;Eu-hK{uvn;Jxbc*=*&_HmQ1E|mC9MIq&0fB7 z&#Nt~0LTbH8+gxz91f8n2U(GS@!Pq3UD3IJBn^)Qmf%NOkM98+^mpB_RqkZ_K zx<1v+<4@$9^&1E!4hvsLf77&5ePX`jKx-CHq<&ykBLU-ZUaXAGs%}o!Be}OOXUCx9 zL8b1Ze8t1&FOmz63>!ng7flT94)TdM6Z{^`pm6q00gq0QQdyq-iV;sWPvMRK z_P4uDy(~xq_&2)-uF(c03aZ_=O1p$jJlRtmLJ`AN@|z&oVTyjE)!3E1aGi!C#$3{z z+X2FpC`kjvF!k!v0`lBA*o4N){r0!(50ZnV5;cmIkt0#B4sRBsf+yKk0lvp-Egd?F zlMtzGoFS_fSkQ||5i#{Q3;Y6dX4Bi`?nZzliK3?Numw7CfG!jC$W%qt($b+ye9>uG z4@$n_$5W-d@B^;221q$Ui=w8F+A@s7fsewmd*5A(dkfE8ES6_U)|%z2ckBLyTr*?Q zspZT&=Z#ac5E&Tuv>wcZtt>Os@4L)(o0sy>D>A}C2(hSHeg0EJ1CTHYdk+YhLRelz ze+Vsb<)~e}rxh~Bv%P@2j8x$9u;kx*vQ(oIm&PKrn$+9iwAB`O%e{w~(*cV1aD+-s zu2G@f0SN|dWn@^!Kbx}KDI;O6+8Z!Xra>sMcAZC@1`SlF*c5))5~=*4ZV;1Y0_T7c zKAtBJ7aOMoimsce2R;M0zOAt#(p7_i{;sI1Z~vH+T0Jf{hrN-Y5p%)lTD;`LlanY5 z-&dEE-3au$W}QroE@!l2fqYNGDm(Y)U+Pd(m3K6@torhu;|;6_h*O$51rB=~oCjqX z7i>sF&*M{ml710iK}(3OO@odifaSuK0XJO!6L9x+X0jUxj@P($2Gce_w(l_^BI@*y zjz-eMMFWpI4k=jf)lo;`2yCei z8W)(tFdU^u9f6E8iQ3B(1`=fg&9d0yB*KLuGKd;KEm;6n^i-KQ?4Yjl917c z!9wcev{juduiSmfjY?q?h*MH1DAWIUY5N4>SY_G%EZ(pEdclhOwp3D&#bcvLWqU-E zER^!5CiY6G+HSO4cO_VfRM*ZSaeXME#W4bG^#{CrGKI4epbc2b!h45(*_dKK;q)Tv}wr zP(6go&x@&1s5CXWF~EGevB@##GogBygCnol7TRr^;sgUXAMM9KtVfe^8>5@@_@kjju>aR<5tFm3U9 zeaGz#{vkCbF%I`%SjHk@_8gXiKMMnHtQox)xTO9c$3ytYRJyu zDr1fdi5lo;I62xP(MrwbxIvYYWQiumT=;N zv{Vz97IP1mpMqi!q^A&DjNBy=?6}n29*1flwm#&#KNvj>7$SF@pAHc(Qm`HKNt}&= zhOeotf4^8C3w@V0h*r|vnSc}RpJy-vP$zC%T5*|ErmXUmE>a4`Hi=woLapNoaM+ZK>h>gh53Xr`gWBQj?UrVu?G|{8c6sb*V)^m)B}P%?HM7 zVT<@mmWhaQzmsvRf-DuyX{bcT3izC3NF*W^#ix`vWFK9z<%`GC$iiegp2wq#qFL7B zu^6QM)qX`x{T=sp2Tw?nc@2grwrB9O&-}cI11Uaw1szPZ*AX<&cFxr&QdUWkjmAu4 zn3at6Yi8Wn?AwyCk4%`5(J3wSGeHWzSl8-JafJ-n0Pj=ZPqHMo)AY(FQv^PZS)eXf zoTk!50zkDI+t0Nh8kam*d@LL+nKR)0RPu5rv~m^>0nCF(=XL8LrS?RNR2{i+W(4wp z-FH`wg5qZq9Ad)j?l{LA-qJH5xaXL===Rc|RCEIksvYQ_mI?$SYCtcreY+9`s5$;+ z`ew3w8K8Md%?MnVG%_(-$oW1~rWS1KoA=Bvp*Zi9jQ=58N8th-*4bg;eHJLowj%AK zikz2C&vnsj9Zg?nFRBHCb(fuYZ-TqRK)}fcfW4}Ay;4y^6V(Y6%d@?D3}%i%`9j62 zBS!p{k1t<4UgzB`i#0PNU$B;);o4E|Vj}m>G8e1JX>TT9fP}{tpTWCX-B*JTWn0f4 zRL^SpCsd}_H@NU9jun-hLTL16!y~x=u_oamYJNKkQW`5s>n3>C7tioe^a5@~SVI_Z zRgSD^rK*F1ORxjFLDfMoXBJoRf^U1P-lruou|Esy1aD>i$T2Lgi4>Yy6`avQBVVfp z7Ig6_Y6A^!G*41G8G5N@HE~Ed(6KN^SCDZ zR}Pv*%;l1$rGK7wM~^X2t|pS%c;76q-Y=>qTJm(cn`^IpaTqQcTEy^ zZ%h!oTij@B>Y#{mYcI|=N5>l@xXc&m6T*Da#6r>zAV}d@@8Zt+7@!$TqU*J~{Zf(e z9@2K}zL_xI;Cd9XiEBlo#sFI7k=T};jX!j-wpPK@U}4YX;vQ;OXBbNHvRhjO?nK^I znoO;N1)Ib(Xt(xwQvp!Zb+5`E&nO~BLHbo^z?)hIqYhlT`89KSsQjk*}nK>{Po23up}k2X?+$U zaZUj^6v~>k@8EMO03C*~l$X=@Gt~Jqt~GVffj5lF9e>T0k0<0`SyLFtZ#fB2+X)boE#7V1$rB*N^RwrWSMvRh4{l?bqNMt95#n(7p%j zm^>sdby-eW{2Gn(b9C|_D=lqYzJQ$OAlJ;(BVE=pBNAy{4zqSHXQZ1-2jQ;LE<5q| z&u;t61{No<>R9zTTHux9GG|Yc5O_?A?z^)}))SVvZ7Fjb9VX?EKNXDwK3AWg7%2kxZ)Qd|sF6s^YgeeWCc3@Zt-XbGA4y{P9L z)z`hw2`!1fs!{3_i7+MuX{qlSUEh{rl08-)5TDc8Qry_{au%sLQ*yQ;Cu?4=tC{e| zQx@|-OPUKR$x3fGQ(W7yzdu(QytF8V_*ojg+F-$Q<|aPW$;l-1r|wr&U`#?S!aF%7 z*~&a#zDD9*I6oepA5 z@d-e6^s74tlu)&hRo_QqC=}c7)-bgm4+_F;_pelY4Ye1|u8KNjTy27Ql>5#|PZfiZo{ih_TlcI(w3rFZTp5iD{-0gXEF$QU4y+U zA3C{iG#eM6DA->qxo9{#*uYT!yL_D!)aJ78kra4Z1@S7!aKHA=dGP)N=+G0c~xRvbX zV~^6?+PrPNJ(myofz(|PKd1Dm?HnX>oc}Be8)zme_;u_fuRmStl%wRx_pZ^N>nJ96 zN}1}#u;?xi$Q#Rt{M73Yt81FStYoFT_{Cio>}=>^(Sxuo|)&UomZA@_IQ4 zT;w{$KrWEb5iyXnBzOV?*+q(H9-%*r@H^OGsbJ-ek%x{Pm{x{brwOt>4j@PvIQ8B~ zEDxVEpRs7E^i>$EPFolt+T0Y{4mx7ER~)Fmn!Fl=8L9K*GoeIM!T*yj@y|wz3J(TkS_3={=W%myFbeJseA((fVKus6{=;1uUW&@~O zw8Vghq0nsd9Xl$nAOwhMU(}NX^;9nrh>^5u&?b3ZB1F#mPbqm=y%0tum|2D+j*f7p zgQ72H1`2Q+9@F8so&1wKavo4ZyG%1}B~d>?{xm(46HS7vPSh=+agRufWVNmj>mWjb zqQiuZpdxVgKst!UZ9A*QxcU%bfFiuI7|Gx!x!zRu&4{!4toxi2L4wZZsR2qtykhzZ zrERT>{Ydzf&F&9>sB}uSRn3Y;m;AH$%g*BM09Qk+5B(PuvrvW&eaKVi!huZp1qn*v zF%Qf1(Fu>IIfjE3;S3S*h?u3c%#0m!_0txN1*HjEghohISZA2?NEK$wAb%DEQ?1Bq3|>-$$OJNZ^!mWFuH z>6}XU7Gy2uQQ(4*wIcu5AB^TjPNDOP{2yBwlryUBSb&?V1&UOMl9qL#S}_ACYtBA2 zE&U${7CeYdWh-}Y2(v?0UGYnS=oHA?s0Z^*F-5wFdsdZ*rjC4Y0!VU!FeaDJGjp8A z_z2}?QN`aCd)8Qssz?P}chR?=?>VP%Gf*BsEDHdnn0^?*@P1kr;9P**?VxhK!t@ze zQ-zC7GVNHHA4Cf0`{e6TKH)}Ax%pEGAQ9_x=8JKW^U&zmEOlPP>eSm~j+3&t7VyyO>NtR}s3eMrtP+1?ws+m#CwF$BsHm65|!OWy1)a52% zA`R}P8BKgMd@3(ZLrqLvWLLs-#}|`xVFhL|0CPbd^JRQuQQm+~Pk&E=KNQI>%rE)wiI4=gl|6My3Xgpz zkx(OedLm-rEtB!q8So>r&Uwc7x5DROjoCB8u0bG>&fzf}5W?q;i6k>(zUeJ8R*!(I z-SeYFy^vgg7~+ZUiEBA?bADrw<{yt+u~bCHsJyD9)WE1TT^p=TFeVgp+9oZI$qHGG zY_Z}h``-@w->uLRqzstnN#Lphd6o6FwHP>kDZkTIH^>TjW$F@sjxk>)@*YqyMR0@7 zXKraBpCdYB;)>AmaXazT&LmV~Z;yZ3*o(xQ;wVrB6*8=a|Oi8|l z|EeD7i%oN8t|zv*WKo3MwH~@H%kC_93;dWbz)(s81lU3Y#e~2bg0&kkm%d$rh~RL6J;xOw#7I@ul~W+>?dk zHIeize}-pgL*K53gp*hystw@?Ai<7MOfL9yX;&gnyBg!wVDk@E2R<;(p2J>%Y)fn> z%b7RyAFd#E)4T`wV`8}TqNpf+5C#nKjKy!Xr+f3&CowCo)Fy2l(~SO+tjozFwI7Gc zAbI7KzRxCYr!miK0+CNAb;qdGi|ZiR?1FEdYbKcq0*VYMZ8}BM&GtaSCy<;eVZ#m$ zV=1>Ey1$QjsIbh^c*nF&v?w^Fs(VMc@e=E2Hf62$N%Ie14)7@ASHR1Cj0!sg2)9!|OydQl7wx z>j>3xURd=DX;*e4*Wg#SJ!sn|d%jMaHJ_v+2ESQqT(Qia00(|>3U*qKQvo|>okr|Z zkc}8A0aY$ih>G8VC6vD7xPH!APkqCx@ER7|lW@?;0+-7r1v1sMnqsxp-@_$*5-7;205pC2G+mQM6VrgzhFeLksBC>SINqkU9_!w#X~)_wp;jm|SZO z%&KAm&z}X)$Go-|6APwSL~8Te2e-(m59;Wm;X{hr87N~&YGL0b;{EBckGcE2<$k5a-hSX)5IE5dnkchdvWP79eKH-| zw*BOsESLl|wdcaPE`JWrBHnEOcg*$NmV(e4-W{ z)SZRnX<)23KqTz>UiNEyy6k>6JB=Gid01?Gk=4s`JEOBqIQjtz)LnjAX6S{GmgLJ946B30Lt-3V zydIIz$P5i9q0~0vESlRn3e?AIPM(@VpKYdmNtG}*s+J(|Wi{+m_@NEljv_UZ$iH)S zkktbA39pNqBGUb61%@RrX?ejOa>iaR^T?zxTlB~WY(vKGGsfsfjfR!86U?rX-4sFWoh+7E6X>H&he;a-8My4C_U#aVpBE@$?a@ ze}^j%S;T7*w6uo4Z<7oxuq36Tyo>NQm`W!0HwCaUn<;`ddNxCt6L&aGJCr;D$@aiQ zY!G7^Wiy-kUbyMg2yip6iSF#A08i{}4+z4*H&dHp_T`(3f~aujrkG~)4f|bw<@mM{ zmZ%`p8aEVs-^8iXu8ft8N%taC;5XY^*a*dnpC;ntzZ7aa#Hjcr%Td`0Rf}}8a^d7} zI(je!qnu+3`fzn}RmCY;`Alxa%B<_F)a^&wO8m*AIVtxsp)jF)4U0s;?#5DzcEkI_ z3LW&U`A3dc=#T12I(*T@95gp65Q|R@_5Q5n7Fx{8uLj|1jy7+jFxZxvQ8F6P4}Hov(K6Q%Gs4VH!%pMj&|f$cPZDN#NYos3&?a_ z(2cRdzNRU=8{Z>GZf8!HCYl9u?{b~8*?z`zooP*yAt69-bydWh*Tqa$V{5kPgqT=q zbo)9PO0fH=W~j|*=r=7=L#q%kd?vf76F@XA z*&j^Fc2e%u5EkLJ-@rvb7$D462(nX-JZyb;^ z8Pf$9YTpY9%j5ylMWm((<6h|F!}AmAK8#uJv;)?&r|Yz+zJOMNJi_eXr|s zU~QMrz0_p$D-AAb9i2^KZI5s>)ltaG4nPnywpuB^O?*=X+jVn=1VlVyH;@3JD1$)pXYp^@Y?*KpD*Ti3CZusZEZQg(0-%pnBZ|~RP#cfkv@+K!@ zw^&eDSsS-i@RLB^n-&ylK(DXo(@#n=TJf@$6h7YH_h7kUul5*Gfm zJ-(mS=e9C<`zLq#J_sbHVGB2kPGQ}pwz-Q*dIuXKEUv;7MWE~#LPe*CxharSZVGx7 zpi7vip^+1m|3y34KqW6_5#FUsXo6m=_dDafcO)!B^bYJj(+fWdVlx} ztOAuVpKP5#K@wP#F?nuYt99OSAsgoYWNGIrXC5#Hy6f+?1b7J3?#B*Z0?l;7YOi%2 z7qN={=#B4=PuCY2wuL;uIRaoHdsmMtkfNq?^NMVnfOi5K@XY{(4UAY(@B8&W7+;nm zyudFZ#+kVZIRMVX$q5|HPMie7i>0s+xl+AI*W0xL4OCsX3Vh|RatthqZB%U}m}&Z= zIO|etM+-<{o{nno!O{^&nUocX6mo0@%@~#%t0TaQvJIsb@ zephzeFYklpU5I+Gwg4tjJ1SE?5uEm;{6FH&c18)wNFXt2ZKRfg=-(6tjZnR7c z4HJucTTccOn>qe&vh6gaspVvYwH&~4s0ky9fsG(P z4e(Jkd45r}GrW?7i4BOKV!lnDzCvM;9(--F89rvEu)g#C$jq_=@RV?qLwwGKm!~5t z3Mcp#rSZe)5<|LAvK-~pQYdvD>>We;@ zKvQk2B%U5FR*$PuMU+#fJ=ARo<*(46^Zyun2Q&AD(Y89p_pfXLBJ&FU&2u{a&%*l= zQwSqtJjIcjmlx?wuQ=Dim-ZyYdYnRHyG76*ai^uCsBS*mBPtLvYjs5wP|j#wbJ25D z@r=y;)TiS;(>9}*XpiW0V_oS$q14q8LL=2Ujb%;?d)F+sP1A%4NvZcmwavq#Han&- z(Wm9!s?2{%Fzs7T^&9U=F!VAn>Mk)I#+%g;b7udgJr_(UfDvmNm#svWCXsevC^MSp zsGIN$l_;uojHSEku2Lnh;G*ND%eXNu8;a&%@pgx%jm(K7j&okwO}VzoGB7>4&Xf+g zS%;e-#>qt6u?y^0xB)lKTXo!#s$yt$xk4P^1-Y#34DAO*0>82sfh)~vrzzs#posS6 zUWu<%hGS~?@#CH=Xj;rWz81!B9Sfd4gFdV2ua25d>p38mC>Oo0urNL*R|hC|p&`+o zHOM)p3bpj8mfU~e(ZFs5*&_jd2!sB3%2^^XNlY%nwk6t#pU1azSd<)n3<0@InLN=! z7Y9YSiM$y{%0a?NQ+wwY-UM*l60USmbg#BHw@X>qPI9(MgO_P+s1=TBzczG6mh{Ly z71jCqah{RANfLta);~>%(JOj|jAgE5UnMeeMO6qKC@Ih0OU{0#oX}a%EKXe45V7tg z>?-@ZqP;kja<7=$QXBPm9LPRna(8*zy?E3v@Tozb-eUc*kwT$Bv7{uyU-iTvMlszQ zdvwJ;`f_+Ikuv;y2PMPn^MR4b0`g(GBe8^x%JX5mTS|ZFegRO;lQ&9XOKxrVca2bO zMY+lzk(6uR%(j!rT&|gtOna7PiDJAWBOU#06`)s8$hW*{9c?(SV~TcADs3#^&T(8x zHx!4_RVA0NyF3(twMDE$WNb>bLh()#f%yX9g`rsBS-CeYJi8NjWb^A)@T{ zZ^>N(n{*H1NcG*IGkqOI1I!73dvOUHMxVqHQY z;BnH5ZOdC%k}p3BtE}I}`Z9ydRM#H+LZ#Z;0atRoa<8jahq68#>0=R^061x}m)J+S z;%;p%*^9KMutKH{4w6aWy%cRo%lffwa9x`KuiOwfa0U;}eyIdkNtpT?5!7hCy7;ZG z1A{I_i0}GbNnnNTEc#MJn1Sf9r82=y<5G>&v5;x}hzjkY;I6H6nF?;vqkoKDQ&s!< ziiNqmZz}jzwTWcOYsz@)JU0lco9*@BnG@Dy!Nt0buNV?E5p?>)A`3}=b@}Nz;1^~K z@8pt@-Kwd!s|wyRPF}l^Y1-Qu+$*K6S%6|L&dWhiyNsRXYyUxJ3p?2+*?mI41flDO z6{YTzB`n+}M!w#BN#CO&wI5YI0D3vyE5Bp3^Uxz2`dfL+@+PZA|5x2iAe7OJ+$3Cyfe zr)u4ldcoC3!vXK|y(8pg{WwurqzrYGQsU#Sj5{~47JD!aYLM_-Q?wD#TG3Y#{wepA zI>|)~)D>@#>}eL`;@wW3?U#8G9inentbtNh5siq%o0pE49F|1p!z!1b$d^h@3QZF<>f5aXbiy?pi!qmL zaiF=B_B=EsI_^=xYLM;Dk*8jTO<6O;adJ;ORDO(YZf5PWwQ-(SuOQo|VMqrR2Vc6# zKo(2*!Zni)16ykrMC?Q0SDmxHDq8GvP+1x#tHm>IuA7ALl3c?*Y9XV7p>pBOezSk` z>tiy~lJSJ})%!Z~wj@B&{Zu+UV3y|Pznu1nzBiK%1UgIL18K-FmlKVu_5?Z4{Z=Ap z&m;@Hfq#cTg{egx4UJ-@-CuV~i-S+n&Wse`^wG{)upbuJ{8R-w@@efaw~^jbW7oNX zRW>M@kqK0(!n*F9o`wTnOtz!Xj-@L#Wq&T9qzLn&cmJ6y{+4Hx!!H8aj?>SV9`d*^ z{$L~v`QA0v(}E2vkS}X~!kJmI{>o~JR$WMyj6|rO6(ek^b4eL+*YU?DWlV&^ zV!ez3UkP=i;tO)|bH~S@wFafM#RS;r-h5!2>10&)771Trv4o3FKC{Y@mbCa;8Jp7-hiFm87Fl9Ue5akb-#0SH0?6)WD&3MC6zzwhE?7E2isOc@z;Cm6C8fWVb?rd8as82t`*4a&Xr5{ z*GM|42KKU=nGSmlvl=y=&-5=y9WTw;nV)Se=iYL})}juhZ?&Y%Ee9>(@`UF$zubF6 zh>jehJcEJLV;gKeV>R|(sBX1zF6r{vR~j089w9^R0EV#h`71LoWm!9|1-vCaH|e>leLK3rVAOJlLgR4CeiABM^D--^2C;c!2^{CKgs;AXN{oI<6K&fnuhFWIPbe%CiV zvT|?-D|I>UUiklx{h*7k4!ZLNzaj2606LjFz9}}^?T1j|e`|xt-^F=>NH*?CoUS?5{yhAfNaX8{%M=jr)F%=ZIa zwEArOdO>fO;SI@59v7FODa{aW-kBJ&9>Ti~fkus{}R&{h>Znugp6f(w4|1iIq|MiVDkXMolwMCf##D z-Ruk)J34Yeh-q$RBPyXWUuf~VYMjtgFZV8eE;r|HJgkX7+L?(OSC&Pb;)m?&$?Q(- z6T+A1lB~K^GNM&RhwlJ~%FY?(D2TrHQLzC_qU8C+Wae zX$xU{(xM9i1%V7yMp#HDA?{ziycQr_6^fAr0+>W8f{iw0!6f$1)RjpEN`PHm=^HW` zA<=m0Um2M0O~h4HPI&%b4Z2~FKF^#|KUu%*UTXWEM=;L);syJwSbwiv{|9-~8eUQY z%+MJue7NvTaulDdlGZ0dPT`5ueP%im^%{34W;k`2OpcG4^tO)KcMP=TRhHG0lqR+e zV&|TY4DdlYAW|f-j2sMa6c|Ox?0G!vQ369oh+;(k8xpr6z&Jpn*?tvxf^q^NcFL>n z4scOxF;EdUQzYf-fgFY7U?P5f79q-gB7y@rtQd9rMmEeP>z@@2W0?2>%inK;pc<53 z>F08Sq-aONb5LV%B|N`F-}nF#N4Y6DS?y#kz?G#W!3=S&p)tTghF=~9ibmd$hvp=i z@}L;b=nb&;Tj9t^?kY!JRgAsE*=IpZ(h-7-SHaKQjjw_d44f&~#<(+wbN2EL>Xx&R4Qk4;?4tnjB$P`gGuihrr#Ht-=S}rY4Eyd{-=u3<+ zcUq9Kzhb>RlI~)uP{N$sDLt;QT@DnaB}uW80*TSupr?}nWi(B}_T=s|JT`{{*uzq& z9&C$-4?Nc+YzFlkJp^gE%An2xje76*$_V7ozn|`FV#j8UzR{k-XTB5~KG{xram^wn zIrm7s$D$SjOVZk@sR{2QTkA1;K z!TT`K4zQ$)4-INUJ4*1NoZe;_2(s3Zt7zMt<)TkFFf49d6tFPfHjd+77lSka%Gce% zst&Nhn2lUkmrl-+^$Fi8n-?>&`D+S1Zxjxf7abayv&TV zNN7T^l(ZaLI*jCJa>Cf9%zv$Pt84*7yndWA2k8pK_-q_s$ zxRt*C@TD}J4p07~I2#mz7!vMIEt^}?>TRRKt;BCejzz0TyR6_`f!EsiXgeFJ0Ot?G7ozYlLF z*cCz_>u54)C~yo9^DVD55;U+w z)BXIYfarmQ8Q;ZI8NmiZ*gn#AyG3iPA@HK zmH0ZE0-)K;{4uFGI2JiHY-&GL@9}A2V=wM)S);uj);%@-hbKedGxN40_#IMaX_khv+IUXUoipSy?_EzPd|iml z20p#@oikJP?ls3u;MAj9DZN)=?LzpBpF+hXRb4k+sc3?0oWI|L_Rf6CD-?HQ=9=r+sTfNuP57yQyEkCP7Kuq=O}6p4%Xaax0=2T^x?3+A3oY}bw&RjI z&-sdv_QULF3opT0*QdSJVC$Gt{fnr25_enO%FX`Gs#vF0b;>cItCG*lOY0+)%2;)2 zw$E}h#nR=iTrS7z%w7@7rgMFD&crwH!Ns@Oy}8r|!WczXt$$4I9xg%` z>G%~Jnli@djk{Xs+vyT&YZW$|Rjk~>X-P!$TzxF zJ4vNj#-_^ljoc>F@u_vYK@-J8P+E=1%l+Xj5kZqV<;xL-h&p;lyMSPhbb?ECA#ce)BJGJ^V+_j1Z*RR!!-e|QH$yr?vFqB!Y~n+=HPcpU!$?Jo zVf({Wp(Wxt`y0+W=Pi2Vo5e@K}o34$8f#d(0 zCOX=2#x01xb9LwUEJfzgx+m0Kn2?1ClpaDG;6Q+sO*8ovfUcy)-#;oJwr%qAZ!&X( zg{ak~UpV+(*Oi}@mre3_ySK}7i++}8{=aEmYy9(VcNcs5u6aG1KHnWm+|+@>bw9T& zKeOfrxbtV&$wHF(TXnDceaVad$>BfWlaMC^Mz&9L zRaYkZ6v;x%B`G2c92rSpAHG1ge5|5&;$Oz|fi2g674%(q3&b@m{N4HSc@q^XP_#u7)?fiN_rbMLrskjhqXkW0+_)0G zYGn`-Bv3d`{>E|VLx~o50(~pqcw2fTyQ`_ z5Z2nQL3?f>ejpyczyOy!QM7ObKK$`YFu4Jn3431fC@Db_{D9K5>kTr4?rg1yewUzx zbwC-)nJ`({ghC!_dB)#y=LB^URtknB(KUClTZtfhfl6n!n%+bg`VNm9bdiI?NdE4* z>IEl8=t)P8&D4WkZ^4}Ge1e;Aubxq~O6{h1?7KoAs&rI%VIa!HPN3B;r53I0L|l;L zD(Fj9-2Jn>+=^e!y`-CIq=rp!DF(y zHM!{z%uHzTOKD#xZkC1N;sH2{J2{1YfdY3?1ljtUo&)N>X#O-SsRn*ckYWRu5@(1M z{mhA>Vl_sOqY;hP=MjS}X-od2wv&8$z$1Bc5PaM&x(lNMXrij6K)D2<{HxnBW zC`mk2!1J^D^h2?sKy3_43V@UaRvrVn`>as(1-+dGHYucV&c8f5tC`|@gCEY!g4jB~ z3D_C)pVXVh3IyRg7>E@31SCqM5N=9XpH;6u*cn|N&yONY6d^GG)D5D#M0(%bi0 z+V=IxJIl{wTZGsI=9&ui%^F0#KXZS4E{rO;@L#17|NH2Mo)RKo!pG;D1L zf*LG%JaF#n+R1=~^3QZpu6ZLhJ{@|2U&KbP%JVLe#3Llc%OFM&7>inYJo+Nnr&+x( zMrG7T>zc4%%ZX>YXt}6|`l;jx?^3kY(L%+oiwcngq$OfEd?<~5A402Ef%sO+mA5gf zapTBl`*=trd2N>(ltCRDzp^2E2%&}c?uMVR$%Y(ZGBkurR0at{K7JVhS%C>Sjk6Y@ z0M+vXe2$v+m)0o6Ew`INL)g(t1( zk(DWZF)C1G7*iOC6)qgR%NNO@UcTY(|NZNVLVMt7%t;nLVvN7tp$aAwIu{XU{t9DX zHf;MK1@M{ihLfXP?PlYe^c%Y&Q;xQWuxWu1$WctLc)`GI-%mBhgW$sD1iVcOS{!+l ziFxd97VaudMndbtmS0PXF5k_j1xdW-m#Mm4H>W78R!qV|4RB)7XbN9sho=34z`Ia0eXXcl>|xq0n#=ggS8?$!8lXK zH9Fxn<4|huc=xEiA;(jf4>RXIb6CV=F}j0n>S)xLNq!}F^oz`<_@*)Ew& zZMXc@Mcuf{TkE>R&g{xv)b}(KDsS0Ahy8dPkkFPQMhBf9Nk0B>N`*?K>?TcdhqQFO z`@r*@rtQIDV(Z1SNlHjKb7eEOIp@VAlWM7KN!bT|l5T~c_R91m%^a%KP4n4Sd&X$e z6OXPLo8nI6_Ds_z`YQ|llg|YQ1Scr@nHz9QBrhfSb?Y%# zO$Jwv%%%P?d|jesFU;ksmG;}rJC`a%qo@j%7-M7-ENd={Ph2H!n8NP33M#^hJ@z$j zJ#6*cmdylwnL@-H3<@1hGD9g^P1nlMDO0>$bE_sBbC=)vQ>pgD6+i9Id_4k~yswsO ztXTrBYqB1xpahv2zm3Fv+OC?0A_Tvp1duZ`EAw3nHw??g7AF>}OpF;ub1Pidqb+y(XpXDItb>gBbA$+>9mq zD^=#tjXUzkK-TtnHYLZ9l>pGqtm$Yxw_z75-<~ZC7i!n&a7Po>bqwv%D<+-h^JKbp zd@tiS8%g+SxTNu=TF|8lDdXu7OY4Rc3)$E~fm>x*NZKMm(Ufb)Z9EYAZ2E^dw~;83 z#!y!%!MuE-m?=#K9#huMDJt^qS-=2X4XQX%8Au zOhp|@sVR$H6b*QrWKh?#N6*RPQUkQ@rxSe4|X zfKT1OQAe#3xvR>z_iheaz*FsqFY(hQ3@TLoL!?ps{8%n}j}CpkF3xzf5!}rQGft>Y z%m_ZAN4Ru97|v_*yZ;Yk@7SCPw6@!JY#SZhwr$(ClP9)q+qP}nw(Sl($?kWbI#uUA zwLYx>FlW`guX|o&ywl@e%_{C?!R3?R!yomNi&Q#;`*z``d;32+vcr0-<$FwTiyMi- zkY?257L70Gp+!al^N%D!yAq!|&zq$pLdmu_ZC+X)sx?AR&e&z{GH+&X0CsPda9+b*>__um};g z&>e30RLN7lWOj^CtIv)&5Iaj)ZYvP-FvZgCWY^1JN^M4}{xv_T?GB&>!gEXoOh%Gq zdRoLI$KxdDN-2M!)b{EDpp`IdtPh=Udk@*Eby|Tb2yF%|!o3{PV5HfXYeRq|=1<;q zb3x#P5!Xn$dnm2$3csypNb)|CnfI*8g!)5!RhELlwkvu56;?!AHmStbPWygwaW$bn zTx1Nl9B-2+gm?TyaGr0sHRI%6Wtdr^-q3}R~T0d%+89ab${m>x`Rfdov^@p^H*hH=8! zjVt!>*`Y~gdskzR=z7BVz;|ghJP|UpwNQJt&uH)#;4&h0GcHZ!E;3RvT3od5xQEy{ z?w?~wWacoG<&9H|`F4a?KH^mNb(6Thr|9`Ge0%dPO&d(}|1OO?STMfw3eL16b3Fzf zMb?F*e55ouA<<{+{+bA{j-D^Lyw&0M;z=$Xxb1mFlKKKqrkks`3n~`g{mf~jGmmD$ ztMP**J~FEEqIpb4^?=KS=4~UhggehB5s(ELoa#neRyDcp;&IywOOO&hP5r%;aveT* zr9jpqkn7<_nzzpjP&DV!MT14h9!v|Ve=^;J7Tn>)O}ASTyVg82Y%@f65pH&U*>%wd zu9$CyK)KtAxFFfG6d&pi+NL*oObEd;1}+o8bbZihTuUP{GOle_ zwA4Ne(oYikCX79IQe6t#F`@FvIa&Azutuo)x429i5d7>&Z)6-!1&6Rt5r87T(2aLe z%`;0_MvfhTK=pLh?R$h#A=sj9qDB051V}4OmK`VZje&c>Newpm$Jpeujt6$j9}dEO zpHFz3U@@EppKg9a`)vFzYap*jQ&q-{=s6&hMpcF@A}OzW+|(Kr*FJP%MV8Nnwz+8T z-E`GUjAH}RgqNuW?Ssg2h2of!1p3+NxA~f@Spdnz6>v7W&j@*sjyLFg^>))``NWlH zN)V%20T1(@nJA}#uP!B|%RM-%FzcKguLq3>NqULKEv;VavwC4woj4SsAV>QLY0Q#0 z4Y?(>>K0K6+qSfHsR;l<^1PY*s_^XMU%u|*S$V#4lhy0oLz@P(m&F$QV4BgJ>-k*T zQp;*44%Hltad%4j`|$zc4A?y$23N}0m+s!7(z>&_6$qVMM*|aoHOcfs`G?6|b#-T$ zdG$%xc%gpSY&md{g)ewU?txn12@0i}{6K1FFGfF~W?~0TCC5LEPlqe!&nB{ZAjYZ& zLfC}A7YByIm8`lgNT>M>Sn0lPJLay2{I^Fd(B&Cb9<`0)(uUBi)0Y} ze5V4&5HG+1h^Y*cws~e-Zh!j~!f1(>l}?G5rzROlemnyz`E!~d0^`b9FplC>X>biU zvt6~Ym$(O^HiS5bS~kabb5AL~W@O|tG3P^j%tExYl9L;$I0lY-6aN_CsBmH1G=_fXigdp~sjfPDHb>HUZBfQjk92@jZAS=s;B%11{!4)_1^ znxgHgL4_MCHN4lecuB%h{zs;T8SZ><)gX9C5iZAhJXaQJ(>Q_ma$W6;X8C(S&!RMI zhV1HnCCJ&`&p#;TXCG1FyDhBk?s!Z8TY5q(mR%e?(O%}!yyg#q--6bw+V^pjagVRC+UVP7R+02YXEbzoEZOh( zBHzCEsVsh6#O{dw!Zg*CG{#8+kB}cm1oy8Rev%{}&oXPC#3!-Srw0cSCMX(CpZm+a zx=D+CUw4)PFdeeKj{ze3AtQe1YQy*(`XK|Xp)X8xB~TA_U9#OB+y$?l0-E)`iIgoI zSSi{KZl_YAMf=r3?Ju6KSQs*7POaU)b)8VSm_wt$oemsp96t@teQkPuCrZYLiz7RJp}?zH$xblkHN5v&{>}szO35&pCW zNr)RcE{6(hU8vb@75Q?6hW|k7iMK0|uPn&ApK!VYY2$FS&=0t6}| z=2xPlOpF{*u~DE(i%pJ%WgO)uIjE|iB*}11{syZ1@$UtYo|=j4@$$^Db6XE0QrG0q z3>D2pP6K&LGqVOylZm-fsTm+M2gg|phl&QKgPBNhCtf1Ey~I7DwWJ8%ke~(7s5S5m zDVTIdPd-)?-&L8?8b!YXKtq_seQ#U!czyKI_MOUVu2h=wTlhi?jR$rO{$W4N>pnWF zpB+CkG-hUY;5p`;KfM7N_?fS9o@FomIJn{{Qh9AVq{Jl`o@t9|0 zsD+Ecuu)$7xeO0i=TLVS0U2hj#g>oq_BbIo$*9a$wG0!TT$iNEpBr#}rYB3fC+SiJp$CR9PagHDqEBY?yU)7qg%+abpY4ILhjv z0fZLn=V(*xMHW@VSO3lWok>ksy^8_JTabaA)*}i-KRM{Z02+yBo zUQ=X5`8De&_URoR5s3hbrv3@Zp!&}wTn0I=f@#7D9h(a1%?tBZgJphi78|savPTv{ zY~LKt*{29ewt!ndnqlmS79|+#hzeg*rG8xK3(dq9lff7n7mp^0LWssG{&Y?T9|#s4 z)Ojb@+o05lhuHXZuW+cZhBQu!AqLXjNq#Te7B#PqI|qN^I;%~4p7}yI1Me#qSOj*k zztU|9Sh=KCM}0;g-lhYL%EjbKMds&3`eFB~UCRgWpm4PWo<^>$M0ai>wY8DbFliv7 z(Vniisb;6CW}MlQ(N!RdRJHS9$zfNp6J7XF8)ir*)bw3{T-h_iZ8K3xF!4tCAjDR5 z*3{QW+VF4J`qsd{-DC}Y21&Ri&%fT=JJwi?8>$7T(^i}fbsaQ<9<87Egf_v zqT_;5gbzKjRmhO1YVZ^J)Pw7!R$-Ha9-#yVYSI&$lVBF=Xv$1X8)hH{|M_-ckz{A+ z*6xKTrmS_X?eQ`R%fus3)CeIGXHZzFUKKL6w!1GPh&og6=7IYX=#TX8sI8LVha#kHOTxO(m1SEeodpgD;v95)iTNT+s%J07lPffjW^Oia>eVL9*7>xJZa$9vBr!bPQr7V`};{Vf+WL ze2f4}fpyqjvQ5rb9#!++2qKQI{1h#W&0(5#D-hblY`fE@5iV&UqW zVR@4$V@~eZgf>&cg!jlGOPm@g8VZ-czisEcs82SkXeHW6l04XU969uy+KnAnlQBY( zUrdiSl%yUydfZO1!AM-`KWNPu{5vkMwRHGtsgYfJs`%C5ew@Z+f(sS?X6oq2oZlS!5eiZ@F{7 z9<}$U@-F9e#1_U#pTe?N}i!27*YJvufW#@l14;1 znyW}byM0d__IRA5P}-bv&^oBp1ch$t@&Y(f0-50#vTnT-A~&C5v^uvKD$A|TMALEf zu@tDT(N>qoo972-IO3Z>ZGeED!e#%a)8DHkhPbTj8Rxv^3Cr-3BH0%AwtFZ8UMx>z zfZ>}CFnElk#a#TeISURyD~opTF50;nB*(r~Xyr|Bus{ZD711(868y9vG}#VPP?ugE zgv^4&_NXpbQjvZsB3N%Cf@}naZ33E4O4RdHEYz69(g@vi6XTX2PQ981I~VQ-hnv<# zin7ftbY{`c@+kxsnv}WwW((h|?4TG9joZ4j4l(NasM)a9+3{W>?|fafmfb%(f=xC8 zHeNhQUz9Qz3~tgAtJ-Mndo_V4H{)G_Ls2m?SUy9xEkD>3ArhbOJzZ#&%dlf)S&lAv zo}$m>5B9xIihr*TJmHk9@T=LXa~2=YV(fCr>pp!KGqi5)3M+d6>Qc!~!oP`6e`j>a zAO=+C|Co_=ylYqly``l<=ho84T`0H)bdf2pjj1>~%gKU{olV}X_jnDImR2n%;Z^bp zQ`(==?6|iZOfWqcYA^8?Q9a8RPF)1n9<|sr%&>jl>L_H48`MXP6~WNww_G=2OtDIBWptn2)8dmP-YEF$Qf@0C z*A^d)zshT?=N?MMT5E!-7pJxv>nQczg^_RnQ|---aUXyE5e1YNbn@FVyxzWs-lxSG zQobEY-4keb2{OL@=2^6p&@grKaX<7$&JeA@<_sxvpZ69uHF(8ndgFj{oPONcw~$N; z)O{1G^rn_DI~f!o0Bb_0fs42!OddR{uk9WjmiuAOSW){&ga`4IAJ(*tl2FkzmNWMD z>u&Gt@iv>3!(3?8xr$!YT1@VrDKMAcE$oo47dQH=+16rE?ugfzgY(ZOyRbnsK4PkI zb=Y_ldWo&`Q2Gc}Q59SOsVOQ?HcY>YRvnX&YtFRJ`UIw-MbrsbqF4W^r> z@*eqL$0WfVAOyDLxIgOy$oAekQk$EhR3z;93-4?B17lL!wx-4@sA zaL}OGwmw=jJ9oEB3|ldcz_?tK#@`NZ{5k(G-S;cudFSj^{Ql$Cuap@C%C?wxZaXc* z(90}zQXo_ezxy6M2D&KL0u!?Yt3{mTK=6_H0>}he9sGvv!}Em_GWT zit6u!+tHFaW=-y<`9!Mzy-$x^oW<1k$pudmQ{4Gs&$H!`*NQN<<;@KNz@^<8^kpl>4by z(%C24wtP4U4EALJfHFv)fr#L@~!Nwo2j zk#3uYNNKPZbu@eoNwz9l)Q=V*q`{4UXU>c@&`^b1ci~_Hdd#A%lCqvb5;5|%im&T`xjeYNmbciLC1;y`tW zMO;Y^(~SBuq~OwRO&&6}yE9NrvBSQ;ry%^Xl53`Z| zi6zaO9oeLsEMVOlZGdI$HC$sv!em{vj{^*_heo(rxC!q}I*rVC8?A_xfuc9-KO20T zg-+RU>17_J#N`cdlOA~KR8}UMfTHHh$j5+Vd~r6;voO&8 zxn&?rr1EG?d<+c5SB47>Ef_fkbFw&eD`{{JGDgZ!PPiswOX5kU2Ai?KF2a`P7XN0V zaGq$E!vt&H|GRe=hu#`pi4hvDQ!lk7!Ga0Qu(*On?tXHgST0uenTXE5(J&S1>_?N- znC)j`(^-5c6-oPdmthpK+IwUqi?b1=K%u^DEco(QiUC`qnwZB=)BS7j`hYxpt%ANm zaO^mAWPHXddsLrMtX^pqsreqvX|H#pI+rImcMtxpY{#F>(4sdH+DVUlY*=kVF5 zqgunI8(>%9M|bu`?7t8vNRL|+bOe1n!mv6FWx~;b7mwbQe=9P(WI!-x{hL%Zs2DjD z&%=4{Zyj2sh8q7JCjw1Y*O1_)&Dv-!+VA#hW9fe9RI+MOC;%m_N@lxlqPHU$?{@s! zy$VcapHUvdgIyC@snsEGMI1|X{@gd`s!QiVYG#SZId%T90H#3`3RV7OQ&aN8X`++W zQITetQ65@&1;dF1LX!;x93{v{gaixWVWC_tYbAMAN3?mZ+9sIri*{*<8 z`=mOZG%joCGQ3}V*Pc9x>M3qTDk%7q#sr=Zw-?ChqOz*w-i&HaYpbQSMT>ZWNGCGm z*;YQSa=9aVmZ#Bis@D5zX$1{B9O`ISNx!2=2yijf#F-+Hjgk{KOJnJow$*gjRg{M_ zr+9*k+>u6bjCG=Dav%hOdWvN2JdN`;|Dyo%E&tS}GxDhqyTn2jas1_1KpS+ri zl+cT@Vy5R6eWWS*7o4@%nBbHk-b9>uB` zrOT#?S%lSUvrC)@U%h5PYU4FnCt*r@ceOEv2u=_yN0W4z=3!_?-zXi4hlA`XkxSIY z*dQU+{mZZO{r{kUfN9}H!M2pDtmdZR(%n?yHuFr zgDY}ta1JjKLjBEms>l+08S@NSBtCC4WN~gyQ{cWSHDocKT?=nw)QFf2LO|aBb-?3D z(RXQ_NfuV6oH1yLBE{2cJw7gJ!IBnSrmmd$C)qaGe0C^vqp-BkYAqZ;n4H#9+5IE4 z6eZw=zDe>fF*!rhKO&{ht<@6 zF5H8e+YtY&a?{0EL#c~1LS62(by3p2&M~^GZ&@v}zLE||S@!8l zc&m0TT9z-y(v_sl@)iNUl4-C$Rq;e8s7$>_jr`Yt`0+&oz+AoQ@^dFb5d)bGs}~6XgB05NP`P1W6g^iOnN8|mQW%5u>)ESjyB2Re1@!3`Y)=9nJJ!8Elv7tD#d8|x+sPl&9ng?h3z#|hD z`$1z-ur6Y}2O1W)o*s+KJFr7Mm5~OUM%+d4Rw}%aZ{C0!#Cp(9sRsKbMP6FMbfT0> z9j=SN>tJ|^6-}cKoZm)QFV~Kfy+C-5!7M=+Uwq+D$LHR~t_A9~c&CGe2=nt4X9O({ zt9ff-10m=tatyz6Tsk8-H0acIxB13+B-n?kUrUS4l?P+jYR)67m1m>CG|}LN6xHbw z=6b&snwN;j1twL1^pl{i9R2UxCv0wnO44@)))5yLf29*BisK>&MmVphg4 zDhJJ9jGObw5hJyr*n!3j1^vMs7uM?)-e}kMewJZlp`q^36TXU2CvfJZ(h94`q|AHEj8y;ury^iF2Y;tI~qBYO2CgJ^NfxZ+aSVIS^2bjyDrS9;%J9SSQi8mS!Ls3q%kI%b za#xARQZQo`Cfys%3Clsi3Hlo%4ddiP^eo8dQMQ`!yQajzn8yaZKt%2?LB-f-(?J=7 zPWJ-%^=Gym)4Frm&7O%7#Wja@oJ>?rqILgHaY8U0b~_&|hpHO_HUHB+1W$WU{X?lm z(flH_>3}iyFM2E(U|x3Or-jMp9x^N$$JWWCKH8HzW`GoKwhR`o(J!2l;Z7X<9_{RC z0p>05cG&-|1#QW2aWex=kBLtTf|@WMx~{@hga|Sgs@s;v4hT`=w0?OqOop=^0D_s^ zlm*1Jx`Wtp6?yPwt!@Dq=9oZmTcOSIl(AjeE+2Di|8#A!D8VQW&<>i_W!ZM#B(14e zxz5;CTZX4nIm(vJD&_fddNujH%o=k&z3rUjL|i^Q)JSveH3iFxvbdH%66NiV z?!;J$d){bSmT-`>qeY<+A>4-G={^g%|BcS#aoM zTU;!^$B-6i!y|QhE4A%VOR3v3F@1E#hU)}92I?ath#Og1op~pDaIH}qn)dmz#FVE> z)9E5pDyR6S{h{&soa#*7kRoEpBkQT-$rT5bB_i~I1~g?C{+wm|jLQ4X4Ao>kag=c} z<31Yk(1Z=ko{-+!g1%xuHo6h3aR7@11Od#KVBCzbUNzb(+ThJ?qp1=i)@m|dk7oV7 zPc~<69alZo1h-7$d)&a9WM3;P40^zy=KH#aHC6&Ds7F?Vv{{4Ta1w#mNPmi2frCOa zU2F72$Q6?)>A#iE@Ncd#z8;4TuKeElt+Em4{!_}v@n5BEY^;p`zaJS%BrQn2pX$x_ z%z`eOQj(NVp`09pm|00fUIaEA4AEg4xa&aV?Qd<|%Jvm1E4s`e?(Derj5{k-yh`tH zkAykB{1Zv}KgScmU-WYNe&Tz*1%7@!U*9tqZg~~E31P@W%gZ|Y@to26&ZJJ?pV!@Ax^sJto9uac1O4tJ!y z;+M)(&!=n8y1Rbwr*q`_1#n8%nP#}#zj~&Bx6kjp<)tU-^8j1rK5GVOXE*ER%;uxh zhb&%*;t4Kqjn<=x{eKmL)kWvE0>AhfFLTgF#rD zUIJXa3u`%9%*aRg@&{Q{AfKNc(QKxORYG73l^Whk@UQBImbH3)hd|T?p+i6F=e*Y4 z(0Y4W<>Bh5Hoj}ilca*B#t0avz0%Y|pe7WW!r!Vz)k7JHdZ!MJr@Wd+xMPqqMWesQ zzUY!d?E}ovcyGoDQ+6Kpfq4? zK+5N@38NKm3iq{&_*0CTmJY$sRpkDY*$C^QvsrPJ1HouoRTr(7%&w#5!H*aaQT%R+~S;(JEpO(ijAp^;?sHYn^&gv^6Yt7=OD<@rektu%C z5+xe)e!=FQsjz(;xk+9#E(=)+X(z3BeA?RTxaPP>_FxP7JVETnNc7HF--3ABjrU~S zg*&|b@LBt{e9XIDnX}=?qRMVgkQ2VTDTt196E7GwV$^?xFyJr7x&(Y&UTwl?Dyj$? z5}z!pM%xl+Y(>h+WGGid7;ZI5y0X@bgP3=tRc$uYCw?M6)$$KeTuMuD5w^{f*;Fa) z@zEG?<#7&fD6gZz5Cw|zqDOz;Jd3`T-fWePO{SzT)Y;wBbKC5^Qh}ZMdr&rsn$c7oBU*h$vWE-futi=}$_ zJy5$y%0KHxJn=$xwYsJKNO3(gro3W>VOb3jcKhl*``(-wXs{(e=fK)Q$)kGql4=bT z@qjbKL16VIkzBW#C?*b3Uz?L{1Zg*cyM4e^0R7!LgTF}x`5hfHLl2T z9Enjzv3Ngk1YI7DU3@O}+n2W}I)wx~+{WRn5R44;k!!#0epk@u=|~<2FRJWh11<)X z0WpJeP`gYKXUnkEke7vbS)eHIf;K*vfUM1z`=6MZVzH9A{ca2HSHv!c+0PrK|1cgf zj=8{7twxf%r~A+DEJZCkX@c;*`0E|jiep38P}G|%ykbckJUsnj**lSdbR7cC;m}qE zGGUDcE+OZKgl`1VepZVyv|_?GiK0H(>j?Bo=&_h+2kqc*W0^w(3+}$e6-DM%{&G~j!M`SrcIU!Iq|%>(dy zeAdk%!}KHzP9#bmgP>5n4tBy(Dd2I^)mq(9rWd#%)s7!#0a~%35yqu>Fwnl^N2%q> zUGWq1R_uwp@A%9}h{Z}h4=)=Ur#Cu{iF{Vtcz2&$84~EM3q!M=Fr><ttv$e~sS2+`cGsyh3P$AYO?%k2PcvUZb`$QEraV@nx`P<<zLBUFwg&3K++phADu2fK|)OxTlFLn0-ewz1R*rd4FFaD9&ZUIF~#p!4e zFg%#1Pi*Cyak1H+v@YRZk%*xl2|Rt$WDlfTW@YB=vYv3h@h!{bQn0@9j~B>xHuv++&+`wn|XUT6gYWa|IkVav*Zhc5F(;X~4vIRRx7HI@_~;thiRF z>hQnIkhbDi`5yukBrvY#9Fs$F%NGR|r&ZIlT{LwlC90{;{g|a{U-AB!AFtjk+1(Ur z*Oq3I`|u8s8O1QN8G^5$CzmtMYFIC$i;?1*;AagI=Tz}u)|#H-=UVlQwKJFWOPpcn ztoH3VNI@z|+2%7|Sk=ZX8;whx=f>~Z`JT9{-46l<=>|5Oov zL)*qUsmqd?DkCu!qEt)}3!46I=3<-XQ>~y{c9TumH=)}A9!(|v2tBn>l=S!!sL}GI zR-bEKh^##)ZJtD{vb3vNh3>oCy57|rpg~`} zP#=dLOggTGMa~klM?Z_o*;U*FM8SenZZg*&CT$R`6q9e0qcX~NFuxJhsOGP=S zidprh3doP8-n&sTRfrhAd>dfDs%#1HU&()za1hJVvuS%(Bw8%j5`wa9C3Wxxc5WU9 zZ8+r7`dPSub5$`J>6kPoBVI$_cG9#x2erujzo82RjO0p|jkr(5p=;>RJt~$?TCiR@ znvIrALfV^%H*ePiqJ6*}_wb&p9|lqTb8nTnr*&(>ktk^6eMFUQ6T+Co`c{n}kFhwC3eB74_6EVAe2b+440@ z+$}^W47>VKh58MLU>Ua-#T=*GtM+H38f{b1Pbj*7O42z0bL1Cj27v~Kh@{9d<;lF z(pn`?G5wD%pq(&LdtvDU4h$-lACrg>q2Yx532r{J3UYy_`nk>U$HIUvSATSI^{Cp$2lDlXAj0@pL zj?E}eVBPsMiJ_jkVc5XfPYR5MdY2C!&r8TkEla?@-r;1cBgouIzz!ql;6-rS`Fr&h zBq{9ei$kH9i;5h}5J!+Y^8=gvvDvY+Do9)W-{%;a9cmcUv}uCtqoM3=eDznxQ;ZJX zS;vX5s`8#yc)(-U`%>6e(CS7Ch@u@(X0P!6?VqVE87ZDYCAICMN2*rzU>E2mh~Q#a zi}az0-LI#W&rzo4!f+5idcMnVXVSL4nXQS=*Ya-~b&Uso^A87Z{#J9V4?1e3ScXdWwm7E&=xnD2=+a9JS21{JgyZACHtq2C zaC5@Inm7>%&h^U**b3Qnc-tk7+Juc5+w?`;FW9fs>Stp3rS=^xC7Dnz(!OA-ovMsx zh5@TGI{)@1(D~>=xTRW}6;o=r)zzFvbJZSTUS^OLnoFRe#ktf}Dt{d@K7V;c-|wDl zwixEXGEVjajG|%(^A#THI>3 zb#4;YsNG_+h+mOerH0h|ex(@2HIq<3@ z2$y0O9phCH`&l7B2aX+7O!B_aG;tKG-+#VuIO`xS##p5usg6-~5Kk={Pdx=ijyT2% z=ljpKVZFri5rj)uoNb2BD-*{j?aN7~-XTElCQ5M!rqpdF*>SRnghM6(Swgo_hskT6 z%8(Z}c9E&KJqgLeqkkStS^h0ZNbHWufM4)%|MFnS>DG_m1z&bfVjy76603@tz|h!U zhk(3EBsDUD0)1wcW^Qr(8-#6DO=~9^jxJ!XupwHxG4;&VqW`qm$TfSL*b*IvqgyyZP*_NThMh1o)T73YVRJVDv{tV*5 zuXRdTYk%*+EuFU(!Es2(8YXMkcl2v(cWFrgv#;&0PK?6GnNI4}gOms-?A3O2;DUaR zXUFgc&Z>Y}O|IFkj`%ifc~9KlPMO)Dh61%CpXia^GYtM-;o66~78K#pIYUY677T5c zSpzSZxZiW`Nz#78_8l{(fW9e0ZOC0+dl=>VnRzoymM5HJq{|apOK{f0HC=XP?>>U3~Q`Vw3VYkJA*z-#5(hP6J3BxH&@=zdv(VRxd z$2w8aa6|y4MeyTyAwgn0QLs=bfCRDp$nkVKBLtZH?XvrwkJ6lX*UEo$JMg{dX3w^B z<@QV0MN&euYo-_Gx-efC;rO?E^IF!pRaOBnX>S#&q=m>F0~)gO&GEcHq`qD+_*y+CA}Urk8P< zB?*w0!bDK=x0f~>EH&V8LINIv`r2kUQXV6bQPUPb#stR%t2j3BB8cPkkEjfp)4Jfzv$SJ#$9N5gY3prkp5d_r-`-|XnIw!EdA)V9Ow%5)t|Ame0mYiU;+WC*!8ty z+%%^$?&CxCN6Y#ZSy8au5z+Ej!Q7ktO`O>rY`O+HK62xOBG;mZt=B(3Ah?$?(s26A&6AsimIwT;fH@B?wf<|Z<%2CKCCX0L7=&>%Sj%g;K=bMJC9n8;_# zY-VP7Tckk~DRMb(wUM=?WcuCzY9(;>T}wzTv5&Ih|29R>MbF@ZJz&_y-{KpGN9TG= zr_thb*lUEedSVFSBFoi6FSBnbe(H`ZZ_B!!s@j`or1t(#SBvGpxmqj?Yz+V3Fn8r& zy^f^A@&5^P!=w@h_NA@h>S5|&-^`4?6TQ=SooKz|^S^#D!0-jZGp4Vr^=M5D+ZaC*<`pkqmRF+OlAX0P_U;^NL#@X0D0hM9ngp z57@b^&bh28!qP##gQXkT`zkeeUtH4L<+0HKAoPgy;l*91N&L7()Jo{Af75~22}-=F z-q5d#bfSW6DcY!Hts~P)$uqT6^jZlT!+WKz$?RUe8>`;YoRma^I!V5ET*lDVi*cN? zeD?JTs(iJSz{Vt-@e*RG#r(6bbb{7ZAZdLD&>XTMF!Dx&RXC|tv_a}&z^T5}OpOe{ zSfX}QTV?{90x9RK{Htom@6UcShYv5dwzqkiNgaY^YWM#Ciev=Vm7DtARq~H|3>J zce?JzmCbtPp`>fm8u{*Q{>XT>SA`B@0fo3aD4;JZa4X2=jK#kCjSkv+umkPLPf1mx z-+72;g--79$$UWlmDP(u^9&u>)YNla<&k((mHfY#W3(6bEP4XF){&_i~C|C1Y-n%;|HBt(I}V;J4~TYHpm% z-br#{GNoHQVq2Tx8m+qp7rV61*^HQ=qMemZy~wref!FosHiX@+T>GBE7myyub^sA+ z39D|+^oRaGjGa@HAi$P{yQgj2wr%&cZQHhO+qP}nwr$(kdD_^GxDWR~R8^eHJo)8m zFa&+S*U|>uUV|11bWLm;;+{M7&6Y_Mt7zXKBheG|gasej=XqUlnWB?$HQ)E0J3~_l z455YQMjfvE3K3FcUa_va|8<$NI|4QzPa+8OkKKl~lXg8!^x|<`t_$S?d6#gv>x$jg zg}L5%0y7G?}_XZ_br0U?Lm1(JplLC^(#L2Yp8 zv&gw7c~sz#It(;-M%zh@(CH4n3R>@gW$tFeZ;`0kFkOP3*&JS^Ty$0W54B}tu;m_QWPh$(tt#A6#SF9u6)82vW}(uOX_*_LX0Y`lQ*pO()`SO z@t#F5{5x$rZ(W-~c*aAtWsd0An?aJa*|Xv(8z$>M0sfH5? zmB3ADER<~~$^>9{F{~}mff;nMa~)p>&-jKqXb;I1l@cPyr1)FxNjo2}wjo?vnk_^u zbq4^Wy*u?weaARU_SBVzX}k5#1Yf~hqRr}Goetk_j(|H4wR@`?#=oS8YPUCkGI#RJ zw)`pX=syGebp+#ai8@TT+aMeTiwK7ZCHS{d$h#AZNw;K_`BZ$yuS_$Ve6kzzmF+mp z57~i|J;~U0M+$sC^f6_H+iHTCx4H5dqtlc}LNw06PS*6o`|TqM*capS?JdzH21M!d z`DJW}tdT(X)95Y3b_OD?+JtMEjh1{+n;_aL|75iEYX}wLTco+tKqbgu3fv8d#BY|u zlf+eAH5NH+ny%sed;Q0+W7d|~Nt2I{@VGuRfUB<6?CB_6Zsrq^CJ#=V572z5jnKb z3{taZHI&y72x;@t{{b-N6yUUh{Y{jeX@?*Ee#%HPpk6$w_1sx@xt4xDEI%q;|2qVk376NI^n!?Ls1kKPQzEWAy7>yaY& zbc3!+<90X|veKaA`{8cvOb3q>5M-1v$dkkybz-QIFj5Ns@s3Xt0w609-NQSKRNfz610i{ciag@Wo%GX!Ih|1IurV#? zk%D>u!8zRe7~L7M18k z*>v@3rDAK%U@>FC)IJ;TJ+}IG6M@ivQcm4vZAin)CbrD2J#5BnMHu`}B_X9@lQ&YK zC!@2Q3k~))52Uw8%@MuCQM;wU$eN|`Ede4>9!VT7*aukAU;SP*Bc)B5ozpqm=}LUg zg%0q#F#VZs6oPerK#{DjWgE#cbwHAuB6P1fhB`Qdf*g+FlljCN z+24=Xb=R_6P8d~}3Y8nFe$j5Oefjy$>UfT6#bd##%L5ii>RQDf&b1e_W?nWt)`W8S z*KnW&hDC|1D}&GSo$M0{3oX`eze#or8VPG(jimD(in7{5JS!&ZS3R$dKXauZe~dP| z1Y!M4k|~vD%h^2|n;UMrFBIL3Y1Q=0(#d$76l5&l);8dIEW zShm7bcNB-1LX}TTJU#cr!tnG1j$oMU4mVEX8ohj_ai<7=`d3Xe?$wu!3jezD@s|Ue z7y|d!{4PLE)8jidW0IO2n}@0(lU)0ls4c?8ctD7X7f=K|@!mj2o>>1&EvMOQp3zyB z$>h|iELI#)N;4`I8R4V=bzB}WptNucHF<80j>&wLw?o}83*CQSc393Q36{fui7NBW7+SK+R3tT{e2DM`s$yTi_RQH!*w#MBFqIAN|0Qi!ZPBa455`TjQ}Acpa#uAOQVT`%LpZ^gxfk#0~NXTLr;y2I*bda zS*xXlex#nR@Fc!f%_0Q$Ct-o{%!yrAlhQPaPjZr&t45>eptBH1lj~+Jr!=AY(!8P& z2MLQg!~4w!rdIz%Wp^7r7LeuC1C2|!x;IFlquutr)%fp(PG z{iQ2lzr?%3MA317f-_BG{TR3d^}S8SF43o36;$gog7$V#I8SZ7!cC<{qCSBI8wSt# zB@41s@J#z+vlD#30z4Qh-S%1)B2PD7x8LeaLs@BdVMe_p0W7n@$%I95tDz?rqpk4E z72JC9d|mn@jS??Mf;+i_>5Da|mUDx7Mx+U)(Roz@j!36^OCuk24cgve2Wu-GF&370 z1Pw8LF-WVyD-Y*pSgIXv2vBrAM_A2VAtJLH<`*7N@hJk}P-#*gxs?m<5Y@fd!S$+H z_@i3e)M!QZct;w}g5LZuhR=1i>fMjtB?>F!_1nx!CFvU6NkK0$RHdi(r-QW_C~}el zH~3^l6hk{c+){ES>fdlvv`3{8XmMaif^a*p5fA&W!7_TBTYAbIWxa|P+1h15e)3?{ zW`!VTg^}fJ==;26dp}nYvDuERn}&Fkq2X=X&srp(Xhe>Rpf#op zi(zhxKRsvx>tzRVICQ5DhvGc${Xgr3-0WuBIOds;r_WbcFjiae`pRJ3rfdDPPI3UXe_b)Y#BsYE=Qx|$WpSk>pC%K)z;97* zk_;mdOu}Qsj##Rx7`&_s z){)(3T1N}SQ!)~8@$4u{qTYMBBB)%8tG9zoZq{p)*7m7L+JB4bV%8pS)0etP#3&sH zRy#^lq!rd;@E#Ekvfi!0NI=}T9=G-#IR>wVipNIbYTg=_}AqC2}^(0M)9 z+%YZh%_Gr6#ThRqhh{wIlm?Z1%- zSQ!}pAHMfkTQioV)&3v8H;vmJwBI~YnK&})FOaYw^$?wSmNt=pAy~9%VV7`SVBg)W z?7ffq%kk9Igr|Q~n&U^^x>3E_^K$Sqn{Q7%TflE38}L_e+xx!n+otT-?Pg}}?)KM5 ztHMs&FoK4$?GDebSu^^dA1{G=F~G0K&QiV|sC)r%;osZ+PS@T}f<|&{e#gJ}u5UTM zpYq`EW7fIfyI{!Y9ra(CQL8AwEQ~sjx%;1?kq)%YO30q{ zy6Hs2@s*|Qk?drt8>hNoUfjc9uly`GKwh&eEJ=#mv->-v64tolc^S4in#Z;pC#I~H zd!-)n8#EhY!aw9_rOidml6*IHtgJtWyayTl*nhEEUL)=BR`aL6DRvNYtQI%?uFWJO zh44=Z&CwPhrAuf&dT{aW?DvA0d!LkcOMkIMUzVQev^RV6gG&o05`v?X)!>qHLvGn& zpY{>Yj{ZWw<%twj=~5XJk}T5rAYz2z79|Cnlmb8tDLOZANKAEEmZLdtPGwmf0Cew%%pg zif;?K=}L171!?w?BTIeBXH7$uH`uDB(vGg9vP?sD`&73ZAUcQ47fi)DF4P-E9R`V{ zm%z={aBQGXKvi51j+R~Q7o~}ri0?1M1A=QN5-TM*H-k)oz$Yx%=uhFwy(}7&so5uh zv2IVNF4ELW=DsQs%L0okYiW47(eJc8WDp;olkxqiqM87~U-||xbdW{LaVJnKd_#$l~nZ$#QCm+$~(wx>T2+%^S@<6=PgE(jl6l^$B=`BmFfG^oG_ zu}b-~LNw7Ap4p?4@Pz95;+g(R&$n)A z+6Zo`erQeU(~S-TX{#p>j9R;Q^ljXG_lIV~Jjln_x9@#ibviblPi+xH(MSrx)I7g& zOaKk_HNPUvE;t@1tq5NOsiI{}6yf$gQUOq*Y{*cc#92!@gE$DUS3V&$XK~E6%BUB+ z9EZEbq2YAv<1KGl5N^FkQMO%rgl*AV+TS)BYYO5U(UK6Rt&#KvIvk380Db3D=aeJ|LoV?bWXlb0Z<+oV*Wd3=6C%byx>6lZQ7vw&Lz*nSfR|@10 zP1&+pbQnf9x;qr9TdX!L3%cFmB^bUeoE}z}TM3gy|J{>3vt%HmE&!vNRO5wmlw@dh z(|BEizAGF%`m61k`A8DDo(>dy8W6ICyTW6g_~4j8Wns4KxA2lB;HVX$ePmsIs?xZb zA+MP?-$puI+;@sk=HK&c@1it%F~mxwgSxe)33=9mA6J{YMt$4;E~pdka8n|UDpZ-9 z3{L?zOSj}@KCDd7`Lz%dWq_F`m%|tc@_8YdAfAWHV6h6urp@)fxM-H(^rqNx#YbPo z9gr0t1?0xhnD?x+7pmV;8z;D^+ArLSZ&^;*0I6fv1g@Nf(Tf7c+sMU(0FB0rf2qwX zz63Z_rm_W$QRKe8_uu(nLQ{*f&I|^rEAbswzUBpx_o2(-ZB||8mZoOvj;~UVkveJ# zIQkF={A+{}dQ45>x>$xaqgJpA0rAp``jqG1zZLVU=OAI4NRA`vCh}H*XH;sBWUPly zPs9sZ+v+U^V||}4k&$uoUeU_gYNJlY_@{T%mxI*COu*su8Aov>s8&Vh*NJIDi()c# zfzfs_O9uDu@a5q4@RFKFczbxagrZOmuKCA;R@T+#Nh1!)I_9G#$4jXs>V6s2uM-on zqS~m&wwH<+)GT;03I@#n27Z(oJL%w-3BUzHkUr|0A;kx+MkWMJy?E4UlClFG(mwJV z#H@MoFbQ+UC9DR_84{KK<>^+<*n5Ga&zdMLawsxzDR3xk?BSvs&ap6}*=it`@B zZ_Hg)g|E#kBl_Rq+a;aYtuKu@Z3=xRALsU7>WNd-c5YOjR{;IIi9W;ATAwH0H3Mo{ zMQIPeIB(U76_qt46-&J_@Dlv385DKHd_b6RW0TSwC8eZvPW~-KGyo1ijKe~L&R<5{#|n%bbKwS8 zsjYHVX<+KS%)w;@HSadnK_>+q8)>0<2Qs!Sg2^w7vu=Q2ce`yAUdu4V$ujl+q{G7O z2hYR-{|qt-Y1ygnKqF6t$`l^B{v*K(WfG*y{2-AxsvMv=@82m*-9-k2tw++NFvqbU zK7exm?z5QT+QH8#_SS(Kv;}KW${N`LC71liC79(xTLZrqWshy;5)r_LG%fxa&iyKI432W<0rO zJ)_Hc04bbPZDCjm!R#SQKgt;Ywp}N&D_1ibv+LfGkYix%0AS}tFeTw*u5{mxW6Hl* zq#lR&KBnzD$A_;J9&LP&Dr^X2I%bco#n7B+?PgP35PaQyN zTt3e6H){0<2%XOms<*%4Tz~zl1ahmcD15)gj5}`q&rE%;4h<>BpB;+*+YaHj8#6y| zijH+7RMa=$jd@${BNF-T;Jj9s)MN)KCAZ%AHbRWO%fsv8NgbXXELtHIFD0!UFt72? z42zNekRn%dyIlrFCX!canPRo3O;JYWjdP0Yr9UIFw;-PSYSEH5&imOm+47x}{bnL> zYE?iDoYq<9Y8{VQJ3l6dcn);!;a@YJ8Fw$0o$miuom9^reW1w987+W8!pn6-_L}us zBK`^hN~-+pTH;{f7aN$iduS&;G8t8PU}X1gx* zX6og-+)lF4{U(E?r+;jB(Bpz=?a z5E~c4&k}DYHBGGQAZ54O5bmwfA(v(DlripPDGjxf$6+y1zhaC)#zhV_j8GL*x_Sg*@ks1%c+(0D!H7_59or%GxAIl&spd?mD zL;o#Nnh8j+7-=9@Ab4TK5_CtMYCPX8Lm-@P`;M*)m$DyEnt9VmT2Hl=a-t&q04ao; z5)}~{f_Xzu=cF-{z_Yh_p7_xJt6tl9+x+ z?JcbavgBBdI+19SRv=TEgQ0q67nV-&?a6`|kf9-PtNYkMDTKemYqu-=$!}_9w5RFK zG0OzeVuD{I({J25*szCh-k zk&T2}yJG}u2gY}2E?rwJ_lMU>)2qWC(29h+BVwiibPnUcH|DsD$}y+@g5H0)F}x-& zK655LPH9@S0FvjbS^~&AIPEvHM4-XGHiWctvL>Ku*WaR3jc!mN%yVRXmV%zN;=tkC zDF97K)cGZ&6}{%(&6u1`r_fkp;eJiz@% za5s)YD>JALdnOadE);VSSXHU65-7GK+UaZbYrf3^>sRDVW6UhpO6)o5CbxUlq3 z$_j&3cjo;drdWyJVmqPuXT08KVT^Bu$74TiVv_nyJ5)FC+6}I`FApA<+;;KWp3caj zW(`n+R8Gr6UmXdwa@T0JzE*OzEW@vmJoB(C1_XYQhhU}5ohGDPkA^OK{AfGrye2e> zn;fOd_si4AnK2e3hAS+FyD1AfVvfCtv;4cs44r`{q+e5)j;0{2Y|+kv51Pqtd)6I} zWCjW~bGDuXYo#_m$(!xrn}{`lwpI9%f@*Ld^9GXvOd0Wv?pHT%KwlKDvrYB`5qJFP z3O5Y1X{rdhvrmRP)jr}R<_b9jMzdIvV8xdVCzTbEtxPoZlfE-8a_}kQ$rLUSyPWW# zN4?zgHl`eU{-P;mMe|_bV#faPuBgH5bkgCe94`z z5=MGbh^!|RlAXCLQUi1iYg}wKToF|zDz1I1Z-u(>rdtOo|IM!%dq2(j7x|`0<;H28 zrB9K$YQsjp5M*(YxRF7-S!bNaptAB7hMaDHQ?$ScLe5av=+r*e=}73dcV>NEnb$JW z)vp;*o*4VYB|0AJb8}fJ(iO5`%Rup#A-}S#!snGdB0+txk?6MIdpA}tQzSMVvVJ6_ z;#HSMNyjE$A5_LKwn6Oi7JL zm>ouoM%@g%9S@&vq#E1BEyn7YJ`dMx=|2+)F*zd7th01K`Ex!r3DD(q)S052BGevh z!gq_#0Q(d@aIU1n%D`jUZ5+gNrsJ_LtUx@gFxT;V6h89@(hhkB^Q2hex$1I{^Eyas z%ru<6N>ju(E6vpfqS_5ASG(u8)uQ@{!V8b6WkeO@N({e3QUweZEWi&Uj zT+^8jpu*KRu}CTOB;Pn>V9GRm_mVRCi5bZM?45yg{hA^~t)=%tFVjfm0LW*O(NoX7$fr4+8g4H^egqcc@{N#X z7zX+GEGSdZ+kIZI^wftDWWF}~p@T*{D~81zbh*eQlI`@)NaF=uy?HM$ksRh}XC;K# zg9Z%ozQ%061^6jUtZL$N2!Xr;f_SK6{2=-jj2Dg@Dw+a-kfUE1ECr>L;&OxDe3h#L zI?)gil=5)Dm`G<<=kyB_-}Dq!r-S5q>x-C9spL#Si;a;iHGJ$<8U{(QcVgFJI|f|) zP^c5FV*|Of^skD|@J%+6&*(%S419-@&t%*+_rCCq79N=%_ zdf3%4H-jpwg(bsJLN&)DtZt(GO;$}-!zK@)8#`u+oK|05-fx^U0XY5l26dECG>Zz6 zj}G`F#NTl13#*}BaA#=c;4k|(6^uVqEq`K}LUB*yw65S)I}Khe+#lSa+ds`y-vr<8 zaLbT_ptSs8X$}-B3eqfCXmF9lL}FXWTS$9#$`cwAa`HtFE6L4*b}$h2wG}Y?@Xh*# z#l}kiI9o>j41=7cYTu@x5~=^FJA>7ROqVKS5#C zd<}4yvC^4c=A~Mbg-k|SCIOb)6&$WXW=pf3KSR$W#B|rhGo$5KfU>;rmF**rG{X(5 zM1}|fM}=SLfD#r5m@Omn4o^Hm#*!NHauJPX81~(kG&G~h2#OG2ysVY4E!+oYk@b54 zJ-z>FjdfQnKtr5CFl1nVa%Pw6jDvs_AYbRNjJ(AxIA&)}g(N!{J(b2}ol}1VfispJ z4L(1UzM6|%W_1i&US!1b6zEPT$A0NGFxe+tQaBQN z>`XD#*eI$R$Fu*!Ho}KqJZRSHKViCA89QIu{^Rbexl+S=`T5fAq)0?*IS-)8lA&|z zI58eK?fiA%?Qe{8YLhXSI##g=j(z{!0iOgcrxPfW^%F9pKdkgYm}`D_{SiTIHo7;- z(I=BCxGAy-V(Yy89QrBPdYkb}vrBVX)tsU#>8(c>p#`Vvb0S?CgDU zo7?6u7^6n|343)w_oJu;t;(haNp@VJuQXZsPXj@!{Mti7(DYttt%<8Q#ezEo%fI4# zz~2V>EF|ei(77IVQ|Okf(SmOc-cHa@8y zzA~j43dU{f8ZD^ijKCwbV{gZ&{$YEW#lvfF`yUwSyqWF_p?6im{&2^#A;`Gsl=z?{1^*HtHRhs~5d1JcCzVxeIstk<_<@XKj+w7ydheF*zhn zmt!N-LDJs}^k%RhwZlNl+SM;gSeF~@l^k#r?t%`^+DZ0ecaG`#hw|VmU+2>n#Zqdr z&2b6;El-|g2VCO!gxrxm^7E!0j_;jEQ>V+ck~G;Alj0MgChy~&&cnm@*y_adV>!@W z_?>y+#GuOTRQ+~_8q=VXSz2VHEKImi32lRsX??cx&DUXDlw#API7d`Ay(r5aDZf~X zKAKKN&wWiDQ;VosjarftzEOxhi$5oJWm6_Sq~(FC*ff}vEQv1Pnu`k^a=Xc&c})wL{4~)3{2ag#mcHR-9Cl;BIWlJ<3u@I9)I{)Ts^fu0&>|=-GI|HeWKlOGWG8M; z9w=jDDE&ONGb$TCm5pd8Y6STxbNtPA>oRrG^~prWHX5)w;_Fr*V1tym4Ju;Vle&8^ zu1qoO=^zt#FA=SCl=`mRLyT9z-0FJ#Y_JncU)gSLey(qS@Mf@vo&SSXz)b(&SOqNX ztjzy+oACcy1;$|g=8X}}fFAyQRAB{(B z`PNzM?`5yp0QP_mJU&pbqs}U+Sy)HMZ}iIeu&<}L%3qnbmlM8FGM*LhD$9Y@d9BOm zGSPFk!I08-7z9@|zhMdxQaWxnRuAvC-gVc5R6$PX=-3oe-^j(6MM=JQvVBEt5}uRh z*vCYfP|bt4iJ36w*|~t4_nj@?r;Amoq)^^r|Mbx}=z;5rs@Ix87DAqOjcN9i1;-7% zUCXp!Z3=>xuqE{0`ynCU5_9=mvyO*01x==!d)%=mb07HUlXoHfV(d7(E>2SYS+%!Z z8L~K8Q)gg**(%{eH)xaj4e{jjz7z4P%?xvY4CN~*t?kr=NP4~cte<8$-28q^NqBR~ z524k2K)jeIkek-><9i}1gH@i1rh5x)H8nF|b-Du8aC|3$;i^sz< zyy2{s_J!$h*Fo_%5y>eo#M8ae*VuLj7A6;;>>!!y-kIpSczp|bnS7%F^|AOSPa$IA z)0>MB>r>0`>+kO{$mxQrKiv`dVx=1-29#h_i0Hh=4Ug4Q+@w-yT~1?4 zOh$3oymovpjz85hSv6yzYVR?8RbN9+xqJ;d|F%hKc6Hm*qOr+!XG8htKLJth zW$5ynrhCbqOO@29Ya0-0AeQ?24PZaL(Z;9Eh-tSee`5Oxo?D ziHwxn2ymKc*M^aiAdEA>QQ^c#D!CA$@dZ5)cCl4=l%B zEcWawktws5A5E4X_GL;&6 z*ZO_;p*P4IHWR9dLN5lJSmg$n(8LZcWEwKZua1O5&7AW8F^h^h4nuy6XfD`>{=*UAPHI&4G>Lw6 zcY_J_PJIZ!2@tE$o+Hr_gN#(H;6O65rRrG}mszd!zJN3=7i$doOhzf$*=9x66lUSn z<&hy77e7qdcq6`@{A+@%;)igHE)eU&FAzj3=@*4)Rrf`nW;>?5j)jPLOT-7O8c%;} zL7k|sPZW)l=zVWOzs_aKmWg2Hr=b$iO#UmLgt~Rcxm{Q`1K3#NJ(e3XcVp(g*bVa# z-Q91I{9ql~JtBN4+z@fbSYebs>7i!Lba}$Cp%{`#4e9stvUHz$`AP-Hyin~NcOU;aZJv&OEAJ%gsRCyXE3`7N^E8rYc!Ce*zP$hxWXHvllMd$}D9>LnIvHr!`#71-{sP$?U z?zO9D-o$!@89;}QahRBUlgre})c*M-stwZE5<-My`ZIGW)J;Qu z)1*YdwG;(UV|Lv_xsGQ5TJ`7^;+R(jRpER?F>V9(G2LmfCk91}t9bDSLnu0sqfvSN zoQFY>Whl;$*F3)3aa>1;r3YX@VHs0;u_#V9BPt-bPe2ztr0o(qex$MY(n= zWG-qw?%+4w@U40*>$!uSKdy8QOj7i++63rDA9aZov<5k^3y@XDufLkB)>AFg+y@&< z=e)~K-^3^@Av-L5bERD7&^n`25K3YD7Ck3yCai>>kSjev5&>0iw9!)j!#o-^v*h{a2mFkF zUVM=Qm3D?Gx@d>%d!lF-5hH;gK96Z{rQJ1F_;G2yXBP08Hhmkm>0H&`Hr8#cMixYK zdrySp;keDOcXC7!7H@Wd%aC3Gpf&=|cUR2)V7JOR1t|n6((sYTFEs)AR{;SN^S>Dn3!wRR@4k za-Jg^n*0lB0kOP8UmZPgxANu%D$Ui0fg*k^d5kO+nt|3j$>Hw z_(^mA1_|eLjVv8`QR2)AY(w)seO!8#Hlfu&#!}BjWg8yqt78w5~_;8#+tHU z$Z9gdh6SQ(KGiM{$gxEse?x2)aWQ7%Cx%4YL<`0k=QO59!;wLHx$|C$M=HI~Zic)} z(O)gIvyW>3mGd#TWLTJ2ud~=QAiZEB%zC0nqHx<_)=o!!NMfbcI!;OQsy*bJYeFm- z(PC$$pwCtFo?yXhlKsL|RIk&@7;#+y_CG0dpB5Sq3v0xG6B#RZ)DzU+4+SHtb`Z9) zM>rN0tIzlWt{DpDbnY4fa{pCB3qRSu{l?=uN3lmR+un`6aP4?^*ovNS8S6i7_-<9d zHFd`{vt+*Gpck1W%8U{8PtuVjU;{+!*jjx2bz^b7Uvr%mTcry1Kune!KFJxAQ@PYi z1xmQ#N@p0Tp3ZncI3?d{{qn<%v|>qdq#!&D3j2;iU~qWlqV^!dEmmUhGKLBGsOtoU z#Y95c${`KxOpLLU3k4Vdw%3DpakEwomHN<>y8Fq%F_uH_F68nxz?v&Il~E#VKC}B` zJ6v-N6`jYBWvb*OrP|w_qQ~O|N}jjJRwO~a3z^!4QRkE4UfDpmv0rDmf2F2|hKHj2 zG%qoM;Qv5j5A96{aJCf3c>@`rn2HT$^g_Pyl8V4gw-Ih$WOqK*+?(c=4tGmIgmWYy zo@DY~**Xa)czvry$}6e2jttd=m&T9B87nd-6#GwU~12C7t`t&KDRXF>NedUjN z14vWW-*y^j-&&cvbum!7#3{{%bnlV3O2|EoUWqsjht#eHr8LpUyGC$B!sdTF(-*nd z0(Ie9%p}q$P(@)e{AEjYW5VAuP3#DzXV0|*&^-ezASDA4FE<)`)L4FYn(pG8kjP}yRaMokMQ749n>`_G*h~;H z*1CZ8p(XKK?@-XUc5qIu$7jWad_C>3uVuE|qs79hDCG2Fc`#~QajPv?A##b{JShZ1 zRTqIEGZSTxiPH#NU;~czcAEG0X?kC~5&u3t*j8G$!K=1*6e!xE&DHa?quDka(wll^TAHbAmbVBzJUl{ z(^7+6?y!}bMlT}JWX%EY1)m9(I#Qhhm`^3kVhYLksmiiTRv|_`kqeo!|EMds4r(Vt zeh6Qtz6PQ7R<7_mRw3hLz2D5YPeY1Pk*SM$&q)mr$%+23%a4zX^hPTbm; zFSb@1SF%(g*l2C&+s&C4WtG*GPzt=sLz_uD4DlZVIs`*)kIL^7NJ-hjnnoJuwdZ;R zZ$1+<(4Z6|su%F0jbP=yfL>kqzhZ%qcxx) zT8*BYhJ=eSVa{pYPU&}-I{lSe6ZCKN!Iu`($q_DOISUNcPR{fzrIZM8t7pHQeU$9Q z3rv>umL9@s*m+!QLaRH+R_`?})1-lJv(=K*g%+dv z$)2bvqFLE3x61m0U}scGBI8Me8Jd>U{+uEF8}C?~*h4|EyI{0?B8c@-`17acU3E-B^&z*7G!NrRzjfm4J&6fPponh;e*31!DLUbMP9VSH^TeO$5 zRgJeYaVL6TQT+ocl}kY{88j<^CJXcFLs`Nc=-BHqB*mwbx>@qA#^^cZQ~uB}JYTAD zU~CAh?~+2ewwayaG_^M4cfDRHw0_lwA7`2OC8J+O0;9jKf4Jw`7knCtCUuac`ewMr zS1k;~{bCG7szY0LcEelw1w?u10Lx-nL0fJ*Aw0!+t@GaPP~_6=LwAjkQr;e*wjSmC zNN^7R!lq{7jX8y2)iV6v*H_VR$r(*WisB~ES>sd=o=%Ez6qdsl7vCdxs{wsSQC|gw z-Tu7$9C#{K0$MhZ%4nGTXnuK>X3~x9XdmqRfhPw>z20E5l<`W(qb;J}3lCGaPUsgn zd&n@XF^6|Las&5u#aG4C8BKLROypSu3m8#&qm8&)dVnWO9mthPPZU1EE4-{B7I;y% zue$9zK+Kf6Tp~V)ADnf=;L2KG&l_awq}Gb)btPV3;&`-%JI{^32&@in`s5 z8Pvy?jB5^iEs6+0Il|N|@v6vGU)AcTjMl>u`X&rN_-;r)oxSXW9)yeYf^be?hT=QR zjzIXs4E*_66ceHX4zzhbcU$q4+aBIa1tA90ACb?A?z^M zgKjS=TD@IFQ=41EH#121fw(*S6&MHKk=zvt=gop%BAHN-4I1!7=QQxsm3N!{KV5CskpS=irZ$e zF;AOA7bWyK7QJXVMnXk2^Rz1|hkGB3+AzEt&Kzj2zDYGeCtN!w+PiZJIONDOd!e1` z@+u$?Dr~AUi>_aPtWxMF+n8K+P{T*HcQN-^oO<3_|v#g<8mR!vvX64AAVk!YREegMUU z9nr-0zOfBYn$gQS=HbN{bhtkReK$09>`KvLKAjR9zLnwXF!k81{!C7y6a8wcrr7@+ zT;N5iJ-k8XMZGX|uNa1#y}E{K+yu<}`YSYb$g zfU@TH7TeHCcM?XsWXTtU4lLJ*3|(3_We``T&|{cw!J7kOwjx2a7X@)798}OE0O*x8 zk#}LOJKPzixv3N`8-h*pbBQ{g|GN+(^q{-ulo8_0$m>k+d8%qraq*mFJBGm(y~y`p zf}lCiG##RS9O@~=U;B)zA(=ZN_HYPIiDbXD#vCW~qsil@F@~$JBRiS++o+jl}aajo|?d@Z5+xKhm7f|&?s{TL86{F-m=1JX;}`?i_+U|`rYX_O^`BCQE`@@)g!rL zEuqBo0w(HlOL)HXg}V@V@V)5&^Gk>4^E0*kGv({+_O`z`XzN?M1O#E*EcAMJe%+sk z5B2q4R4j-1_ENg~>yfhHm-I$PQSJMFSnBIrM?43QZbQBunp?EwrJMb}-g)$Y`M?$_2eLU`(U-a+8WXp#7+l1AiCDID*^Md>tJnHr!Qo-_G|Qd;BrzN>xgP> zw`rQDqea9zcz&f_IB)dV$4dfE{x!}HwRw8>>pfi4`|IbtXpFaqM;cREG_Ns1qEJ>g zv0W{HoM8E188QI2KW2gFc+x_ z^JFNn?rAaGNpZ45t1Ok`(S4}<;Q~BOHJJ2Ytz_~X?H%dnf-ogU}X{q zB{v567@UL%9NBPglsqdR3aR-_dL29&9vDVQA~-hq&mUUYWUy*|^#Y9ZZhqOCxE}B@ zMjk(iSvv!@CNT_YcO8Y>MZM{u^4$Of2T~7Y0{U?58J*pI0P}S^=d}?-6 zC~V~bigwb^<%3m*USTe>i{((GQwU`4ca0PRC^^%P--$niNukUAdhg81S@6n`q9v}C zDkY4@$@0LlqnxvGuvNNR-Sp0cW?th$_C&pL@rgG|2wu*bjn`K!OyQ&@ew(1x59ePB zTkrjwKys8MXbCQDc1s;>Zd1$a<|*FHe=B~;k+Z`aRJWo+{?|QYTld3`gdX}o)BBzw8Fx2E5v7bTPZdy%yyC1AQM_yS6L54ONrgom~Ta zpkhbChTU;PLiKq@Hw{GE8LUZodpX*;oq7s)1aHq0W%Myddc_E(%Xmu85J$BF%#D`(BL46*2u^3)W(j|tO9O|ZeU z@C!W3^$k<3Y4i5W^v}e(XkzM%A;(Oy6g>L+7`iD}4@d0`M#qd53oeYMP!`nR_vA!} z4K?sNsxr0gYzzIzDOgJ4KM9jm?5hIkOXV&eaqm9jocVB7WJpoTGKqUBGah_F+Um<< z_lzYE21A^R!fnYe*~VmY2V+`pxPldXuchN(vnjzA0jAx?`5luZ&wzJdkaAl6ZMxi4 z)Sa7a8&QpGfb?_h2JV{W`mK97!kYzq+D9vognWABl9Z@g0U=CKwx1RMKC~e2kDoo) zbQ5+il2@06orTOLWK6b6uQTrxn&F_->^QZ#oANJ<+qP}nwr$(CZQHi1UfDKY*|z(oNByUJ(1Vkl zoa9bU?#;gW_Fijgw7?5E#z9As_#)q=45GlQbj2hs$q=_9=gF~9dR4XQsS)uaTf{|I zV5_P#@GGuXApzB$1ejjc8&}U*z+0_{i7^OY*N6wLk?i!X4cl%^3#YD5WTYqq&{g@A zi4E@aL4>b^0Db2ku423}#fU@Op`x6*9CvE|4h6&IgTFgS{+eleX|H}1{LI+eU2aS( zBXZr9gW|G288)M75#f07K6Fp1jRXl>4j}7DUU@vktU-}AR!4=2+~)FULc4(}P{&(} zm7cC1=x$sh%0y`0Mat@ekBQ91c9g!${VBY*sJ3ChU52|X1-1dVZ=KlH%@!8jpP^l^ z_yOu%*dy2*>1ozQsaNY}@#C)gbc$}6kF4s>wPkkt9)3uDr{J2c6@Z7nR4?XW09N-+O^>Xa;a9CKQ+3we&gbk~P-h;1RItzP3ljC`v?Y8dqEXU$a z-)*m2$n!HSFAcvS&SQ=}l!?+QH*b6ADNMSjQU;_#U4De1rcb?I+KIc=iDW^23v6e! zYaF@Ze-2rh!9rhHlH6@9v1I~o?ZMECEws`;${D0@R%le>0`#@*>00-Zo>)$@rNqpi z0M7D6n~nMlcj7W~cU7-ezaQC^lxI9F`^iRQLF&0v|f@g5zf)&y=T3>QvK+sm}S|~ zCFMevjuwT3K|Mn}zuYYC;NDw3@7)fIJRL}JaEI7cnCTj(*LShuYk5+1P@Ci+kVKhTbL~wqt*KpLX@Xm(oJyLE{(2w6%cLJ^6 z=V8_B8LK$`{+f4-oVT%2tMrvlPTQx7ASG?wnW0#TydEoSC>52Q-CgS6-27hPpMfB@X&jagt5Exw^3B zMy*GO(#4z7TaGdS4Q=`7Lq>!eQGv0Az)ORC`F!MD zEwVg8iA>S35lE;DrAi?iDq{^$17%eibau~%WQnIhi!+s!MJI@)6KRnAt-hpgzv_Sj zHMk;)b0kzNEy&4L`SA2?Axt1k?3%`=M@0&z&4J}T1y8n51S~3ZXmFlu^GtGZo8b%F?A5X<>(ysVh;eV!Va$^{R| zq(Uwqhmw2$exgOm2jj;G8AOHwbrlN44!Dj^s7VlG+;9Hti^U7($HY2ps7aV?MEdEe zZda{)Hds&}Z4l1~2vOR`5dbq2yvz%v7wp@u#Oq`8^7U*#(h-Pc;ot%lJ}JUt9I-K4 zG!nR(-GA$_0?!F@*{fG|!d?J7$+Ull{i?5|R zrSw8}Ubl36Vf^r>Sr&lAb_S#q#jeu+!0Fe)LBYpQrLCV;RS|!Eq z_b+dvC|#5>Rn0^fWv8KqEF!fAoo44850Pazj%0?TU4-a1a~`hug=pd0#5m0U-P|Km zhZ2{@@>Oes?1Ln`V`rwc9xQWWF)LP{zr%`qHp@3g1RW=+elSy?m|hmuC&qlv#gWYv z3DV*0j<7~QrKKZSJf6^4Jpo%Dd#6jAFp@#GRFKeK1(w+Fb*`Ioo#9jlB`;w641Z5* zpsm7`=&OmM3Ax`2d3Ur659tLnb5LAH8Ro%W8Lno#LaNd@`3x5{`u9uAp`Wt+$htwg z*sDK#m;iD<8w&It$aA}aeQ zBx$m+A?EZ#?-GMU0`a35`W&Dd7*PcI;gnj;I8 zX&eEC&HDC^7TKSU6hi#yRQ4Pg%%RXxUWV(O#r{Q8>@Qmp%df;8tL9!VtwRk`q|iA6zr==aKqD!rE6ovwddKO9sltuCy!Asg?pAI(hnwG$l(efnVYuC`Px?dgm2P)! zQxaQ+NpkVeao4eBE>ZfWbe;XXRHooY=}K3o`Z>C-4mu0RNf5HetMf}-9z*IoI4R~Q zxL$*Oq0g^PJ{unMKplq)G;>waCC|+qXxGDyc8PxOgI_ z*6u`?D$zi+`SMBN;U{RlA&@AXola@b(8Oa_i)7njwHj8f^B_VG0+EyMD zznEDaE74_^DsLz$wMEosMqSf(9?_nQ?XL?4(dWwj@I3q17$hwW2nsus{3|TikMqMx zUS3>;=bh}}SAET(zkQW8!c+wV7m30ocFg(Q{8=ZLKOJQeK!(azWN%Av13Y0aG;;h&jH!-^0NM>6g*ni{(C(ykSTxb zXzVi4opZWK8+-qv=nhxbCtrM1DZJR4_w(DEK-Va{Kp=RZcOW9fBRs6ebdtGYNsKtd zt_LgFr7^rZ{ae|Pj~?aH8Qs;$C$sI4&icqFmDkma@t=^+FPRy>sfF}z2^$ulMTu&< zEnBH9>iM{AvYFaeNEo`KJW3~%F`S=dU1;|G_SO3P$<|CKgn(0IrTEq{?C@+)Jx+4f z*D$jd0)fJ{w~7b>0c+?WAe6&l+;He1IWNRz`ZGNb4#5<4~y8` zk^V|HWy_C=c8}*XD%o|)zY)elEQp3O-{sZG%l@!U1t7=mamX36$m=cIRSf(?!KPhI zrxnoIB)P*`)jb;y&M@X!D~U-!vK=z}NxQ z)JP21E%u-cc^WHfBm@&^=@NRHi2aR-rC0>vGp3UgoHTw{>M{Uke&- zPuQ)<=W>*|XP*@d9;Eg)i4xa_YiqKsNIMLt;WI9z$Vz$?nE-pU+`Rs_6Cf9k#jaMa zs!W8(`$>@riVb%6tGD|s4I0I+#Y+v^42C83TM>4E(S>(Y39WCjknb8N@mfjU7_IY* z5+B@EB!vz%6q}Z$k|%EKHAI;%zKb>#gdD9=_Bak;zi9p%A$a~94s?Ggw{M2vqn|<< zx5Nt{8BpDA?W#Q2BNKm^;5z}R;*;^s8X7k5cxhXVRFAAj-yM2ox($7t?Q!Y@6Hya( z-QQGqs`%XH6(EZh{-D#XY{VyqQki$BkbgD(Q{k0OsO(5gz2fTKH@4&$imB%sgD_71 zxqLKK#MJJ-=f^!0&0ez2C6=-hMwn{?Fad-6ub!Bg3@zc?x%r zKM%xt2IA($A4MlJj=!(B_Yeh~JS_N1w0nOmOVENaXDg#|T|TSaH1>g}h91-xYzsYm25?7iWDXF%%G>kBz75z{y)(NzebcetyAq9&G$%^Me&u9snhC=&NokS_ z3?`}1g_JSu!J|QFhD$7K&74U}NM5c)X507SFCnuf0ho!& z17)p#Ik3cNlV=C7TxV*IwDJMO!ReLxPSnIxW6Z2DTh>l5-{s${upR=X_^zt>`>^NK zC`?<1Gxg=tLS3z6U;%MK1rrmkeH#%iYETm&u< zWwKBVf8?g|R%$bt;tRl&l9_8^_)T2DgNvO(0arUYT8m`Xo|yC{m* zhT1V_Qtwd8d8R~`7#hC?_=~qcyT#M7H{#+(Fq)o z9iUq#mpPS9r;Ea0Ox_P zmdDyCwsdY{D*PwGczXOu+ifFJq4&4h)J$||ixG~pKCj<6y@Q$)mPLLE}o@&+YFxi_|Ry&UugI(qxnA-{*Sby=Wz>P^34xiRn<3(FiLV%}mW8cwj5POm6R>^MvNb(PA#FWuL?Sa4U0E zAS^4KsbJ3Q`=Y^nd$X9YSL++q3+jR_qWpuL3(Bzxjv}_1J;i2ZN?SZxySZZu%81_E z3Z((_BRY{F5l0)m7(7WHIca#4d_T)FAB z)-~QdqjdK9F=~|Etl2P-N(^m3Y^KkjIJ2u1@#4nhcZfzTa~D|~<9~AaZZaJvW@)W< z;L$@Vv9#)I12yd&W4w12Hhux1u>!kO25Tobakitum$wS{JU@lA=Wk5iY0kBr)G{@_~ z^P6E8X}>mDdbV2FfwM}Y_nHZNG&lI_#h(#thOxZ0bC~4ni1qJAH&Bvqq?XZkxgh}A zp*^;@**7>LXxz}g8YPM97cwh{MIxqtl-h!rJ|dD_jp)6U_}F;nJ`pzFNa`(Wwlf-9 z#RKKd78Kuu(b@0`rTLgGP@t0l_E^QGK!M=^F9ZvFb?;Aj6PzaJz&^5e{SN&nVt$~r z&e1&8&GZ8uVxXWlKFi|#q=kfnrHfZ(IfvAXnX0kx29nu&!y#QDRaACABvRX=5Jw=& z4V2mk$3Y8Nx@TOn;S0^Tdwa;!o{tngTi@Sq_xo!Rfk4q@c@U9;3(FYn;!60x+LaIg zAbM*XcvlBV0dT}30P6_r0a8*RTdJ_Pn9dNhU2BkR3r?(VIn<$@fOA3VzAC;k@yX)k1R)+hTxhD^2-4Q8O^->aCh*~&e*`_2vnFIXy7V&g{7r^}^ zf;9r){gJ=5AL(5hn&j7Ir8{b#06IA8MLU;KW#618?|j17&e*srp4u%N$E?k_<~Xxj{=NJHedyD>j>JnXli{4wq5UvfPeTFv^^5Av8Tiy* zh7@D1T`1R*-I9K(c@t3sxq#@@6q&)Aw%a1dHO}jTbg(j>vrUCmc06;dS zwIZ?G+~uTrEzs(egEfhZw*#tL8#!QVnf+XuB^v^h3XrgrN-t%&Omw7|iY({tN89bM zy$UocUhec5?=BiNecDc*z;M3`R@%J{mnsKK=qieaHf}5JqB7(V0Jn7!}-UXaoOUTtI=qA#w6r}}1rj#>;X2X;kb zaVZ5uxS3P~xps_|e6PEN)cc;+QiJxn`=-oH$yDq*09p@vwaBIP@_VT5!c|Kh;A&bK z2V{uV1UzB4h3Jig=xK#MlEn;5GkD$c@EGB+HAM3872?wmAlCtx{;c5dwzU6>7AM-$^oy zo)&|UhDFsTwP1&)M>6Hyz_52)x7(hC#>TdB3VjKMT)#kk&OG)!%NcxDl-w}v;uL9_ z{K(K0D#pcJ9!&xH95Tq%BI~L1O1X$^hk3z#HB{rZDw3WW)rH6UV-1<5(nGq-i?2WV z37O1?$Wn2&8#-;2Od7&Ga8gEWK<91(Kp9c*@TZEwx3sd9eYA97?JvFPLZCemeJJ_Q z3}$=>BQ6rf6ZDtEe%z4>Sn=C7PX^`32C#yr6L#Fmn?Ydt;l=YCqCFT}@ph`(eYlWra?0 z0a{5e$1X+VRKk>$m`(wTYsqtZ*nWB6B)QKout&}Vbe^Yu6_wK>SqPKPZ?px!ZR~xJ z>GXqz-y|%{E~J2+oW8J?-PoWJ#$@)s)}~+x4M9YL$GgxjVq^p9T|+Dftly?8sq5}ckD}r zV#CWK{J*>R&_){LCX2c&^JHdQEK?`tq?J_f!+l2(;aPYyQ^smeJGmrJmFQH%7?JV6G`5+?wqmzC`uP(dY(Y+Z^5E7sHdRL(O=`? zpl9HMj^i?m5uksYaJ%Xk>)k(7y8OVx^vX^?0v1>k)M(khJPP)oo^~4PCE$)BZY;X8 zg?Z$&+|jaNhS;56=eJKDUGH?+jCr_40&RU-)(=gXpRcdC^uRu?#jz^QRGG|zY!S}0 zgYH%7IeTbl{Zi&=EDbT>QT#4Z#G0IpYzFHMH{N;bKRjH4Q7y{v==S0#tOTLrT3g4| zYse0_@9)OdM^@K~s`<`m9;EY6o&>Yw&@RPfrhS% zR&C1KCd8iLQ&Jqw+D$u`;M8LJDy@5SwE)f_b9Il@!zI-n2PTSa^(lrybzCz;Fu|i> zaF)rlx@kehFhB`GGI4-aTaolzj;f-LNH14bWyg_H63Cug;*BtuT8uwtdM)cVAQ2q> zs)KhqmbGC{FEHQoplm$iS~=1uz|m9R2&5f_Q%9&Ev6x^B^osGIL`Z6x@m)(|o1RL& zM3AhBbhy{QAr*`<61Q-(Z0%ZcCye)FBFoWHD`?C1!^>}e%ClQxMO*Ellk@KvlF(o2 ziyowItvYE`oDjw|9(hDxgv2=>c;SQ(&3UU*QGGAjw%nJk+NQv=p2rD5vc#VS#tf(K z_oruv;ZHNw%H(cQ%9Q_DtsDvl~y@H#x$M7JFO;ljg`R{nhB#rX#IN-I1%FLpCDd3p+}) z407Po#~Qi})y+aFY*SP#v;1{M-3&J!KpS#ZzRB}k zGP{vY&pFx66D^EcHE{>nne(QBq$N>O`4NnFAZJ(*oN!%p|7JhVw7CQ;1St(0q_&IF%(-ym?90rnas|pqX{<;Mjmmf? zg--g3*>h1;O*4m*O+7UeT+~7*hoB8}5w1m1w9Gqz3*~di@v=F#0`jDAu0&YsVT50a zpGuKLmr}ka%_l?~bg$Q#wn_N-&>&LPGtDbSO%2FpxD2^_I47DU7OZsIZ)#YWe=OgV z)mqE;knQaB)*ST6{5rhXMK0iQpj>=>zd{%9*-w4`?hv6v9^<0}SG7`X4QKfY1%(wF zFFyelC#mgo zqOstvs{MXE8scV*@t>kVr6xq6zgl4T`kdSw&l13%q9EiCFshYTKllTIWC4cP!BLD6 zS4_fc7dGNB3J#M5)uieDj`&K0G-#IY=V>cF)2{B&PG71Sm~GheV-e?Wv3>YwzD(v6 zyP{Ht7i&3=5&>rxU`&6^XRg*NH|OEGN&$<7e-@P}cVE{>53VK>hdNSTJ+LW{Y3R&( z6a4y2Nn6p0U%svrfTFoBa9)OU5c}A;;<{1gjY!Pt=k4b%e(xJzfN+NG|Keku{~tca z%EIvu3Fa6ebIlKD0~U&hO>*zqfLaMX|+*kxTdP=cE$9 z;N+QJIKO;JQtO+O_Xu>?9?}VQq4V$O;>oXl@hWYz0v{=&{PE?*1T}(_sB!v2Gv7JC z_3{w>Sm#V>CcWOVGZlaK+bvIcv^9R~{fuwE4lp&tZS!NaVUjwz32E_A&YNsARq~J3 ze0U0-4UIJMLLzlPrca+Zb&Torj|ahqbob*L8XZC#zsvF$`IF|}a_Uk)|F9l{P+*9G z6AW|Do?EJ%MjGdDQ5(v5Fjcd7Yni^IQr17`JvEb2Kg{tA>o7v)OIJjB zeTiV>ldszhH%q1x`T=pf4^cCKZSXK2Ktu7;dzF%Z&*kI&U;A8D!x7P#-GF>Jw(nKeO$g_u22Zc;W zkOLZ!PC7vdCS@49Ny>2Sq=ihHL!(}=v&a;tXhby>%0%Cc?+DBi&Wo4J81D#F0h;nB zgmW%l2F!eMjyNPXHU2m<2G+p?A-G;4u%_f+Yju-3(gi38&kaa1T* zT-W*xjC>p$9P7*VAtdDNyxO@=&{)S42Tvls2`61$`18qur7v=#LO|=>y_`>JN9kh8 z@hrEo<4LzYTxz;vFN|?jKZ>Ec>A6@2$vrI`S@j~9xuT?p_qEiiIGU2v6z-)f)7~8U zIw;-g%dr>CEn z+8h!Z|K9!tfND%DPudLoNbu#0H!=uz@Uc)>f6l{YAzUzx&h%z0=SWrZzU=ih0XRff zdjpI81w}GZ%tTZEt*wW-YN_$PyKSR;QT;Uv4 z;yX2wK@V4%`6HK@kc($kR)&d4kkF4}t+P~1OI;+@YOA3Tpb(jmf0adlj6tnS^cNGI z`EBu&{3vlkp{uO+M0fX?0ODt5&z5fKQ7RBD&ylyBf|(A4xki=rr0oS#r@ zSOVeX8Z7E3t`F;Vb5@;{nH$JQV8UO9m*5%`4N~h3tZ`BjL$T4}GH>^i`|mwdp{F7{ z!iOsH%r`4uqCp>c&Wg9~nJtSg$NjG=YgWC+(j)r-Y>Q$poYS<$Xq)6=KA>m=YMlLLhGEns^cDJ&OLC1i4t(jC`WbP$xAP14kqT~%u5*UFD=Se(F zb6H>1On*v7l-LNEbX+WJ8L^g~VbyG)lg!__8J%IK7Mq}&wUpw?&lp-Vq95X+bBbEO zw}&Vyt6=?IK>4)Ul>8=ite`kIn#KRBmx#1$B#FbNXmmbv)~Xm2TU_2$wI#0Bsv~0m zRd$__(}1c@U21@flA1ZIYjg1XI`~1k`h#C)v`$kZ;)C{gd#-J3COvgohkg>Y$I#ZtoUqr_fYvm4YcEo7BNrJGIwpN3p%kaHpt zS2IZk@MTEqY1QGM$AJZc!(}QiA-|xPn$btWD|-iI-`+i2hr=```i=bf5Ad|5gdBRV zVLM)~7Hg~(;2JEhfTaex@?UTTgs*1a-OD?#VG-bj0auNa+WS&ao2(XoiYBkN4Zn}YM= zW@UHBgHvrrzvV^(++w>ZRT0QQU=SO+4{8lpmPV<2M73I8OX_U|pE*RP>3*##;bqhs z1SO$@oGA4PmPGYvaXFD(ED$j|82&iP!M6D8BCo=R?9+wPqyK^~euq%&Znx+$*xgaY zyRFT`<=^1DAhzJqnsR{{c|{i6$0}iXF*LU>Cdke*585%B%8E^ylj<~rd>$8lafNGY zs5uSCZD*t0-xdh*Q{9&37D7?{V)17@+r}M1gd*I3%sz`y{sTh28Bmiop)&~@!g|@I zL5|Z?gnH6p*@WhZH6d%i4$1}*#=B#vm5|$AV6EZCOqku#F3Z9{V;ZI zLu74*hUzC_Y8pE<2J{$8_1n$QL@!QeqJXeQ(AnRc1s}}+GhFkk*ql9obhQTu`pu|~ zg|SIt`TcAAHxI9TJ`C*Ai)rZHxfS7EKC;=;m~N~A~np= zYq)2b(7%gkD*X`^w5m%Ki#2-V4gFY?el>erwD;Vr*qW(Wvxg!#v~PCr$5iU6M`MuP z7w~3KsYwL24$=SQBR?^@PF$e`YNNU|ssehTU?!Hj>x%g2^T`He2QqZfy#hu(c~SN3 zk;sz66dxEhW@Ly*&&`Z6$_v)Z{W=%AqLyhwBmmALn9!c=rVY)b`K0B8vLigPkZ7)EC-3narL?g*f|+QJrRP+XBmk- zc~rjZ`K5@=+xfeV#|@9m6@g7uH&Xb*BM_(1N56ov1O{aRFHuvop^0W3V{pz_=a{Eu zV|CMs!QWhT|G#nhjeh^;sc+84aEF@J)Y~a;&PLHLS@5&@_J>o}MsYw`AMD(}yL@G& zTc`#-uz-K@wljGore287rGnFAlGzfN32k z90N5V)3iZ#SNE{HTFk_-!mMC$4Y>j9@%=|`eaZ7E5qH*y&4_a1VUH`pG6$M!DOA8r z+@J71Q5Y}POWDh9wF)(XUfXESNE}wavXi29Q}uK*UjK?SA^1>Zk7W(s8595q+Z&l7 z$*jlh{0%ESSoW$)n$XXx9*vggOK3}f_7Nj=oiWJb2EA@|nuiI8ndO;J`2`58uHgNZ zH_s*)Xvvzk`)h{rs>6WIJlEMRnCYr@=fo<$4r6PyQi_ZUU6EDRlEJ84VP?HQ>U?Y) zX^);&TDIKmy+-c3!0h9g1DWWi(#kIQVZ)5CCf@2f_jy02eY$OT>xAtUL9d;`%&>&O zmWv+_(wgwq%Gn1KtLfL%H0m!YdfG?NsZT2DF=2mRVzy>a_{FFPB+#qQBCW*k0|GqG zg|--$kYQ#vX~sEHor7J)Z0-G_9EL`XIX@Ywjgo~1>qO9qJLhY-^?p*+xrVo(xdCa4 zFRTa)C?iY{w-m`mi3BCzdDD(GmB54pP3NMB{2TM~_$Jjf@E!z`!dF$`l) zjoY=QMfU`QTlzz)mn|ISSq~^q|95`>45~;E+$Mcgx7D2QDSGgrl?U+H zS!*JmIlj}5WvG8X=uK6QRmqf`UpqHkL(cesMr_HoNcq*jkctu#5_SC5zP zr$PDY&EC3O{g9kzJmb}t=9@!h$>A2ZEQ2&DCJu+5I>o&373USS%SoPMQ3YM}x1JfD zDIZ?b{7|oQ4bk38nvH$>nAq(2hN-x``agNx;#M<~)a(Yu_o(7Bl^fER)p`GNZMUkX z(ojuzCZoKJS?n$Y=}-Y2WUk>rq~v8mS2)QffKb&XX-b=k-$$vjAD+WQG4Atng<^c{ zpUg)bL9bdP%1yS$LOMB)lxB>(6P@I#i=*3OTa%hStA81H;ipE&xVs^$Jwx#x!R+*R6u^zt|IUGgKwAoTP2v>(m z!|8{O1TmkapSp2EmFTB)e{A4{Dy5k|3(F+K%W=gRgJ+wpzXI<`Vl3-I1^WS=!Trbw zW;-=ap*JHzFoGA*8NZkt^YjQ_{gypCf1bYjD^sHX5$V%xFx+s`l3Km{<@k6A@$7Ga zE!=^Vw4c55PnM}kIQ~Mku}m8Ooqg&vyeWF`ZOI$Zts!48Wkg#Ui@eAF27p1^ceS`8 zrg}r^I3S8f^@(T!$hwCo!?D1dzTBLcWJ@z>Ns!A3Pp zHIJ+rGKPFYTb%|5+<@w4jSb@dd ztOv%U4@xn_khbL zlav>3t^gC04H@KPRSc6g{NB`qk!*o7T7T(;>V>Gh79GD4Qm^vdN2WF;JknFbeB{IR z1A5SyMfjP978SD2XY;0LFPtX0QgU5qpZNtMP_7ER%vQG(ybyIRCI%g*9Z*rWd~kAv zLyEw|+)C&AbuHhhjz9>JY+mcc1lwJc187*{9!0n|;SuM6sl70hY8epbq{;ril#{9+ zDO+)}2vIH8?Qtv^bEcehaT(!vryZ6%6Sm!N5!BhbIoNg)HTBP6O4^h!Rm6?cU_Hvk zrFs|ks?$u-a$RA!uss1upKb$}-XdiIEV6#FS{Y;UmUWL;F8khVuGPzAP#J|vxH4#-y^z~YrSDb=p zE8s`dYsf!Kg`QkmZ5@?C#$%x8Wu*E7>dTKVIrPM)m|PZfbaJ7!Fr3Vqbjc=NbLnUP zM8&!}U)?!}3wg-{CYIH-?3^YYdsOMn3sIAemI53Q_!}?6j?m9nG~EIArto$z^Tyhn zC#?syF2TZl?=DeKm!Tm-@pbf=hfvdJnG!se(AFT@XCJ+J$rxHz5=6?F4l0MoMuE5? z?xy`K@jKjZ z%a*wJh7?w!yY`~M!u?Ti3%i#Vu6uqnSQN!*eI9V-4vC9K=#X2via0x047M;nW-SIi z3nel}MWGt|E-R04O{SziN8)b@y*db1B1uKm`$?U>P0^-_%`l^8*9$-Wc#=(R5X8vL zlIkkjV#jSx*w`b$P%x#vCw@zc7$T-sSTKU&kZ)S4x zDX7(0{1+W4UwYX-sMwasGFs5HtuAC9=!NxVs1I9r=KYLxItc7`9E^1G6MVEs8kxGa z{g#!~-KcL$%j^8ss>NrPnc-V*l1X9lJf{COw<-tldW!O9RG7 zmyMeTl9N7)$F>t;va#sU_}{{MEy}l-FOrUbekf4M)f54?(D6)FOO%$x1r@cSC1nxL zf6GlR*2Tl)uB%GKelHJlGJCfwR#Ypm^-brD{WCqsvhG!J-_xxn%zZIc z&C#nQm9xp#dsg`o@SaukmC)Wq2Mo@QiZOP?!l)lJEU60PGlN@OXD8M>%@DdKxYcDF ztFelw|Bcztg~+xokOdN!VuzwffP9_^j7XmQF$&=dO-y!v*MKyJ8qq~*1k7^sZhUZf zZum?Ez+v0%PFK|due#C@$9$yM-~2q{|DZp!eI@;GWXt$J3@lYV9Zc!vjjWViZ0Y3) zm>3x7#VnniT?iOC8Cd>pZCp&9=*4UdT}(wxjqOcL>19mq%v~%9nAzC=L#{icJ5{&c zfw*%@{RFN~L>UDHrbhw{+>A}K0jdcSn5b$NFc9tYle4sDyYkFiTeMu{0yvj(V<-9S z*BF)6-G^<&9!ghYhfzlNS01YiY2g~u7(}mRS565Yp%#MP?Yv-*{y!mV+G~o7KTgpj!`q>9{sPcS9XgsM#H1Rx^UQx)9t0Ms)XCkCQZj!TDo zUP&DgpDd;(E?*9Y18s)jEngWA8C{qe34Y88phiOgq5A>ZrDolRBP@ z`(Z;(z&Z$%fI}5PCju=7j{_<(!VoGdjmK^wBW)xycS`uBgjge2?gp0u0x^apIF4{6 zu>;p(+{XZXB+r;2GeBqVr9rw+m_Yvx5;)j`U^7k~XWk|Za1+j9GAUK?liUX=5?qA3 zfvJLxL>CffI-+zF zJ-pKY{(d}6`TsuW)BAgVU(VJ0e?QF0=l_IY+kD)2hcDXp)>(Mysk_Y7Q)6VlyNU|m zcLAXWPQnTF^MCpQKR=PN`vUVVoBSYl2P*xdy^958m@9$x(^5+C18t%tREN~m-u<=4 zSUs#X8wTDE*5-{40t?}$wG<0;x8N4C1+h`QA@(#Za4PxfE!(#mow_Apl^7&CwQm=y zONc+c11cb_BFQ4G3bZ%5c3Rb3_BGeAy%_mF+Z|d8E~0t@((v_MR)Z z2?*4RUetTHH1LSMObh!{K&05aez!Sp47ieEYzq*>y5!_u0C26SO(`t~TvJ1@VBLln z6>XI0nKnjyj;L$L>X?jV6`YR-6T8~g*PcXpj@@d<@y~A5R@HcCx(&)ZH9w)E!)$fm zj2MKZHdTBT=_HH>%=Y*Jrt#(9=NWcL76XNi-9liin95clD@Qkz>bVS5ATrVnfP_4i zY>ugD-@&#{3NKhK;2yuU+il&-jBuk`X|P$gz}fBOqg*AyQjJ-|WBKZEUmPEpAO`ED48cch7ePtmkrLbJEGS#6z#keN+ z5){jx&XeWwSnGy@1+Kl-I*C*&Ho#z1m2Hul%eDd<%hW9zoXm-zX<-+&kCp=CV_d`) zIIQZ&S=CYNGI<%N*u-`*@=zzw%?_W>&nZ+QdiUQ&XoEy&8EW8nP7Ot}VbZn3p$xgc zTF!5^QWh~X_OMCN7RnWOIEf3Lap~$FwW8FJ33~e`3-+BMc`P#@g%h~rwZ-S~x+YOJ z!w+uRXdKA4s>2y>(bIB(l78545w4^zKqh;pcWq$ZdQOB2+S(X?OmJzKY`VuFJ z%lY(_3Q@O1nsmqPuiEJ^801Sy7d|m2jg^}kES6{#ciKVVH>tKkSDamc+^xrcyxOF) zwPRodAz3T-kgPae3h3lrT5lscv0mief8eHwVInt{UwtNSN`B8&UbJQafjQ zF)xgot-X#|zO{*5B#nW$W!ptO=!`eY|m(0J?7CTlP0}}j(#poMOQdiONx$CWpZ|P^54;_rM4F; zf)Ch?WG}hN;EIzrPzFT>+#kKZ9_99X9#M{t*0!yF3B101)$32lB;Q)=cp!M^w+}Dk zYkqRQ9ggYugAhyWq7Ulg)AT$7J{)#@v$uvDeoYM<@e-}Qy0MDb3@>Bi zXfS=9x=I43^r#zLio2l4?(au@iWXcp7i@uxGOp)PUpTbo#&O>O5E;O8V}^T%ya-TE zI9w5`-npX^|DAy0WpUnC%~q^5yHAci-LNa*5pb2~)-?$;T_VFa=#`v_tC3yLP80XZ zmWyErN1CP2uXNB-x>B@ImcR>U7AR(isw&)3`p5Pg2j|a>@O#^~{%he1{z3u!k4x_S zinSqJ-9Z~WB-tFUMUC-pMJ~=j{~sTN&hoxWXW`aCG6wY{l%#zuzUYB4x*Cg2-+Dtn=`Tu69*wP#MTu#0Mh3|w|8?Pfyn$&VqMbE_F zL3y)DbR8mcmB)Wa*6&6a^B*C6MErQ`rjxkl~ox}b)^Om!6 z#QE4rR922WyU#wPcVUdlyW7`2P-}n4mtmT1tZCqkmj&9Blts*4SgrclI4uU{|CCyt z&MxAO`#&=V1x;kKyO@OHod{naDy?_Q&(fSi>jw5U!l-X9a``&;`q1r9B~`zm(8uaI z%Z%|TsICwZdCT>M+)PPw2C_AMw;98&gRPmYj$F~5vn48-u42gqRn`>dc&yb?&vpJ& zX9ikjl1qA<8Mjd)sHvuiV%9txI5*Z!qvk0|*pl8((e#;CI__9iE`<|SM<5})W!C+K zqdnXmBf$~8Sip9WNu)X(kI=q7Jfzdvb-M!G7Y78Mp&v*>hPLf646UN~A(mslDOfHqgclG~S)<`AX4#BDIt9H?k+O$+kuH6MnovwIbMyzeF za3|WT!TEA-bUC9)cG&R+F5}#?d4O%z9!?eMikhneo2lLbK9|CfG`)U_a7$Nzq>NJi zdd~1!-Q9Bec9Q%42^BvjS*69SNQU~dS`76)TX(k&a<}oBy!JM87M5#fNi_B&8J5Jsr64h_`5d0wZLV!qi6ObNjZsvHY6xx(wBfw%4j= z)L4a{_N=XWi4a+-3>Qjh#rgN7nVpp1YT@Z9+;rpoMo)7k*V4jT^kcVHT76Cq`>WcY z%=LTrxku}|gy++Q^MnU~hP@sN1w}B;z6a{WH5BV$KjSYCfu+9M@t(MX=cHQId#BgG znAtNm5LeA}lACmpR)VCNDC<_^Ci09zA9CO=?M#)`&8|Y*yZVZSm^V3w7~2+QHi)T) zm(d%>xtEbn)W<)CkC{<(R}Yqq@(YCloXl3dRaI}K?IeknVAVR$e>=vE1n}4mcBtk* z(9zy8Bc^DCGrdwf`>E5Vd({bUDv_p`EBj5nWoCSar+;dZ1JKK2kw z#ZIjht{;1S0fG@Xp8x;5m6e6@zd?d}3{I9Gb_+fG=OZ*lcv6DR_l7e?p>C@kNG=S$n zMCQ;0<-w>=OLw+gOs$9WZ(KLwJ3$ET$qh@RtNWXDyT6N&(6lS)N5!M#mYDqZfwh8x zx<6oB<8(WI@?9590h(D&xU!~w!;=1#-WaGti-H#dkAlKq>e>pj9oJ&-!66B1;3enk z??-7SC+RD+D2od#Gi5||`!wHDf#Mputc&KD^$=uzt2^2jWZs)IG@|OtWcgQ#CJOgm z(XzQ|FMrNaJrd8JZ*uWWx+S{B=vb0$03BPKXooKo@ZQM=D#qG zAEvAo`3R+Mp}|lK(EHA*j}MwtSYtiJu^+HM|LDf=k?&_1KPu|9_^&%OYgZNiE;#(M z(V>M}r)*R%f#I5bN-$nYnFPE3rhWR$oNWWiPzq70C#jxsB6j8sK=pkpZr%-cu8*~` z8whaOC1H`8if0~yeo;1`w zmSw}V2@sW?cGbo^CeSC5rC(FQ)m<>1o9~SdCFZlCxvxyDsh)_P5c}9pTWb+lYc&C6 z7oYf=FxN*Ke5Yk>Su(MeS)kPx)q1E8x0fm#qvX-a-ykjrbP=2lLsnl&>=0&`UY3T4 zPI8y}da_%7-h7^4g%e?8_+gdZjkbHmwV8Ly2E{k~r9m`HT97xUAc%C%oD_s@?Oe%( zgjLs*KkJr~7S(@PFD^igTJaZxSH9lpmQ;YCnn#n4=2?G?wu{O~0?P*73O_6=MPf9V zOLQzsxphLi87R>mmrXda)#(PI%^*dKvlWDI@(UmFF=58TvMeOtobkT#mCu`PE@?av z9yV`K@wnHpGEEwK|4Fr2dGFMdr(14lST{w3rIWYJZ*ly0D+ICwwd#Ft&Qdnb`bf_5 zn2L~&bG8ha#Gff|_5X6x_ImpYU{!Sa_vShavr0MLrOO$8eww!g z+c$z!;B<^DP{!2U^mN?FI%@yTO6{(maN^p&N{ATR{5;t6&S<#902pHsH2?g*(Xu$m z*^@KPw0uW9Hqk)-Iv88VQsMAWpAf6_)LF@7Ueu~!`7^H@ppx;fKCw13YtY^IL69bX zHCS4HOO3{?a@6eASzoDFH6!@tpH&1i(dZc&bEZ&c0H9t{7U_E8O>i%EL^J-qKpi>=y2QW$a_y{w^Z%r6Df#Uou>q(yB2QWu zoAGDCTeYB8pDBz0LGUnqO1Aho6rv}b)wIrqNCF^&Xx?%d+cGKU^8NMQVMQ6kHaMi9L>J|`uWHiNOmuDFz!LFf zpKPL4WJ-3v5LDj5IF(~~;$|^FbqD~7Nzpk6+r_#fL1L1sI}+}CMFJKVf*4i{{Dzxn zrfHZbP7^4_@I*_r~hb#H*r+r7i(vWr_=0?%WhP0ZSHh!cf^4V)y5$7~ncc{vtV?G%8i6F_;TIU96$XONuF^O_RNjd=}tUQddtiyiAlZVBIO@94Cok7mWjs%x)0tW!-Z^ zwjC=2mksAl#A`zOKluRFbv%Tr$T~W2uJ?nvhCyoW8vBqo9tHiO1P0cHh2~#W+PM^x zi_;8JT5Ie>WeSWN2K}MPlWV>6W@DsYv1Hf-%H^@Z_A@}PX^T}|4sgKy#lzzkHr-BC z{~TBnFKwy`6pw+mAr+XX9RS>tC)Snz<~r5ArP9H}MF-|DJ^{e*3m8d~8aWjsxwLF! z2zHFEXBRVu{yQ!bfO07o#=^sdsF}Ct97J5DemsD$UVc?*5}7P-zAVgC|4h9hW~))f zz&+k0TR%f!nNp3oejQ!aBZ%p?cQ%g*=5ymX)y1tN%sk|dNFvtO#Nc#WL~`3E<=MQ( zlS)(qWb42|2~9>*uJN}ilk|tncl~mdl-|c&A!5Dtx#VAM`V%ohr-E$O$K$@huwV6q zH&pJtRTA%M3Vj3OXE<8#F7KQho!NPm*7JNhL8JO!qAY|7nAy*GSsNQcMF&bT$Iy0- z{USLBd#P1K&c60x6DMfc!$o_E{DLPVC}M?Ya|?Ue#ousU6_sLWRP<@UmgAuO_SJiC zf!K?faxiE&m&yjvI818fAaK?HGEdrTGs&^(kVlntk}#!Nd?!X>3%tP*Lj8khu+l(4 zuhgY%7P%d^aV+FaSsU^V>x*WPWqzI{qF_q?>KKxM#wy_ziQFYWsd)hmpF2s8V3f|n+o&t}4f z%gqjA$&+2kG0Be(LQ;26lq&zS1zWu6#3Kx%&5jK!mgXJ*wPjxg#W|B~b4!a^lv9No z+p z)Gxv6qV4jX>PyPy%(7V3yAIHKuC405=Sb3AjT@D_1>t$KcgKo7md*G>+f#cX<3_A4 zZ>+DsQ@nBxRVW$M%x1e~F$TKek=Fi37*3Fnd^0Ki#~~HvyyWCuEh%BuzAxM-$GH(@ z5q6Qxpjz8~%zSa;%WYu{9*9j$3CpKb&pR$SScbzTG%+8jm3pum!RI~XJ7{CYvBtU~ zak$08y{a#N1sdxmcJN_!ZI(L=K$~^Z4vMMq50sb|ef$ulZ4m1M_f>`W3^=~9nfDr5 zG>xNO5Hz^hbynQ;4*n*sgZo3;s;bjL(;LN(CHW_ zK0^t_phQQIpDYX(ShM4@n6PM)5ZXDz3pR%dSnT+r7?yg$%Oar6O{=~;ZgeQX5?l*U(6k7{RaDnO^rvi4Wny6A68NuN0~0q$4;$vSpimRq75x> zUvRE~zB@~#cb8oq<+@FT>B)?YvpQii4_1%GLz@Y6Q3-V~g`8LDyaIX%Vl* zXf!Z;(UAObLGama`6~!&or-y78!F-~e~p!C-0TKvIaA4QW`ad;bZT>dlN|Z}ZvGH} zArx1i>C7#HS(@7lr1&U1tM&1~y>3oH<`2`1)x>&P_Iq7*Vvl7frv>@gu=CM$BT-O0 zqM&Fg!>`ey?4vh8C<&LhaeDO$_2iJ{!#DUmkVJ}P);!DD4 zVsV2^4~v)xq^7B^v8FlJD0d8?#4tGI1jo!EbnHS5rS^fL>fcNg7yRbwbZat6cVa8G ze=gZoqn2CQsT!a#;TbyoW-TuL^tE!>7xujgHVUyj&mot{N>iv(mZtU_womnX(9;DG zO%ny|!VM1{+U!r7N{#adsdNp3K8`xQ#9oWTCW6P?t$JY_rbi8B0+%mfwQNXn#~IG1 z4=z(0ROXp#OV=F*fb6XtEXJsF8?0qzOsUDxfy@>;9(SS69tBk!rH>gWnb7lmX~$!D zTAx{(KwA*!lj`2)^iA$GrfKmRy>kcsg|D4_eBzdzAmzY5#I=SH^%(4OpMFx*^$J3PpuV4Z1LlooFk} z4183t!E{QzYK;4|k5INm(nQ&!Kx&=sIVfjuq;n)Ros+bMsKDlT{UJ|Uh1_KdQU?Nc zt(1&0h1L4~t*N*FaS16m|9WNKf(@UW7B{IeU)!iR+Rl$F{vkbuwkHTGGWSmUpCkPg z;`!Ng`&vyVdbHI}8u7I3E{Pen_+37rpfJ*4=Z(Y;Y_@d{aTU*hYTLGp`hx`-%`aXyQhNtK;~bJxd40FLVn*!)POp2|@9re}ZSD>+R+068W5?q5 zr;lfYWB;-g$cd|Q1&PMO=ATRSvsu0{O)upyYU|K#EK4NFK05vrck}^3{p$S{kI^Ev z|5EVlG*7cj0y#dBN2JK-f6le0aOL$XI9g7SqyJMtehQ#-k_u}^SDdLDR3JWVJs$ZY z?7II9NJm&y#%e#w)B&cbv%5v#sTw9a0-|>>&DNwx6@p+z8$g}hm2Wj3p6Uo zC<6xmSuE>@qGshGgQa@flxc}G0<@I1Vg@pw{C2nf-CY4c32+juCEzIADJ5XceWZ_0>XONrwMU zz7+n*#?kYdxBbM};rDZ_iC0tLu_#G7zJ^d+(D9uzk=pLMiG9=ATi)ptNJJHsO+_~@ zPIU_9(?vyB+h%xOExC-vq-a}Z?pX@cMnV6XZqp~5sDx!DFcKIw8|T+Ef^NOJLtbOH zsx~a732&o|^q4nyhAdGVAgGr8l9jH|12b_Rs6UAX!Pu*-j;lr_w5-6wZ>Cr`;XgEy zP&SIfnS8C@;ZP}Xl$nv7o!A5e9h|s1JfTcpTju~X7SYfvrl3GfbHP&-ymiPY=ild9 z{CwedWc`j|8eP)^_*;pCVcJUi9cQD;3DH)%V%t8Cdk3&r1JI#a&Pc0v8?f=~?&+W)P6Jbn;|liqm%Ti;;uvf24O>;;|%b4n3c$+`AR{+^|IGTO+m? zb9EzrfOuA~(;0wD73KB%YIj*)kG8IMkhJMjtxl~=)_O~nOO;ZjiBZpy!M9JTNLkFk zfr)>AbaQ<^=zcC|zy3vcaCox4?>v3uV{6%}d@2_`hH8htp zeu|pI>3rYbV##ii)k9OrC|~dY_Kd#nCy(}&?$U{_Ueez2kgtaOa*?ktn10JTV+cM(Q@dZ9=f63K689YB zYvnifjrHy>X!qP0fjnrBsuIxfjg6r_pna;FOTCF;3@f{ka*DoE1ye$VXY8Q-9QW!@1_oQEE0{(NJ?N=t0w^`1e%*n2cyeGFf}z&MRY71U!IkxL zdi&0usXnS3zxT3UMA}c8>Hkh{kerA>MXn&FA23r2j5ot{GH2^dej0_)z>?yQQg6~5X_slU?s&YiRL<*7BwdFt3>j2gA_Ty zGOx#aw7MBALRrEQz_lMjbsuphEyeq@44Kb8X{fVkhAizx)9bw!GiEz?;MGwnL0dYZ z{8D9Y<(wr_W&@S5RmWdDwEW$rm2J!tW=}8I@ka}>Daslw ze)zTLt^jIBcOuk5ojAs?Lg|m`MZ_gLgN=<>ew&*S*#Xbx(aLD21d_j&xw*QUp!x?3 zzF4}-xx@;R4_SsFU;O$MN`$jxl-#AZJFB@K#wJHl6~~e3^!P^;BHFET*v{r9kReJ& zSQA>>*MhvjB+9xd>1k%0&H7N=`$*Q8Dk{&PRS{d`y7*syeviKJpRR^4=z%O}#%b4C z)2DmL4B)l6;6cAK0_XybqG7d4Cx{?VVK?Qt*aMh5N=zftY8vHOs0JdqVYffb2~>n` z=VXIrb6uaAZf@-nwSngaoUTdh11sdIRJr*O#$c%PxVv=>a3TpaNF$EywBFVr^Nvbb zQF&RU%PxkXIBwuPVUg-vK_JSuqHu(DrPSRI8ify51BWrI2Id>ox6-QWfB9RREuhph!Gk6h`i>=?#ZdHhb2vNMT_Coixx-87or&OnE^r1U|DDwO@ST=V}`fWjlQxvDX)==x{+7%n}KJL zW_4b*YL6h==RiAH(<(qQRAG`ZRyKej=5u%sBhy>g6%B(~#IY}kmvSYG5=`%#AL`wj z93S-IzZgGeHV&tXFKte`(xzNm&*f5dQ=1Q}ZIOm;l#^``FNhNpZ$4H#<`AAZF{L95 zC%f_~fSG4MI1?#iSB}FUoN{G(w+FY{WldbdxDO>MbMt^|9wFCR7iR4`7Fm1B!atU(%KwFL$~2N$BZ6#laGl@}($+$p z+V3J{FO2x7f#@eVXi9h!0~pXUe2-1zjspnx##cNM8=KSNl$}H&WB9kpNtoBcO;#5m zLOU5zdlT?Qequc03DVZ%2@?0tlN(&Ixmn7N;Hi{BOyIUfY%}Q?Ei~+*^k?yIm9Sq` zL=nFWAZUK88DM>+e-=d-1H6u5U22{$^f6Fe-&qJizVCq)REvfWrqZ+n*&6NZPIQA$2V{}wSE60OSHvs7>)SzgCDBBT-<*3&kG+ev&(^3m>` z+LAdf>K<7fGDPw=)U|QW)7470;mIHJT%I&%x<-c741P9!w44N_U!L}FZelU=FcMB% zw+6miqE9?`g)l;(L)zIo55-M)f9SivrF#KjNe0%-gQZat>|nD}KB6V5Nxpg=AWC&1 zKR9+U*KVT7(Xc+P&}W|3ft@5bW_OGmFqWI{A(OoEso(O2juXEo9kwD8bCu^>koOC$Aij{%4C)GUjvGnedHe%R- zv9)*tpZ$6Se{&zB?8{#d){lo0hF)Hb?U#vF8wEWvI(}gh-nkvd1zeiX)|dhpFyH|Q z83AtDbRi?%o1^q8kc;CLdn+I_6vFdhben&Ct3jSO{m#j(3Ac^H#=DJ65PT?h=->8M z)}P5_i$XzSn)PvCZ(hycr`_KkYIrvh?AHO{^O9TD$GaMawn}5LTD4ivsWl)C7ti`f z{bHav!i5y5A3Hf{!KkJ2o{1P-hu+~`)5MCwjKke*u^9eEWV2A5j|^|>-t}N(dDjs| z!-)o&qohAp_UT74$vZfgUP^i#Dkmtf@s(lZwM$COY=TkL&N&rE;ge}~n>zX6RS0L8 zE94-U-HENKnTnGUV5{9sv+;&U*s3r12o{XnnkE&CpGoPP z26|rC{#G)iY;?F{&FKBS3*?ic#o6$nAvAN845MvvU3S3O#5@Yly;&9_w2kX8uBlYp9UyK$m~pwl(G@f~XPXMq4tEM0I8m z$(Vm5y6pmHCbfQ+7As_UEsWUYw@SwmMQb6pW#J9rV0sd??s2PlaJ8BhoXwPC;QWiE?h?n z;nGGTiSIk;Du}youN)=c?^}pM7CZp*bMNlfK8mAKjOdauvg*-PdkCvW#zrJ_+W?Q# zlXXa-zfackEVrbmY|u%aEWD5mFK;$j^$-e@9m_!5rBkIG8D06ut(c0sx3Ru*2K4^K zXxPQn*;P5OxG@`AF5#+Byh@B;jM22p-#Ugf_^$lz25z-*;!mX+iSP0DGGC3!tO24p z^=Naa0&9q{Pk*`8Fz$A^4Z-0 z?2ZHro>UXRp2n$L9@Z*FA#R(=zx|Pa*xHhaAWD9B$*T`EXeHUVi;}E;;*sU#hx&gD}xABR1?9A}dlt494WUfG8 z9yo3BA$l}koD}?<0CrXfER!g>? zzQl?XU@ny`GttI#%r6zrd8G?03nvnJ`y^6bFqPc;n zDG*x?L_GA2RcKWGXv4ekwyi+4h#(%po^AehC_x5%3A>@IL&8xJUb*pSK+AKVikVeA zU#D37QITB%uh!0D(_l3Rcku`4pMhr;M{P?nUVj@qhVF7O7c(wIhV-?~)4mnrgJPkc zWBLaFJySoAp5m1DwYyi7Uqjvaq!#0h%)c|?1fu-N=9as`ZY#C*h7jB~{bG9eyHsv# zMprXl!3{b=loJ=Htk|hXZ8KO_x9bObgX9)1kNH#K&O`@-7EKVU@5tt|w71IAkF=zw zS{3s!aw)RzOKI=MtACrYuG1kdrKW&l=Zwc>@JA=XU?qSRqOHW#Q zvvJPg<7|qMCjY*jto*bm2W#K5d#K!mhB0UiGqn>9SuM84<;8}EwI9l2&b-T%N(OGf zkcWJFzz!3vh1RlN><$UM)*h^Jm)IHthB`%xU`uU?>!i2coa6j- zQGZ+}QRQ$Y8g^0LGqQX(vkowuSZP|5S!}x5lU(-=YJPGCjtpdQ8Oz&Y@3jxo<(Z4x zD~^g!gP&8tI`*4WHTfl2sSzUSSx(ED2G~ufEYG_ z;|6H>%hg>Rzun=GE!hLYdqvrWMeS&gzG~-+l(XqE5hLS4r0UH1E}1*xTP`<8@NeWl z@@;QX_imR?)^;bi$Aj#6oVMS8_2=p5p14>mN^#!_tX?et?(!9GcMB3w2jcK{RuqU= z-7Dbs4v8S>hslRh_)F=4%npzEhnDUY-nW9!P!glJP~{=u)~nC9r}8#=2fsN!^V?E= zL@f6t_k4R1 zIadL$!7pokTU>LD8ss~Fku;NXx%AD(t2UOA^DQvUFHO(%G{CIiD6UhskXB=S`ClXd zy0*P|)0s6|bRwMTCkESMPjcq4M-cprlHG%-L+t1h*{GSM!Jpaiy!y;FVip)|45HNl z*0G=k+6k;INv)aM35_Dm7$-Ghc;2ihLXxzl2i;nXgR|iSjDDHUklh}S=_t5JS4^$^ z1FRaRUI@cWUf=2G0<`L^T=jn2`hiMY-NlbQTSK&co@*4FawRQUg?zP0rM}z+;G&V= z;}T~TG4R?0$lDCu((7LL4MF~#_Vkup-Q4@Hg9?7DDhYDqYf}QI7W?bHu+@bPRleg6 zMa0l16&{}I@YwA+c&xpCf`YH8+i3$j(zgXO)5W96jizk#?<^!|(<}&Fkk@(c7_}igddOWnaxRwVwl2{B9@BrA|BVXlgXSW3=8Rla& zaOn)e!77Rc&mt3d|BHe?H2909Bx5*#T`veIiAEX$qUK<-18=n|=D6W+zV>|>#u&jC z-d7si_=7`vhe(DM5#`piy#81+i<0O+qPZU_z6T@El6^3QJ3rqm_f5D-TpfG#v~P|ngUj1pXNrU_E4gW*c0PnZnj>LLUORdXgPcbnBxrrgX8X(C5DVvqH0YL39N^z z)Q|R3bZ!FG*8DO*W+lH?bHi3M#rWFC3HML_L*`o)OyW%sD#b020qH>KQODYnsbzjmiJudV1?a~Fv+u{6oe+)0PM)k z3<;!(vpa62lj%Yu5RB;Dj^rIM8wi0R7AlG@Rg4W}iS*B78^UYVj0J&rr3`pF-bc!X5R=6SuUWE>+42X{z*BA&-u~( zmFc@{D-zd(d=hM_*dKa|cJ~&HyljM4fScKEro{R}=lrfxcnal(IP*W6b7+Rv$=FVS zqoo`pEX5wZrYfr;5|<=ifKa1ZJfhda!PKJSLb!>2*B;#V`?h0@zQ(Ju*hT_j6PFm6 z$ntqZYdRa84|Ib6MfO)Mw@HdAh}NEpGbh|m$ z<;7XnlW}rR16tPp!&DRfSy4IPsVmREd$ZNAI+?S1m-W)b=dW@v9`S2?;8j<iSLx{(+bHkge61yI6^X zPd^op-16Iv>?6c!WWxGYD#^hRTif#G&As5;9^zUd)pW5m$V60YK{YwPT>0-?KRyZ&*bsi%pzz?a*g z@fmlwz&+M~Q|@#t?vTC`La*vfH6>?nfv|{12LmF!g_ZXehrzTs31xS)5Fa=P#5&7| zmNpoRdO_V%3`9F|Wz7$nP|PxRq_j&2^=%%W+XP|CW9ddEGDGV)pFFyTvCv_v-?{cMq%&Oq(tE#AeCz4)9puK6mo*m znq(c{Nl&sF;4}u3)*(J>Z6yoR!yXaqZPYVr8gjeImvc325ye5 z8!rEaSILcK&w?T1I4OJK1i{Llreyofnbeq+TA40PcoFSUzQ+zTDv}~vZ9D~3QG%}3 zGSsEAA2POpwZk*#-b`_K@VrdVV89RZLg`g?_}G=Fph8}IUC{5rNA2XImv5H%X9j(i?r$S}?-YgroMKBD9{%gXJR|)!H-fq`& zoV_gis^z9R=K&Kk&5CZ*A5ptg?$6xzX-3p0?AQnri^^0#;;P;v;w=O2RvptB6MAnw zRgzfZXws>Tle}P=rHco}XCW?pj4XNDNF0uzpsC_%dtPCTy!oneMJM+Hbd6!IPyh-;$?p?SnsTGWLZe?Ktc ztfGsX<vpx0@ZW1gLjGf0C^}V!MT@n)IF4ux+C|NJ|2f(uhOc0+Lys3A7Z7&US?&}`H zVel-^igL4#(i5no&oOro65J*Tid{8&<>Uc;en0XX_zRup)T<$R(mR}<#OTu z1_D@}t9`%8nMYJY_OFNKEuqznl=bM3dbsJf0X4|`5cC|sg#%8I&9ko49B^$AC?29Pa^`$Xg$BLl*ZP?LeLqm(@b#!PSdD< z$cyDDjj8%Yn#I2LrjlVAr{cbibUge`2HbkXWrE-72IR!|86^JTSR`P4@HO>;r_h5F z@O^%TAd|8V-JLybXS>24k&%n%w;4Y6%x}gEoQO>8G99D#u_4p}C2^XO!msseq=#f+y2m^q_9IZg)GP@pYlyhmSF!DfLa(p@b&qH|}5H78=|hN4g|*wXIZmUwyh-;s;YBs_(a!WOWVyx#wusMDLJRZj6c3zVkx#)IVjkpI3VNeqsY5M?nipLpG|AWJc!MdrsvJ zXv1ayISlT=Sp4k%&F|7oD|VHHNxra4B9WvIN1D?IH1?u?6I{Nke!+_tm|}rmcpt@> zZS^sDx)XM;l@b;l5%vKY(DBiLO3$Qt`dl?V)cL-wrFP#6D3KJA`P<<+Sy-9Z)xD3K zRBOKp58u1K#&q4R!gsUYxYfwc*2~bEwrt(cJHNGs>^->+4awB0s)#M7|J!>~(HdU4 zz}g}48edk=t0|he@2TLN8oeg@ZD({2(w2NK5?o%C?`{fXU;>!$A-rRw#N!vPXpF|@ zz5$9EXfr`~xx{pvRIjjkH#~a>a~h=Xq=%|~CbQ~drE?@;W-&!rB+37hsK%Xf#<=7u zzhjfm(=%!5Mu5e5l0YM7h!R41>kPwhDn$YXH=@)bQ@lfegr%dq{q;|N1%a&A4DlV$ zw=6FwpIEIm(=)C6_GpEllIbzY>0e$%#F3bN755mIe*lu3BXw*Cx#gQ?U10JoXJYze z%^dvcZ@KiAKP=X8PL!@@gKI2iY1hCcY0@UkssnNgdBN45aoo|0S$WTLPipO1pP#9p zI7%v{)1>Jpfh=10%CeSL? zw*ZH71$(~{`ixVte1P;3$09&hXUUYRAI5lP?x2;f};1(>OQEDJS(t)Jj`n1rKzXNqYp(s;tnib>W zt3_z2AoM~By4$X(wiKxu3R{TY+YJ`9j43yprtJ1du#_aq3xhgvNV+0Ze>41 zF`j$XF2Cs=@)P5_dZHlJO4;+|+D(aFE2I|7j}qgPdoVs&JM_$Lyu82@k})3b4vP{- zL@1$E{2E_6m}uMG5sqLW4v)?RSt{t?ZBg4|zC25zU_`FtFu5hbP=>~VMiIcwW{uok zuQ(T|;&)pKsW+$sVJ1=CDs}-|$XqYLnAt*>JT(DmBi8773HEP|e)|rxT_v;l(S zB}{Ei&L+@F!w*6jtZMPDrL~A=F?u;Ptn**qDqqA zj@7v-4OH#NNLB9)kl_?fEA{?VgRKG2i!-R&x1t*1#U{!-E-jCWF31TldwKuT4kkEJ#ww2!-sN?jC39C>&qP^#C z!-xC~$p^(v@M-T;<42}d(3(xnehvO&>IF>L=2>XfA2|A~t>yf%9B^nY3 z?6I3a7LrT-hz2s>sUt3}M;v(L>U;{NlELkw^?5bMPTH=I9=(1l9vw$lp~)Bb=Cxkm zfFyF$)iq(iHt8c(Ts|zeZL|BHT$MNOxm`)xjvtXzku9ulDq#Qt7QG} znwPBqFS{k#NW!MD^GJ0w6|xyw7|-||bl7P}Zx{eWzgXE1KR>$4lLmq921@0_RsQ!v zxuU|cqn2!ge+}nVDOrM~n6cMOLY9xGoJ{<;oDBS_*X!eE_xwWk={B>pc9-w_#8rYv z9Rb_pI(Ns{i%~-j{OL15fgJMb?fa5XyOGjy4D8ew#X>_D=t?@f8 z_Yv(t@iBfAD0xigkh|1z*=Lh zE543=t$miiN6Bu8$4c!MknMX-BHdn1yR#2wEx@C;>ATF8@mI(^9hw-Q(oKX8xQ&Is zuF~!>m$4w!CkBOOP!nrVm*DKhw!uckh97H3jlmCcbiAmc?j!c$nKh33mr-VUh*T`| zl;)4+A?F!4kxz}Svx&X3Hbw&u7_jJD9{gn3Z%dR~y1!6hoWRFj&;Vs1E6aDv2X(dg zZZRq;BN&6@?%VtJ!6kXu;@L!Nug>#HF!M^q!cnbiw^@F_yUoL=GM$WCb;K68@8`|7 z#eEh4upE{+Xl1PSoESopNJgFlA$s8!KZmOXdwWSni@(@C{qj#=qW}J&idyVm2;6Vm zM;*Zhp#9a|ers_fMkYHz-^4d8)F`RD);+mDaCPLvFPi$&RSZc0rT`Er`YZqfLC}pG zSHEVDp$&!(q82j5FyL{UF-Y>;ZjVF+Rg3ugp>D#U(eIcAA9Pf{r^sZFj z(;-lcc6fZQpA(td=i_7s5@p#Pyc7aM;LH9mOF7Dd=NwrE^RE(9`(BdPYi0d!^oOGg z&Y z6>Dq?ml?W}@+HB>`TL){&w#NwWg>>vA_&LWDhLEOo5wPzK~4)4nr<|bA%UrKm$U7wx;7chGV1y%JeI{n&>H1{nldvQ$DCdC>9l$k1&b)N&z89DALT;3Qoc z{azi~1_5&?$;W{#>I|Kt=*fEWZ4bJKP1m4e7^&A>G}{3bx{AbfHhurIjWM3@M6V~R z)qr{lf@mno796-Ft6+Mk{&2b?C56xdx+^mgW6J`CDp+u6@! zSq#G%%DZhbLs+NTY8E(}4|SMW-XF<^PXe9$N6y72#s?7M>(LhP=m4zc#{Dc*luz`^Baue0hr#JgWsNY@)~R%Mc{RD*~6=fCsIp)^|(ivxV&O_{g)6 zs-ObrO513`eQ0t;y-^e`v+SJ$Yt)pl=p*p;Gw@~-@{xK^iEk3(YFv0KHrVLpMQY2+ zG7_eqo}@l4Z$sP?_5Qc3lZKRyw*I|sGew%$cDd#$P)?_6N`H5%`>|N=)-|u@f`zoa zL}J{`8YZ57Pf;BpFrx-~5_8{aW)qmf9kJ&94$-9G*Yoo}yW(&1ZAfs!e}9r(Ht9ju zkK%w(XdMdXT$YLjKMz{bmNNQGEa_pM^R~)CT9*d8BtIJhS!_L5Uh`6PZL&1%XQe0@ zY~Y!TgyYi(b<3x^>51r}p&W;1lT0~dP8R(yo@`(xN7Z&}koJtKSIx!7kUc5l%GZ|k zo*p!6jM^vj77!0|9dCXE0rr+=l42h?%pN8aP_d{4>ma}FFVADEVvLYtpZj6Sexbo1 zE15gqZIk0$k!I%m$%%8=J<#m0U;iwMLHLq2K@fSM3DITeKE-oQ{;M0De-V-RiixjQ zC<)EaKPC;jb61dwXjgMWci{Kp^ivIrBz-@tZgQ$q0;7P-d&br`9@hiEE8V%d1*alKOiO%JDKBh^a6wUY_fi=w&{!#8$Hj8P@J7qhWd^8)o6r!BcUtpwde;Z?F=ATQ zIg}~9eGOh(VkiMkJ5AU*E2X{@X}ToxG8Dz$81?xok3PJZqhIx|)YJSyh6|jzBX%px zmr3rW0yo!9x##4xY6y-W;|f4krKYO+DfzTxFLc8I?NSP5V)ux{Uaqv(Pqp9d(B`1X zvWeA73)&PzZB7!kuto?yeJXJzL4UPyJV=39julHamjf=id;;)~&6$@Dw^bQnUMb@ek$dkeYMH3 zfDXXx9b-Y$DOGkGpEMysY{lSog?nP`KRO8ha|6+l>+V!VEE%b%b}R3gLa5g6_%0n% zutZ4?!fzxDU*iWY+(Z4Py&r>r+LG&3H|flw%*vA@Qyh*B6;O<*Z_@CFVs#IaL@<%+ zNy45&WOo&FDPb}?9KI0PCAOw8$7LXatZ(@fgN-iYYs3h$AGMgwAyX=?w-nQSK={lMdmoPK(>7M^mf?AHmWu_CZ`s8DP^E5~v>^LG=k&PWpXAR*I?P`jF-alSo zFdeUq18v6HQqwSi3tOgmPp&@?Suu3iRN4N$EHddYSuGUb5K(4%IrT;hQzVf*i69>l zTmuVxrGh{^5<{S6f1X@;=tW>*w9*qcQ{6!Vw`L>Q@}f-Ni;*nhhY&CG@1=g2ZboHz zbgnD+!0^~dXnFDd=S&NLxarag9T1Dn6FJFjWW~pv z;h>rZh!#3IVI7YCRHla8SMfqVNZu^J?`F;N8cXsSph?f*Yau4<2a}j7OjF60~J_<8(&Evv$BxXyG zkA1B?2ZGdw1ik4EAvB#(S8+8kYE+O4N#3%uqW)7Q=S~-}3r@DOJ_dyq742yln}%E= z7a-CE`k#af{3(AV-_S2BEdeMn-BN=uAQ{yPLDeb_JT>p2ImA-Y)vU>M0@+d&y=2Wo zRFDpGL11uYBfa4rgEobu-iGCzpRh7SSu%Zg!S;mPKkgo*Mr$y`sw+z;WH?61SqzZZ z%ln~^M!$h^j6_I4GJDsJQ=Y$`G1Z^mUQ zNm@#z<#}4W<>DIV&&M;SL^bP7&T=?uCy5F#mtPujqC(tQ8GHr5)Pc`VSiDCrFFA`9 zj+bpsFAqcPqo-BjI0daq4iwIOQ(&v?DHcb>Xp6Fxtz@%h@`@#k1;Wb3urq0GMju`( zt0(UH(A45KHiRmbx};lbo$=E6NO2pL@Jh54xOH`uH5Y>GTE>(AlfG$BP8q*&oGB9h zdN#E)Mr-?p6ZIcscCuVOs&3lfsPi{%S{78h{(ma^zcuaOygI<^s@orVa{=U^*&Sx*@ief=a;gZl0ZmCj{UGMaV@^D(W>x zhM+4X7oN)S@#m5${epfLHZSHGIr`re#xg?A5?ri3wj#4F@&?b3rKOz3NQRA zUhF^(jDJbuu1$gwk=Gk0*pxt1y0C%;Aa7=ZX~Y?osDr^lfpk~b^^AgFMQ0sm*%rm{ z-Il7|TC7OjT8z<^&3R?oyQ_V74;mFzKgcv;YVBe4uckE4!_Qsvej6@QyHMv`7T4Z+ z=^0yis!;Mb%mJH~JuFxMsEtz6f#hdfZ0^OZZtOI#n6cy0%;jCFo?cJ0Mp4#al3J|j z&@d61>Md}@>%Yf`v`ls+vJZiGs$`3?IA9JC3^$kTPJ}A)3#he{?EsU9_h^lLvQ$k9 zlu(4~c8hKYN+?BZr=RC7`oI1hixSJ7LOeNm`&e=EEHuGiB{_b#BMd)J|aVx zy#D8nd+F3W9J^)BKNXdvPOF)vX%eU|ZNa%1Ynpk@-G)2TJyi6qkr_YV(sZIN?NUdC z5+7i%Rq$dgGHKZ36`ZU`DlzHtqN8~Qd(a^HA)l4{IuyKGIeg6|fT*a|`Q@BdRO?QW zI^bH=w%JoE&%VD38J4^yL7N?4URgDG_rm2Lj(-}^{>ky?8C@=HapitP_aK~0VFRXZ zHF2cZD@KLsD<8H8wEzcJZT!$LEW#~cYT=D5vgozPRcO`BPUpmFdhJwK{Hym^&a|Z= zDRBXWqEq_4Ogfq5>0#_4rI&epeEYE@xfpPHy-=&Pwc3cmu!Lzlanq`w6#lt!t83wD z$z4;xWjheNW9~c9BB~wdS|n0nI)jiyHvT|cp)BApLchO(7oqS6il*;moypXS%x28V zrgMA12aq19PU?lbb^=U{?_a%@fj15xH!|#fvXpB*2%iw0XO)+3kyKC$Kvv`Xd&7f- zPPiqJZ)xWZ8A2@KIu$tU%G!QnT}4-g1F`A(QkFZ-!>S0_rlmW1Q12<0NhKj++343~zTr?VNlon$v=DeChv z*#JkmF5uBAM7qGJ*1g|Qj|vxTSraaYAfS;!r-3H7%ms#w3_wCa8^0b~2bdAu*tb~} zMHBJdQo>~dx|Si~iydQW6Gg|R(|$>If-|vWx5g>3KxYvzbskNQD9R$DXR((X#$wyY zbdqQ9NmRWn?c`%Ak>q@*Oz<30;upi<6R5s!IJn7#(A2!C0;^Y#YnN(+)Z~ zMqv&MpRqRb0jv4Ma{HwxpS0$ zZV>MMX=X&}7TD(#{56fMD#Y74atC|+ASH;eS^l9YwzRFvelb3L<2${2dCjEGwHAt8 zE{r5c3W|%3XazDpP_eG;=G@UxTfT=UQS{QWX~M=1@wEFNbFhT#EokIjZJ@YxLh=X`xChekoMbV-I!r7HV(!M(qUYA$$U;m2V7mZf~A87@z z799TJ>}i0tT-9+~jymL_W3LaL_8ji3tmyRt>9h&&TDqN}J)%%@$9c<+yez1O=4FwG zHf3*f){%)9gGP09%t0k9!Kp@JgExbAdObY}+Ry<$il7@cTaI3+T&y&Y=s4!ormOD$ zVv_MVg{wz?wMdf)+|FheI`2bYnS|7iGeXQ`!+mFn72DM;j?!oNX>trqy5_eY_LP z1^y(GK|l4ff4{MPJgI%Wb}qKw%J%+LCy_O}S7LW8c9te8+s-d=IdM|eivvD=caHXM zK^w?JT;tAYQhtE&LFD@u_$B1UzwLVT!FeUL3E9STN*)19|3!{eTnc5#>8 zX(-T-!fakX3QBh(9HWtNUo2{5h)~9o zQXk&z?i95sx(UBV-VMAX(JE5nX#Jo?$67_ot|&C6#qJE?Y1;WikLB6e{cJB zrB5x=E?CjGkK>&z7W!K6jhTvbWM*n1guHxj?bzqeJ(r_qq&L{){_&V*BfGDMUl0yjb3U8rc-i9(a!oEmrO zK_tH6;Ce*g|1xe`t5?;NQ(09+$0w@{Rd0_e!DU8&J!2)foZM924VK_NonJoHV>q$H z>7$kwvwW9zHssm7eLp`ll09XBbrnXhXuc3~TKZRzCB)#j+c_+8s)ExvjB_5aI^5G(zh zzl<)PGx7W$eFsS8*tCkhsjH?!;;AN#OPr+ZB&85n&nnX9u#Y#CJC1vOC4G+P&L5wq zT2Hi%DSLz+(CWQWlo^LExi-m}*}o>w-X&xN%fKLAacO8s&{7Zm1+T^`fw&!lmACMO zYI#!$eH2tp^AreGiA)$d55SL~?!sE9wm~g=4tn}x$L)fRimzJx$c2nY5DTLa9KIGrimWHFBu-@D#x!LWv4n@qvefirlFgW ztOTtB`Ij(HXldd+l1Iu@JVYEV28j?IEsh(Cfb>U9v+Yx7jBCK`iru_!^^WtxB3CQ- zSjf41FZ^W+7LAke&;waJ*%TS8>-x+1T|ZIJC^4#2BBz4#FrUPiB0Gt^5;Ot4If^CR zK)*R2)W=igU2s}r-I!Uav$3>16u1GUBb>W|;4`F&TjkesM#Sdqh%iN%MUx>fyB$kz zCB2;Duay(P90)u2x>z%Y`H)jICZi(*A6HU+-^2O4JUMf!znJOQlheTL6DH~Vhb06( zNpZ-aqMki{DZMLUuZ@EX0BF{@7{x2kIXlbv6Iz8e|h0TGYS9Ap80+ z1X2mUL4s?n;F~PKr{b^R*|gB^pg|YYT`%YcwfY6suSvdei0x zKmgib|4z03)6qK6f*v2Im4lntMI-SF$pDIm1AaTK7RSQ-G0p6Z@gWDGqEBQ~M?b}F z!r)hxM(BIetVKN;24n%xCG@WYuJ6TnS?QCf>&jo z)w3zf-2U;t(xEvPDD>Tk8|$M(nklyDgPTf+xT&xaz!)Q9@AiP#CLN)u>GbkkMZG}} z$!}onZ@F7WdM6lu3rOgk7NJ5hL%E(>wVb6ZFR@#P@DU zjbW-W%T7*JS`V60poHm8z>yIY#!ORvciGf~^P2h9cCD;t6?@CW2B8cE;U*sNCBrRA z;hjL)rN|hiP@*=W z$Qbx?cO*hIMf28u=w2mdqwfZ`MFCDGm|AsJNHb@^b=2dYP9!Hl8Puo$kW%7~_)<77 z4rg5ZB~#y;f3I>CY{u^#O{V;$pFfibhPD#G@t&OVs=~kU%_a#B=fb$-);&u!pr9pX z*}mOhNa(dN$A^7ZNbs*mTG+)aYEU&gW;i}iWbWk(#Pm2#Y z_MQbvo3#%)IH7p?8sxkUX}`1@*?($~Dt`)><9aJXztZ-RbAvTdj)^ZW3Jm}`5XucY zdT0UJ%iBl(s0RSo50B73;(pb2XHM9ieW915ZsC0HdXXC7ox_oW_x4KSSW*~5!N@0I zDwch@EB8nw`Iggr12T#e#C2LfXNZZg1df#+EQOWwx@#v=ESxquJcT|~e@8k3^)KlT znzmqNBv4l*$aOEj9!VaP

Gc31sxiD zk*AMX^)T0oyg}C!#M7gH*ivWZUsp_(@75I+pN0#68+f+-x=RzT=tkpb7g;6GJy2~F zq4RbHvWKv)au8V(dpJ`Rsd_Ek-eylWXDJ-+pKOkBe$bqsG}I0YRe5?Phb1bkaTJtT zZj{VlS>BH?BWb_=6Rx^O#@!a@>lwaWVZu6R`x3L5Wz{qd`_E-x1jbCMRoB0$?=!h( zt9Z8JAGpihW>Zl%VqH_t(bC6)sJODO%2V7Wvmn26Hq99lC6oYDc)vTDQEBLbMq}SE zThCb!>3YY2=&a+C#C3USoX%zwv++&%?vXS0_3BRRimN^1egm&c;3(brOG7KWY+knE z?V&1Y1dG%kpTs{EId8|{dFXVI0P~ZZz-$qOU|D~^i%gOg`9Y#Y{S`y9{14bC#F5)q zGXmvCp=`cw6c5QE$1EXf^ZbMF5h6UPOx&!E($hq>1N!wUrnB?L5a49^DS#pi0kQz< z5FiPkb_#IPu_m@B#hdBM;hx-V4wnkuygcyD#D@tPB165T=hTvnWLjS<`N#khunKDR zklI=21jmQfalb5ZOe9Ohe&ayO`}1j2z`Ihyi*UoVi;u7o6Pu3XOuq^OMT0k9lc;S4 z!!}=*?_CAQ1#eqe;N7UFfTW>SZL%_=I+=yw7@~<;J91E?yree;Cbkp20&@(Z&@;X? z%Nm7zFi#ePc#^mdF}srHYyQWgFxznpJ-ZJ4<^>JOUpGosjYLJ6*2uXe8f#hS=4>)S zWPj6P%ixMhPIwLVM&dnV-_Ve)gVvvSTwLOXFC(4_&sK9;XnzVEt}!_4)3VzSdErtN zef`9ABynqsURcsHy@5Zb5t3CSa4lA?Bwx8RNu(+V8`QJ1_el&Q)XMg{p?Cq?UK5qA#?l^54s+n3xI)J@NzDF;7 zfC3MIHEI^W7x?}Smz+90ccsi+Vlj?H z&McaUi&GExJ*|b7oeM@cb+`88q>Da z7sJqvuMlVI!-Lf-zifF6h=7^5D;n05C)4cM^poMm5*W=^E~zlT%DyE`f{%?ks}Hl>R;`vop3I`FK=>q(2vitFtP(^Q`i zh6LaAwBD&oE+*Xh}LHk^V>P;)}Qp+F;@!MX>gOUqerKcdC^4KbhkH%Dp(zS5Ei6*C8{L;%H<)68H;G;j43nTmwOLlKNxpIE54)0&NO?+>(;HWk{U+!61Ti*VkFKcBo z)T6O}n?J4!<2y-A66J9>^q#A0^x~bbon|!c#yIg;3HT+L zx#lbrJ@>Z@P&>RIYc5G|W&!(gZ(Md@4Xja&hZS!%bdKYrOa*PW8<6Jh$TkKGs-vzE#%k!!ZPSJLGDwBl+~0l3C!Q*#OBFBaX(34Qcje#aB=%l5aLys) z^E%ib6AO5+tVt75D7Q@w_8_fCj11tY-1Ho7*jv>&_uGtE1U%zA+>VWmx9+t_bPsUU zhb{g(pdi0f#mf(P_uwXU`aE#05A;uv>CqAfI0sB#%gNDya|bw~@c~h^Xf+@20tO*r zy=0Ktaa6$^R$GAw7Z6bGcr$i~kycr$Djn8QI9x_p0a;y#S=Ypu^FAIhO^Lv40sRZq zs^YdCrqaL^X?qsOIJ1jz#-oz=eK>OYEBdPLX4uFq;%tf|h}K2h2BCeuMVWfLJB@bg z2XtE!)QG!T7-5TNj;G)=c)O`R)bKs?2wT0>10{)|eoX0MoCg+7Og%Nzq-F;8jESs_ zo-mM`so&~X_UL$Rq$$0&hb)3+bt^bjE)dvP-of!#o5KRP1Vv9tUJzM~xpJz^R{;y1 z6V5Q^s;;QeB&1VGAMSfr==Y@irf)+Roq_bi+^1Hzsn;h@{Y<|N8@#6-q>(KNvL-yg z5B&EED>SUJ+dHifNL8+Jq};8$D!C2Jw0H3~$RNnv5hYX9{oPnDxJ=ZB3PYKMPiOYvPU z+|{(H2yg6@pOqE(c{&hyuVm*LLbv)JAG=A^*YaQ-CGL{+hnxlK?opititJ;4!d>Q2 zwTPElculLy!C;XKm!w3_)sTX1QmgObH$3!+kAkLIp&jAg=L3L?5rcDvnK|jdH%=BS zFdqYv=XInnv^|XETPI^yo`jcEnk}W+L|%9Zm4EiU^(}>rOw90BpstN&1S97%Y_39B z0qA;4CR>((yg1{`#wS^UwoRrv znmUtI+yiyK(V*kfgu;1uuAzDwe$B>%wIy@DzKjmUWgVA{O$Z5#o>OLGSSb5q4$8q* zJ{uyJbFrb2bM@X4u2fFe3>agtE^4tXibNbwxT5X=H+hC-Yc6J z*K4YFUzki0=vPZMBGld`FfM%>xtLStFQV-=W>aMu%M@G~bUT3@e2&VlTfMl9O@bdj zG(jg2BDHRNBoc2$s<`W&e=1aE_sTF{k{H%ytMMzZ-891UJIKxdfS1+O0=OBmq)w}r zJsB#ar0}qDz3`d~sU+|n zW}|*3ZAYvTHLyEkZ=k6wOekj6NUpgsD*R|DNMn%{-cj2melv{-dfqYpCZlzHft%y_ zK|d-|0lVcMAoo4uSWHKWLEUl868hKPb^}>P1Q#2T)85*IqOHG$QqsDhQ*yxt$G>=| zs@2`G_xPoNYU}j=Ltcy}v76|FvfCvlXicsE2K`%ynsUC|jGD;dR1dR!bI(^|G;A!x zzP*e3QqKO(QC$HKgENBS#)p5Z#^_3Z^JJ0X#)6}gr3oZ63*rOhr#cn4?&SyQqDOM< zLThHVoO6&OTk#2Lzph~(*>Yj)!tK1DgnN?qox=t8bsAGsvh4051;xtB+-@dAkHXH@ z_p67cdRa+Ia#5T~Rc@aBb{g5n^$uQ|ptAgXIxvH+wbk-hX)BQC6G^#>Lxq*L-nAc0 zScIb=b#Qvay2c3{j-iEHtiJvyt0UUf;$<7lwRiItGW{aO-r&N7F|7QsIJk>utzmC*;Y30&mErjBTX4kfkkt0ln5bbT}`oG_Jd? zU$0@zK`eo}yB^kA0i^auWo-K*xp`L;&e56|cjO=)HOlI$3+x8jV2kOPwPM#_Ps!lv z@XvfAjqv{l0mdoC9;sD60b>baRwAy1JMsVmGcSR%0tigrZ@!^&vzl-@Jw-O~9qY^@ zIOyeP%;S;6@}!=yY#Bl@mAuNF^4`JWbUS9GV6Zavhlyd(_Fy z6bF*1Si(cvSu=8EKOz5NM1ouD+q=Q`B-jEYd^*q;hi-E@$yHd4xx;Y4fByDh%;%-nxClQyP()fFA@#B0RN^;|qI zUu`LCMPmw_amZZYdxXB7S3yk#ZyQM-=m9HU@6rgO==n!oKur%wF{>U#F}waOuz1%$ zPv-82H*i@r+^6R&Ae(Lv`26g`?964*w27+BM<+op#U|g^-wc~A3<>0W?1xYRpISM zSxV{TFqU7|?`x|ExHT1I>ObM}eJ>a=lOVbblQgTk9q@^Cczc`R{4soKR7)yxuS6-X{b>*VJ5C%V;LVtmRA((`is& zv>9bv&=NXP)+#0!!5xiz3f0I>yd-a*F3s<9P0ZR>0TN z>kiD^(_KQJKkhd-hK9{o8r64(0ZUg|%3~_!s@w%u(303FQdmZ{`)cxs^{-Ml(-RUN z8VY9N#%N>07vQ4tV-etE4u18+@2ntKvcwnlVLWBluTrr{7y}GhsUU148(pB=z$dhF z>xG|TBDk&4G0_trj@15VMfU5dm6hzXmt6OQqG`MF-$HCa^c&*BLB&d>MYy&S${P7L zJ9vanh4Bd*5%D=u-JMe=SK05@E`FHJIOtJXrxVj?1%p9%IC^AlO4K{0&X#Lp-h_x1 zwp~z`32v2PsdY!YwGgIwv4-IdeNci(dYzZ3!a80rP$|@Pw2L%Jo$#z}F`neg9qx5` zXw-(4fJj*}8}JNYxAF>s2A&cmHmUoe%6f!Nyk~#u91xb)Id%ng(Gk948%`A4_)9L+ z=7>GUKqfJw7b;B69&6DZ?p)Eq?=f=_Zd*s2htI_1fnbTZ21MV_{7dj-@#F~#y6MtM z@6_8IYwu!2GoPZcxTH!KW*%F~o`t^V6_);8i9h^H1fNJ#1rk?#D>khIBaAuyvI@$5 ze)=&vDid*aw#U15GiZsWRe-V${gNoQ5>hFQHXsP1W$MFb3JAn&TXbV63EA+C_TMUS zRIK{-Q1zn@&7UopjBS@AN%bpO7!a%54Q6#ACY}IRAtfej)ko`<)#fO4WZLO>8>?`j z&h@DjNV#hbg6D^szf(At$B;pwzuIf0Ld!d{RZF7<>iXE(R0xJR|6mTteHquq{0&q; zBt0C74>79Yqm5sownzb)HWl5=ot?(qy4z0#%S11=KC) z1#US2gV!|%%N4Z8xe#2Ar^v1bq$w*2@}x`j@7mPjpJeoDiJAcAa5Qwr{7tB}|c;mcQjg-Xt14$E~5aXxgP@6Ku7L60Wr8r7~9c zVwraBHn}PE0h}3OYNFZOW3v*e`Aii3Z^77A$ywic5=K{2dg66w@pwzHBWXucp^oTb zOon%^*5Q|_i!@0U%rFBuaK8Q{!8A-Lv)RX}d4?D(g>$8nf`GzgzMK;XnTDX>!qM#H z*@xg;lS{YIIJ&=EUl-qG<=2);vLs5n!c+sllt#eKM3Y2Bye!Zwb+1cc}G@|=2#S) z5)w%roAM7Cz_=A~7-aINl{UBSurPQn63eE&uxDE;EeP@jnQNn5hLbAl8D*1pfqu>U z?7wOc-u1Xs$?YY;=j`?(PcoqS=bYmKgABW^b>s9L=*W@Om|sE4KoT7dMEU+d#@;DN zl&D!29_`Vd*<;(bZQHhO+qP}nwr$(CedoJR=fpk#ALpr8bgbx(RV!aAt11(zmye>N zjC>1e+2G84bXQ&zGeK=;Krm}XjKr6I>%D!#+esz0;~*$2s2dd^LYaj%V%|&T)pS|{1&{Y&+pJ++9Sg#zi4|NV zLw_w#Q?~h(9qpIJREdoI_F-jXd_sosJ>sH0Oa&b_cHfAJO`WSTBmuf#GgR>-l%l8z zDRT6(UU|2KXZy4%VVJ8H+)N8t72v<7BnYvug4e7!LlS4+QrP47w}}KUHrApq@{SpfndO2xe;86b&jau-&`)y9t83cpAhd$ zJX2NnTDH_$o@4UQlS%V2vePCW1v;ux0K{69t2V&264< zrj-R>(kz2U6lv7VI-Ss$42rQ?n4N@OU}=IkPQiy)tDiCRYfgs~O>k`NA03k#0yKw_ z3+%OBP_C#*HUuq`=jE~iW>T+T2J?hTP9YiQE2WNmnRfyI-q2f0X69M|6u#iue|S3g zaVKf5Zi49b)Q-;$o@QG4dMA(NOsa=r(h9ha0xXByKhCzC_p~}ECp1XDT6g<tA_o z+i#8Ovn8-t%=w3Jwq>u)NOOx?0$W;SsfY(4BU_ z=-YZ2fwjDH#Wf*tf%tfGouFV7S?F!38m+Pzw?som+1r z319_hdwfxnd=@_iKjw@wV`-5~6kl!X$n-X%QVYn^nkax;;<{O!hom)n@M!6dVNUm8 zg11UsJ8ti>cy+<}!^0{(H{Dk69J&Afv@>V4_Fd-RNic89pqzA>xGvijs+;KjZK!EHqi zv5!0wWVGpzhePw>{w>Iz1lAQ}^`~!70=gBoKOIc2L!>~{B@x;IL=HpLJ~jI%(Fi8P z(pGw4$?RPccKkZoeXjuPbuJZ4m7^THKj=0&4JNRV~9iJ$?Yd6N0NO}u?T z)fw>{0%}u2jjZJrlYpf8`@KB?yDfh7QZW5~6c|hYWX-%|u(W^;XwLa#&nT2->3i#- zlp70xL>UPi*u=sPwH>qH+&1C?&v6O0&-gtk|KkfdC|op_HA7!L)FH%BJ<9vyj{pP$ zu5(jb`FnjSu%q7Ha4};6dZGi&NvF7h;P;_78GgxdC2w}V8>Yok9kvn{%pnV16Wti| zVR{)Y?2F+agI$7f8I5uZul8}2j!};zVNpq*V6U}!5`KG*HZ1@za9gGptQ<;EX6jL; zc2{2X6Zqs}A{La4J=A;a70r&Sor=oB>=d9|ZO$Be^@nU0vMK=@pR4pdc{AJA9YPYlS8n0o}>Z`}H3 zks6H*)d&+FN0`zh0rvk&5-8!9?i`LVQ@btdEl>B{%}TteAye8KHc1;V$Lu)v*Lu?qeU-wbYhxQx!Kk7=xHdvl`saCqI28 za@Eg2MN)X5c*I{9S{8P`Z*_7_s_OsWtcI2Le`RvZK+pW&RPu&2I-)7tpr^i&u-pU4 zBo-?`7>Q|XoA)Mrr=Y+V7Fw{_ZhuISh2-r0BRovc9-rgRLVtA;1UK5&9S`QDEd$hedsrzW?_})II(uUAUbAD-mZzkgH zNV{Jr$De}{9U3>Se5bV}zt;{bo}8j7upd?L7W9LO8{P368PAt*(O;49sjGjOd zABlrRmNo6No)57DJ&GKLXSZ1ljY9t%#(Rqx7UFA+Rw9i9&WNam zpd?Tz3P`^J0X1Gy0rpJL@!6OAYwhm$L3}-&8%La+ZD8tNWV+qH9t|AN@&ZnEj}eBL z0#Dfu#4{^rT=CL+Q4UXjh_5K01JPtcTb9chsuhYFf+UiN9Zxl>$;NWi_QA(%uH11k z;mZnsssL{EN1*uFWM9qixfhqvT~C?roJ;@-HMWj~E?Iw{VXsxPre3U4bAEpv1zq`ruk)}trAZ@bGP%+?$BhMU)UPG94GiBYOcz)%y{ye_l+JA zS6&d+zR6#*9IsXn;`2^mlavdT%Yi#w!7TD;pFVVa^p-;KV2g+T+=ydRRxy10SzXaI zSk>3M+U`=9pE+3&DNAh zz^jwOwJ<+g^1Sd1FbWNt@=K74#PumSrVE1B) zXjy`a(tHM>*pKtnI;EBy(dwwXGLeUxkp*MB8QanY8&!M8ucSld0P3m4JFJX#90z)j^v^(=ywlEuE$gLH z833Z4qzL{w<~`yOOwXoE=@E0V;(R2ghc7J~8biEyiXg5dI^YU1R&(%PirOZM%k#`i zm9)DVdIu5+C!d$MwS?49ZgCL}WFR7WZSNcAhV36jFB}*5yS4ZzXsp;lun-JbgG4<~ zLH@jhD2LJQz}>-mkqjO*Ei0Igz!tq))iJy8TZaDIbzZDQz;Yj`%&^I-GdC#axcq(; zeeqG>NCuAW;jD7j_nLhlLFyh%ZM<>gz`6Zho(Du8(Ch>uG%_t|>Ne z5nWE0r@bG{juhwamZRJ>(9}a}rVa80Bsx|{rv@WXCO=-8D=($gdwK@AA^LHre1#AKO5BU_#!y85|KcBL<|(6!Dhviw zo7;+L2?{LW@lnl{`7u29mT@!yLa1&uO0Vvr_L5^m1Lv4Yyip?NOg(T`*;=T_j^c}^ zm^m0g6V{7bHm|8j7l&aJ;?S32;EVGiTMU>Q_~gmMf{Jk2Vlj(FX-x*4Fr6_hWnm$h z7u`dBTd>zWD$+ALca4!Y%HK9xe{CxPfWMdkAP2HFOP*h%4a7Xjz(H6py1RCm;gn_@ z&gs%S)?1yXnL~6@{NA*lZCs0nQ3G6>-)Rh=mBLF3^5ys?Pnn)7io=d{J z>SE^RmEFa|=T6NZOR%Zdt+VnAtV2}GT*HvH-87d)rB6}S_8vApv}Y*X_ntU~clxM9 z%sg+&q>;qz^mai+pU%sQhRmLr+)aqSuwopTKwU9QkNs}kL;BDFz&^hmKc(?qehTArcADWNO=Hm@xBpPh*g zLKG(wdSBp5#K$Jq4*pZmf<0f5)tq(d3ZiHLlS)KmiqY^VVUC6G_?4K0KZO$9M5`|@ z)JNdT>f_>^0=&*^#fz&yGJy8FKpg^QE)X|_MTEo9S?X3-3iS0v3rkfJVOKvYu#uXu zfmQS4I%f8o1e{kxFEpaC=jfn|2fcC7@Tt0WdHwrSRQcDsBRK`tT! z{Aa2E{MJMNfI%4&Spl9eBafsl8u-%0#oYD|mU!X)v(U0^Dqb+c;{+(t%l@UHQkv?y z;kP9bqjSV8_}4B|oongc6c|2y7C$bB-+pG$H{5haa$|H+j5^LAD>GiN*K525$%R4r zq$*Mmc8k5mec3d;8k+0Xj~KH@d0Wzc&o_JBP~lOr=emHz5^s(0n*~XlON&)uuaemd zcx?7n;ESKZeX1tnSa@YoFZZ~Az2RsEM8rwf>Vv+6_*L1NYPESV2r0AN>^L;^-x6cM z@<%u1EI|t;W~-^mfGYz^cR=;K1`GXSF71SA+g*bS(njj6RrVEqI9GPX$T`G33tHYUh~q8T!_jM{K75PjrrW@hZ(WX zns*Dv(^s z^kf9R%*_nf?<;W;bY}OE3(&6}|JrYo9<>zKDTD9p+kP0sgA61; znsYCFCQa*1uI=NcIt&Sz1)lXh*j5}ny+S2FDygqI_Yx_@LX(=DmT1{m8Zfr4TkDSj z(hOARimeZ`wh-iJ$^Rhr-r%;^f2D1bkJeP1Ahx5ZgQ>2R3jIg@kK6*|T z##B60gJ?M6rS`wGoQ^Y5jV1GLo{h^4L&Z5m|5ff(Cicv0k(M*C4_q8^WB+w=c4j=L zmR(yR%F-LQK<47<9$(@Rnz;}lB~g>7A4M)7&FF%X?+JI9bO)32t1YwRK%J`yRuegB ze$?2(J{)0pnXx_x;(Z=)qW5AcRd@S0N2?Xh)&`y6R(LXcjTDVqYPl=cSwl-A2d-Q(H zf{PjHc;@Bg+{CfnR5e4Ho%xSSoKL-%si)gy`rUgfr>ie))mykavqo2KZr{J&50MaF z!^;!qIk=Iu3IeH^f8G!7TXw#{0J>Q7{--SHe`Nv4$j16#OFLGI9nlzcP?rx#?|xec z0y4X`Lx3)T^M7nn3U3cG$%VdqAVd;7F$ik^@Eyit{xb{V@dI895rF%UZ~bmwq2bUO z*dXilqz&n8&SzS-Z3mlnB8s947BVw}f5@@s(GI&0A`Q!GrwUu5OlKkLK!6+CCz&g@ zZ0>(%_UKNRx;nNBtHP7HDkXx8N%2Nc#xiJ|B;Qx_IBxvn^!l6MZeE2i>_t*Ib?pGA zN`jvnWUW+lsqk!#L~f3LRZ$^hgd;2RGoYawAB9DTMF zc3me-?MG`nr!SGU3VwsOdg5Mt?^Ls3k>28H!iBt{2VQ+!Q6l-?lSqV95W!kziGSv$ z&vh~xq7u%!Ju2tBEek?#Kpg%FgWc6c%^4KrW<_R)_CCJ0B*4I~BAhGQZZofhX|$L) zwqLmP$5;8%kQaaFnezufX5VzqtSlSJRd)KYZFhn`P8)}&c3gl^7xv((SY?Eol|f`b z*b>(8&@{TSRoliIMwmX({Y`Y_Pm=ty{zncDMif_?MyTp3vIQ5EtMVFGT8DPTE?$aA zosrBBCw3t3vUChHnZb4LI+46vvWnAm=2mzIOw2PD5M9j8=|wDr;>S$hkLtmk|4+i} znTc!f*B4^9&)eT+LSVE17dOmI|3wZ{(aqL~Mn>OU!O@CF8ke4ymPXjj-oX) zcWLQpWKSb(spn`UXk=hxXhietwQS;OipxOH^xu3Xhcu;PFk9fdPE>AjDAk5!dS~&N zK~USkqiy*A`8Ckmha!p6|9V7so*UaZbW}LE9;7YlEj4XSjl3TdcnGuAJy4hIhsIB= zb)Z64U&<$0I2SQ$X8he2N%`Bxi|rzAhX)E(wH-uhK+z%V6&$N&DinB3N*gE~ok|{f zNa_aAd|vvxdl+JF06te&1Ho@6=}W_V0{#lWS~sc5@2u$%IIH;xF%H)Tjtf3ElzInM z9ER3_@{f8sn2fdkFi&f5A6^M6W}8T^KyWoJ0vruA0v&Gr&n8Wnrtu~XL~{|bPnkYd zu*n>TIkH?({AUq3aw3Wnf+q;aR&+G6=OcJ)Ibd9eCtm$kRkpc z&gcJ$rwyGja})NIMru}q?<8(M62h4S7y4Var$eUkPd{Uk3c<31a3=0hCANcdj{NuL zX21ezY~gvRl!@L{@Pj;))(+XoMsU54{L8`b2S&9;{Wk>((lRm(nLdNe;W3gY1DT^a z!vaI&W%l7r|B>+ftE1vY1r^ERQVB%PW-9yO>4@zkGla(uc91#>3gaXHjrcia8*6Xh z6?;lp#lYa?%a^z>mB+uMxL1XgCrreCM<4`(tb0xGdaNXuAMTXPjyNTBa-+uk3t9~N)wo9{q4Hx|D}Xg9$pj`_f={yw;_ zifY&tWfM z96tz+h2{!hg@2{`2^)S$Aki2um>aGmOG=4_0Z)Ka1RUtE%TJDoPQR>OD_N2*%Yp(RoKRVcTF#lSfL=Vx%F z$YaIiGN->TGQ{0Q%g}pt^bzF?oxahJMX&jakQ#l*sOpXi z+>=}i*mjr4>+RbDjgQag``z9E%ngpW_vgXIK+MnENlna7O-fI73eL~n^_Gsd-mY$v z@%X~$j3!+v*DF86$JjE)X$@JI1$!yaX`@BG1#Nsf9j)vwAewbg|DN@zp=t#D-{dL<}I3zjYfH1 zfvU6JNRJ_LiX%EycaUdTvOk}cE7w}g>V6ePofzdIj+RU28(0DAwR&nonswSeb!zYR z`Oj4!Dx*Qjw5RMid3k><)m*BI1wx#*;BslojtZs)N}uFWH(3y$jzckA?R~py{mmrK zN_Vgwo47+7dx)%1xAN=q+<=`QLaJF|BQflQ=&qijWrhA zW)k~2rjnv8eU&~oK73eoSn};im=vOH{@FkPBc4wNT1ns<{TZB8`!>}o1@VCx@svf7{tib zx5__0bhaqVzs5#?{FX?&937WhwkIpns&9^#sE)H#ha78^1d2GkN`oYZ9CM5`F2v7~ zcT@pfzM>izrlP4=Fyt;f5@)+NGP&1V_mK6xHF9sBbU63uGoGMd;5($=HBr!egBEBH zT8(4YTCXtSAA?C`-l5L-;*-NV)MywoZ3bYU-dD1?X*Ij%LmV=yPHj4E*1u|S^smr2 zEnDc36Re+i^E)tI%Pr+4dg=h2i-t}AITc{%Z+V?KDS^<;o<%sCy!YNVV`S&$>6DJ> zX|>*t>(08LrUZPSubpKz+nLkq)M1;3U>LMrfkNqZ82M6@y^?sGbmw7Y=68xR>@aSY zV4k?_&@4pOZFOq8*t``>ad94;vs&6aDz-?O+22pQCp9F<0A)Q_K?@8>7~A)8UJW`w z4SeO9xA69u$(7$kKb~G#FB8=qC1}mg`^mL@|1Zm}Wzx&NK zc_dy?ZZ^{i1T4VFTfaT)hbR?yUG-OC-fV3FQHgBp&O7LMDM;KjsGjD)x^XBd(c3L- zow+Tqjd-ejqo;)1b=%mC%jYr+kae4pT+nFhs%=wXo zfXR<2WMay2M*6sa{>6U9ig{RQ?I!)X+WC3Ew?o@s4$|a?sUVl7{L|0pR~c=Rjyc1J z!^6RI@gTy((cN{}Tgo1rycsV8H4&uZQ=bhnHwofiExO2ncf58dhLzKQ_r>VLe+|J%`xa4Bt zz0#z^*mc0vF#G%cu33!?EE`I-Y+}H}f<1Qrbm7n%7h{dC)n&yL8}>>S=ESmO`lC|G zIXM1QA@FV9&;{^dq&!K2!<7!jZrFPEIwxt~uksUB+=lgYxh!McTS}lfzt|EuN{V$x z{;vKqit+oXv?uhBrq0!vhPfDpo1U(eO1~XPrPLCoVaLL3&?m^uVz_)i*%G*MOdse0 zeU#P|ZxijlU0*!)KaybZsQGfebkYQ#4iqv)Lum_G4mleA`Y8q4g-1Nidi1r0)AOS8R$;H3_SI-hARbg#< zKAwB8UvbA`{FR8y2=d&GJnZs=ErDC*CH+qz`(y|jDKguwQ<7^os#m;=4=VDa)!f0R zMVI5WM;E}ycuoJaORxbPQTs;m+yu07e(&gGbRy}KX|e^U;fZ`5sOQW)&uD#a+;_Q! zHLKi4V#3&WpS*(V_6}rGuyg_ZJzf&i7;bgu?(`eo3VNk|kxJ)FyJkvuz#L3cgelTl z7yBd|?mv&y|HN!EVHJTtlk?o|Sn@h5(1Sqjg?GZ`z{#o7xz|&1#1yPfiU9QrcaD;u zzEbp8hD3XB(VJfK%QSVlYxaHz?DRa92qoqml_+I^(!cL$?C{abjKaRHzpO09 z<6J`bIxXXYFs9fq=|#CwX%6{SO66!M{%jXm4c{Px@0j@@QnxT{>}UpDn1jCU6HPBZ z>ro+vNzltepeUsH!JJ$eFQYL##;^>1YS3`s1VjKVAuQ*&ol=?@frns_B6FREVDXL7 ziCb!F6h2}3A&!!%E3I~HFb3R`){Z&t70nMikUlE5#@75|s_?<=+B3Z?+r;wz)M*V{ z2P)zJf)?u+v`pL93zYqoG1yt--92j8nn@fn$7a}HodPc3lUY12#`4hlgTxO}BQ7VP z4@L=Zzu_CFOS^&aiyEgByFk;srzQUvLF#fnnZ?2I^l3t1Aq9$gRvLX52AKeu0~gtw z4)q$S>xt?oHSaDg`U?;TlWVl`uLnTPC{6}6+rt9(-$VXq3#~3Q+AUgNZ9id^NuYg@ z0*A}-bQaswq?B-W8WijBfrw4yJOhupoiHtOmF9l{HyLA*3Ac_UeYKhPyZ1Zp@AOmp zzpaN(mH!*(A=ZXin9GC+xltk+0@MgovjuSBE2VUyQkkX~ABI)t`TsX7VrBbZjr}vy z|2F|utpphxe_q(38_#gAb;e+x{%Yc2K{@&Ob>@7o$6#7@c(u`RupTeHok0OH+&8*` z&b5)q48sh`l`h*JNsZ&h2!|>PftF`$ad?vU#q~R2xh10+!yF?8$LNg9@aqCo(blyM z@{c!fubr!n;#qH6t(FyYch16YM5L@ZcUMP3pkvDf9&0Y9H0~DtHpf8Q7l9)U8*Kgh z@^yr+$Qy1cq2gr}IyT}quY{eBYjNl^ZC7c`4SQ~Pij8nx-A`;vuu?2x}w2&kUxO>fTqEy3y^ha;7WuG!}77d&7)9!Wb}Lt zq@&=3ab$dubi~UFxXT9mL2RK&ym=wo%(ysde_<;aghH$M90qNJW1m_fr%76p@fQ=x zz^R3>NgE4OWrg~*!ln^F6HDRy_!IN~u_=`(96uSRo2mY_CK2%*Bb393;2@PXSStU10LxV!POcVsL0@O;4+EJGPVR4bWPDVF?}ln1&(v5OyxaN3=D%C+iu9O>d8J{e zvl9M8@}kiZMc9zfurXRn3-dhrQqHL~YkaUFWqDf>MOw$C4vMPl9jn~7kLG0WwT_`w zSlgGAO&w|0zeaAtB){$VmCedn4&W%RDLP_C<(D5|km|(`SlLbf{@DtO(NCRf|?df-CRGsT$4N%~s zBcBK3q&l4}%${nu4%t_>5 zNI9CO&qO1nN%&2qSJWKYF3dg|+?2N&xq`MUsJOSw zWIb0``D{2|cCmhPQ@L2qaZzm;JWD@E(#s({Rug+##$$#+AdgCrT`Odi1vHw4td|Xy z__Y+u(=OYtsRtL3U$DhYImqmZdV8mbTFJxU2Gz@qNoX zn55x`!CCrd+PD($+mRmO7hUET!5hf{Mc&+*=xmo_fGRo{MjpX7_-=8^GEM~h;ca8YGW<40i(D%!P4;e+fgLk`N6`8@s#W|ckx(DDI zNMsdoZevDcBkAJZj*q^Rz$62A)m39h2D%UrPg!j!bp7b5TC?fK&)6%K+LM z3H-MS5O4NYi9MkS| zID0Imo6zzJ-EMgKpKk5Hcx5U$={x?1%={0dNhk3C!(GzR(*O5i;39P}S4E}uY(3ph zUhwwo(?NO^S&+nN=)zDr_ZzC%SZsOXF~T&l4DFsXuX&O#5?G)-G2dCCv;6AT(D2Hx ztG2trtshCyStlo-m!BLk>cYt`9j~1iju(Rl(0_(?YnQWb5h|4GU6*OMMG`2|X_&9m zlUS>t1`aj)unb8rpCo4r=jM+6NQh%6B7!P5JEB_ zEXeC06zGrn#4pGP$)V*BmL8@KwzeKlo<<7hncg3oA&|&qqh}K*8WIkZgbGJSVYBFu zKc3M<;?OzWAD$5$7Y`Z}3X2p)tD?J7wlTcnyA7T6%9s%gIep~=G-Lrsh8w}1j zrmjXR!eg70o_xdh^`ZgmcoW*2LTa!E4lUO^S#oXkf;Pul>1V7VHzyq#ZLB&s2V5C; ztXemRTp4|=3SH_i+b+{CA5?y*F?Iwpg+GB@h%K8gD^$`|)>Yb7mZ;6t4mS|j64w*g z5jPaq7S|WoWgBsgxMx2BT?j2ZE<-I#T*@y~RN5|ARIaE#s6MFuRsE|Lp&Fqkp*o>D zp+=!rp<1D4p=zOap?aZ)p^BlFp_-va0b09S=~pT5%>GdUh(9fnIRjda<7z7Voh#E? z^a7nPEY|@hgMEqa=@Dvtx|+v2$YA+gOEpj)@&(Jzq{#O9y{Ggt)AO?r4Cmwi)E5Wi z{dQvGTGx32;r)lWCb-4)A?=sWgr$KPbkWE8b_OJG_R0fv@ zGW6noVs!%}W+h)`@yd%1xBN2XVu~+LwvYg3CF7BN-sG=B4G`Cf$j{@)=jge~k3;Y6 zg_a5HB+)VE&3XC)0|*5k6%C%3)MI+dki%_bPVfV?dc`{6KiZ7Q6%K?%M@g({*L0tN^Bt7wy#?p6g;+1s_0VM2`l?n@As7GD|gjf2X_HM_G5fBvwrA~ zN~;oY6BX)zpk=jHw(GXF0Ni+|!ecb02iD)0q9#aXkZaiU^{4_B{ukwSBpr-JULVG$mdE{H2_#R}g zd1#cu@=@|6E0zJ4vVN1&o3eX{kf0xHlNBaxlHBIIY7)P**hSl+*Pd#$2+K7ylCzJ3 zOqN05up^{|@q_(Gxdn&Rv=ExQjO(97C=)P^fJ*xc!}GCK2}spCVGpnEo=xD4iGwAi z@UFRwdNeHQoF7(8-!X5@JySMSjBA)v!WnC8u9Zd0I-9D^V5MBwgRba|xN#x|);feb zBt+0U+Jf<3*;lWbl&}jx_L;tcV@ju>HZv)@zGVuMx z$E$x5gQYj_(rHR%AA$W6#f~lwNW}E#5I9qS9D)9vHn}U^x1uDB)}V+^K{G0{k!v++ znXXzhB48?pEhbUK`Uw^xRt$zqnb&D2&`GJ3CQ#5n+8e1KBd_vV)oge}+0o?cP5H|n z)8Cy2#H^l9v|zTdk~rTr{u#7VqIHDUt+4;?u2|gXGCc-shjGw@6U!8)Svf{C%q>)Q z6vRPh90vL@S8y;> zu(CSp)_PLHB65d@Xbz5F7mAYlem5^^Cf2TnQnuVgX7MpH_U>G~e8#L#UNz_Z=tF;$ z1vASHC4q3Osm*uMXY0t2vz4Ve-@n3k0+1m^Mlxy3MJDB05ef&H)LqVSL~hg2DkL9? zn`HBTzH8d1Dop;%SL}Ei<=C)ZU7h{IR(*Wnu1S$pz9fs9e35|sH@xr6xpg$5o3JQ6 z`LP7#DDTE~8FFP>C)GffaF^s``#Yt+3_zxA%+k&s=0*@9BT#GIz7?ROz5F~=V`Jf& zpF&X?nI);wP3Ftu&>lrh*%C~=w1SM}b$9K?v`T=oyKS^-LEf;6P^L+)=+CsLALu;v z_#l-ln@+nNa!~>XV+P3#fVqM3104GKmD4l3elzB$q$vqTSgLI{oMsRZTxY)I3I#Mh zuqbI6LioQ_MSH-~LJh@!Bh{Iea_Frq^c+akBuky}DnX?M;(##_YNZ=yv7oIV#8v_ZAtXFGU(M**Gj^k1; zTQUsK2E{_0p^Kj^ZsZY$MuhNZzoMZzSiT8gg(kky^jU^dM6J^l&ax`bP!RW=1}E$A zrlA(%I>-FD^7%g$R|0)Kuwr;Q#s-L|^>H$WW(1Cq z^dv$Uzf{@rLM z94r)xEvEDBC$RM$(|5q^bmj#3;@ZS=T~+6#G_R-c=}8$H5~n#c63HsrYJrj57Etu% z4_K09{QEFYB+ZaL@$oX=#GWxr&=jhKy+ybwv+6{<4`+z+GSHu`a$2Idn2Lxg4vsx? zuRY;0BNi~EZvDKR=U2__Gm;&=@A$6RAM?@<~%RVMPnNva{mIOE7U*WPt?esUwhT^#IbU$alg1DWwwQVbcP&cE6kkK#nrL)6`p!sP-YWme`Hz5kRu zhWrUfhiu&Y5fqx%Gxm30;o?l1Lb{Z@q@-UCQZ?h!;z)v_X>rWztKt5h@xC5|np4Aa zGu~!C5xRddhm2ikO){uUGW!=(C&?j%=4w;)F?geoSNEMGy%2C z<2fM4&1*@OYChN9-Pj}E{QkK1Lh{&xo;Lpp5v;>Pc(-SupKkz>HC5n9vQ~3qw+tS- zC?Oe?$!Jg2MYA*Wy@Y=kVcXaUq@ONO;W?t+p+&5bkk3k@o_ zD?bcP9Bmz>s)dZ-Kor?zN;1idzBdIYrQj=8Ii9dDjKJkKlXzSv;-#A8wu=OP>}A;r zNU^6FgOUX==Wo&<*i_|2BvyDJKk24v1^<9)!g8wKY&v4>1O}6C(yC%_P1t=jldrN< z`ox;x;&L_4kTsU|7 zlRwESnfP9R5)tZeQ+C0<#LML2mJ|(X0HOGDVB9Tk6B1&&bQ5AMw16`r7F|nbBA#~vbs9?{{(wU-_tfilf z;Ib-&UuoxJbtJ_s5nVrZG0)B-wU?!nd|rgNElZjO+B!+e{NjOtfG2TI&tWL0B8<}j z`XX}^OxA2M7yP0pFU_%yCAYw$;XJkN+ks`L z!q`RgqBBTQg-w#NeJCMk+uIVEGC;_!!MN)+-yEM%LE=R}JU4Wo;}OmsNGjtM2|HRu zWH)3U5_1iD3JE%?YAlvy)#E6?3cGXyW!V55n(iEWje(SMgvHer!1E$MuNggR)vLbX zM0dfAAIcH|I~AcD)nqTs(X<8#T~3hT0sZXm?UY;l(LdGSioJ{v5Vv?yIZ8lw!?fDM z+6ofQ=z%{?Lr-xIU!gc4F=XV}`E^^^=a}H{O5znkFIkEF@`XL*VJyKzto2UUNN2~p zB-2|V*!Y$`X<-V`s?*biJJ{XRk?t6gL85X|vV!VnOKb>p{)N=*d+w|@Fx^=u&Xu_# z!;a55-%R&F!pLb7gWovx<{Cs1b{+ga^))XFE7EGI9zcjrOm5Q z5oKR6jhb4~XGp~rlm2Q-^wLn@7H3ex9TgH=Yc*wlnKe7={e>W1Q|CfAQ`tiCTkwLS zU$baDIZ2===C4QSDJ! z>RghrUjb$^I@DuK3(kgo{8TZ$EsJP@fouFe9<-F4gRNqSC7syP#d|`djaod>m|dN) zHhdBG9_3r`j!uFaoaY6Z1=BCMy$!ranEpUCiXtTLTr8w{t|J#-^ojZ1luT*r(1d7!M>aQxz|6yEF zR0@W4ZzcHpv?D_@l}!LA1!NBNLMYFn5tZCUm`Bh?+KA`GE+tr?O##y6C&`yMTxkyp zezhTKbYx1sqgmkxmHRHanaPnfuPuTIedgUI?EmJ)^r;gPM|P|nkGHHXx#^kO+SUVi zWuaGKaEi5kvRM(`xtJqG%#xQFI0dlu5NsX?Z#+X5@u2_L^{`bT0&V`cZQy|%+S8_#%ZiPk1<{#S8BP>sE9y4HATQ(2G$}6O@pIe z@90@dBJRp~8{{z(1HiWe^&q*~XiEa?;OJVW?=Po$1U6pY=Mz7x7%8H~(k%JN^VrD8 z8rcm~hwYNDi+s1DpzQ2ankmWe=H{cMMVBpi{52Gs(N3P8nI1r5Sysj?MBpC>ImA%y-;T_JD2V#rQ~3VZlWyk@85OT&I;p3u9qN`MU~YR9eg{EShHEXhPXa$8!A0Y1@pk2II_TREEp;shGt816|oi zJi(x}ZBdsKrT`&pW1m?krp#o^0{FnW;;%4V*3_fF-$uO2!mp^Zc4i~{Ay^BXAssG+q_zNWhF^U(P-)+(8> zygo@o)A7dR%Uir-_icT?%qHn>1u7x*I+9DB=P=0ZKYP%=PfYGy4DF1jZ+%Quu333I z#NE`kY?ZOx9_9r{0ttaeSJK`u zv`URQ0gZia3Edm1;>+;PbT5IZ0a7}NmD2LZdA-8jBN~77ul=%Xpp*TWd}c{* z{WUwS-u+k5Edhg_j4vfImG@i&E41-1rejQBmK3f^$qdWsZEtsyXXbPwnFO>j+}#tL zbu@k|+yz?vB=0}}>7X(rP&&Ag9{cGc+VRsQ;-Z{L4Zf3CNv55A&@QEDNiUYyXU&Ff zF?IT0-a$nNWvQEprAvVv`s5haE`4J_7%mq0x?9%F$RJiQlwCB_U4>JzL|^(aSy{;U zEE)CY0)7{Jy z{e2c|t?EtTQFB6;#um7mk56+Z^lOuIF+ywa8x!pIF+Jop*Z;%WJ9di}E!}#1c`w_x zZQHhO+qP}nwr$(CZD%JRl6#Vq*4}pi!l>D5j#1V7)6EvZnLww3no>Tl%l=m64>wF! zYh$4Clws3da$tD;p?29+Hlaobd&cPIcwA0K2ZsZAZ+>Vc?^@{3Tuys~@q#+FoGWXE zzkFbAeT6@Hzj&bf`U`EyvM0dh7*L|@^NyUiV!hFp6M~f)6@^o3+!cUbS88Y~YHF%} z!hrDr4cgA4ol+nH35?$GMKrbT?2LN(vH!cu&K4^1 zZbtT+xUdX9WMSN(Q6!-_#19j!P6piNYyG_;iZ=!aXG76VVQ6Di^S6vB*%vk6aq}{T zBym;=l&7sFPach}|C$)k(*YY@f+p_^GHa)5XCSCcbnFa!ZLZ@q$zHE5s9lA4@xv^$wJl8elKfC zVkjfIj5GFD57u{fq7@=0k^Q{>2dMhfoGo`P;TBQ(M6*Q2Wc@%JB5^KV4R(7;cjxnR zwlmw$4 zT-Xqt)Zvn^vdBNo0FXBJi5av_lLfHMjoF+yz{!bvDc!=qqLOuGd3iY`sv;EB8(Xf1 zk0Lov#x!oJ6p^`%Ns!*(!?G76OM2nXj_|YEGHYiaAZb&3(QYz|`J1H~3^F90x z-fOqf&@ZFcQbaLOn?%iTPhEUyo9?7%swmz|S4X&+U5Y{__n! z_iZM}cmTFT|Bt&KLxd(of9eLdd(PCF$t7Y4u1^UDpBeC^lubu&4_2QF*E(fhx7hr_ zz-}bySR_J|5*UR+eVsAMyFM$hm)ed<;f5uGO-8XN}NcNKnRg@|w$ z{Szt5mE$ElUB?`@iW9$kK|@bd|D&vJ`Fke)6r>^Cpd?P}HLqSanvWqDTQVEbP@EnD zoW*UR&PnJigY_RfK9>rSig`+>qChF{cgv|G%|J0>_0FE@hY#`-S+uY@{AXvmB7fb?CvL(uo9udlweEEn1StoH64O-f?I@b;4umuV_mIR z7}hln|1^CTirnl5t3UVluQ!L{M_{sJ)}*3>^se>k>L1B)nblvfn6K4EM8k_* zR_z|T3tl(P!-!7RucY&n+6(7R4>?Cv0W4Du*Y(%&-l^S;(S-D{-!D|bwriZR{WUKN zhpFvFOjs0Ajv6jk6vzjBc4$A7HGxVM%$1*m#v!d=icEGPN24=&jR$Qvc66_l1WWr3 zMjIxSijiCW?!Z?k6T!ZV3 zua9V%*piX#=X0v-7U-YexM=;%n9fJzj`*_DAEjWRmr-cMVGGnIcW8nBX&zp#< zJhYs3GkK)BT71xL;t&aSSXe9o1%3Gog!Ein)f-g(k#ah2^VZebZmu{npb@YmFKw)p z6bOj>`-hgCe0p(1!^cKNOrYk5?r`iuU7yT!(jjB7psd$j;Alw;SWND-N3+9;+7u|c zoMaG~>_T1V*JH|JG`Hw0Rxrw%`Wa$^X!4dLM;z|0cI=~m7eT69)e0Q5%dDaHi~|+y z3GLNyYA;1%Hr<=Su5WsQ8Uk8AZugPtZD)`~2D=&i#NqNF@?w4jB=id6Ug68gO-?BL zTY9Pe+ZiHb?_0Oul!DisP~hmAno~r>yL;!{n=MfKx^8C18?X;b%VNG1K+Hqxwoy>D z*^_9okIO6d(+V}rpnlHL_FhWojg$(l10~$5!hWaOV-WkKLz* z0R=IRy@!R$)k=4ICx~eNq0sqE31hNZ8oeDL9?^^YkH_F_)I%e!?g1TVnm!lde7GL$ zi$7Kng>_dEcRopm6K1NBC9sdfRXK9%8DgDp@1!-;U1O<4YoJc07#3%Oo>l_=^!lFD zDqIJ7N-}t(i&#Nx>!}wBA8cQ-YlMt~K~qkt463nFcq8#R0w4ZdBrl74|hw4xl;FivId zm37bW;a-Wv+HFlmRrK)Hl(9s7NE~5vF|+>fwaZh|p$tHPOk!@Y&1j|N*j}N7@`BuT zmBUBmt5bfy9ao!9BQOi;sIXlA*<;=^toM-5?NLr5*3u4Vn5vE(6#~R!uz{|Pvaz6X zpq`BG-&sXi64mO$tqZ~|R5xf={1?^QeH&M%El=pw>WP(!WK?olTB!gl3rWcV z0E1(*Q`)K|DshdL{hVYL-D7fuF>#{R8d!A4Ugh9cxeIg{#)LFw6}bd*3Haipw+9MK zOG^t7wu4esw*&S})oM`Yd0Pb2!0aVwcV7WUg~r1|&IXvjG<~Jp%ep%Tpm){BMmThe z-160!qO~2Cor!X>g;gI*J&L0K56KpVW^m_58(Vl9d5O550p#0{C-<_yu;kAI@rx(* z9G!Ctn$D3o-&|^cDdsMYJjmrQ8un16ftFA{H!EK|Vt**Zj=Bgo_(G)Z^E;zM5G0F> z*AxUaWZ?#`n3teY@bTmSaeE=@pV^v`uVTA^5L4n>#5W935B48JZh-wK|PM zImeMU5UaLR^#@zpoIz`Ah^r|I4MLfLO8QEM+Y5ZvQ6$N{Wsb&?{M@Z4h@JF zT7;)K6QW(K>@If(uSFCW$p@QLG@H6sK0TSk)OYk!i24#U65hhq?1W^QR7aoH(bQDc zSlUptr3I)cq|hJMUXb;&c2vNUgM_Tz1boaGzrt^+{aAnbgKVoe;Es|lO&rJX)U^Kaj|F!_YDro6mTA|^Hvdx12;RP561Pmv@j!}s!gktYM=p85IR zlxamm8f^ZAX50RvAVwt+$CzG0&3Eb@o5 zrdaSNIyURYTzzT6>%IqA=C|w%KH4^h+Gk8XMtQJC-3JKx=v@kVsJmw8I z8?hmsm{vV~Gtvs5CBB>O?@p?Qm)mYeV+%^{n|E;Lz(Wd&yHafwWd7fC_W36F?#@73 z!QG}7GA&(;K{)wT0Tb>meQ) z09zLQyIm3+k3$`oh02neDO48XvO4i#V#hQy;F_bu{=yr1R#yK&EKoG7$9yG4Jz>L# zI=p})c=cO74mA&F0bgw53{}D?;bL!%Nn_CSCgv$i=_o>$^JMOJr><#>2}zw!&*&!6 zCr)zpH3E;gdeR{Smn=nib&I4|CC6#~T^^`5a$7kO?P-B4gKp?9qIylvvT0ZE+C2E_ zUM|(OsDX0tkig;I@d5poTt+lZPK0Lo^Y3cR8 z;DuYuAl-pf%3HKVBF}7mWWYx(5`HH>nAmzC%F~HSORJ`@%=Z6gs2o>mxow*VK$a`1 zP;xoy1Xmdm?SZ42$$S9x{Rs$CHk!D6od6(7oYr37klO@K-cwL2O)*M6iC_4AVDqS3 zsc5D+|3Q7Gm@gPUAQ}S*r{2stn{G8i98U&=z(&qEHXYcup_RCIv`_lv>5ucLO$vo- z35B8$fwIPOFgI(aCIa4md;I<5IVX1V-=v5CGq5t#e*|G`FZ^GE(LZyXy8njn<`hIg z8sPZyYQ#;>nGoCApo{p?a3CIMyRDwc1zj4>RMgq~dF*p9|3_3dyz@ zU37YL9*!Z*(|U-Rz?TWNwLX)k7D(T4%0!ew8EBd-8t#O++Z<4GZ5!{lz9wogbi zfG8Nv=k;)o$CopRIveWI07sEq*nQjq{z##zDW_WK5gc}+ zAyYN-zQ#Rd25P(I(n9=REw3ak2#eU9O*MJqNnNKKx0^`6J(%OeSDtjd z*b>JVoc6LcatrxNV97=zZViPq*f)J%A_~kS2-(^4%oGjmda9SU9@$OtCC4& z@?D|o*5OsmUzu4VsthQVdR-hnH~3Z|Z=N_(I!5W0lP;LK^$ylJKZUR=u>_wlOH^>0 zFzWp~jbiLjfD{;u1bWQxm_+)_X@SL@lOZKr2-pU)ByeG9!QC9JB5$wM;Z*O(vOv-i z2f87pStd0R?NAyb=Ibs`SQeiI%N%h)3|aUu4i4%WgIJDViS8L!iL5yaqL6`%mo*~A zC#>k=48JL)=b$9@zM;H9=+$+*`sVi<{!IVTZA^$EcAfYNh$gv{*=RFvG3O@dCnu8I zGc@M0pi9MFIZVXXl!$G}6b1tbcRZ`f5rFp%Oc~K}IsusycWZJaogomUI)Wa^1IZP; zKYzrc7Cc7H1yl(;F7k8DrLkGGPajGq^klhNXb*;AXEt!ZC5%ObiCyr$io-A*hXHRg zt=n_%aM)^hONx#kKh-!Gqu<=vqDqbij8V;jvaMh4o+p+&&>APu72Vbph%F0|n9-Iq z^}fAD%8}))KP}M~Zxi(P{U&THtGzrlJ?tRHC-_y4_u;OK_NVH$W2#^ zB~3YjrrQjwP#s7-Ac9-JUC$n?-KffLTNehD&dG6ShO;-oZ&!?s3IX>Xj2d}0h-5T! z$QNK#k}#AeO-4+l$*QirOOfVfpEc0?_a>zE5ef?xm($E1M(2={vJa40E8*1ewB*kQ9BDF$Q<@Ui>o_#$%7%#}0RuCpp|wZsw3P`OFhG2SDNInUkn4;4^^x zkMb^LHVjE|9NkDY=yR@8h!>*u5mlv_5z`|e5KZ|+@9v}vG7_AA>p-<=nRT1X@ z$iq%$x9Rm?tr35_MtcphegE1a<%4adyPA78Va2>p3wQS>Z%zDuX<{vQ3+&+#O3p6?j4 zb;b(FIl~be0k2cT#%QHGCN#zivg=SVL%QQ0(Y!+Cy)C$n_+gNz^_g*n{-9L1?SdHF zDMM{$`9N=ASYji+j|uYLL_}0P3>plCPe~$J)In1O5k`^Zc1;6*xZc!6FmTQoQtPaF z=5u@m;J<)GP>;=hIw;Wj8WMqJ>ohu0K60ZnsVJ(jUh)5jfKS^!B!Go7t-#E07l%A| zK$zMZ@=j5ZL{Ew-pQ>Q`%bDLN7sr!|^+Y`Xds3Aqz8b*N4qtJc*6$^T;vQ!=k{4)X zji@wEpQg@dRl=oMqoja-jJ_;@jiidIy4^3M8}+klij^MY`j!eK(#v#4T|Km%YxVF0At%HUyXsV6;Ul6evFw+o&Q?j3p7Bvc*X8hnTh>;uu%$` z$vlxil_ak5i0aez>}5iJgZ@0v+9G76JHhwcqcgE_krY?&6ewLSIMt1>^$GJ541p)| zOb5?74?s*(>@OT9#@rvXP9joJ2Y+4I+uPM$najXUJM^BA%H`5aTdgu)z|uVgx#O7Hsr=%X}X(07?67oDH(FtqZQX1t+NJEqknA&y1Ge zV|Q`Y|Ck7HYWZiE^-5TN9yNlSX?gQk8(fF$pKMUavA8_&dmj&%L)G`CH8qrWF`e*p zqDDe5FB>5C(3~3^*3m8i8qd$*DKmzslrR9V=kH1E4su1+yE$;ROKCg|B$-lix?|}M zQt9TNc`wAkFj&WMg+z3?I;r8*Z!oub4ED&Hu*T#9ph$cw810O0l=vYHWR27Y2C z9WD+elj{(c>IAy!)tkjJLGu4Mc6Fkq0#x`wvF06`WztJyoChaJ8j`m&Fk82#kWV1P(05DwCl^K)F|cMsls2`#?&e%KP@M!i(B(F2AJa4OWx=Rlm$f+ zhtY}PRP560dQREAG>DxV{o=QGak!s-*A%8qp!*SZizVAlH%ZIL~ zYjRmqZ}QdLv5Rh+L;U^vr$ zpDm7IoD)i9wyBo{gw^YZg{{ZhfrS+iv!~j@dXIgVqfr%o4}DLO5{7;$7-&g;Nq}fZ zBRq0@HzW@&yBWA7BHnaW!H6neRZMIv ztX{=EXl5<@XBM-xEQaFhefvp4jbe96KHiFoA5J4Ncr3U*K-}}M3tJeAd)M-XW8bI5;*`hJ_VC3;w!QLoaTg zRkGS|PYa$Ju>lCaUs#Dwr1o)lJKT3*!Q5J{ws>vWuW3PofV_j$WiG0kF5Og9+FEVt z$HGI^t)O*_Z|ALb!nc7(3ZhQvM@k#-<|Jk#z-r=klYQ77fDU%Jsf~6=+F06AedL{n zX96}EXK5_96nKM31tZDv$GB^*&#;&UpDC}k@K0KL^n55PQmM~uz>~@-q^6VG+CC?{a+;o}Y}`X+ z|EZ0H8}=uCLY&veV9U0>4+jqig|-57c9sdRU~!g(umT;txjSa*wzc%MY{u5eo7S6l zy{eeC@gtPecKiW6t!@p+Urtl&86ANW2D!ZJqF=Ike&~=tWR|*f%C&sNAc(b!R`XDy_Sp2dfTV>0CV1mhJDn{U+U@vCDw6Kyisho&{NHWxZ}^ zu91e9Ejho(!H;qFcS8zp}*M%g8 zIgz@i_DgUke7O2xC%S`i2KHnx_8T`GO?JT{5Nqa* z1+x${JA_!kPwDYA^%v+V_mS^4+@!yVq;RM%&7j5lR3yOZ_zWcL;z{x+L~x)$41^Pk^5q{Im#UVQl`YN9 zy15_Dbuv#|PjfY{0m_{#mlwRd8dZ%dH|(al-M*%`yFb`w6Z7!}<{nQJy~mZRw%I*S z*Ce*IpP}ykYj=({)RW>~;RvJ)2Si}^#^G865Av0QZzKS8aPPE$WI|$3g}HFWEQGob0OS6o&tpdEJ4@mxWur~4-XlK=f}*R z=2BJ-2C`;p3x*PRO0c%LxvM5_Q!ft>_ji#AlrO+w!k$&o3L)c#0ZB)qMWMb@cR1|~ z>xL5nbj1uVKUM1C;o&*_^7lFP5p%+drfx(x@*(b438Rz9p2zq&lLiIJIF|thM>vD= z?l7^Eh6M(QNe;oI8)}I%3`8)p@Ln zn`PKeb%JEgp%Hdr`AA6#5(NxnD_$DXmS)t@O))Eq6cnKjd06G}LkWz`DGtR&OOHsh z-@y)rTjlmkZW4Jq`6UXAW$sIW7V!0Vp!K~`8vNA-D{_|Q&P$*Zxf=r3#SG-KU=buG zI|WluY8>%D1Ng!RH1|nY@lG5k>^|2`W8#B#QyeE$m=ifiNL!_Z0-{Q>Xc+BgMyqAW zg%MfAGl*H<*@0QR*xxT_j5OPZB2n})?H^kAjxF{1hOnJCPS$YCG%Tcb5xqDi^KZ6u z(V*dO3oU-Q6){zYH5bbH4fu$d74p;w2ZZS=gUn}FJs{RIiBn+_>Ae6xk`INwyXCX;3_;|Zhy@0~7(!VHH z!CL;a!+@!H?1?hHf@b^{3T1_j+?%cN6SV`q?%|u*?4yIV1H8~B`BFBirOQ22tu;>~ z3S^TCx76(lh@?&B4l^!tne-#21rasQFEP#JZUdb&2HlC3Oxt00bl!gPkp8%2kJ2s^ z?S{JM_X4vQn2X$m#E1%598%o{KbzyYc`%r|-gw`uGIHPTNg!@)I34>BodoI}BTMOM z^)OKK&?;wl!?&%bHvnAn#_C*kZh3>(IEsag;)`~{(T?1t_0vMs<$0>_Vs=wzwkE$P z4rB6bC#lA3|5MAG?juP-`YeM_8&84KjqeSP{VMCMd9s{vcn##YkL?F)?n2WH>i|;4 zJV(EXLq^<%7;otSEkT&U91>Iv15kQ{e-pr`h5>aU|Ne8I9>H-=oz z+P&kKhnWzt?~>cNT7*}}L`F)(pmKz^oG&=7gY|a@5mnbjTn_1YDSBx;IeB?GIca+- zDr##d@>xLk8Vj6u#F?UU*cO3V;Um-|v_FcCC$0L;rvaNYU`@oilO9bfas4FG3_7M; zmWh_KVg-HQ6sr$Y;3F@gTP%BV?S-&@jb|l@%LWV$VU)$?%aNdYa_H-lT;G>Ep!2)p z-^^PqrN`aYP|Q#uQ}oN3kbPr8x8+0oa*giapKEpW5?)nw`j>4p?0oL{pC~$p1 zxp2geZfPk4YW4dF=3k{-CrL!T;sL>~Dw#c*95vxYr@#L2>^VF>IvVGJN=rY$D(>_< z{+R^$ycx0GJFT-6De0bQ+xmV75di=C40IIpKwyu%@TV1rQT?3`igC#|6wz?HNC;z; zhltI{-2wvWMsKD&mP<_gD}D}W(@$;np?EY#OM;ycB~nI?D%L}sW^H5A@d!%Mfe#Nf zKg#8m@~Xa;jJ^A=1lsSRhR{06XrR6$;D(KI`+D=j&G36TbZCdc!~ET$g_#Ws5%`W2q~sy1F{pgwpR( zDY_hJ zpA?Z)&Tlyxa2A2D9HLHc_+9cO?okIyO^>wsm05c(L0Gr2=p+KIZ(vbh9To{vDB~-E zcTb^SPnI6sPZj_f`Pa2kTxnV6EJI;yX;#s5@DOnKUCu}d5vFRk-asDNy%|h5hnI}L z6`)obzyY+~QUIX6-#K1m56G@zjyqv~czIU$n0Hu${2+&{;zj32N7dh%Dq2|F-y zBIe?59HNX9L?(|~fR+!#%MAJxhT_g)2uQGM$!=|%2#fEE`69IDVRK;|KN6M%S;M7a zV2tFqsvFu!$}rlQO@+2jKrDed7->$u8kJ7m*|VTG zOa=?gVZNXyskG$&V14vA6q2<&wDJJAI4tDiL#>R04ToOEYywE?EtV%af>!fuLTE`Q z7uV1XBjn(uG#c&{n~%wpe1qG+_6jO^#t@|qz1A)OrP$g^4yoD4(YB;Eg%7?%xd2G3 z`#|g8*mX^g51>&*?ox89so6nKgdO%rQ8)vXAP#ijx7kqzriK@C#$pE+5)X)@%%II6 zW$)-}`ZT_7kD~kkoMI~pC+r6`pf0~s$cpuf)`oMwVTV4z3L?MOzIxL5dhK5q16o0> zx9~(UmfqtwtQG3 z&lFDmEphgmzV9u^!5+|*GOPC{J;x9?Iq&A(q3TX#BHG6XMX7n2M6V&D2_*|(h~*K~ zN<5iJsXJP0YpYme+5ZEeQA)X#d=Uw8eHFZQZ5{L!myWQh@Pz)`qzUEy8udJEd$0Mm zxWe${J3F>J+~QaC>`rOnUX}Wz&%a0w8VMZTJMvrNGeju`OF@iW*_Sgx>_!hyax>*3 ztse=6{yXiXi*a8u6;OdZ#ie}2)Q@>gH)w%y54HalGM%jUBJ`EzThJYXjN!2w0i)?l zx^Tk_Z!VR#0ekc?3@7p=iOtysV!G#()c-Rck>A0aXjumMd>Fxt>~w}opm?qyOGMUx z6O;ecA!o~L1u!Ov0)?wGtHb)`lBUtj7uJ~BAwzWbtgmQ)1^8^cF-P%{7N^U(ZNe|S zn@12ibYlLv9}1Tkgeaz-ROpUOZN{M_$em;+^_~YvELw#i{gMD@b(;8TceNI%&jW6v z8}Km5P#*(An5243yUfZ59XE}o< z31!KlbNj&K4b@3yfw_G?r;@=Hh!lA@!x4CzuxX)|f%GZt#-yop z)JN%<*gWHH3*Cn}k|dQweVw%tGIp|PbU2hMr^q3~h?i>OJrqi`Vcy#RSyN0U#><@I zr2Z+CJS<*(k*05cFvSEW9m^gLay(DISjc)a9qunDeiKg*VU6ZDjFVvJkJqAnVsqg! zQBfG)~mp3I4`kvoM+j#zt%1l zgPj)hC5^f(1ZB?FSF&Hg)bB;jyn9toq{s?+!(Uo&^(vsy9VZZy^ZgqmG**6|dI&tI1BqZ_*2(pZC7RkmTiKGSH4}N<&D!#tE^XI*&EM95pw$$-vLNYN z66z+#;?nxo$|jCsaeo2Y`8xwN0-%aeJ!v#s#6ST|+Kp{RG#uE1>=iIU;*A|F4?dE@ z`2L=x>}*GA&5ebU)`HJv_&nT3+cMh(Ip_KDjm-;R?OK8ad=hzu`x>v0D>AUH%&P^*2tXQhZ?;WC4CV!l*qfv*jiXDu&l3Mkt7KD{5wGh z)@q(wKeF}j)Y(*|Zr27;+XZ_S7L9BG`h3gh^B}l24C`9mcY!;F8~3>&(8E>Q?mHDmh-37fw~qwzo=Iin?{ zn;Oof&(P1`vHj>fAuDyTw6I!kwN8^H0HwdZE8WsIN}geYKU7=5mPVQ$%5C<9^Jf5; zibvlpDoDzzD7JOStShWj%YD$ksskYlmbs5~L+p3WGnIK(lST%P$?8N)-k);qa( zy)010@>VOF!_(nLhtn3OmQw*S{>|2FPr-{?MFkn;gh*ve?XBfxL>f=-4hVvp$<$T(M^8jgbdJ z(6KguT^7ocb|RNgDBz9uFozvPeMqxzSBODY-nmM7H?Hq-(ClZ{{e4;K&>C za`1B$r;C)VlyfroPw(%9X;_I*6-kfG&Zb4r7KJ3l)@9^~*{9-aof$8_`rC2B@g7DA%b8tU3@ z%T3>Aa_`RFizh_jnEK-u%%H1y)>9u{l`KqVi!n#QIIZl1h7D|(;yIw6Hw{w|jdBvU ztx6uHkLfhsEct3aae3f&rkkPWzG1qUlyY!!8FK)4ZB*dow^x@a#KAG&G~)Ns&dZ`D zkkQgH($P_-I>?yDvGh|02lOUfiXYV5(Zzr5;qnEl1O)7>L1BMUwJ;k~0v{(9adVu7>xvGn=-jVQlO~ljkVf#_9TWhsAKlj

xuu77JOuNt9ld zoHM{QFuvvhujkI6TknFl1BMftALp(H0A_wT*l|q>r)y0iF1Kwc|unDjWULE8fFYA(!=D zHr))^ec?Xx1631{ZhtG4JWHe*NGA5(89a5E2g5MtBi8Zvx*FM_nf*YxTIN8b3Z$PP zjN?);gz{MJKLnyE|AiFzkdXATc`dxi+s>`7RMo8Sn^hxn&;5~+4Q~`dmhsQROtJr$ z@+!af;y^qMD9o<_M!ciZYVX&y3vdI<Hzxoz) zwA%VP`VVy1D5$alMpf6-hIaEOpt6_RNbE22EapeyTSQ<#=b)Ax$Z zJ*GP{9>Dp)-?rI(>bu)+WtJ3nd0W2}HbwPj7#bZq0(_R7h6Ae^}7%L3F%6rSj-dcsH?3Dpo+YIeCu*IOq@a1r zr_Zdp;9Bob2hZ`dnKXZXxl!kZaX2dafNs=dIg~cq9RKW``14O?uixA)hhIF_I%`rc ztWp=hUvTEkibH_sgVrqR*i_c+-~TA@1E8j3R6tZ$Or5?~o$7?!qJZDmjn5(>A7|=6)<0jlCr~J3J_`d)V|Np_ZOf2mGvFu6G zwGE&{8s2?J^4@Bo`XaYBH4sA*H7WQkyaB?~!VX7LxbL^+J!@Yd6k~dyf5}-~)EV&V z*4Q+G+b_MW;D$a}THBa!?re`3il2#wJ`h@xW~O`pt)TwIn`$-w)oCFb7+l@AZgt2ERd_!>)Pflh#{;(Ya8~va-U4N-S2WV-5 z9U=5CoRLbODbJ&I->bJpSb6;KM_UIwYfJL2%Wj>bEpy5b&tLCV*~+h5)LQC4*Z=L) z_@4<@S^x9eksxgu$Ojj4`xC)kl63Hq?e{mF1g~1U4E)Jrg&z5$qv|BicQ-qmC=}=4 z!u{RN)OG8hV0C?Viu+7{iLS9GwK~MS%L3pEDpiLgXLdtp>Xr5rMX(TywHD)f9jb5Z zb?|kx$78y(LTX25G#j-Mh2vik6B6C;k2cD)b%s8fF>3>pGn!+sRKNKOYl~XzA-ay- z<|T>~Ev=RPgk|NDYO#<0A9ltYqjc)icw+h%x^fXen;Has1C(jkzC1h>ephAhV;=K9bse3&@L12}if_Asc=tS90IS!Q`y zE1FkFqfE}j~_~${wD#Yrrc}FWlE=EuopIkbhsZTb{%_uGFIrlJ9 zICV=dA$$Q#c_HU|-6(ka^eB1)5kqk?z#KV*LcQ2P%#xQSxY|Fi$L$mc70vBJopLVR zcO;(Rv)PJ;15}@10GsNKVgIFg^#40zRyH=q|5)l)dw{zsDu4JG;A!P4$rtkDwc-I% zK$L|Mj8Ra0+Ds~FNJzexm@gD*zI;#ilxil>h^r3t&=TN<5mNkZ7%M9zj5yo#P>?<4 z?M*~MG95wx{{E58-8nr^aO{2b+5Pmnb)7Y4_;}K%OP}I@OeLaK>$;m?heYk+V*iOW z7qLQL8C@^F!o(a6;~t6P_7Sz>qIB`a-5GuS_#)ho*@pssZ0x_c{K&q)yy_fFrVr7= zvFyz3*JoGJ;lP4i1i2{ub%o_4E<^G@LrZZ~3K_(H{*LL`(C{G10L<>S9|SJT z!=pcd*cka{9FQfwK2TJT4ofQS^|C&Gn2?i3x4&ML4w4>_74$U?%gaS0o<%q%qmiPXKu$KjmB!RsCYRPk z){Vzl4wf?NS<@H^@kXFuf@iKjKO)7CzwU9sx1u+~9rgM7fF>RlA9Z?@X1~gy!oX;) z$KR^}SQArjijgKlLMJW7xH!-xIXKUoy1CS-RDHQ&S6ex=Y<_de&X# zxyc@$<^77?wL78BLA37=F1Rkp8Cs3z;{E2ZgQo++oy3z=gk`@QHaFG)hFzE-YVA&D z`=ni{IVy$gsCUH(+lb5a6?QOBPVa4?+D?E_NI1p%6E%}ZE=<$q6flv$K6SFuu8B&B`-!4 z7P$Lpun7r@Bd~;mQI{}~f((qhBQYao(EY8wG&!BGJFEGV37Xnxi0f-+2XWMbbE4?FLod-Sr>-vvC_qI zhd`MhLgL0ni>MS$SxDS`Z6O>g^+8|7fjML&u}ioiyWBc?h;#tUHhu@9hP8Fg%0dQo zUCsb(^e|M`+gF5ls@on*`*cmK9Cz#e2B{fQfuD!B=neq~y$kj!s9`8Az2T%hf~Y4K z*!i828sNCQ@NlHc*hyec!h7GqqyM;7B}|VGjYkGBH+dK-w~%0jPE8`DDUu!vlAJ^3 z(x{^!m<5by>vFDRPO}Y9LUem4$ATJH7JcsgOdUq&~~@ zl?9j6LqzgC@8e!|wHb-T1rfg&64=4!U&ep_G8ZIfdo1`wWQ;se7nA0sPl#_zd~B47 zQ)%T~-+B&Q76Ea45Zx@rdNih_C0V?O!105>s<^ehZO~;Vp<%LtLg~dPmG2SI8uBm*BG#h#naJ?V{XN7f3qT*7o)Y5Jlo4o z(TuXu>Pf1u4x`2JM27^SUOFTXnkz)XMApmWn-WaX6kj+xkqIHHBBp(2v4zK>(ptEG zqPL99pxn*zbeplP3TrB>+X`JqRbHG838mtx9h;}9$l`BYRx?h2B$?MKMXW5HWW|Ca z8_XlCEqHYw!-;v`8XI0!4}+7qXbgpI0;&%&13l4X8HYI@g(4iRXd0wcF%H=J%u~D* zC`3OmqU1=X#wC#r9D2q{jODF5Mj9R4O>W4q}U5sY>G2PcHASlTylqZAB8m2_rmSG8YES}SqQ z_6M#4Rre*E?j8AJ^FQh-=j#7%YZWQG`<0 zbQ$xBfUK$;HJ00YUt{TQEs0?+3ReCrZvif;!rLu65KZ|{uPH_fJN9BP-~9VKbB<^2bD8XtRw_!qYN$mraD zm=~C=n-^|+ufQv@LL_dwUe>x&13<9q3-$E)!b$oPR}=CShm!_Vb_mnq;39o-tp**L z4I$$a0UVK2MtFDBes|dAD$M#m_56#C3*o^pJxyhetY%o19>^P#F}z1gPZ}S2Z4j|p z_+563?9S?)uwl*(R=83K;6utv7={Y6LHE0!^^<2+TBj9OY3YP&fMO-Je#pe%7YKA8 zv~92#kY4W|Z{&KX3NPmzD*YCTB9CU zcb^l3U88S-`XKoSm(8!7k7tsr#;eE7T^0+)_`nl7vr$F3=7rtI>@g#y+nWgOJM%_2 ztlEn$xr6#8O7ea(70Ck#$`@NCpb<_bXf>~;=Rez72-Gt!gSKI_J%3nAvV^&Kj& zZ*LBiEuGf&ZRDu)@1bTgZwKU_G^oRWT0ec|MG694JEp79`3y02L98kaxPMe8QbCN)b!T6tziwUWXicM4w!rIo zg_Q;L!5isxQ@eE;$uto%AmbYc0lNhwGfJ}{>9Ni)!`bE6?|cXGFRlIA6;&RD6K9WX z10&m4Xrx}Pm4lfwIsht+MH%nSlc}XE?T8V~iWW?%^{`)!QX#u(eDaWjX)y|L@o#ln z_!}dz1RBn!Vz(D|=;P<{xswO4Ic2l5&9kr5F9febkiDr+v9fZ;__dGI znqPe@u_T63HD(&RDH>oSR<7K=;;)A}R749}aTe{!TO-L9XqIt8!Q$sj!#*TEHHOlM?)*{YLm0g5k}APzD-K3N~u}mJc%;Ymsj84 zWR9#wjd4w?FG+ZMv@4x#`1#|pdrvFM@rml&c7{1GfA6KyzT(i~@@F_yN0jAxAUR+d zSpUq6$ht2=j^-WV^;xrkxc7)(Cz|r(KEFn&>>sFj>35H-HMu+1RmVda)=U59bNhl_ z0CoPFZ+0U=uvoJmb3}95k;d6je^bOpSnt zD?kUX$OOznCiRZ#rK@*}lrl(x3?^+9H{ND&SM5IGR>Kh63|hYyk>OS|*)R!Xc3x>^ zo-?&aMz+*r-=bv;Dc6ICj8+H~HBxvv!DZFA#L>+eR0VPw%?iAQ&+I;^PUHpX!9tdH z-;S+px4q@{5rV*2M2%CyPPFG9=g~O1<9Bbc*PnBvtldIeMlyAnZW!d7{Nx$1YD9NEZ=Q+zI)yA?MdJ zgCm%NQAlVtwM$V&EoLQ3Tw611y7VKl#C*yQNT(~4MU4PvIk0^v$JjG;Skih;t9_t? z+bA+WMV)r%>I=zt1;PKK?wS9@HOYC!t~?*8X~W6fD&HyZGf<#1<(*OWNY(FkMKL|8 zLpk16;`y~1303g(l=!Cjc)dr53-=97TyaY2hRq-eb8x7{%oK{1@~MkpaC1jSk|;T;!azQ#WuiiFW&(QjV$H~`|g zqF&|^gQwvI$$QThwkU6G0TBZFcqiPLf|AS08blRja#0=hORmx+aW#nSX#)lY zvIDf=Wt1NumvC8Pf^=sC-3Q4>a|Fw&=i`r3bLj9%eI%8qic(gWR%KyUw@fWBP?$oJ?t0!NGe1i2F>H;J}CW>$Svb`oX)xwQ`Q`A_I2`fCe z?fmkVsH3#Jd|mx2SIkwm5lt=-Tu{T8HN~GYZB7N&3(U`5$l61u9es>@t`p-|sQdEh zn9QR*=Dg4ltGW5eSFD}I71)-I>s3&>57gGtjAfWDn@sjBf|E&}7%!AZJ*b~XR?H=o zx0qQD&ZHz~KB8CFeF~etNuM}0C2;73MjeCVenxGWhMk1FIwJACn-CNs7z_HhEmSf1 z=k^-ZyGh6*poqsaU|~y9eGFe$+}xV~=!UA!t0Cag|R3&C;agk;?gB4?v)o~pjAbe zPR7}TE25Y-dmwdT6=M~->W)|z z_ftr%OIzw^KMj*siZEMJ=3og*W01z-xbMFToT`1CRAYK5w=T9&O1*T|9VBGo?dyb# zS7boAop>YDsf$+LOftvPka+O4k8G13{j8{fR53Xz3kw6FG-;GA07_JEJNN89D z4UPev>Kb}AB08-g{cyk(M8pbQ%RAfDuF+!zqv!?|5sO=zt+wAr-AMfT3BfAw9d)R~OF0^AiK;Ar~6796&_+a)BM z!*U6=_^yr5LLb!qG)gnR#HdVPWjVIOqmNFqAmLypteIFBHaG@EH)gh1yoawC-N(Ae z+>GXLr1CZBLHRn351;#m5|!drvAe`_{RNa#=o6?q$dR=jV7e~PSUBnXk&V*mn3k*~3c`;%EmMuC#iX`dW^fvLWx}C_h{1^r&uF zEs2sll)_#O0Zd(3FJ;QM6pg{}>>uBAi-dFyWM*C5UU=0+-gCciRPKz6 zcydqVw)I~Z;pFs`F$t^2Nnzv1fXV4@!L`xvMFCI7p9H; z_}l{ycGahUtxK#IO9<+ZV7b_(Q@boYyjZY>X@8<2r>VV)ILs;!tIRMZWP(vXf|ToT0Kn9Ja!7v zdi}DM78&{Er0=Mv5pAoq;LsP{I+FIc(8`JXe$&oKy!*Fv7k1{bAgY5t3v`bFsO+tozstuV{v_(&nX zyvJ@E40g#-=sHiq>8^`YR-WPm0-U$MoWtydH46f77-rb(Zll?)J(ll#ZWiK^3;WjA z!8c~AhcoOZ{`yCw?%B-OhZ_(F>&`@3S&99SHgS@y_zjJ_{yc=EAfkX5xry7u_2L1r z-qTf@0B!Sg1esA=2;)rl>9`C(iir82C4Ws8`wl~Gk`(`-EzFM>3On1y8(pgpj}pgD%1XHIXK4F1X&pIBr? z=`aasVFtE0mL0-ZT0PRr=Z7mRw|o3zzh8uKjvQ?f-|0(>en+M^88e?cn_MaI>LAMF zrKnwMu9S-~fMh*9bx8X>2xA-E^IyklSV|9DB&mtRwA9_u{N-da=0>|*#%vz;KCi)Q zo0CluF>`#&*6P_=OV>rgEtv2~Atmyh55jUmw@zm{8l$GgSlYaha;~BUUh_c4A*TEG zaOWE4;0ENtlW-PNPy%<+-iStKmvVVv+1-oQoz!r@z>X;lCYiHlwjnd-lY9Xdttp$( z1<5LaC_Pd`a<-1ZqkJDTEe8Sr&{38$>9L!_N$f2Y!`;A<=wv4ZRWegogj=wzUp$Tg zm2quZ5X-VJ)Djhc*->_huJ@{%o}v@`uN8sEZ_(725YJkMBSBcO4%KEOF@{7}hcGBi zyPZ-Iny7k08 zc(pxX?{x@kz*N`;Su7Bmikcb?HW_O>@Ope4Cpw`GGIC4sp-)kN-l7D@N4c)F z{P8VE2?@^5g5S6h*_jb*yA#E1WA$U}HL zRUuAZ648BK=rU;b;M;-_s$w#i(Wt_@v;a{VmX;w^vjCE%SGNLmwYb$^5i)eP;ISXW zgn5*eqf6BLsP2@D^SLnIw1Rin2qgrXwed2`&Bom|r<(K!sZW#3TCq%edGcG<7|OrN zIUfB5bjv)%jU!jh?gj;6l@OzahfvW@BJOP`{_WQZ=f*&wV5MqSDqN^w#j@`6p*t$* zvh?-(z*1_(zu-$)&MDo5V0MNGcn#1?f+6z>2vUxKRWc!DM!U+m%p#1#^#p7Ez z533VB(|nI9H!bK|Ca3GSNqAh)YwT8Fdm?__Z)J(-6qf^*TEa6I`tDeYjWY2smS>|k z=nK2`?rNV~2T^8`d`gvNjI|?f$fd1Bm;z%iR{a*S29lbZGljGeEwcsS1$2k&ijeLl6YgxkTJC@BMlUzI+bBMOyn zd1}VyLH)Obgw?&GkmW7lMFfRnJ)GY&<_uT?A^G)X-${Xv?zO#d{Qw zi0shP_dK2VWh*uBEmRC-pcJbO&lSK# zU}~ECX1F?Wq8bWO91-QcVS83Z#P)u5W<8et>~g!!HE=jjCxmq4n_jY-y@Q6&()1Ev zW`hk>K@D6sia}mqFuOxTB8(&pT89b0oPYUZ8&JJqMa^}z2mbNk#^e1^UaIiD9bo1# z`~)xumF#`TI*hV+$qPlAkiKg5jHI|n=0TV{8C*fm!noCowuvY}R_{VST0K8$Jg-_Q zWX!ln=iWI-&S83UZ~ZxqiRW6QdZu@wjn-wTNGa0Q}!&|lcDY>;J)CYM&ergNS*&PfDnLn%q8H;3y`K>aLIIvU_M%Gb=_}z`%k;|n^Kq)2|{*t z9*3Q&l@CGYvgVrQw|@Pb2Zln`w9s^8s-DsUZg~{!?!jqY)E6+UUy`iKUF@QL11V>} zDjVm9EYeit>F9}$3bM4Cxu0jZU5ND_tF;zR4*HLm>{g&v%BS&*^81b|*Y|DKZ^3Z7 zKC@ggs>Vm9h#6upH^Gh_$<7>0E@|L&PtGRFoDVN@a4pL$~)JJijf_SHDhEL4YYKLrY12WfA>z#*IoZU2DZ9++>@ULTR zK`Mre_vQ%}RA4a@((XK!@Rc8fAoL6F?yFY3P}HhfM(GcJ-colKNc=5s3l44k{$eTh zx~eFa-qSKk(a!9e7Aw0Nv-4r(r+3WU0lx-6MFFxUy{JE+F7GjRjBe{|ci1qRPK`LJ z%2RB;)Vny(-wxQ}Kvj&X=7tjBI!U+2~4S*I9(wW>u@hI1RSD7q^sw-|b@?btM{ns@x= z9Rm0_=agED3tQf1zXIQ5P>4^65qV^*C;i7W!4WPmC{`OHTH*Cp<2u=RiP?RHIT^J> zw)B>gJ(s*<&@0|JB!J`z6MEq!1n!i+}o0Rl9lz z$wvGI!%I27Cmz3+dli;*YjuatgLi#HK`GZ!`FoU|E?}uK1Rrq*J&vYAZ#A+++Rtwo zucriLm{enhbXX!nTMbdkNsB*G5V+5J)?BQYu}3nWe>fZ4Ey-X>85=G4#I+ea=)pd8 z3N}zh3_lU6e1M$u$dT|)=MlZfsR>$qc!kI0(mUH;N?@MeX`Fqk5}@ApNe4~=t*f89 z&-nLNPtjX#qGGMW%_&|z{*I{5!WpV^^^|?A{L$~b_PiCbjl*JHaHl+e2@YJm>}kLW zSghPnF_K$_U`J4E955!$hw_2pwS~Xv>D)71=1k^+C^`*l%ypF(v(u(kjiJG@;lwOL$6l^JwEIASyWu&d z&3=^@LIP17_xc}uO1iC&?Mg8J9}d&l*br~K$sV{hI)ppFa=qYt+{@o-M1k-Q(bX5uCa}gz{!D&hY@GfRJ|kQT&=s>l)I+IYV!XP!ZP5q}M!(40Hn@!S>pCw^X~8$F8m7 zEWDAefZ+^lQ*4dUhfYsozwtlL^;$dYJ$N$(c8V!aDT7?30W2&Gxi_5hf!oj%9SSgR0V zG*&35-{;}6hs~-!?AvND)aG-Ayj<*gz3Z*HT=#W%&r=~J;Uba`lwDYfbiXbvzb@ER zcMI1owcGMsXwx`zttcg^|A9nN?<`!$K zf6tnkQ1H%NQ4nGVnZ-stOXSqJTyLo-{KqK}?27Z-ZX2P0L(pAVoDt01VuM$Hh4YFZ zFPq*d5fG~YQoj;hG2?G*B8~WyMQ>T&v+D9RpZ`$6-EClH2{WM_cl+#;kCGZ$ z#N};!Iq*2wRJ&MQA&6n+Q(pIECWH!CqXSy0xNA9_GV92~C?a=lK%eJkVC3q5tB4Q8 zhbUM7?7U>VzMk&I$|@TTcvL{NYCUX5zg`G2)7h zAMn{zS%bTT6|8a7z5A+S?!@-H>RbtdOvJrV(Gh^6X85z5QaepT_Gt9G5$W6-Y3IhzunVx9dl zh1K)Lnhutcm!_}AX8YC@?By@g=_a}Rrd_KOuefRL7}DCp>Vz_)WCIVk1`C=jGT_S- z4e9K0NQQvRk2^a?N+~U+7KjAS=I@=Y4dFnn3WG(QOo2FP+OerO2&i+&=)kuV$Q|gvp;n~5e@PeOTj$Nlv3?li}h8Cq+^k=ls;FHl>(s)M(b zl^(KT9w9}>0mm1`+aLUVj|9KUa}##^=>N{$p`6{X8rRoEVRl7$bIidE1} z3Np%npcm;CZ{=+jOe_5?i!HBQkUhgbt93%*jZK-IY6`tdv~Y%vR?=3XnMWT_#%hyN zte~0~GaE9Y%5G3mRaL4`I8G^7fz94CNN><7Q7SuxO%|#o-RTvaJAX+nj` zdF#0m1pzs+GJY%)t(_9>*+*6|J{76S-QocyXHkvf%=DrF=SoOAmet8}WGib~N~M6(5HMu2m9 zq%u`fdw-HXMH8%S8xg&UQMguWgRWYYL^!0d)R4G!$ImKk= zq~2_%%99BGDmPI(3Kv-#!WYL5${iR(HGf(*t5vE!TR}m+zeACVNLa;r)})HTwZVd-(XSOguj7(Q z*#7IXiVR#<*5S?Rx5$T$889zg7|5}`#BvAW5JR_PpYnKrlZ^ZkPb>u@jQQAEWuoEC z{&r;Lyn$`HNM<&tUZZkp;|8U3Z7eK?;E~BJSEXn4U$kUkkj%PlCScF?<8agR(>rWf zIdVDShh|mKzpgSn6TNh!%<-H*Y2coW(^1z~ClAKTU0e>sutqT&JHkpFgKZvb_J4B; z52fJS2>e|eX60b2?$Zh<^ogfp& z-L-{rV!(9<=8VF;BB&g0v>X=hO%MbrbfQ8(H53fKf#T#ZIui686&;%|Xh;rDO_f(6 z77%(9can1pM8fM8W}e=$-Sm}{Fs|i`8b&Mx4m@!1C)5&T$!`R;?2af>ZAG;1i@v~g zLf8q%?yLMByfpu}s>~){h7ZTU`#=g%s7bLov7?C0Iay#rHn=B(?-S8yB!tjCxL2&l z0~lh@qk)Wu0Tzd1+hbttyJeXY!4*(~>jbIK?E0#>8Y7|C526mv$xI|~=ZBIE+>8v< zFYWSFA?-`)Oxu3f?J;@%NQL@7uXdCWREx)@TmkCVng~KxDf55c!D;x9o|)aEp-i1h@AfbZEAqMRyZs^; z;AoH4@n>FqxkmTnB zrP3@zq_x23JXns>m6<4Jt}?;*UffW2h&Q$%>pjf%oNq6<R`t`U#Rgps+v=nNXyN*X?XKLuABTa9A8J~QT8?D3nrk!rTx7;z7Pk_z zsybrx+-O)`%LmlrC%mrd`lcZQ9$RoK4I4Mfh=d)!_G*XcsW!M=X6NH z(3;7gbamF!I*|h=9274Ed-&Z)0aps|pXf+&;;<0gI(Nv7$dxHQld4*tr^6A1Oxx)Pjx0Tx z?}QfmiznCX#f;0>I;7rPC@I)S#H|^ndhj5;(XE+TuS7@5@|z{kh7J$qC<*H zli2HdFn)ilcPw)2es=QZ(I7!ZIB`>}SlZi=HD=w4U>cG+P1hy&ksgX{32(Sw&bzT1 z4zm{jgG3)|W`c|=rXmyo&$wOri`=q57loDEq`0l*?GsyeJue*i-bZ~3njqc**yM9X z7|OnD<-pwmi5;@A`!e~Nzm(ds1v*x9RfR(eBn@H&YZ|Pz$|F?)kx4 z0g`L*3vM?w73MoRtWd<;<0JFbd_TwVeX`m#Jei?P(oDC@@EXGn?+LyKXPh(M(Tka( z99x}+5|KsJXv+EhKHhbQ7n9aY`m5#Qas$S|R{vvw_Vj>evi_M-(=B#)kS2tX&OHq8 zdjClG;OG&CGW1hiU+}$TqsWxr3q=74f^oXh!!3kZ}AgTY2t8aAh56 zm~NtFr)T6Q6NC5y_X4>SLe7YJ+0Y5mmJ5{F+!@lnC-+ZvVH>=1oBtZ$^aI}dH| zANe8uEegJ$iu1?<^*5Q?n}uNboVESr_WzL6Wc6QFF{+I}RH# zCE*n(8hM)l=Z5I;Re<1@PeOzgUnNSjv`H)IDthA3WO<@ICdpyvrS0y{ZXK)yDL-u; zF7**rTWSU#wog}ILMI)GeAZ{$vS27~tYckn*C0&Htjfo;I)OuXjwICjl4dD?h?2qU_i^J9GIeN@6IMsoFK4lFM1Cygk3`P z3A8OJ*4k!ksll`CE2=tK$0A7Zm59USj0%eiP~lCwMUNPr70@_e1{;{ggeh9we@in8 zupMgRtVm>R60AI!v3IO`WrjpnvFlYhSsn922+`xS1 z{LTp5Tgo5`lAt7A$ajlN4Q=I+MGT0l^4_^9EZTS17oslvt3AN`hDeZmXiR>QUAP8F~i&1LGzZs1?_ExlBg##$o@Y!8L0#vXkX|RS!yV+E+N%#8>(d7JGyk@q zQgpm9qQp3G^CJ?r?Ge*@ho^T4o;Vw+o;H>Q@aH$m% zOHlWibY6iJqpgGf$Th{G(tt}S3nOr2f>WwlYww0`6zIzKoDXrP=VJf&uz6x3QmKa{ zFUvoH#?d9eHar%Te2Bx6jGKhA_*aohI&#w9w(bGC?1XO`nZ?KNw4{uIox~CHz(ljq zDMMbir<%>2aADzy+)k<{M6*EDGgLDx)K!tau7atFN*fE8uy^>^f@X_p*|q2?mlf#^ ze&Oixij6lgj-%lB|JJLr{XcqDR%VX>T&7BYT_%{Urie9kUQ6R}*JsD^lF%3;Xv56T%?9(y zosMQNyKdof(q{3UxVMWtdQ|~Ww%)zBzrWvYQI1P8IV2?|rP&WnZMGZE1>^s!beP;TKXLN3O4&FRrgz zLAKNQTKppCq&&3$_ zLHZLgJH&D*s}Ru%0_c2BhCw+bDY2FGcC7cU^_#4KJ}mX$2O9%zsrQc4-dXRQ)EqrK z9|?^K_Y7v}$BfhaS>zm69Q=BNl6y2#s5Xh$}|R|wIyO(Pal`=tD(!sRTEnezfa?{R#4*roR7_-uj}W}LU`8L+%FLZ z?7rGVAiWVHwDs`zs~aw@%Ga##KO!H4*0`~FBH(|8v0|A7E+_z`s+teU^X*Jf;}8MH7aF@?r`NMWSD9kj%}o2JSOa8QhTAhD59g)S_8? z*4UvJxJ+}hj(Lwi@|TVNr5BF8d1R2-PRHZBAIeO;L%d_Sy{>0_vguFx)@}{rUs&?N z&tQ7v<4!m8N~wytvBS3P#X<(S!s>Zq^7`-JcWsG3<#Kp^$y9d7p!g)Jh#DEpXzda| zN%{G45Sx{0(OMqt(xa0i3O17xvGPvT%S?Pdt?}2^b0@El`2bdDxue?}8O`MU9Rc+J zOgaoJQEY|Oz5;G2kcR#2cz7@fE{a_%E9E;dX`p}@$RmdMBPY0+ki`IPT7$laas`E? z#2#J3Bh)2+DOvFG6>#Kpw-kAJZpubUJDcw{TV^|lzOY%ThX;^={(f;FM)oRQ&?ETUG8?1uzzKoW%~ z*lLLuVo2pi!nVrEwZR$nhyx>+SKgGNjR2x6fu8g}(h&mrTNqck+vg<2f7n)X@PL6c z3bAT+`{K3@`ax)Q?{L?J*-)+sF6O%O;PQ0y8l_pJgPBv-&Q<{bbl9D^({C?^3BX+>(UVs|B8bmr;C@+ndI_%nm>1h!QyFkYdkk#_^-7E+O^iQ0x}G7A>eUD4UU zQ%y&k6m_&RW6;k84l2g%MJf9_=WFwje%g}`LjU?B@43-vzE_X{sr}uK0&rqAu zI%MPz`^6yMxKVm_RK~=3D)D2g7;;%Zhd!4{A^vv&$?g+B$otm zZqwEk+0$Tq1y=#3DvGLP6)A{zEF}L~YDB7GfWD#+v<3&Mne1y~9n1qoIzo*sv-|Sw zMeGYXQQ_`xj)d>AxjoujUvx(mU6n-<&ma`zLYe5eWx7Hc5|yazzf!16dvz^n9Am{_ zW#ov+jl_a@#aJVTB&-f4O?IGp)mlU-X|_6z7Tvy*koar<#n;i3pp49f4HrNX%{o`{ zacKqMRn8{fT&z>)e?FQ}-|F@YqZ^5*oTLN&&jcjqsn!PGo+| ze&Ddz8<3XKNGV?)%jf>~ft{S{`U8?VYZa3Mz$iK-4QAm*r zblG=-vw)n;=(mhPXKysI3_%&nkI?x#Vx>R&;Ua*8J>z$Ka!P!x-z7)yd;cu34Xgen zp4<6-<2||em_AdhF=DUBL-GX6tLk^E9AOAWSKFB8(6TjTr(H7lu2g{JEY_v5rlW6E zYY9pbw$|b8H2z}Olm7mB@i;xB5Z|h~PSfYdy>qi&MsXoVlMa;*XoJGn>)6XFXeSHT zgj6NC3-ekw^A)FWzgs*!SMTQHH=18tK^sHi?b8o0KKyJ=Q?yt2-wNN)Iil0%7a=gV zWj2@9l15z{f6?R>#V%hiXAo_DB%LZ9w5Zu^Ln=5d^IFYLIzMmz)2vjiSV1C-5(k#R z-G74NZ0?bdOO#_zfMO1SSYxc1Sq95SVrf0eBrR;~!+;XZ=3JKXr?-o(-M z@7w=n>=-x_Xg;0ih%TC=B{j(dEmk$GU(=KnX^$=d2a6y3vS|7R{AbkVtJwY-m}oCD zueQGsucc6Ui8glLG!CiSg=JH&2&Um2$e#p4o1*}Ci0}d?XxF>GcT->%Pl1SOWHPwn zVm|aq7MlDh0{==`1ePX)v0=>Wk4#xHS^ne>gWn)=pl6{J5u;Q}spUoGMP-py@T@#` zU%KD3LnTo1?-w05xJs}@@g|5YUNkE7IKxa_?nypcRu*5-U;J0=W19bdj3f|AcTYKb*6ljZV1 zg>3XAM^DN^l;20+pUaxz_E!r z+Z%g(mT@f$NB;3oIcJd*_I0<5ZcT^6bhG*bn+6)=a$#|EK``eGSi^KB9r79r3dJOB za0S@8Jjw`C>ur#F0pAgY>w}AzvFZCRGahCE$K7P-hd(Y267cO}?(Ar2#hr^GjM(WG zwnkkV+ND;ua6z4VJ=^Cl0jLse0b-GowW20p>PaYGXEaI^5_5J%V-FV}Gi}?fVM-iD z+B#b5M59&|K}>PnXS@|P-am`42@@^I*Cbo6Y{({E-Bi4=(2woi%EaqR4eiEq zV82@Wd3y2I7seq|9ymX@A2?aM;deWc<&YC{xrhw z*0+A{sBEQNd1`z(&qh2+j2Ys7I#os58L=ZN%S73c+;2 zh;=pejq^yK0Kl%{w7(;I-1orS^!nS|c)l>9#u)QKnex1aF!X}WbG9m9H}UkMqV6h2 zB&%y!XJWGqMKNynMsRL)ltB@=WE!#N|r$>c%}V7DuAc2C^TILEXJdq)q9(rE8HabcjwB9ao`JsZ*nFm z2yNKh?9wE%p@JxBZ&TPM{k&AV@DIdf@sF7`v>3AeG8lpY&kzRMT6WqQaIkg$u!M`2 zDi9y6R&#K77A^l_#PMKKGjd3n?dN`BstdVCwB$ZZ%TdEXL5naNq|l6FoBOYp&l~+# zkvbi?_dJ|9!nNY}C8_r8HuHgU-A$K)y?5L5M!jG0Fou<^qVzJG`j%MP!q>Ua_16=k z|MHV-zk6r@dLi{LHSJLi2uzneLJq}ow})3kS6)Bkc#kYPbFP8vCKZ|4kdd+en$1>RG;)U0-}JyUM~MRlgqU|_Yu zr1<>x7d&M>S_izw7?B>T|}%CvQhkBhr6*$#~v9m#^b{h5_OD zH+cv>UOG49pSun6!sQ*=D4EAZpCT~|_NviH3MwC8g(b=9Zvl4Ok|YoM}o7e5yO~_GhR-w2lH>0?<6x&F@}XAh-%uhF%jf}9&|Eh zP!x=aD21X?+D-Lr{frrU`kJX!I0e%%MbBvOb^T|2Y<|brgXCQRc}VNkP}~G zrzNT5gw~OGS)mACMDeHYG1FTw0Iy@_()FE}uV-ZcZY}$J?TYRMHPT#7V3(;ZQ$?$} zypeYVOuE!(uTxLk30rATk=Bgj4J@(5%-OH1C22Xwm$Bmng<%t+Qu2+HrgGF`mUd7fY!WJs z$cu;_=w3LUM+S~Ndlk{-?1VV;fMeCO;J)P@h44fuY6?(N# ztQS(#(A8*X=XSLcZLZMLEj-6M!-_!g7TunI`YQEfB)@BuK4vvH>h2cYU8eL9CEsLE z#K|qH{9AQJ+SvYla zZ%sWeIGS^B{Hn}pRrhlB(zr3GI0>+~p`2)D3!M7f+YF}>`RQ5H+yHK%nRopSSYAV3 zM)cxeMhQ3S1z#qUi%yx2C63?{8&W2gB>_|Ly@PKQ*%Ok^&K=wga1?dBa?~R|8 zpjp^hn!_4=3BJ zU*3g2fgoJzdZODgTl|IUTLd;w7yT`>SOznjZqWD4rlgMCjS-TjYT@J5<8W3~gCNR$!N!%ZAY)?%=kK`(CRdc5_JS@l$sfM+G%>He2 z&DNlZQ(uP55HUYKtUi+47zoT+iod!Arpo7b^0-($EZ*Q`1?OPxF__8(dl#PrY{fmY zf?eK?q~w9uA}PRn%<9X$HW{fkYaPs)V=7Xqa0yCPNhjC`6;bHxVVrUXv>dFo7z6-7 z)jms{qCV$sUc4VQr~~jA`L& zli6lXDZ4G7y}h~*h`~DCS}1d`tlNcNk>64fXv;TTQ$zHw|9n67>G96lLh)*0pwWPE z;hB^$>4Jf5`Cv?bXR9F+8Fy&A*~oCoTMWuzfN0}tZ5Jb{ppWKOU&461k_E1H=o*L@ zWE-jurpNQbyA9)3DI6|Mc<~fUQML`XrlL684Wm^o1qfSFmdAB}hh2~J+2K6BJP3x2 zB6dbo-jE1wd&>iZ$mf?@YwUv`-1(S)#RJaDNB@@hhw$qMk&nS3Yf#u)WMRHLyV;u{ zMF7}%VDm>tKtcvl6_I*G9Nv6s$y9=9w(|&54uZ$~`umzE*BZAc8H!n9QoSzjAToru zT~a$C(5L}QhN9^8(KFK3NV<5z3#6!szT3jtd~B+QG}1=eHXlQ|RpBY0v~_Oz>P26$ zeUML%=H zK0bxfiYJVzA-I$^>Njg;vqNMP#KL26zRs%0<%NV$l%N004R28QNMN$3CO0JU503&b zD`TWGT;U8xwcuc=aPna+c=E6( z3qF^LBDs)9N|%~V@rCUaKF)2N$2!<}hi19}_+Dh&Qo%AV#%bjq7IQr@LzQm&A49F# z)j!G+GE3aRfq`Y737WI}=Poc0;9r?(R?QfBlfeO}w`3M*>$6t>=6+X<3)P%X>^fXz zZA>n2o)VefcbUlE5be8X(C7E!l>cU`e`AvRAD0C=Xeccy2@5%t1`4j47Q(tq{hE4X`~qo>?W&Y(63j%b-Uw527WFYJ6Og(9^?p<)94r#W;W-u?6P(%M zGh-c7ddADTwiHX>7+78RKQOd?qyWc~R@YXB%17oCdRq6*`DK4PCXI`BFNK zhUIelDmimWX$!P<&Ls{@Aa=!w5vx4+pO)OI^2W6^Y%TUwR;~t7-P~zQTFp6B<%%Xb zp)mDws?ux~H1|k>s%b^ey4E4VR}G<(Lh%CS(wG;jg6I6R7^^N2U7kez>VEm)CBBN(SC;pb?cRUdKKEQ%6?&AnP(bI;>rhl zX_ix1G-hjIJVG@q`9;8d7GkDero3dJ2`-H>z8=1DJc&bcgB6HoTn{5}MCkG;J0qSI z$*Bo1ZM9Bg=zYz&)sItCP^%cYn$;!7)sb>Tm?bD2;{_H3a)7ixb286}I-7@EUn~eEvacr!U{8xiL%aFTbeol1xs7E`QzWa zxTF#OvWIMK#XhNGCtV$QF0T&d*=dJ)3_)c>o~DVdx#pdW7!|Oxj|k*ods!PNCAb}Z za6Imr-^lpFzIxqhBk2r~f1GTSOkXVEb<44wZE;zwG!C6~!!^J&%TrnR4yHD?wK*~7 zIM>zriB6T@F0d(sJEYO>bu$z=eTZg(Hq)^!Py>`2ZQ$6p<_c!cW{}fDzpfwjSX9w! zY?8pUp*4g!uO-dd+#HPh;Z14oAH!e;;a+)G*YNHMT3z&4aE~uW$e}=*cxM)ff+tqc z#aP5_%Xoq)3|$NUpk;=I1~8u;UbjCLtx_CbN4RnW)5i2_Mut}R{PIV>lRIM6k6wQV zNYID)U=J3-Zc-F38O;&3&xKuMIHqtW%Hrev?5iFFCu=pP(-5Z?Gf|n>7)W-zzypTR-LAHcRG%&K z%W>BZwyJ;07xN=y!^x33nF)(yh%%0y&ObkniKA$jQtEY4S}GxyIc{8bvg7UfKAQjK zWFQ#8!g9#}hfEg#s0H)j47K`Jr{-zr*t3rSMvw-hA=sK3!75Ngbw~3isD9+w!4L1u z+ca3QStLp_?|z(Bx%okkls5Q5qbmFU&F+jV! zRBs0zKWXJV9BWBSo0E~XQy_MLcdcsb(~slj9U%M9doYjULhXY`Zk44GQ{S0@-#~>d!q#(}V9~eLs%+L+9k9Wj7!;);Agt zqGfd3K;EwoTIPe(anqwEyFj%OBleGgR{F@5_pEq&B_7oDf(_3X6c=qu~z8P1M?C+I}f!=%f)QmnHY8 zWJ=$u43+eBCEk#Ju@6eOYY9&rV2ZR}Ng`Qi4vZ<=x`*vfG`xQ^Vd1p$K!6$ronB6Y z$&|tNc}~V&6j(&H)k3Q=!{Gu(kJQkr_D16t+pE2+zYsB2?W>Gnt^G7isr9biHI}DF zV!%38dIVf|)IL)hEtlB9^yE&$o;j9;c)8xiNs#tAbAFWjR)!_T2H;753)2(+GV!wU zp{xhII+Mg`=z^XW?E!>{9=SGPw4LS*X7w)wy_gr=u|#^}!s1k^^Iuo(~UEWDPuS?C&bc zdR6vHqd7=xzSvUkcdPFYlybT`KS`g}kT>yjvc;CBdJVS1psJuZucn}1A1;@h+8BUy z821q0h_&kB%bCHYsIPeXV>O`Tg_cL%Zx3ou<|7;MDSpDu1rQ!}Pfw_#yTkdDi&An{ z093iArr@+z*+WEeb&5RQ!(WEZfh5c6@8JJP8t8w6Q*H#;Lf4)-b($KMl{OkjfVZg#GZ$4V?)whmI*?sPyfuFQy zC)-D~Vk453^ER~96{yZHfj{XUKsr%HC}@kEPSrkeTp)fm$n%OF6iK1P(JBMWSjeVP z(B)R5*))ZhRCHA3DbkeM zt3Y0+ly|*BFfZ|~m*1$Lu92^qu9>K3eZle1ih5;u>BcqtFTN);_EVT-!FZCrO+%UC!nmuqe@F%+KBKRGpeE zUO?9;FE_k|I-Mw-ni!nlOkA*nbWesNsbOx?NBf(#*ExXrrKz6#GN`n9$HVir>6tu) zi*MmYan77yAwyR5;N zzw^VuB{ux1BIO+6;;3Z_LERzfe#*)2XU0*$2sRfjGa54$g9#A%qF}jC63dMk1!fl& zz@V1zK+Z=|RHcU!Y@{0AOHJ6<|^h4G8A_6>%hsZ?ce^nsX&R6HcCaaCpXqM#`T z6Wd%O7ZLvLmE2p@N|`hU--E~d@SgD&m~@`%E_bWzrFpTQ9p$8We=(!;I#c4$JwHwx zp`@JTAM;5!DZ-If#31sR$H~p6%kLxU!|(I{akG*cP7aIjB6KaE6n$yyW~Q_s1=h9B zRYbh4-PolK;j+Ots6v;-QgBdZcriM)IoI22fp9Te|4>(@rOQEaf0cRhKJu~RL~wDI zDga(LKT`BVUbQiy4JdN_k_%{AX2#^FX&4)vv^YpT>GHA!ICCcYgn7dta2UEGl5USE zo(%t#@6!S6KZCAV4kxO`B&zMRq`YONcVBU!_jQ;Mupi0{YF>vT+Z!Vk%J-#>6_gbo zX#pqY2(kDPYC$Cb02azj30>^FiZb2uTet|3o@_2Ndj-n;fgO~K`WJ;wjmRS8N<>kJlp~vK$2ro14j^wG zXs0?W31O@PWt^(ROj##L8Gb#MO?I#j*JP=)a&@5smBh-cZ#N7Rie9TWO-!nBgh-WA!{qp%uB`c1XrA27uWLdOe0Xgt}II2vQ~%>Hek9KBh2+s?1h0ib|Y|e7;+3B*B+Y^%(L^{Bev@-)l24U6rT(Xzt`omQUAQ<#ar^ ztz_RZqOX9cqM}k?B#R0WL`UFgvk0z1~0DdMtY|_;%4`8DV)Y!sE3E`FUW6 z6T~o!#T~{t#N4F~*3@b{=2UF4OYOnbO`V=8RX%b&{M|6^b6_5MROax-cK_gb+9VY} zNFv^CgqKPV*N_(Ci?MbA^AF)!uK1Ejr9fcOaX}H?0$Dcl=}+b!H5fslh#>G8Mj^T6 zCpL>jRr0WtBqGU_hQFC~E*8lYYJJvaqbe_nzgVyr&c##Bwy~1?Zc&zZ$Ve z!>)IvL~X<90cX_66NKAwJzP`*)heWFl1f}6&PCvvb`a8j>Jd;>V+xi2DdaU55x-#z zk1)V7r2QnryyfktNma1b73^Y*V+Hxhs4Mgma~ok27D!!xT|mnYA6-dJ6Tx83k!q0m z6|#jc*iF}yGnpP?ME)TenFWd z5?Vg@o~-pQ)ZoBZR-^t%6TYW*Ad?f<^H zu`vB79e3=s%@jSeT1_j2D5Lnotw7tZ%!T4*@IA}t zi5y-ZwfHiH1`=p~X$ERciCJoMy(3xCZ-Bow${@zVjRx)IYns3Y_#OkrQ|omQXx$C= zs>{(qgSwBx=~?f=;|OuH_F8UB!n0a>)p<9}92(`>Kdf+2&|Ox8`mCnR!^S?pA=h3R zk)_I_jA|LEn-nwZKLX+B#B&KpwYX0vN!_9SE5VaB@QB3oC`qUe)xZ7vcojv_bujCb zwJuLpV+%VN9lPnd9bq<(Quo94&>=kJ$XcHt7~%uIUQbyglH)CGn?`2doK! zQan#Bk|G_*^=N4%V-O361q|<$prRoIh&ZD>q9X1lC;!AM#ORL|gwELtQl?_dO6Qo! zg%_(?;3Wu~mspklF3nw2`r(w!CEz9DCH5ZPDr8&WGNVo<>Qu_E*fts;7t7AdVUk|} z3F^O6Jnr7kgv+xmf#YRD8iI$H3`-(WSfr>OWMWoHH#9tdJXZ+ol_;U9$BcQOx~8OP zms%n_Dz0pL64||F9!E|x7*oQ|KjDG9ZxVUN!~4J~Gaua(5uwG&!R#QAzM+R-o1L1% zCCSFm#bwcGAz)-wf8vD4lub^=F}2BX7|xQhl#c zP~DxFH!xL#F2|s_V9vpUHv_Xaaz#QB$Yz~)UhfZ)T9i>AUYWBFq|+8#oW);}8-UH)wPb?3W!!WGTnl`+b-UvJVDj+s}rKp{fpI?QR*m&$EhA&Q79!3{S>%< zY^x5GgC9Pt>eIrR8rnkC`ng?{wkGq90i>!7XmH_p6zE8MVsO^M-9`sDtSygM@HcU} z9PJmS%j)TwcqdvT1USmdcr`MeOiwt99%wn1hC~1zr>ACU!wSg0Rp97}^40G>$f(bX zh94{2P&fx)$-4CQ_J-&vM5(95o9-9WXjpSg8P1E9(Yp)-Brptua5YENP|QEi336U3 zu`@b@3hy5YcuyRVQs@^nq5H!Os)gi{Is+$Vf1LgP$qH8Z!JRGW^dwbwEIvYE9!Vx+ z2GQ68-##*3-t%%wtj{0(!-!BSgQ3_CkL%B7&O7OTUYsa5DyXIcyz#H%$`a=leyKK0 zA0$OHB%7mNRU$&rwalQ)T{BO2s?0{CPz~#*WotddQJ$${GxD8>3z4R&=inZA#N5#3 z8>Bi8sB@ZhpG?@O-lj62x%3rRD-n)gZ^wwKGBEUaOm-l0oGT7Ro#Y|CjUZXvM$BzS zCNt#)Zk%I@vKP#maQTce(4kQ?H|CZkHNb{~we4>|P;a6R!ou6W>LKkwvynSg#>1_d zeCq=Gu)BMEc~EtOHAV(IlbtzUp1AoiQ|SXJwx zWY$Ag1p=M*a6s)5|8UxR00n`4;I;3q=Dv@6KRxlsgilt4# zu+|K7=NI;NIlsQn|*zmZDb{gJ0hegn~VC>P`&oUr@4w5(Rcv69lPw8e*!Zk&Ai-3%IA0@3d85~ z`~rA2p?EOAtx%-wIL3&m;nriO{W6Q%U7(Kz0-Z2qt1%|HigG;QOb$=}#1}pAvi1(b z;a7yh?&afRRCUx-ABX|L^juIO2CHYB;-tumgc(rS77;(T$K;_4e_ok9E< zdO;6T&?Nu9lz`*N?p*xOGkk2icACC*G$I}~(o_Ay-eH9JPH!Tc?5t^l8K4L?*Q?Qd zzvnj!0!nv?%6w)7LWv?=JKhQX9?wm9^oD1Sh8a^Y?AWU{y}0s)vzq!|?_#gT4vhQf zqS5tnxgR{MDoa}8*j4rA%mkmtTVc39Cv9r?Hp<~h#4ta?Z{zd3$}bGqBmUrSy)~w# zKOLg5Qh5J7U}nX?M|w=f&{Ye?(#~{JVc(EC+f0IK=#h20@9X3yewrw`gK&N(9}1kz zH-lNDe^~OMu|d~ab^q&NKDdpk0L6okmuSZ+V(~q=S7pCi03;qJ1N8Xj@5WySV=_JP zLA(B5&g*ab7yG0+9jwgRfSy;gs1TGagpp%oJK=+xs`wAbu|=O3*kQB|+zAOiIpN0# z<&kd3vDG#gy%u7DA+NZh&`p#LigsD&WX4at@4$>dQiOqR7pHCXH~A#8wP9wd}MCkCtuqqUwJkMbC{Va;e%O>`{NEB7Rx&sT%K>px}vNlnHJaPSRp?8p z<6?ttB_WpBtT`M ztBwZHgp~^S*q=ELE^65;M{1GB!6b!C3eQ;hG2hBtARS^&C`@Qr;3$ujB+K=eq!8wv zFjHEq!sH* zWpgS)G=#h)qNHE3t0rEzol?6-Ur*@R3Oh~@hn`aG%XqurG^KQ<y-|3B{C#>`w3|o;tt=UB_+D^-vx%7+%^9I!EyKbM#Bm1Lph$Hnn_=2ND+R!d2oe zGudb=2tjCOUdG`CzV$qO%eG5~7F$_maafQgwX1sq%4a>uG&8_Q=+bOKQ;WmK`yXB7gk9>bl;`KT_kolq|)=U6ui1BL^`VNvIvhx00rtq{f1UwxOBGjBVRG`3>&Ie`jw_+k}{ ziiCwN(F6{H_o8F=Yf8^(6y3z^$LH4zKikijG^_e*XUlov#eXGFwK?&< zXmG^gNii?Sj*UtDoRP}ZMmmDG6p;AxqUP93#z(%D5Lh{1o^r-yq>g9~tlTT3&-fnm z8#2VR4ft=*nFh2(#K)$^<#%p1JuqE-(RhJpuL_|`j|!yH%M&;JB2|!R6%N(@B6TMu zgCG*+Cj2fhnG{OptVb0nSewej+f^>E{0X+S)omvsPk@GL9XRSL^Fx zPR6KblnRtf||_@UJ&CHN5Lis$ba$_=4#I9}TP zM0$NCe34*R?}FQPl0wVV;!LKK?dn`DC_j$*c>%46?G-GK(UY*o@=EQytmzrpDYf7H?eg)45;+LhE6T-EK5D;9BMSaG z<=T`EjofdovLqVoz{$uVHrcygZ8>T$rrHpb_%2#)-v?8xz^gmQa`*j7pp*v zpDz@c80XbZ!Rhu_G6)>bR-5u<=)8^~I%r#~+daNf{5i~8LmcMiP|+ zb*yKWpALHUmQVe@N#8mMJfy@>B zajT;5FV2pUaNCJ@A?Ngvi@PnDDd#7xhgZLeFCd4_B09eCAj!_5I6>f6yz(L3dE{2I zL*)s9`;R&-R5#6;32mVU_}X*%U-RQ)Zy-?aSeE95wy|Nx)0NT*T7#!ROL_&$TTc05 zS8!`Roajbxn@b3&oPY}E?Uu!R;%;w9F5Q4|?2|*GoR~>}rO+r_3#Xi&ZmiSkm34Xj zuF`6@>V;uekaq5DEIJYtv-gJijM9#{GU(!O*;U1bc^0X-% zj72MoM$_!TxvC^PHvQY^98SKQ&usk^Dq_ocIYWh~0X#DRoiPPxTq73%>V6}hE#_ue z6~JA_g2WXLG$3U<<`f3Yg%s=l)>SGAETg#Qbic{BRTW69z8QfAOK2(Ze z@>T+5U2%NFR)Ql8-hX`G>_-&2Xz;iD7MHnLQMPc{xWv>0YtfdoZY%$Ka~jM~7Co_{ zrp*hd0d0HJo-b1W)2k0TJ+m#RpJK%GfviJm;r9uBYb*nYe*T)1+ol_bJ5GnsK9;?o zC=ds|wTB~3*qa`#S}*)nsUb?;2MC5Q)WAuA6(Iz@5yg!rsY);U&wEn$R1G*AE~xVd z#8527pKA?%qFJs^PBWsu=RQ7FVnoB^ zN~9f=xMN44`_Bu1^HMGH0n?fttosGmApL@! zx8h^R(uQ2~#|@^Zkn7ty>%ommO{8c`Co*=?VTaNid8PxzCORHQD+DdMVeiA*J~(Nx zGb@F=8B}bq0S!^<-3kybtCu8ijfoF`H;XoMA+(Iz5-i)w(izL^#Rhq@(sQc4Iz)r_J`;5v+it!kn*Ur3rz1{}9g46mFcTs(+1 z)6Cn*GrLZ_qp4mamNL>@{a@%_OMA=B2w`{+CL#8$(KH+Fi>CIJuQP2S4Q zviaVPcKFiiC#{<*VxXbj6RW=S<9sb&TYRcREcbxK_!fql{wV_M!$_QP=axDpwSssf zf$j+nNgm6+gtNkNb634zu>F(!L{}2-w>j?Y@gjjz_g23Qoh(&3d2!+rYzrY0BFt}) zD^#|BBqh<(RMJbii8*0N+PGgJRWqk9iSO3$AbDE&D?n1eP>1DZ-doqy4kIOBjMt(l z`)#~l+Z=6-i?bUG%iOMDXH$^SaomRUr03jS%Z?39j`a3}CPm~ocmj5yjtNT!Q%Oy8 zb96(MMn$RE5l$+-z%ujm_b%cR6?A@q-s#LH=S=69uB4&OqUmgFc_gRfk!;MGwMk=J zsHk2!7v@6k*?Om2@)WB&GeB|n9DR7?Q~K-QaOaUXr+KsnaGa?4bQHw8fu@cQoK3;s z{L6Pl7q2n5i}8QLm9uVwA3COdtga%3UOj>#bidL=r9QBWAwlhF%ak`sN0L(J%)ysv zP|z}N7_U2?%kWFf5q_sVAl*8;<9XW-a!*N1J&U~S_!IQV(Uru%nOI-E^o;mb^c$yr zA+gP8owp#lcW=&c&!R7gx)4|&!`n`g$GIgC$Ul%|@o_H&+~K7oYZJO`kOlBsaFn?h z>n(m%5>xzxBQ zRQo@pa8A~L%lTGvvomIpHLy?wS~JKHGBYwVh?+Y%0tuNoS(v}RS^j)+q}xvn+8aF7MEF~O&*YR)97pJ9 zE?d6S*4wKmfqEUwDleJi;DA{X;QdL>7QIZOL7}O7KaoQj_XJ&XpvIQ!j_$FZETJNy zaUc0wvk`gv!kVVSimXqXbW5!fo95zF(;B+VN%6Ru!;0=YrM&^)ey$?i25z!1#;$e< z-Ed1A4-VX_r+^eKvb{h3TjEb88#vi*DJ0-mQNKk=8MEI@alVS+y!(wJ(nuT_tf@BO zz(JL3rS6nW0c&|yuGVi@RC57o#*$1qF2GoYZ}61j5(3Oi;s8*{#{%S^EDQ-N(|@si z-+uM)vgL%YOdTD4mld>Y&Nr5%tNEd2v6cICqGUI8hVU_F8ayCNNDKqfCn`bv=L57B z`ciI$;UC6t7WG2+>TDe^;C(AFRUx#3d!#z28o3q1@}FfhUxo+n6n zQe6#Nvlxjh-iSgWAe`T~^&=&5`Xw}RX<}4jL_gAE1!{9YYMhd>=9+6MB3@72=p0{u z-|9fTML)@1F+Ggtd_=rX_MA`{sw1Rm!J8SJ%-?&KlxN@3aj9AdL=Pj)%UH#I_h{g1 zdvs12#i2T82x-Q0VU*OTboen%CmVeOd70iU~zP$Etdo zSb^XCtRv;DKrvFYAyYB*ehT{88W-32`OrNnv!pixL%=IbQ8mY%6up%xMM2=0QLtmc zj@IjqkCg0XDQKo*oQDeiGSOkwK@wtd|C(tUefztgm^}%R&;-j&LurO3qhwA1jM6w> z+WT(c3tks4lacd-ufQ%B1|j(4%N!d))kvZm!AR4zKV|Z*rv63(^YQh$(c169P%4kA zC=fTUTqn0m9y*;cY4(Ff^9aG2Aj&Dna#ht_goIBTV!_hor}FH6Z|GISruLZx^S>VO4MrH@+q;uzDygfbh!`aR|nK;*`=KYKotCZoI}Fpo*(;-!PRU^DUcpufs>Cy@|Bj+jE!=P0x<~&LVfq` zlun7C#M1X({?rU^_?FK-uLsi*R|Nu8=tps>ut^q7J|<57%8OZpK8u;t7LBF8H)etr@ zTl5*upiEjoT0idh3UDQp0JeHgv%i5;J96lH!+1fU0>X{IeT)0i&1m+Tg?`j9206Q` zq3X@{O$pkGgp)-6#qRugndkp}yj?H5-1q=KKF^=N>hkeffp_t(=X4KYH(u(#zxTdQ z@)O?NKz_Ha$(ta_58F+%?RQAAVDv0}z2=6@NLe8HBjh$HoF#YlB@a`q` zYWQ*syhSaISK8dBC9WwncM-o3Vr&e>z z8YE*$kqQfTw2sfMpTr}5!X;{EH6vc zY&45*B5g;uUPpfdO?HFjFl2B%0|83rg4X83Q<(A}v#Y_9-y0w%m{Hf@YS0FwQv{=P z1Xs45DW>CUtl_?d#NdHxi`q5YIUbP+b_o~}Ex zQu|-3wm$FzqDa~RcOc!vIsN}M1dm|@?dD86Rv78CWf(1dPjuGZCkC1WTAvsC9v%GAOEw z`CMzTl#?)%TgP8aDj-@Ey*R8&4@M#WQ%Okab}_Tmg3irDwGna)R-d7ahv{bJNtj|D zkMbFz0^>HE#U2j0Kj`eyayYlMCehPs^pua31HOyN!dybD=iryr)bcSlOK$ouWMV>U zfX&rEQF;%5Se^o9Q7#dw)<657Im|>$@}(=6sjOk_HcuGdssa8xtDxqG)vcJ~|I#$7 zeUyvM9qOx1+5eX`IS z4dw8^1sA|4^9)UG>^qJ#aR=|$c3waPa{USaQP_s}EhL)*Y98i=ivrj1_>N~mlNeZs z+o}$4T_%%O=c%%;;I(R;brOFvPd871lrHd(zDT&6j{hjqFHo-yn`==8IS0dQ(O~YR z;O-QD>XqbGs;H&ayiNFDAI)~B+mHe1U;72x-Mop{KceVqWtv)-_FtwRvax>; z*>Vm4KYMua@c&A-{Vcewlco4!d+|MiMDS}B5eqsl#Iw3c44zl+a@AB?wMe;cJ6D65khlyOa=v@P{ z`ru-@9trGo7GU+YKzh2<-9Q~**c&_SKQ-{Zmz(Y5c*JY0i}ZIt=w3j?l54grf@?TR zquxD@t)$7sGPomRI&Q%?%DvM0*0leMuxJfw4X6w;I=eUoVkB`Zkf*d^F|8(->6kI! z;-RTJ*#np{o*l-CACImZ7*t>EHQ0<6AUD#g2BaFJVeJOqAv#x*J+-}cU&oTB2W9bx zU;0>W#K*-=Os_BB-fZ79uIaNpKTHkAE^mVio?6l^9~!zo3J@}X-*;vwdhvltB3CWzGb-ibU+_Pw92dOx+;@#G3>RkcnXfguk)pYgMh#A8euO5B2~E7v z85WG(Z8}b_6>-02t)*wCw6&9qbzis>W3B9qOuCCa^0>s?R3uC~2$@W8BRGO+SG!#A zUqictRn^3BH!ehtcQ_3dz?TeNeSCOoj(P=rws`;6ceWD3vs`aZs&Sm9dGs{ko80zK zlWB>Hv#sU2z~RPi0d0wvo^Q9u1bYm3(4=lRVx0n$*_X65STDR1=a`QALOeKxrSjAgUJO2aNgx-Yf5p`@|L~rg5Blu zX>IJfeQI&0i~gkWRndB_!`FI6bRy2u#6Y%X{%Dr)^Fag&U}B$cG6XXXHBEG*pBPSZ z&vM(xxWq(ve*379#l`WJYzY{7+azs9@xYdexZaz}1F-Qn^`z@N;CXZ~Op4e@5g=Jn z7LLY->b!we^1*X@UNVKBX|<31W(+51Dlq9cK<{|cu!G2Iv520=v{@Q#4-4#B!KTdO zHgsfb3oX)_353a&5ek(^9NPtcLQ|wjW=@&fx|w=w4Zn+h2GW>jKDgpOO+LOe@vdy9 zRed1%87+MNp8+d?<=@Z;|Kn?8W){Z(2vMyUJ>--YvA$j1)>OB9Wed|c*S2p~UyAjc z#hc@@aAD4g|6;=+-NDQv3#@l8XQ8DHIit@PiOgrOu^=5c$eBmXBfm!Ao@f381ad`Y zuqtpX5KQxQa(i>9WVW>(U3B1Gx}di_K4x5|J3elJRxhbRd^@&GqSx*)QC@y|Ni{u5 zR4upKsNbKrzJa#X+zRRY?3Z9*H0Kq+XHw`8O~oiPq%HJlT$@N8)=WZI z3^&ANgbO!>rcD{wt6SD$k2Yq;o2}zf8TzFLC^H~8F@|r9;T_M^XFF4G^s6vxD37Wz zyf62)Hi|4yX{fHS;$H37Q0HFl^&aL*PP=Dj@W{Y35?hjYj>s^&tVLoUn5cC;BW~-X zuY(r%Q_qzKhKS~w)rXP$n=yx*+vMxhgxl2XHHF)h>sN)_wClNr+Z2JA!ol*uWZ__SpqdEelJncIlc-08xO;fS^ahOZH(mJ;x$Ypxi=ictl7?D@)H}mcjT}QBPPu_ z{2_vimF+yo`O?Si!Ft7b+Fb?rou$s|ayiEdj_$0j$8vq$yjtZK+fG44gIn8MS!*F) zMa7GT{b}NPLJrzKO?)9-<-pjMhEbh@3b={ME={%Tg~qt(!uP8DH`*uxjOH91cRl{Q z9*`qY1lMlJcgAm3y;WO_j8KrM`s=E>lY=d$_67;w=f5X@&c}k{>vrWNN8Bcn~{qYwe zJA>k#nVh4LZvcfQM`CV?%{tYE^)o~|QX998#+mbB(>~BXZC7SseIe1J$zpS6BVsZ_ z7wdKdanXiF#q8NT!zu|(FL!i?U`ypeP*iB%t5h6{ zw~8DE_>%9yAXWkf$wHuN^yvD0f@}(awd!|m0KV#1d=}M>-@SNxdh3dBaL~kg31R}> z(V5vD_0iGM0}EUKe4VZ9Z(2~)+Zg~9VeN{qP57Wcx!8TFo8RAUm2CVwyGoRon8LPJN*KcSRJ7*jXwq$C&t%lK+a|=>2lI7H) zk~za8OrcduE`rl{>%7!=Uy@`0j`#Nt|F6?SKA?%MteDv3M!;`wzIbAR%9&`{Yk5A5 zrNoV0P5*-iGY@=e!KA_YLm1GU#e1d{hPZR&6foPQ#q~{;5nLw8i=TLplGRrBS8^|w zN(0fSo+qduND1pS)zI1=5xm1$iJWJpp9CP3$sg3{^*fZvtp5(6% z{sr}&>NiihPl#}ORAMfZ8))63lu+HHKoggpT|NeDZDal9Gyb|YoJ!bwBOarVl(`Be z;N=m3d+yCEIHRhR@X<^lY)iMCQx&Gbd^Dtxt@ewOr5Jif*k3DL(<}u8C?_lWwger4 z73~L;i8rva@&>d^jI@b7b0|aKNF|&8^>hUKp?JSR%T`B06w**WVW4?R1nL$eqpH>X z^$Tn~0u%CH>p@|adjx`ue8xxb;FN-iz&}$ui;_J71|#b^p2$w`AWrPE;t~R~7zOuK zBiBgO29HfF;1qP4-_qj<)Jna35t_)R11|*_#8->S)SQco>KNpr>0nMACGY2u`<)FS z#oJ1Vc(f}!|3X;F)xpgn_Ot7Ai(4zzOBPDc-ZUHF}R3I~?|wftuD)6%EO4z#l)I{>Vl2J{@X@NdoyC+G$T?_+?74 zJQ?Sdj%%v4)(JufceI2#>^KE81MXM4tXw7MHlREEXj<8R|KrL0f@NEBNtr`DV831Nc?5#_J+9ez zaP>g(X@7lT7jsFOEN={(M637~K2y7|NcAIiTmDgl1y}~RRiE;r;+fE-c68K*!do5k zeiQSEU)2xTJ(M5+heCZ+llXY-#SNtr$E{?-j;xg)hN{Fm=qL#X%PeeC30)*z#h6rt)C|CtX$k`n}f5c3>8cJQWtMYK>@pE>|cbU~k0B zsQL*pUGa8Aetr6np3QvN31(mq*i|ajq&QvGe&}xnGk)9wU z)SY8AMU!p`lRK+#?n%$mMCjXxSmb-L(UM55B;;<9JpvQYf<$vRluTj?(%n8YnxRr# z4j}ko2YL~D6LL^I5Y{!O5T^Pfrf}sq_R>9s0CV(;OWg>C(V5~_TQg;Emf;}539n3A zZ}*yMBmi$b%y%h?-Ml1TWk?ePAo!}!GBN=1a9Fo)1Q^ly@dsEVw)n(vPIB^BR;W9# z()hcrKZmNOOk+3fPs4iyA#ivcj%38fOzihPW$_-@KL98MD2M;nQvFvXKL)0M@?hlZ z{s$Pj^@YM(Tu#wjdgUKWp+HesEPi2hYIYf*2Gwjl*}H>=m6#VGdy~Dx-PKX}=Q&CR zH$H*UKQBba{LGdq0SSWoSt23QU#Z_lyV77cnP|yxgO&%MD5vCL{83g}L9Y*xVWVK6tVP9}JS|(qyJ!GrMAWlD_i4|MU zLrh#=a|Xe z@_ZL{x!Z=CT@_mxOs|&I~42@%{&JuajNXza8Cw=)M2f-6%5~(|?lHaALM( z7xa)rc3h~{Mp8M{gn+j)&@F;?W~X!w4F0yRwT8kR;M*x3Fsv68Dzh0JKCR zusj!y_12)%eu8JdY@Y>%L8{*4H5!sRYh{wMlb-zbsf7?jbE#;ts<`Wxz5(WdbqWy|4fM_|Y`Ka5Kvl#8nDwj_-Vf!U%b8v;)nI4dM4^yLTWxP8^l6&j2_9A#}k?A^;7 z)hXi7Y#_oI?hbcvkN8(m}GA=Ui7O za2cPjN4t1?Y=SNs-E-|s9_iK{3=L-?_^CE0o1FK2L7KPGME#-Amg{strJT5OP-hx1 zWk|epsS(Yr&B-mn(Z&@*PEH_-qo$#3KUOnmbN8;OJNaZ};;oaV-YZX`kqGSw*F$OE z)w7hkdD#y|TqBue@7*PKP+92ILuMfuz@2s&o<5|Mms-PN%deiL?WTr9`62N%o&%4S zHhC|Csap2uH|?AQTNwp(qB7o_*4z-o=G->odiM0XVwol6NttXy4f{KNc9uqB#&p+S z_Mt=NeoEq_u=t#M=Oaazh&rJSCTscCl%hq58Dku0mkoPnU8-VobbH&je2oT`h|`~q ztsg*v#e)Zk`c~?GECR zn;dS1!FK!dB;at`_ndLmh0%jw6E1NJ=`Txd9);wnMHf|&$t-MEcj7NZPbX8tY|n~= zDeV6_Tl!+c2eBQk`*HBi!kdYEO>@HF4icPY!$u25pmR`Onqt?VhnN+}L=4b3b{dtS zqxaBn6v6t}iU8vejr*$B{krkFdKn(JoYb$sRs{BOJE0PP{nN?LMIOcG=_c{1Cn9t8 ze*U~<&pAJK%n?Q9NSmUkkL*^BXhyi;-oSXfH?h&!m$Wbx@Mbv~8HkdE8Dd;=dQH*j zPqn)Xn^sM+W)@82f1uIa{%MaNuitzFWfk@<|F;wUk8SCH9q#mW4F6Efl8&>HQZz*# z-q}cgMunm%z<_l1n2SSpR6~c6Gi69KOv?o}4Kx>McMk$ON>->$<^{!8a92ZU0m4~Q zSX2od+DpxvK+K9P8#^u*G)*R;*AK9?PQIM+xafel=%Kc`pZLgxpK+UJM~)Z!B`hDl zUq2pS9}g>BbmS)gWk70IJWLeQVGxK+RH)Fe5!V|UWJ+v-Ah5?QPg4_qzjscyKo}c} z7#Emt_7H~~bsR($MN$&VipzXfVKG^$k^hI(vcG!LTIcGDe*( zWJV$z5zez9zFwd+3Z!r%)+ZPIFiUXYXn5ro1lLW7K8g+jfjJgBFyL)RTHx*S@mQ@{ z{QDhb_m2?OXY@(p4)8M)s~zwin(+N=EmjBM$8oCIUGn{}L--56d0_v3Jv#KXp9F# zqt%}nHP^tGzy9qXantk3(}r7be@RDWvEC1FU1?ZosNcnQh+#dF%L&L&k{BQU z+SWgVW#(WsEbbRsezK+`Ho#x6CG{{UhbdQ^&m46~+V-X?z}PplV15b0tV~|8BZejh zpc6Gx@@m0FuSCfacY>X{TJ7r9GPG+M1?K>W;3%pk;K4M#81IDNQdU`ewa(npTQQ1u zedBmB7^yqnA!0N7Lq%bDdcoPUJ>rOC6i?lkz>3WaC%^@080Zb4<=`~B>Wd(_pLsjhk_8jfmW3lNEJ7&XgmSEZFdjVFI?H(JREszq{wcz1G~Pm z65F`(poVA%B;Y9F!ZE+I!;%g?Q0((~&Ugt~E}s4^vHS-a;(wp2ndtt>a!;7}Gw{E- zDb$)0cbb3j(G^I8`E&=biaCd}3xm~A>l;RQR+e$vOZ$QgI2lzjWBToTwlb^{_d>AJ z(@E^kr7p~{tE&m@3LQ-S*$}K&q@=z#9@oM2-^#BtuEhh7ipzU+admXy1#6_suFyqe zz&Uhj*SWpDRO*navtsYu8i){&znZ(Fke)moFbCanAP}a_x7gY;S~nU8;;vJgTvp;Q zCe=5+lA3hOYL<0MNg2b)$e?s-hEX%}issIPGg(Zbmghc^4Ya3Z5n|1M&dLPV?-oDJ zS^`IouyKVMXiz0svg?r_VWP~zsezSe`OIOc!HH*6k;VM8xr!>Q__Tt)kVA2@xr{Gs zf$D%2;jS=<^62}xDfw+vq%K=Pt@t@***}dy{dL1>j><~7fQ++|k+2b~{TV0EpvNHM zq-;m$v?0NV0x8(vf6oyQ1^Oh~6HUk3OK0-ub%cM-x($5@@uIXBs(4Ge;wJm47k}BT zW>h#ltiDn1fxD-5P0#LB)dgtRe||tGGAuX$%f&MNAB`(n>Hi_9VU+@HtF(kMax-=; z9&gNSX)h}^iO525ShtqpWlXRbi#7%V8ix)AF|@hZ7um~4^ox(LKIYPckcbb+jIU87 z@|T;+-1<3NqrB#bN|b>785u=%)np6f4%~tR65-m2(M;C=cu;%&++4EnxX|nw7_tk5 z*1NrZL8CIGQU6@|8^cOUT-%_maK8mU_M&4$MuV*CYV8ux)JB4&8vsey^NCopj0_=f z4pkp+I-a%b_ElpWr*urZI6Oea4G~L8Di;Ro7mrHM^THKB82u zLBaF*42#NWapZYwT-rN3<90N<9h9ueEWI8k+JNn)4WII?7X@^BB)#?~6?oBF2k>A2NnupU5SdO&D;9 z&MuQpN;(RCD0~lokBIS`HX-2p2ICbYk!g+ zd(WU%V|qF&{>+FT`q_K(F|~*u++f&<(U`g(ss6^GsV>8Sc5pkKamXs71D!TP7x^aK zhnIkRFAqewA3SUUDTU~n#5F8lr<$aTm?=O$K) z+Z9!CMajsLD9$$+nK@t-j!ON{m3PL>P*cL{D|;o(Ut{XkM>8$%rAZQSn<4COI^Oh;*AK-T)Ux-h*NiM6-|e2a=`2#OlM8Qt(L*D6~yMv;b3x z+^Y2mP!k!l9O9z|#W_JE5i9@hly906|6M^O^WWFyc1>meR z{XXN#u4waEu_}T<6GUv^c{^|&EHf!R9WZGerokR$qzbr#cdl~Y;*QUbmm6EzUx-H) zB4W3v2uFie6a5|3JQ*|JZ_ijAJ{H`k;e5UgP%5ZtLQCgOF<@{N5Z|mUepfl=m5S(Fx5Qnp;)b;-riir-gQ0NMiy% zFY+eWl4GV1p%#a2{2_P@}?TE{+e5^q0@cCwvm~spL zlvj@VBC_Pym5*_`;LH+gOW?uK_>pd1o~3NYki|`U!>H}c^}}_|6Z2CWmCh9f7V)(f zp&(ak1%d5^bRS&EpAUL7d)eDMF*!K``cuSJa3@qF{?6;x8=G6!5xZhC&%5@-OxeEe z@^U^H*Mam(B%L>am1}$jMRQ?R5@xOl=Og$Z?#OnxF)XQazW~rMd89{cbDv>YC^V3~fvM$$6 zYp=f~m@f|1FcUq+s6Qyow!t3c&GM0uBLZ?@I$4qc%=vLT7;O5Dy9|Plr)SJD7XUxHw;{#FGFQ&W}R4 z>cufzf1WkPf$%r9nUN6bA23lB%S5*MYpuX4>%fuugM{wT8ghjDe%I?DL5>-ZNN3(f zHHrv$iv3#N0B&>jz>WuhtIQ&=z3m{2T_dIgRo$}tRM?C z05&q%r=EnG5MHMuqVp{p*X5`=rbyozE-rXnIc8`>&;5f{sv6)9c-8QD&HgCaBAu9n zL*S>nqc1sdosjNS@#7*hCtf!gww57BqjBjuN@ME5`G$Nu;`=rn-;Gd9ESXK^NX= zgv>-(JO40Y!9SV-kf983me~3S4HK7NU&qW(e?QTMzzT#RyU6tOM9b9u(|Y^D@P>)I z2QgTz7mit?awEJ!)sX*ay4p&+!)1fob94iu&MGS1Z!6oOaO1c0f9sStAoio^%-OMV&XU3AFrRnlAs5s2nr0awnv7eF{OPP2Zct z9jt1R*w=vZl(6Mwj5(NHU0@+X^wPK7aBgt}{ZzSOuW|OXBmNqyxedjcv zG4bo_h#1J`bhtkHnD)8Oe)utkOh_I5C1Ah8y2w@g4EXeZqgqqtW487+^*L;nApk$g zN@^n`v(Qs`7Ls<>WaO^h|H!fSm_I1+w}w#{s@|{r&pP>_b}4{krV&b zc+kXEl~c-BDx-81nFv=_W_Egd;ePFMy1?`L6#pibwOXHlo{Z-H(9-ddz3D>(7t!&4 zS`A|@?%8|l3~RaNK&oNAcXw~P1;eqKeEKvQQFl&itRd;JhX1#E2$Y#ZIZ3t>nbE`;hNq4PCYteAEAhv0`=cr0% z!Lf2*hiSxc%Zh$>N@|=taevp6{rI0p&cd!E6GzszREBWHk}^6)l@oQwMg(i4rFU^# zQ&$?TwGFvWhnJ*7UG=Nz-~YeVdWy75$gj<|R=2l1*&Q$TV5zUJhTys19*3t;_EKbb zj8%XV1`Fw+(UUi)k&S6gBO}?Xg56@@03U=jpdX|#1vdu;Il@vP21VOLb3nvc5yau& zFx;{)NxO)|;9_~~V>|iY#|Z9!vrBo)===sYiiL^OXAp>vEjUCwG-i;{Auv2tW{~j~ zCmE$@5cd|2PCzR?M<4~%5bl=D-uIbONz`!~@I#`8xQ;lC zSUt8_Z?Yy?4;^+CmVr2e*dtX>WF?y}(Vph%a=(4Zs%S*MM9wSy=2cGBM6#6NPC`v> zC7n)qrL_JtUor1eEL$Wv%#BeU*}|~Ea5Hf^?x~th?8A4RlA}0^f^)!-N2vN3_RY5o zg`5q(AzymZ$uAnSb@Es*6SHw;#}l>0tY+NnIeqZR;q{CwIy)hpcf!vKI*iXWl?z9E zao@U`^|*7j`pQ;*GYm!JpPdz%>wU+R80n|s3ns(1&fUzc_rig#(_xcRE4WI$n_g1e ziGb#jWtl3YtT$D9X}j%QY5}B-Qi|<0{da>e!z=l;6Q4Qb2Dip4&mM|NGka_S-T0AZ z*-Py%WHY<6Z~$!&)yg8{9IY6YvaRfoh{lgvUSluQGq~>pwwYV*i=F5bO{^8UcXL1# zNeC>g27yu9HQ83^nbNQUi-~k-c)p_cYhb1pO0Vt_tok!H0z>VQFAWy;oIjX>#ti-% za$Ojn660rW?QRRu$d7-ExG^hxL}3F$k~&tkUs$+DUclj}Z#=?`lO1mpbYgiElr{L=^{q)7!RyEQeMj$1OJ|8GS`t-1a%R^O3xLYZ}Ctq%rpSGtsLKv(!P-&$>9p zXL)$49e{LqNDr29YWApeddpv}Q~kr%FUz;yY^N7!a8R`(zV{`1b_I^Z2ZZvi`{<}} zdklUDL3mJ8GNz;##TkniscT6{-(l5|fXNWOP5kZ+LQMEeiLeEqzs5nU`Ac1PeljZ( zoW!YZcz>LCt@dX6J*r=xvu&|=9?}h$=NZLMi{W27e`7VPf22JA0hOUOd#+wRyRY5L zq(9*B*&X+r=ttRW*uuLJS7s}eXS%F`-=wrnCD%KSzOUMek3U>I=wJaEqvb2_%|e)N zow>|_^*@IDjXgcoepUKMKzYe}1ny+J3zw8LB%DWY#_wKw7RElnkAH`c@3A3|=?H0{ zElTkc8=gH=r*UzA-CZW(*jHkD>mD#+*8n&WpfgXvLVyM^ zsvZf0+Th#@dYHf^l%o$UXe@kLZrk9Hux&%&@eW3aMpRpB(IA7lKU~Smg)Ql!FZTEk zd(3ajd^rkwXf$&Fn)MxxLndx=7^kr9uj-ViH;(BA;eIeZvdqB4!SK3e^Zqv>)l5bOJI zigF$Z$=kkMH0~HeW`qfTPt7kvWVRtiqD6keTSD>VR{VG&zP5|#y3(W-fZmwO04)~fada8|GV z->0;s(g)AwE8X!PXm>D`G4q;nF`EbT$^j>Nquor~sJ%2lG~Y9MSSA;YTGN*YL-YE9 zmP7QlM=J9|o*X+m&d7&DUaeM!0M_7vacd1-Qlrqm(5M47biAxc?+s3S##=vDRDI$2!Y22Ml) zCv^LUN{Ak+GqEvZ_EETyn}Mn#M*@-leycjy0k$7`aWiHVt}Se?QSBlEw((2l#HOB} z!=o^la)OkT%X$4xi?q+r5=byrh?THO7V-G;USJovVP8|jC^G3%^FzXXc2c|&W za`uj&p#y7Y&RhJ7MBL)}!-GS2w^N(?*o!~@TBGkkyBcUW{ChzZIR)lE&tnids}_LL^(sK~6jkAi9#&>opAR0{_JFj-|+&)m)(+!C`0 z<)Do58@tUuf@dFcQ&UyIB`MjCrzLQzf6V$ceWCMxeg#SNUCv;>Qy+f=kN<#F90Zv4 zQs5-(VVaEGmJoR|P`x8B+VrKnes`!D4l;0rWs>1GON+UJtxD!{!Zy2hBUn(kHiA6l z-;O=b`Nq)n(FS~@F))%cn$4^*FC_io9i2}9oAM*me( zI1iJUyqCI9DY^$ijkVW37|I9jO+%YABdy6~esABgd>h6Z-E!O^^A-T9UdL+pI>I5VVxhDnE=94 zrN0xX2L60jWIu&a4ZyPxdne)0FmeuAciYFuoZNM=T4L4mHJk$ypjj)AU5 z!FF7XYD_|UO#VueY*ctmk_^Dk4%PQImR3fb1ck|hK}-y)^8S8wbmSh^Hst;$eCC|a z0d(6Uv+THCjo(n7EkJMKgetUTVujciPLv!YHwB;MG&uYWR`pW2+>v(f< zjZM?1?lK;)kk97V!`qBDOLva>5wv&Z_N432h|Y1&Chu~XOy>61#?}mdPkx8SwJf`) zldwyhr;CTI$6xo~ZC)%Q5>=V&%th`x4*?q=-jSPSybd9sz=kiHFU5&*)%M$w`LZ1p z(}pjZ^y%(23&xjtbuKQxNy?ES1D>3ahYvvn00Nxc*?;@E`mglM7#RPlUnbXQ9f<#{ z>jA}Kv)G(3p&89^zn$JfaYK6R3m|YVzLM`3{I?gv6s|jfN$`u#HkQV6i3TP7<9?*s zoM26(BU{=UWFQ=Pk$C)Hl+KNI=g=s1p7FpH8Xkh#om({z&5X2%<+iT%3WXbR*jI2X z4JyIb$NM5p!bsh6mmd`&z#}Py%r>f5Od6pMvn9La<+~1%{aBhB%Cj0{*dFYlX z$s*Y=mPv(n+KL-%6nPY@tSlop;p1~QeCmETfitGF;A=$1l}FRu9@>dhM^Pz{Cq8tk zb^GfDVWCPSad>3BvW}86oA*)4=Fh(!+J7w8{_BWgVW;~iKu25(NgqAfG*@b*zI8C{ zmmUWJjU_oseyApp2$4`^ax4URJX8>(hQ@@RIk~2~<(F9;oG|DFrWp(epMM_+T&n9V zFj01Asr-Q-5@g&V-s_3p#GXg|3wNg*PrMu%L_85v#7%Ni^3F_IDODL+Bx;JqQ6AG$ z(LgpEc~b1W7&*6yfngD2xT8P*cV^`M$Q@ZvR%m<#zR5mv9=>?{)LPXNs#)XurzUE} z!1AKmVcTRo)wO}Vygp4z%@V5JkV!yQnaobV@~K-vU*!p5-=MO_c{)sIz(l9@q1(k$ zCs)T-^<0J~GpgpnRHfGR_8=B}R^F1Hhe7Fy1T{66i>wWct>}C@;kGp+h9wC9@M&mz zs0yH6RA>~zXegR6jd*rp0NAg&{7|0o!|qnXeDM8j^oZg)mIk3b%S$Nd$)%V!1)weO zR8Y)1B{OV+Kfl0$taStA8kX8u@hZ0|1P6D*b|`)K%?pRomg~ZYHWCYf|H>5p;^Drj zQJK&&e$wlyuEEKShJ>gy+cP_FLUMPM4T5DZ7jTerUF(6gsO70$>uf*YX6|z%W98-A zkU5}O9FrQ@pzYbls)J%IcFvsHXX>1SAb=Pkqkc>L6&Te0D~hbV0{C(_{|JHj(O=ni z_Gk7t5;`U>q8_%1=RxSyNl_40_unW?@h3o0lIs(O3fo7pJKliuI0;gou}o?Z<#aGMW{z8yov&VdZdM!(c1Ue>pGa|A0jP*J*>1`5$TH z|1Pvn4&k;=kpHXDfbB^&G=9~~v!oLyH|NK8vj$xcX5Q#H}kt2EWqJIvITQ%_9Gme0?Pt1Qzq zGdHg;&@YXC&rkz8JR}1-AvG;dR-!OlHA+lGRy(^$NlCdN zK1RJbLMz%ZKPO8xO*SF}DMBqlO)4rTYdtziB6}r1E~fD1&IKpYmUK{v@SQez1V_Ar zk&29@;^*af^_HR4xix&k9ln7n@n*|5_%6FQj5-ZG>+0GQyc9Yee0bA*YTGO47OMbytS`GTlS9YL%aPCl=%*62c_-L=>1U++R( z&nAlzO0K+{sYX3_r-KRy9Zp%Vm3J&KIYu<92`%;!n&H~T7^_mXn}|vKeKxe@6;30B&fhm-4u}4$sIr2IkU$9dHkmt^6Po+f z_5zvsiZ~Wjidny$2=~|own81N^v$Kd(ZA|sF9{P=A~opE)dQwzv_X5gX&xZx*>_N;$YC~t;W^E#k+m%|cnP(HU1xc^Mr&%oFJ6cGK})%>5JWSQvx z=^#_3=H`g()LunWNS+HjIy-N77EXXGhe}8YL=o-}M^i}wR4*(hHoARQ*wOH`t*xx9 ze52W(a4j>h4x#zm-ya5wK~D%r$c<b>K|ub+mB6b?XYGxQ!jn# zyy9wG)#-vHl=aLd(4!!BLcQY{>=e~x)ulhs%WdcZ?_v}v zjb-I3N}CoH(=y5^)NzVPN!g64n1kA*(MKiEfEZCOly#JLlm#tv zFaG{R-xSy$qaj*Vl3m0i&l*!;wCE~9I}tmTcoo|emBDcDBCzLXqZmYrL<^LzUuMyeudm1+!B+Djg~*0Sf6AS-n>~p*F1bk`yc+9-I^n2IT+1mCFLt` z%*sY`5Sk`Dp*buryE9mP7k0uOzZ0%-2dk)N5(gaiBKFzYY90_j!LgWADkgx?cx_=N zuyt37wF>E^By(mI6rA+#?r5c&^iLe#1fhvh_R~8hFn6xvKdq=)mBLWFJE-@Hy{C-~72f(OX?kYZ6+1CyeTX z1gC4EjfQw58Vl8QCXm<3=yD&SD~r% zS|=Pp$(2imujkt(v@l<2Zk&Io{&nzmIyRw8{mhib36Y`acV8kO)Z-;6O^CU}@q{^j zy!uT-$6(?6Qr8s&6QyW()meg@-fP{!ve0VxDo?x~%yT`0XKDi56vwe6k@wBBCU=a6 zVKxUYF=0Jj4`bE^2{XlSW=JFvea)XRS6GAI+WNeC`76G~=LyhLKv(A*EW2`8cNA8{ z{trNWB-T3qaFaa`oYd}aR%Musfn2v=YcIi^6G;7>^nDN5^$JyLP7EVPC$LYsl*=4> zDyRwoUMt^Yqc-1%l3A7K?Ns^a+M7e2f2_Lp1}jsItn>XtWZvm)mxQXT5CRY$Q`uE- zJMM`fRTCxrB{ePiq!<>yEl8l3mD{Dm?@o%OV- zQigBC!}OFZL3Wz~>a5FQmaqf5D|O+o_z>UQUUiVyHe!%EH(5TQRd7p?GLeT&rxE5)*PAQ_e#u) zJ~8kG)9ZCnLrb-8Cs+(&De^sDyokgYVHVeRNHk7t-ot7AJ^XzH^{@h%+V)?UI7~=J z>?_AOeMrAuyAhcJhNNB8uHC#YnH+ZMz$x__O^r2I+F6%z!V=khAeX@u2n6AIF>29; z^%pKaHd`eGxJq12J{+(<(q`hhKgtmpkLUU_)r>K{->9mblx%%KRJL%y)412lULiOg z6R0KvwptKS-h23sg4ph_GN*yK)ktPO8UrS!hHRz5n01pwZ3J5mHJlQ@-Xgwm&w0Rs z&xMa@#<@EvtuT&MAXb1G8{=GKNe|eG0?y?6Wm>b4Oa8cK254vNh=xr=?C{Vg{p=H% zs)i~-GZQnv4fT4DdSKRg?^FuCUW@kxcY@6C*uSK(6$G?aDMM>xJQEO3kUY`wNa+R) z>9X{E!RnTWItb|2XIkVHf~F^`hAira^y`-zn!(-H%|6XtU_!m;L^to!Bz;uC zzz2Ip`9{Jd{xagHPx&U!e3w!0S*lbjMym)rFS-MovV_F@B{0vWGT3bPvtEz)ypxJj z8F>L5sr$}sM#JR=c#_*E%#OwJ-9@n|sjBe@`F${H~_x4A{?EPb7%@ChG z*txSnRj)TuO}1NgCXxoM3JpmPdFSk|x0t*$RPhHO(MzTYE>=RC^&B z(di29hs@<(EdH4B5OW^6z?;qC6=%udEVCgZL}GNfCGveT2I9$dKu7tZA*p>tE!}GW z0`eA>MCw*Ja229^(X5y+J_6`UTr^R;P!(?c<2l4xctcV!n<(M(&!Bx1YT-LEp z+TRGwq1*ELAMUTWZeY-I~NoC(YOb(02aT1uX%Q-(pJzQ!Jbihu$UBCPRK z$n8+G`SRhiV-g*epOZ^2Z_a!aOV&--b-^yqKwl;^nown}1s9eI<4av?PDxsjM35rc zItJ8x08`2?aYJOU0Qo~3UA?+O`r}kpzf&9ryW)Vz=a|4|7dI4*yFX=?aDUFxJ^6fY z_m+6e;Rm3Lv&a2@?_n4;dt??j_H^Lz$0HSBka|ISAzr75%ZlxgbzK?ME*+u00H)b9 z?fF`f15eGGsZVGsH$Q3!T5{lvbj%7;^bxv39?#jjW>jW!*(}ubQz}iHFa&a4*{UzV zBXn&yFOc=rfNp_3Lf_-+Rl%&XW0?-I!rc&B8Ai1LY5yVEit^1k^Vg}va?e#g^-F<( z{_+IbKK|qbpIBvT7_t2w1N|wp9I*kAb_q6umbv~@sw7MTzYL6Zt&ZFm3v`@ zact}8)YcVeEfujkDLIPWs^8F2{cuP!UU6`(QZ%JLl9rP+eCJKc5BuW?oNI2@&*LcA zj?pxhr#VKnNd`-y%jHAoJ&A(~WZpo;X8ETicuP)0p?I_@tu+{-0p>o0trURL!a*ZT zW%{gfuO$Sw9K5J{(wCMU9WLg*XC1%^n_L#W$ulbtkt&>vl8aVj#1(=+)eQ$ELes(N zHGRAY&9dqjaLo=H$#tVuW1$6Q;e$lW3flcUxD1}-Qz(K0syw+mZRMYkXs`Cd*2f>M z&8fy)QTBUOgM&#C92r=&GAJS&6EZdpg>*hAluDzD+|b$;d?sjRe*`np2Q~VUUMnOl zkPcHPcNCyylfmr05ak(36Pi9JUBr6AJ%kB+h8@6S#$Q%s_f&G9@V(xU{>qgc;=Yhi z{>)I+yZ2!Er^;hB91K)YV10-ImaMUg2}0sIkwM9#?`aH6Zxs(&WqNc=C@`?yZm+jC zp}8XQ6H{RG73Pqp;OheZC4ISQFyUOlr-SbKeoWx{Iz-~ltX+GH78b6!w8QY_sJYb9 zdhX2)eMpkHPII{Vvk1&lM-6a}o?E!T6@|AK42m1Im?63m~@wK>t&qKKOE^dGMVputD4MZp8%LYs!(ScG-32HR8&p623O5Tfg# zj($7xQ(>QN{M@K2mFU<+xHx?TtcCWo#ISSst?inXZuHH=5$f{p-$0(?-w+W^Aqv>@ zhQSMOo5!2X#W685So9&(6U{e3fEV^4K&HTKRX)CT=|If!YpxUF5{M5!IB$VM;B|bylveK6zs-EDtl|Xh+$)J0YE+ zHayo$FnprL)ZJOv00Na$T~<=o-E7R>t$P(aM_PDrMZBXN`v&H_37QuHtMnu^E!v?_ zbVtM&$=?Fk!F9zrJ-DORL|;`2D@nE@Q`eQ#0eL)tRrNgF%NM=<#k%_KLMFOB6AShI z{S#WNez<5tMm2}RicPW66Q?IT5{Wr8aIo$5jB`xZIlJvs`)fv(+2(MKR5WEGjye}- zx^-Q2o7~Vd@MdpdN0cV=a?b=rA_Vsp?CTn5Mm1raWhIAeyf;jTDeoc4>m>RK59~eb z)QbfS`%INep>lyqfo#0f*V!|UU`Zlv+$CZYRoW>@1vUz>VrIJvGEsoJ>q}fK;LP~e zIs-GhIg{&E{W6pj!tPyYu5Zf0d0*=QJ;HwlN4(qT6$J7iutR->uWLcCY>m6*7;;r; zrbEpgaLWfyo2_O#zB*N5uEK0#$xNd8#li9H1tVTOy^5+nO(HLDxn;4$y`2*tcVn?m zxC<McJx`Zg$(AgKpRQLL~7N8gKn$T|EAm9m}8MhCdrcM|pA(%FPpY{AT{{^RL2? zLqa(Q@wus+tY`CwiK=;gJsICUIee>v|27Nwj}_Mc&zOecpQOaN|7T3YDvczb+)qJJ zm|TsRzOG!bl|@o4h)DqTINPF|S&Qoo;6vZzgUv}^A#L0qMgq=Sib=BWEW(K%QlZE< zV|xa(=YK9E{XpKSyrUMM*fD&afooRpUGp4LQ)1szF@LgPH=$Ub7ZrXm1%&d@w!YY6 z=ikk6#rKdYm+t94U}w+zUOPX4flL3g_t#NC>vW*3Qn0vN;{%vGHH<+4xi5Moc`;YN zF$!oU6*@Mv&i{DBiof^NXQwri_(a8vby{*oXIy8w^Hxg)HT#Xhb}UvkPM%QhP;~}T z9U|C$jDCjbPhlwbJwyFtrx@@D-~A(XEj-bTKk3A+uKMHHENMg&&#v%s^pNh)gElb> zX+ehRP3LVUO~ID|O_TvP`1Msci<8qdJQEdbB~-~eM(fRAQ=^Lh2WTYVjH7?MjsFuu zBO}{CCo@T^kbg~B+GWJTc;zPYF&6mmQ=meDf&8&T$M-?WBk;%bskHqBGK$qR8pYFD zE`CgO|Bn8elQk4_k@Jv+nk|Im?9eVEp>Z)5BO)WWKfe9~HrjN_rz1~XPc}0g?vIS# z9=LBFcy1oJc~cUShW6~+T4>eV45rp$8I!AZy7u?-;Bny%PPWv)fME&O#;{p(Cbk*< zv-%Bh#u2q?M&C7`L&dS-T)tlOn0+p1Ioz?;*i)dwv>tEk|e_m@9*=&=kIYik0;YuEv7TuBrAyin7>VH-*=u7zZ`MX`Fs;H zJ{(V{G4k5j8K*UN7K&xIw2O6DRMv~hY%3jB)liVrCR98W({2){NTN<=S1FX4peT=< zD2u!B*zHVmDYtp5ZZ{a$GnCa=GTEpnsb#kmm)29=m^d|9S4&n<5JS18G1)jNo2MyB zQJ^yhXG}~TP+{I7m*86fmrzMg#@QYnLPM{NH`!s(*j{CNPIG6LWnyHeWqzfW!;%ozdh<9kCL`369( z_$e!aN3LlR=JYrTI|WgLifc-Q49|F8x$y0M+%bJ>O39w-28zs;>{Z;p+=xQK|HZ_W z-^|`AsX?Q*<5EScui&FxEXjd0>j@QF8C zT~bpPQy%Ywe@j4C1(R3+eD2n9emZ|(C?Rky*BwibY4Q;uXgpG$kWowNe!vq6sq=Mt3)K5hW2{<<pi`&<&nL6CGnzaMe2rxb}WtGIn;&DLHx+wVt z<4&Gb=wWg7vAB44^2Ww;{ehRHsMnu5z zo$}Ek`5BeBaPP6NImLf{=_oLjE28^-LD3}^ znjuu05qMui{bL3d#qR5Hd^y~PoF2gnft#QUHNSg%<1(b6`WXV3HHytM=Z##Npxu#O zoF~NG_1TtnkzIq|HI3nlgGMsDpXU|FGA#`KGrAoka=ZHN_W|mhG5~B%q2(cIiwf)g zT7wj{p^ZXd+}el(#}ASpd&$q`!>|fRf4*7lMJwe6ctSB%9b8KWBNMZ*^F38zg~K=0 z#la2>wRP=2Rvm&V!4C%S*^Us!YCQrf;5B=UBHX*@#PXC&+|Rlzak^2#%^gPgtwxvC z4O63lhYWUJQ9iizyVRV)by8ki0E~E%D>LBaU?@M+&wM=KvQlb?^~S}X_jRG$qV$Cl z_r6Z7_T_dh`o*_>Ti5p{m*1FDfv5D4EbR1v3V>Uu$rr;dWoZQ`OjtZ*C4{rqFy;$yLg^-1N2_Acj?IO;V64oaC|FyY}TW zZf107^Zz349ry!Xn|$5aw$riAj&0jk$F^m~ zo~Nqr`d8Ie(Zh??)ICK{6dXq--)Ev0o$DhYDkKt#$Td}~G;C%W-NE(~drcq0S2?xm zieBedo_ljS@fKGr8z!o*`H%#9OXqJXu&9JgpRAtp;ug+&aw|Z~R;(bxIJSXR!3Xk! z!V*}1SOJdB!&D;T{+g}u`>mmIWn4RhW%vdq=U-OKFS#?+I}BP1bf44rPUPU7F6o;! zmD^-}>H8##xB5FRSHEPk1p-A6IAX!F_PA&N*UMpUNuM}S_tXI9AA2Wpcg4}nTF zD-mRRNZDs!%p6FR#H)o_mlL!nrfn=HpPMK1>5w~hzJ47M0Dz?y&!Ya6&tS9IyGDb=fwLua27 zB0ZZr!SI{(jwnJmw z*p8F8!WBm08OF-+t)_ucCN+>LmMJ-VBWYAZ=5`3yEd<0j`C$f07+?Hz_b(X z-4PFw^&@fxqTw$HJeK#2j8$!p8eLf0cv(x?7F?1X@XLpB6NqTUEY+KtM=A>vaWCj( z_$eE&;_VjEYJBbjq>%av_CpjxBdbXcmnOhm0Eq;VDLx};G;fvSlNU|I8=+vO^Nn>5 z!bUQ;5#I_B9@XsbSA^JJl*v0Qm;J5O8#ChKayRtZCG{G8X3m#h2p#NJ9PCOuUr}tw zqYI-_tiqGZ=E@)HcJ6kogFLH3`>|0yjunH=3;{c6J_=Nk%z!0ULE|h4GBC?4^e?q zO-x6t00|G#ZR}zPyQm=W!kTsLk-+OqfJkHf8jLE1!KPP&j5;#0a+yuCx~ece@9c_& zMO$jON3mG`p#u0 zAp&RtSs{p1>Q`RPRv~63?TF8gr45zH{ZuehurDE1&@$yJsrL(s|X0M{XFN%4MoAh957hU#CAPZ3eZe1$$Oi0P`|s zEAR6ydYIOj49fa?kJsXv#~a)o1*a;N^W<7ofS`K|m0+iA1&y^FYXK@&eyo&qqls?C z%h}1Y-3*&rRb_LHysTuJsu&KaY5%I`?P$cqAQ4r&=K9!gV8BzHJ}M<0;}eSg$tS$nhmhIsQ#%S zmb-$_rb}JLm5~LT96kvewwXOfDh3mx%JXDHOjGxmG0QubqnqAgF{=cYO=u_(f&)tF z7^>ays_rG1-Rb#PQ45K^!2FXYU8{bfkl{;3Tm993d;UlkM}MLxU>=ve&#fqZF|^y5 z;amPAlGrTNqu@iR@D&3K@~Bic`$FTJ1_U;gWD}zQ5^R4rlU;Bi?#{3W-S3%4V0Hh7 zHg#G=)rg|nHlyOk0_8iHE&^N7w;w56CoZ7hB(l~zY?#C&1qOM^hAc`HFL=pBlFFt` z)ig!&RRGb7u_ZwQs<{DzIu`s$K3?7jbJZ7Ezp69w76ZtWf z#uq#a2VY?I@=o8;x=S(7bzB_Y;7_E$N(1DiG!!k!8B{Pyf(`2X$XS%Ji-suQP3Yyr z&Ag;g0?bCx?Ofl$*MIM$<~2{E-WI;S!e?HdhBxC}eEYrwWLZuCf__-m{7&W1hEo0N zlF4ZX?Y+1{fzi2*$tX9hH0*`VLNde%P!N30?c zxi1KWv@6K^D5=W|@LO4(CD3da&#G#KpIJI}bA`ksD3FLCUCf&5@>zd$(CrRLO<9k% z>{TUXpa#{b-3dxP&U=pzQ_?fp`^VOF}@8}d+WFPQqa7|Xrwoe=CYV(Bawp|s_}?oUjDJ5| zsvRf!FU%6(BhMf;vN9?dak>~p7@xd+5;N2&U=JR-0z7WoQ&W zwtNi0B;p4B&sBu1_L)YLatrx_NQ&uvS}2hGy`S&6nWFP`R~kRY#Wd&WVUZ`nhvQ7P zPJfge4)`r7zMJuI@L=(L=lKEWF#baDd#!!v+qC5eO~Pl23l#%1NpRk6en!zNlW@ik zkLfsCk>i>(uybzlqt3R2xP9W#c(yLrU^vAetjzlV2c*Hk#QHa4igbd9l%fmD@YMxP zGkPWY>4sxkb5wr6FN7G1lX>E#D1?6vjiwqab}3N713xqribi3;gOZ#ZWB{s~=5W6% zTl0jl9r^B%rqCgL;Nl0(d&2K^!Ra#^x~uw&UwZr z)4?KRqiVR}igB_2ikmJu>A;pyBv1{dQ6UzhE^1vN`MVA?@iNo;ehwD0pOPeDrCE}- z%#$KhWeqHcD3=RA>Y$*IkyS~ENl8miV8Nw=JfJ5|mpcwl3mYw#1}YMek(bKZ&KipQ zxF&g=f`_zn7k*4A$o-s}Jwi2~1pifAjh;Fg>_nxSoRmaj=12nRKED|?zPDf;bO_|s z)Ffmo1`zZ-!a&!Sw8mv-M zVtK(C1vaYqWNxAoGfPUk=wt~6u-EPg^+0v8OktKH^CAC>xhlx2iP2l!uicI&}6`uCtj#k533v> zX^o{mehe}zp_kR65HE&y0ZZrBO;a5S1=$&Z9QmmlC? z%ca}_>@E+ZCj&SFpdB##tQKvhVEZ)0Esx?u14InfTh|#D4kL%lDGD&4Bx(xle_J^! z!xBz3BY@qQw&!A=!ZjTjEKDS;+e)CvtbwZ8rIX@+*0yD1?$f^%(^kCyl2ycw(m`sI ziG5ZVmmP(C`|qQ+4?mVp_SpkuYyF15l@0E{FWj@>LvP!*w^3f&WD?f$nfszxl2(Wb zbu^A00D(W+2}*0CbI?PU1eKbeg_UCm2(n+~4Mq}(G!&!_LpE(d^W;GOq-69Oo0nD0=_dtpaaAFjT3##2H-Uyp2_E_ zIp^zGfSl#KvFD%IF=nBcQL-;H2=NBH)$f#Q`8nm`v%4(*1XiW)&g#^$w+VzzfSa6j zWc!lXP)-Q(3I#Ze{G_qE{sESKbr-n*&K4lt$ zZPQmI$)>N?*P@9CJPfA1!}|D}K;aSSj$L8-2A(K;K*}5btYOtfY1JI}>}zpFlQiNM zKj(T2`|L_{dFk;0^eL#{49PB_L*S`!fok)8Z1(iM<4j3*p(jM(DyYKL8|-ql2=+|r zdgxViQ;N(vUsJDHvKZar>+O9$U4}2`SI%FUqlHr#@M*xp2$S94{P8 z!L4@j`?*~PYR2Y-kvSXN9bmFY8-q$*xmR=0uKGJ%3(OQ&O}iy+={}`K9#bU#3BfuC z@%y$6sUs-<%|$1YE3i_zj-@FTEYh(Kq$7Di;w`RsnL)D5t}v?wizF(qV_+7FkGoXF z&WQ4roW z!?UvsPjThhrnPj=nxPW-o<@3udbWWQi0N_yhrL{B^F(P1$z){7H8IX$?Clf4xAbS! zp91w?MrZ#a9kTt6iKiXcYaU3C5PZcmh|`>y59ZwL4`KaNPk*gwh5N2_)C`y<_!!Ug zl|%kvMzD{~$AmP2m!LX)>=?2y0=uvWQo|~-->!u-Y(}p{8i7epLq>DoWo3yK;<>d6 z-zf$md%(jDar%wADe1vg}R!1~Gpl@~&N!yA8W{!O9i#tfoSMZTVVj(;~ zma}S=7CA_*nM#8rJQ(-1a5kFFuAAnFhCB>;a3!l_`kg`dJAt=m+6{c`mD|2|@`Xxz z__;?5+0_)y)eWA<@Uh+M_8#`RUfEbRZ-t;Q^`A`pm#wLPdn%cMp80QM$x#YcQku#b zUCotu3Q$vn;}U`PN2K_3bhB#ohF}PF)V+vUKF3CyR#(SC-m%^@Npg9fDZp0Glv$V! zMvza2^N^!ix(vsWm*@;85xvLoNXW>@EFbPRE*Q6ogI2tg-;YK|Z@sy$Jff4WU4lMo+}4a6d2_ADXd&CszJuBqN)#%tbwxYfb8xlL%FpC?)VDO0g#&Dd#4pJtxH-I)ihS~aFJ*{P&!vuM{ys>r=` zyxTdjFxja74!3E1f3(XUF-&^>fuQQtxAXYeWx@;=z#p)1z~tJYO;+KgC3nr)0=GHr z@#@OCbZYn7%2r96&1tq}>pO|3YU8Uk(CBvFu_UcwL@pu1kQmM(kySJ;zfriwaw_QV zpIumRhZ1%CqdY-jlssKQZeie>&`Ys6Zp8?H6mNv8Xf*$vG*HN$ErV=2onU~rI(I<| z;XdWcD{Tp1$jcA4K}#mngmJF@2bOuEyjzo;dx$itAtdu~AtAKjDk3u~E>7Q-eg)Vg z-=nK1j&xppub5E{PSgNdyr3;!&XOL`&h;;LEILfBNa`OY@<1d8Gr-(f+qGWK)U36> z67dnxW%ejBQ!-ORdo7?Effg`vY$n?e9P2XkTUGrk*5maAp|yIwU^6?;>wZqlq0@TM z7&UOKdBBc(flRBf!@PP4*IJ0pa@4 zHZ)%tfQ<>w<{ckgZcJOYmGOD}gHvsxCM{BCaKeig`R@DSW-{uTZW)+k&_oOknVznX zaJ!#BGds8#xP4Q1_)%y@1yyUope82Xj}x{wFc69~_iKeu;>o8ei>_9v$T!fx7%Unc z)dQ%@)R|^IPD{B8(63{nP23t`_j+8QgGQLm{MD01V`5vOF^aeb{4r5$EveLd6hEgy z?+f%yP%EjA;`u>St3Nw{oiTfI_W}tO`}w(=T_l+} zd`aaK-F)oW%cS!LJP9EU=hDGM9#l;G!$uB1hb*uLhZUp{J^c;SJkS^ygYt1s>#}0n z*Q>n*mR(q0U(E4nr70UJgT7Zz%hTqVTW0xH7n>#g(dC{>-4^R8(#Euo zDcnJ8!9tDTl`hWQ!pBDb!#2B0*ay_tcSS z7w^7oiD8ml>@sNY?_$I`ma6eXRyy{@@(f=FAOu{?PB#X&Wy=G{UT~L3ed2Wf`HjTL4s)LHS8OJ4x)sS{-*wSX3k`nWvi6 z`PE)_*_%QRxNI+7(Opf`OtQ=7=X3L91l{y5TVS*}s(>_^&Yu_TH0*6Gowljl?6+o`)h0Av>Y+y7+ZzpV28`+=N+1%A#HEss=f5%d zm12l=mbNunwKon}vtlh3VMbXHG!`nMD1@s(S}-y$R--LqMPUjQZ|v5grQr%R zsZ%#DPv%=%_BorzEfA_eQ(#L7*PaL6ImQepm^7&te%B_UtJa`#{b^8EGpV3&r>qek zG$|88zMp!5Mu5ge^HnW%PS9v*2{hF&@7j;Jsk4adD~Kc3B4O_lJKZQktMfGoiL%C1 z$4lFb(Uy@x??DJA8sVoIXB(VPnA(Zkd7#8lnxo9e%i>r1G0km2ARow5(lb%oF6W96 zX}JU)OP-gmhFLGXTbR2rwZLK&`Y7+2B1nnZoxC>4XzxZ(T`f=K8K4KkF`V z?-v8GwA*gDPry>c``O32es(V~Q-R1r-h$9WeHIsDn4MnAWt&`N_Oi|GJHY`(s^*=eM@4DHpH8Kl?rg8s_x3HlO??YpkP>wDDL{uHuIhc5Y3%iY@q0l zR7B}Nlc&T5cRkygd!v+L)~xc!cQEXQhk`?fpTL*NnFe!DgMpew>ecDe2d* zUNc;1>1UiDw0zEhH__-aS&j?32XBPTMUmv(kR=Vseghrq!H4WuM5xl?(`*jRzkh;d z@@}nhyd(Ikr+?B+fTK5vsCfzkZ}lIql~9I6xI^`VfSQ=5x` zR27fHC(O_Iz%NQ}Y|5XcAs!CkL{C!`Qa0GPFrUChm4wMcJ3?xEl7a3q*m>jaxt-=c zuhY`UgeDv)R?gd^$@C`0%^RlBb}_-JZr^pqI*qI+!<)E5>$qGPX9We}F^!zf&}hTQ zXc-+|Hwn12wgppBAy-bbqoc2`NBSH@zOb8*_oEOI%&JSLpI6_~ikoW+$pNTmCDXRTt znB*T42lM}TLHX73#>Aq|zmCY)bfUwuwZ4+4+f`@e2 zIRTR(UVgZ4c0lm#EJA-bLq&rtW8w^y*U$eWUOrah$t%1Wqm@M5Y3Cs!2IH5iv(4Jk zY2W2=%2&!1ja{~hTr)sC=3z5!lENDnc?1jh2OwV3V|Q!r*%3^K%URq=NjOf#+n!OO zwqCZppo=c$E-a)j&~6e&64^CsC$V{<5R_ zZzly-#=lt;H%3=XQ6FQd+lJG+=&M_S9(n)) zHP7ndwWC|@-;VCDRjB@FWj@W*=qv}#5zKgI&ZPtaDi*&eF+Z+p9r`fM0en%7K{X_y z15KU$B{^W;4|-to8av{L=@xLD2T;V(K=TF(ASScTET!VW0w~L& ze-)6H)HedMK>H&*jpP%8z6qAjSAz+!RG*Uicg*?{mm8K=(Ug`ms2Um)#@Rj{v=EiU zY?j*aL5joX<1x@u7VHAFq2emYr|6>1o+w5uy64+l3ZbI@!o)>LBIslX27oU2&28Qa zreKFP<%+v1mrZLiMXVtzbNhwtq8@qvze1?&?I+5;ZEZVkvtsP{p+TPib&TKl< z{ME%D&A4xdYwj1xkV7_YMJ%;3AT8Lo-qy$blamedWX=KUFh*2&1x*~g7TM2{uKunk zlK`A`S32H&wL>h6`u&Id-I7rO_jp5agA^jVB%BnMgY}ngX6~M}DOjWlu6HyK9>r_lkHP)qPsl( z{uI=`M+fiFRo#_ogI^!GMpQIlL^r!V3`^4m=U_A`*7bv6ZEp3AQpadZxLLpxfETtn zTkfv8)7-?~9jIh^IEVD`3ALl9u4W>6K=;VTI^FC-lF5dlN{4G_irOyu`&4?PQRND3 z^n6Jwj>;Q&;4g5@Km5sTf6;3HArSl*Qo+9@fX*YT!xl*j27$E*kZ_gj8mqGQ3mrqo zHox>hj4x7wbRzd%tiH+3=3Zx>u_B8Icy7+-7#i^1*S2v&R;SRh?M!eDPGYitjzUs_ zZD2Cl&gNj~*EnL%sRnmqN%PtG-ho!Vsob(n=8BAC)dzMi0W}8=C&=xTEh?1BX2t)-^vpMgO&Oyfp4vmZ%@`@jdEKY>zr9e=#uc zZ==_u07Bt@AXShIH4Kb5;*@tX8fseU8DBfZX*sI#8uAKqi8%`CT0jO^|0BSMf25eq zggnHQ?35HunbJ(nC^-d1&D;_l9o>@T1kK_&oka8eFM0B5>QOle2^tw1N=a#XTj165 z?UdAva)5^zyi~`jX&Q1GaTaJQ=cgY%08jUm4 z!#Pk;*)-BUS8h%ICQFODS{n6X@$eSE(0{x9eKK4qJJBuV9T8e}zIiKdJlc^fo=uOZv_oMLX6Ua>n|Yt<1&MT=M&R%&u1H@YdGb zha3oiM6mTwlbdXR(SrWL$C&@t|In7}l^FOBA0wP&&8?DyvR)JjQm$RXyfp3`CmAY*-pPYVt^GFgv<_2y+=yv z5Er}06Jm}c@MUea4AzVPoo@FF%j30bHU8gpJ8=s&)>Z}am2P9IBCF7O*FlXCW8J)6 zs|32?xr^vx!kP*41tQ%gDNT<2LmXogX|d$7Y{=?|L{!{;-au`v{^VzW89@H`{fy;r z^T@a{{1)@J7(=%4Po0EoHV-b;&sK(2G35h_3uFx0K1wxTjjne zSJC`sio8?o)j&^bDVhPigMl8MASV%o{$#5b3wIb~$iOmXw?4ZPIC~Q4Gfmuq6yS-y z3kER?&+W6qLNjei-#mL`{H&p#Y|1>Wefx94osVonyu9@Eo`QpDoU+r9X__&Lv=Wm) zYefVBAGYl{6%BgvSf~*X=(|O73f3(i)oPCWQ%UN?Mh39sE!>MLEpi~wG*Is57G80!8I3GaP#2RRMYE# z&uT+g1CP(fa|0D>{uX+(o)7#3+vqg+F&_vt92=kwX*sf|qPQar2Ex-%Zck|arp5PVi;Ur3& z>Q6}&Pn@$CmCO=XObXFHE+=YSjkJfGq0c&1U!oeypey*!_PUQkP9xr*eviMD=KtVV ztp7l!(%a6bq9z96&;J(Iw*l_ki6GglHl%v}SPR=q7}Qyvwz44fmAWJ}LU|_pI2-6C zNMNeQH*5m|$;u$4`NXVaDBnCUS;EGemag6-qqSX>wYgHP*0gl2m(siZd+bED*rH-_ zoD`kb%gsO#k+V{X0$&EAjpRYU@C~3EN4`8B%W*EKwCiY>WA-x4 zy=e5yug=kQ7Pxi#&ERUL|C=}4P!^sgO!3oeQD4Zs`)oGqCLR5bxBQ<>`IpA{zwK!Z z4B!9uqBTyiuv9e07@k%iUjaOg4GNao&)f@y1&W5Egu}4Ij)jo=RmK1oV64PyXK~S1 zg{#@FVe;Exx93 z`E~krVZ1d-!-{)pxs1)J;iRnvEvr>~tBh&9KSZk{uTs#a$xd>yF=KLwg-Ye_;bHNF zqx}q~c;hUE_Q;)c;$r>m#kzAee{0Z+(J`%6)iKNc648Bw$cohw%VWYFdC6e8h|LKR zq)bbYIoXPMGnwEBVPRl?fG|I}lx%DqB3^E+zhvKHU)C5Mg$>FRlmk+Xe^USoboF=8 zODcis`uw}R>Tq6mKmsy2924pw#Yln6O;E8Hu{nSJ!WHX<jGB9!tL6Y@gbN}moZ_NXF(1iy zC`=wGM_Z6O3eI!mEdYX{D_vFB(j5nZLU_wD4i^aA z@r1#0PN-kD(id~D8&Q0kxO%u^0>Lziilumy{7hFhwm;6;8v8@1HadZL=TkDehLd2r zL|2TG{XmRvLJk_~i6J_&ru5}<1U=7FF`humX9!Op*ORm8%o<(sB50n_8zpxE2@#U= z6`p`N^7%PSx1z1BwA-X2lr4p4ZAQ^8ZuisH!gqfgbZWpz=tImR+KlwO`W|gmMV+x! z?Q5!DOXb?}Htlh@z_SrdDw?529FB{>Jv}eHmFm1qwF*N6%cpkjbB@W^P%Qjk4{YQ6>>+i2*27St7(ih-} z`6TV|-*jDL$)HyRieC09l%mW@>&QqSV{~AG2hAYj9Vbw47-Zh+`2d1SlAgZv(Y|BHwwFxduJ<0y%9% zwD{6`k?cj*TDlO&NtH0I%$Jn#;NgGXoc+e39JZDop z<`0hFBVz#Yrju_NO5Dm#Y4s^2y(Vo_6fo|89rgqByilQsAv>pbM#?^rE#JZ+HPni(r?E zhq~{qv4O8d=n&sZGY<2TpVpyy`fY1UuI>T>qf6~kt4brfk%`MS ze5ZSW~F0WKKPAb9D>i5<^E9E#+IFF zWpB1in^|yj5F*55wk^e3`4pWD1v-#;TDx^bR*0lu-3i5sOoUh+s2S!H`sNWneWAyWo)-s6iwAN_3)53OlbFdCQY;mrL|1^N_ zJuYut85})Ts)M%kgFi@8Vja)o4R`h8|AR@{|I%UpxAV&Pzn{4)iuaPzH2yleD9P!r z$zgOHWf$;Z%?KKNz$gedj}cdBSd$N!OaRH0r2VSTThoq4xnsddj-z1f2_;ERP9>;? z#u@_4=tQlKQa724G$}<~mueLjW@1mcXk%(|`36V$n_TN+8lF|%acP;W|G zg=PN!o?=e3gu?yD#6)^JR=|qe`u2mGj@bCNg=Ksa9b!xbUbSl^TbnkLuBCIh=be!t z%CoiU{aXC-j`XEr{;)6va>f{h5HahnUg1cZc|O5fXdDU>G6iW!7)LO@kT~TCOu{4# zql;m7WNVdJ;`?uVG*}Qe3DHzuG}IOWV6ABYnB%;Pf_nW}QXC&<%<(32B zrj@O^@(@-td^4eJp5KTxK;{7MenYc`H)FxU(QszQn!q$(ZThM0>+=z7aq#+pxvYfn zZh~j&2o83r!z!ru+_ZKziw$PFt`{lq1;%{Hc{ge9%?CvfO6)-3z_OD(=u@v%574PW zNqMbX%eRt#%4$YsLg?SIF+w^YGphPu*rP4l7hLr&n-AtVl1Yon=0PS3-Y}Ey7C2ZK zYJYTrc_BA6H{>)Fn!bA3qEH4*)iA+8+a_P&9J$ARJ_p?TnjhzLa+0v(nd(cBGL;I0 z2Bh1dx(aRXlNK^LFKNzYEJ9vAwQdizL>JE+OjT(dbF1f-lqid0=ZTrBN`oKjn_XjN z&KFCSL9Mlw+%w8^(|@qs_NcV!jLbF^(>O0gWhXniF1CyEd z1VYQLw8y{jj?eq*UfbOvCF=F*Lwn;enQ*g6F%jmeJ;6vSOAO4t=nyT;jz)NS2K3(DoE{{q_5qU%kRLK_Ch|v|Fa1Q68(dt-(65?1PrygzwW?q@xAuQVl%x1aoLfQs$y$Hu_5RzT zl!@tYqQZZQPEO8taCY}|{}P>Q03cJ*M?5K#^!HxAXWfUu^uwzU;oD2`?x+0+P}URm z3n=@L?Zg`uTf1!wD<1h z7sKKAo%d5XuEN-wxgnEHnt!!b%+PX)rwg>&+~O1ZR-nRUQUM_gn88(&zki_{JF{57 z#8mtp2+5pxQf~WnWM@yvRFn0+`Cu=C^Ea$oI({2du!GoMZlG36>>-&y`v;*-ehN@+TwbfqL;vK^l?6QONfcG?6)@`aE} zZsgCGhkes*0+pV~oU<>&O-#0z^mty=G?V<^S=9XL3uLvT<}Y~4$eKhQj>Y=84Xn<1 zudmtHAJ08OhVPAjh13a4xAiOsJDQer_}9v5+Mda67+CR&5hK$Thk8u^;_P^XldbdON^hAoyhE?C zLk-UKudF(U%-70d(wym~<(+dIN4K`kDjPjdxT&d3(^vIrfVEN2m?kcX#FfRgGQZS&76Sf$V(D2&Q3UP%I(Ip~yb5)08R);sG5LC*R^>hLlDRlQp%4Xc06MJfHKSy01sC zb4`hn#sFxs%xM@UK=f#^00vInw(5>R=@`H|Vlv{6&gQH@MB5GzF(EoQDwkL}+hiv! z47UL0w?9TqK_KS2V1(X%6De`wb>hI8@c_DGgV((<;AajR;`9&h(Mb$v@KAXG_R)Re z3;FYJdK7}f~WZ?1qBr}va`FxG9p_5RjV65e&Vz#>te%)5v20T ztSQlxmzvfglt|bLQUkUXjQ0vKgNv;uARbp66qN0J&8~VAqwE(0g=JjnpK-%B?M7kA zYkd43I&G}5xMc&Zoc?aboY_ptq3cn@%LT>N=Gb{QRgc6&NkTYJKnbCku){w!vC07m zDOjtFm0YhY=@6uAV@P9}w{_0jA;{7{7~?j*pM3v7tDlsS!SwO3Q|x}iAX=6 ze3Ma~`Z?`sA|2CfDdk0&zqgNqF6z80o$|X*XX3B3-&1*?fHlWe6Mu@Qe-WkrA)fx% z-qgSsMf>%OqOBki88Qb7nMe(YUZ=_0erM?z4;2;85c1}QjQlVYz`@k@C7ahNWCpSz z)>UsS1t4-5I`zy-^Aj{IV@ukDt(La9oTvoc5mQ;5(Ao2i4BWp`pDxvP9h_g-Ro}SG zEL(-Xo+B=AMkq4HAcE_2f@dQ8o;N{6Gfdb%{i+&FadL*m3aI7A!81-Eo!oz?gEJ$N zQ$P`?-J+%_vAa{yk8Kj|qoDCsRpy^L_3^PZY{+_v^Rs=Z{YIgkUBqL3&+yxMpu9%J zi&R+=A|j+ACefP3fSO13@arn)$s6Dag^l7LjQ0I64ZVLmfHMC#INbX?_{W>O1?LA? zMrNR|;Qn#>seD}@b|1pr505#7U-$J$_&?P74iu0$*{??e@E3I+iWnmWilK&{(LPbd z>3`ON`oDb`u$}$ahd}`b%NNX^9kT@^6%$iEzxn-m`<39j-KV!Y_Bql9p3$fKxm~;A zU#%ze=$DY~tK^L>xy8M+ncWfXK))+={? zaibk%7CajJyJ^~e$Q(c6BA%_@Gxpe24HaEXUBE@p0;jxNF*jW3uH4$M_VTY_Hn!Z@ zpT^MMY_spVeNOj5ExVCRYOA+7`ni3e;HT48xH{~$s1I-5*t@ro00H)`s`mc$Tl}RE z{|8@U|GTykr)|+kj}m}{t9q0|hdQ>$ zq099)yT$xeL>&Bg%tD7Sc$QM%Zthhwk=8Y(a-zvMVi)9~l*b7nyGGN)hZ}QG`Jd@P}pt>fuwZg1WXN zV!Sl{RLZF)WR$T9FE&!KA4+kE<<*1jD8lwMw)HSX$A6&~5Ms(g4q9^=2THt+mq0dZ zb9{{dq?4_vFJNg>)W61o}cEaaAZkhq3$Af%kDjAWLDD1VS{5)JE@ z%zs`uHvVAEJ9+40F+3fT1ftmqtgz!?A%eYydWpY$6Mp+AGykR4_kX-kP+UmF#@bQI z&GzdGDBXW=d}c;=*1xjsi_{?16qlNK7>LOTg(P7NqO*}vGUa;moLU;Ax5Xm-1#pp# zvi$?)K>^eHNWU@pe@hrapv$*ySS?>z+~iQQT3FL;Y=V=usBLn0!d*Xk-GpNY!*i^fDvY?=2rwF zLtF|D5pAGfimIbW)TL)=9NoJ?RJbRqW|bUSNG{)}H-4sS(<751zdt`CgiSWy^96tl z$Kwkl$269tpg_F`1|>W_Ah-o`0_2wj3drB<+l?=2X=|6&%#9F_hJ}WVQk1oG$>Es2 z;ZWq>Qtni0rw~Xfje$_KC;(oN)Lzi3I(2ahGh&wFmO-zCgMeBP0jqH8HQ)N?9{9X%}L8F)_s-|U$?P@mP4kK z%TiIUfk%w{N4!QQJd{Gn(BR;Ny+cF%X*JIUH;ejNY zYscB%4ps_E3EbjfIdH&kgMOU*(w5=N^e6d^UMb=)a&u-DKl?mV`Km;0mLT_tbeYNg z51~%M$-FQ4Zs~I(cw?%Dh?_hWIsRCRhU5=&8dN^3e1S50%JA?!R>fK+oUc`4c?uLX zBuMI2@uhD(1g-xVK!Mt@D=4dw`SIcc* zu#o(forgDJ)VTXWe7aP>3^%gHh|JW!ZP&Bgp^DMW0o-)dB>!)zIuY~rS4?yL^y+Vd zz{B&u`AfBiQ4p$*rXZG=8{O~r3kvx--;|_V(%e9}o+Ye;{ zEQbGpE^QL!RDZVKy%!}l+ZNu23E1(#Ah?VIr#tA!OsTP=fR>qjwZ>E4$nnONHJq$x zo}S>2#_H9DVzOC(kLzdJ)+`d;2I7hx+{*(@7R&iH>7BC{Vnd!1GTFx*k8aWDbs@ho>EM3a4pQ)tZm$zW01}#OVZaB7fWPo&pDD9;(F9 zhev*XvIij$Rg&H9%o&dmi9ZJ*tmD|h7UiaWu=6Cga6K!jn}!>==%Cis08HgY+9X+~ z^7~nTkh4f8kjj1O>DcW2d80$jcr?ROk4gl3lRf5;f>JN@H$x)uSw~>XP}3vYSe#q+ zb@rHE&KfG`p#3}2o-%?UuxrsqC`3NFw0(%HrN&-Q+5Wx&>7P)Rou9%9pq4&g6107t2 zx{%=457FDAwej27JsAVYAh_xI-Cylfw*ae1a-CsS%3mO2c0erz*sH%=oBr+!6?#(G z@$krg7!v~j&Yz3=X45i+eZ2Y^#f1WTidj;2rI+2V^*m0r!O=F~D=MNUfqbPJAK zQ-(vpjzlH_i}L~g&$HOZrH|HZ)9e(3jK|yW&p7eIG|45P0^q5uu&0-KTldkZ9Z9pX zv5=U3d$9*pX(2>b~zlxuiozcnI z=!mepxA|?5{Ps_@W5a^f`>MyPVlRU()o=ohf8KIUD!=t93Swhd<#|bs!y1|GKmE7{ zD&)eu3-or+TUD~2U_z-~n`3GsE@f>byQ;h@<(L@rAr-GpMn8Auj7O|N7rXvW9=I7% zBRo0})`=xdzr031>s!E-t6Ad z)b*+b5MpAo8Ys?khHo{$a(aJWapJ`p18(TACl~I|AS4wNv{+MBxF!})--K(H-SBi{ zB=`T+#Mf=F&nIc}x6*2dkv2A9%YU(5*WrM&qfOmA;<{I zo%O01bw>}EW}J9O!r&Tp+ZuH7QGeoPo{M!3*Oi2mnl&GFf}sCDl)Ynjrs1}&8{4*R z+qP}nsfumewo|cf+o;%lV<)>#J73mpXSUPU{sqss@!X^LtBrY;Xa!L1QY%e+DF?pxETaOG6)L#Ea~Rfl8w-KFZomBiV#!{{#O0$1J^@idHUxU z!dfski&1b%cVqJr!_bmVFqsVp%cu)ZXD>6OFJro7cI}-eO8XO`GKzv=2dHqnzR5KG z^sI7et?(V4_VRZC8%V9-BPqs?Wqc^^gz5+|mz34{vDHYa;5~r+uJ&!J*D(-xpmYOm zmhi|_{;S5}>IYYbmZ8__=JeTb58961;%`wz?UlPOraHZ;-e>nJg_9?fP!(5taT;-CsUxJP;SOGd_OVNWRPr#n7b!_NHF=&G6>sirg%p{xT7*1?hHS!u6u3P%C zxHXtx&A%kfQs6vd;riq`gs88D#uMhQpbAytIhq6yT+;d0hFBkZdH5C}x60R$|Lfeg zM00?b?el!VU6Jd`st-(l%z^G?kIYGBaC2H5!wO(SkRy#de93c_hhi5ch00da2W_H% zYcjee$ZUe@9i;L2$pItt9TCllzx#{pnH54p;0I$g!C{<$ml0rCwy;bXYeug>KW_@D zph0Lhn}0WoaCC&usOYy5hD3}3yL-4Iv!m*PCRdk7%uUc)<_ld}QoK7{3^*He3=}=R zOF~pclJ~oI;zMMh+FkW34`ZF$;RS_@dAnR-_2*@=<>x-G^Ocs3@PB`V9+&dwlq^Uc z`+BbR<(*cwtztmWo= z#Rr)aEt%k6V%IE z&py?&LfRTu)TUboGw|)?323CuP?Q|-!h6oiQnb}`@(p!H)6&y5IM^pv{k>RI>ks_) zH&}zlzUWXZbd1d|-!zm@#n-)*>0%%iJnfpO8^Yk%2{oFlT>EaDIHm$vS{t}KtTQ({8g2BQl%Y^VDT(X^VZw&n%w0ET%4$STltv4+ zYA^8JQ}+70J0-_%CMKtL?-!Lica=!1c7|?hQ$q;euvVDL_hMnNW_vF12YTxK@o2-y zgv+jA9AV+$;^Cl}#0mJUY%Wb;0j9_0k^XlZSg06g=QJ-GnnWBQ^0kg;C3O6t*e>tc zliqCufvKm72X5gTLN%eY}Qk#W_V=}1Doh7<3MT<$d{gEBUy}|lyDiJIq zDW$9~$TxcB1C?ex1WGbQK4L66Cj*oVH<(D)T?4JU3#3{@NXOE(ggs<5Joo&M;-Ih} z1Ce72d&Q*>qqX>)44N1UFk|rB6u-N%UshIz%Ig{#KNbX(J=HUO=tIxVIc>yg<<=k6 zo!*yRIl6hh9Tb+RHTHo77o*a4XUmpM`y%{yJkbB{ZG390jOZnqtw0Zg8Ib8A<yHX#=*$CCX+55y@Dv~ z9Bwa93C;vmmsGXaAJLIwLTHjbR(UQ!(fZypHF9HMlPx?XDl39j9U#aEQ*lxT4>@LQ z9*B#S91(Bu52AxJC!)TuZWnbig-T{oUrAf|6E!UyMuv#XT_v~cvYCC-B->HbjMrFR zz(!R^b7e4E83$_9ZftUDbv4zuW(1q^(?F{Quf{bBz8jZ~^55j2+Yh()OrZ)K^P%EM>Ki5X-ifM?~ zh>udm(S=B#aFR`ogbs(?!!(zNcuRPZ=+Q?q(o=G)7%HiW*0_XW{;Nd+AIWD43F^($ zCev#;<+tL)Wg`mSPnx`6Omd8@>O!7p8?PYcSY1VyX=H_iaM*lxHljWM9@|i^e#h{U z4(2tGMl-7+GxxSQfs+swWRlV8Of)9!xS}M#qLUcc(i`N5fR11$T|nWs`V2yATun|R zPmAiBCCfP#e@avNU?CZF`9?-Q!;(=yKCw7HZX_dfJ1Csr#6)=)ml_lEehD4s#_67( z-PlqsYHCB=O+eZ|A2_m;6t~V{?rSMhHD6p47r#IqT*Y7Yb9*?f4u7dfqOc3TKLtDrQopdmX|l)wpOU-GSU?HZ5%4R=x6LdV5^`9jBEMbSvoGdrz+laEO1KQo+RttD%QXU z$;)2`O|fboKFO!+Fw$esXlCGa29tjhNse}sJQ|mFLs99T&2!J6p)_ansq^2dcZq|aR5qnrS z*h)!O*iTrvm$|Q`{WB|8-hCeuoj1001blQ+1Xp*zsjw$@@(1|#XaB#cx!nIdckDml zU0Wlg1STd;4nG!hk-ecrO?tQrAt0cbI0&o%roH?Z>*#;0y)ZK~|A+Qso?wK0$Hw~MIw+mKX2f3@h=VMRV zWT25RZA^)FWHFpR)+DQnIR%j;6pW0bB{l=e^m7kC$Nm?m#OL0d)6I0w*gRFuEv#l%lw20nc`tpf?tDZSdGPWKB^gT~%w?S=&)XHxa{25h- zGV2gQba|ez{hjiIx5IK}ln#MbRm^1E0}d&l;$Ps+8;YsU+hQvwqC1d2NCC5K2Y@IwRgW>TX6SbOrrD&p1NJ zw~>`@0KU0EnAXLsdXOC$nGMkXV>58ddg$)z(M)5Y(o{D}06+viq88-RXhvZbL@y^4 zJwR(Bh;vd#X22m2Rk-krYKmJsAr(9z*<84kYV`;^wrI*?4?KGTr`j0@{|Ajb)|tWf zMOVC3JJegQD@w)5T+jG3g|>*WI75w z5ZQTaIfKwUWbIHEIubf~(vYX_*J5nYeqgAl;(hsUaa84ofN%UXzg)*P4RKU%>=Rwi zRZ(K(D@uJj5d4rn5dnnaMuru4qN|l*rnliou8r3)@1id? z`~6LTKA(Z(U+$Kdf%xd%0x%s8)PE+|QZqt}u(dYnenjN>$L+^$bsFZH6v5!~HuLEC z(6CnhA;Di#YKhv*>C8u(}nR)IgVeW!XHm+QA_!7kXX`z_( z!~ELZ*?VEgABlOjE3MQ!4p4IINNEZ1)7fL!2;mx5uvT$@0j#n&@@@3F$^;Oanynsj(a>?`b8bTHnbZw=xL~}`u$(@Ljw)xI_Y}I;oa2PC7eelT&#x`N>ODo` zJTo0vT!+Eo!N-P=kt3tL6B)jJjquyH*hu0hzQ9B zK2dR!GGE(|kRx~a*E7MO#egn z|G(9vxw!sQkM8k;{Dr#Kc{6@*CFj~73^m;!Lo8HL1}P=N+M~JTeA_e8GcK;Nk+gkm zU^WH5u|68Qw~ah?5Jk^^ZLn(`&beb>7+-DoD}`TOI?_s0&{ z!a5Qf3?y5L`Ios^jCRNlFFN-ZD7Y8s_&gg<&-=$v;emxh0fU|WR#i&HJdS}+?yc3GS+~&W zY(pipe=Sh8vISk&FuYqUZmqUKByZIMt)@XB_WJzY`k(yv!F=|do^~y%A)X;&8(yIh z(m_L`n;Q=I&(KY=a4=6z$3O5-fEOp|2dB1Fuukug%`k88b%x*T?GtX&N=EJ1G=!Y- z{Y;2kk*N0eLwtO8Jwrpmf;nu|dI$dy@C){dWPb{~B>y>4~^#3EO}H-dc$^) znb8rqedYbuJmJFD8-jfXfp23sf9C5;Slgg~bl)fQclc==a+ zDl@Mg3I}+0l>AVcDQi7qedaoy9mg~AGcpHecKFN~hSBr7h#hh(mTnOJNSZNied;>R zzh4Q2Zg}k&hY@ardwq3J=QRF9KOeK>G~~m`CzC%N5bR)3 z0}>q??9d=HG)ADfiLw?OM(~Jh^jK@-}&% zvTN>dFX1!$^W|FIhF9+I;HNKlllS-wLuMmD00nMfZ1s$T3sxniA)KBdlN6tD4yV;? z!PYH<-^+;6(B2`|Z5-JDVwRF;3ZuTj%})VNgb;_`Om+s(cKjiI&1y-=-N{yF@VbDLI9U6XK&L zUqHk9;!P=NqoI-~}w^1Bgv?%A|CM@OwZsVni2cgg%&<%^jU}Z=%;$OG>ogU-~3k{3yVAftT&M>gyjFML_d^Fm5 zSyI4AYI8zc`G@m*d<=rreNyS^bHf82PV-=TiG}KBOX8h_KC7F}sV@>;1RS{bL|edf z0*(GM1WXN1rLSEZh9t%W4;7CW$BY%X6uz+#%=#GLsYSRrm6%)V(jL^Mu9-~!4iyn_ z;i5Oczx#{60l0UQ*Q|*N!o>wLYIPGl!~NeR_oKyOh#XC+6{6i%Q&)*_I7FM3(^Zzn z=z5X~X^NXyX$`B}(3RgJxP0Z|dG;K0Tj}mX@{pbpw1M9yQgOaPVy-#v5@Rd?R*=|~ zgYRL>jmoW!Kj9EXcO(P`>#f(YIL~iS%xFzb%O;A)n?jPKf`dbAffW4sJv7;a>#r^a z^o0eq$}r2FBqzTfDz9YTg-jzP$#svb{_e?Wi;^z3c4y3!1oY^JFyUH{&>tGec`OHo zeIZMBJGUYFyW{x3h~wd$JfFowA8te0CYKLeWm%!+_>F?!Vq{SadN?zT%OrqkCq)V0 zmaflAfOx@gc0v*akL{=NV-^&+vf${Cj@kwk1u%eYx?oTsj}Xbyqz4b9S!{uHFSuSV z+_C9ITNGH2V|NT7&ZD(M%=*A-TaDn_Xn&Y zfoPI>EoPTr2ea-?*KH{r>8W_K*Z+ah76L(6LD5!K*XaIO@|S|Ut*A9*{VV?Wr0Zm zo81t2!l35C$m<%FV>t-1+P`A{wlP?a;#Ki3mW(b*ctpjs7yD+L#bZSeNBHnTL@^Mqt6CbRqaOKCwZ=fmSi^~O+(J2}a4p3dsCy5s zCuodhYE((P_C5od((UT{CplO}yRtQQVim-c)yTWPPV+i;+lH`u_Jq3)UPEy06tF|d zw<=L0pc8k^J9)F^ONbg+$Zqf-B+lM~t^&!5h_jY_A7)T9J((v(iaVJ+Q4C`=Kqw=n z?CGBx;?{h&4D=#BfyoPTH?P6k@EEy#OjSrPl#tV!Q_EPCyr3nBIl6BBMVp1dgSd`G zt3f?)Dfo;WB4q>8mdBa!SLurl25S}o3N5{I;S!5U5_7UU;SA${Y|<0!dMK<+SkBmC zhT4ovBMgly7IDD*)Y_)v-&+_JOC3A;W7qKBeLjBYb}_Kbn!Nkt6sX@k+F(yvENchD zKCD%XnA6}4$Nrga-Y5Jy7Pp%z4#2#Fc)_>r!CwC1=(TP0QDpwTFSFHhnchZcHrX|N z0RGT6o!0;`8QbXmCwP^4SRxpp{-!d5cidOuDgobYfl|n(fRQHvRJPN>472JBMjjLk znVC^jnRO6~g_ah?h-cHkc{|IkAr`ggd4tovBvcwF|V9k&$t2rd!`^ z298y(P<#IR!%?g?!%;lpFOTvsa=J4T9s?jU)C+g({JnDl$KL+}XNLO1+a|hwT^{WJ zlpLXEi|Y_%(fK5x#MUTb7_`j!IV?7U z`hZ*jG6v5fWT|gr6}G_qBltFC-posK`$)Ub^A0jQoHgQg{Rg8{m`i4WrPo>{5yO!i z42`~qIY_HunY|GpOT|)TFdy~$4cPzM6iLt-Cz~ur6{!RijbCgIHp-N3&CDO%y&|;B zBko>neR5S$h}6Y4bH9@nJp@xKZA&9u&2jhZo2*+ttA<=V#XUWn>|q2o)1;@al&>xT za_4SNEooR(v>P!Y(1_#*$Rr)&^(2xpGPeHI+~?XwX&?ZJ-{2>MshDX03W1 zx8PANvE}g$7jRfd&z-^WwApS`-Z8SzfITEQ!ETIh-E}(9gOi=juUoWH=jrTSSJK8d z1;oB6{2fU;4z|?89}@+wHuMWB(MH^nPf1J`gV~F;6`4hx#lYP?bwe^IV&%{_W*9s3 zNk_avlr7KBZ4QV8U|Q?O2Xk~@gDExla%{Q}lN4i7izy8}4c5x5qmagMx)gVA4MOIM zsA9>X;zFC%_Wu+ZZDW7S12d%|5S)i986T-v6fD@9+-dlY3Bz}h-*S^M=X^mya?7l*QRE9n^mE15m>^I2x$#;q^i3{ z)G}9oGBkI;4jrDVBXl>@FK9~$S&1$FI^1=#?_R9NGNzsk9_~Vb&)N5WeGR!S0s+@; zxOhsiPC-N8!!@#3JCRF{wyA&F-qAIChz6^)gp)%$9{6EshHHYq0+yNENz7jI8gW1g zyLloBgk&MDs25z3C9*ZFI#6`JebTo_Ju~cPw8=I07?uK7gP$D92!g>JTWu+st+z&J z;J8Iv(Q=+lCKAUU+%(xCQo$RJNFo)xQDuX`*H+!WUA~$af5-6PT0JXm^AxoJ=^Zpo za~~BkzURSSt`1)hH0-9gB@2qo*_$ZH6hK?xI~-;FHIn6`nA6I{K)4sp7<_CDvZ@U)KMPdksZERA+>nbKN zAwwhfBg%N*1Zozj5nL#mgi|atNlsEx!CsDwI|OY0&?sS|@Le?pOeu5cW#%L&NP)Kp zOR>h=Fg;M&&dx7Mi%bu^cYjSipSU#!Po0!Lr39c7(2?w`=#@%OEvuZb&7NAYrpL8d zPp)WmuLnXCMLg@&Dvv#wq*u9=LaUki6lq`WkK>#ULO1ST-_gyBM6ca_#xwDd1O|6S z@)zt$mhDiHj8Sz{fNE~~{yUkOxb}mspBB*>oavsxEgO1mhRSC9mmc*6QrN(^>qSH)`{PZ>%{yu6XB;*t+$Z+6eCcOzuUYSvb+fGB8SHu2=Q zx3w{2le|Qb=nCCh1x3MC9~~ehCgw;_r+j9$^x>?38Bx<+AGOELeW{!;!s;80D$7IG zci~#H^4ol5{|5qrJU&C=TYlp%!niNmu)wwC+MTBk!Ni|*oY(3#zo7lo5QFG`d`ot| zPqS<~wTqI`rhS9mXX9q#)&OQ%cFOS^?h4ML>je3XTQlU8yn0!gE$h;dmWEEX5@rJ? zR0m!Bcj`Cn5IQQhwT*gbO!oYfm6J)FPO3O&K#fWouZUW(=v+qL!Dm?R_@=*preXH+ zMW1!rrhjQ8wlurIYuP~(FkgTwoHsm&{mbO-!1v2|Ii&~Svjyt{`R;sKeybQi7h7}8 zDg6x%2k@n3vq#~c9RC;JqU4x140P8&?!6HBFd<-0^RDjDm~s8~bc~NF zJC*(!1ObI|RQUj{J=V>QMi6T{>;@7Or_#cy(M8a;{$0rvw#PqzxFf381>%yw!hvp# z9h>n%iQyHNnA0_3AwHvMp1omPy9mW)?%oS=K)5JZm zkreV8jBn#ae=izKYhmawkGRvn-i5z0u=5tAIR&R-ScmW&b9IA72#r5ez~k+d<1TU0 z$z(~^lm-I@{qXwv3%!VwMr-q#Hv;#d#oOQhT^)K=lb%n$XV=qp?~6HQxna?u)@}-iAH{ z@VNpe=0I`iQ_0sRlgjACk9aI-8>PesGneu3FWh1F;k-^i|Dt#NvgqWvj14uW>vO?f zj&hVS?vqD4h2Gl4)=aX>)MHQuGPh>?@R-JCgZEUj%A<@2`yj=oAV#J_PodM#%k;ig zmC7@X6OQJi`V6}$wD_wUh3a@{SZejqR2^pVCC;yDThINK(#Ej;!=|AqQ%ccC=FBiJ zovcnRO*1Ndg0d&~572exjv?P-UjG6W5lpZ_X8SnFm1AM|VlJYI;?NX*g zy=A||`Jnq2eA*}0FZ$xX{iEjS`Y!zTa6QM#2e=`kG}&gmLA}#%!?mIt)L_&fNDw{! zP#f0F2rq)v^I-8E^k}V*4FjoP&Lz(+y)-E>&=J zw5=S^8*7eYJFd68$4~VidwSR0~f(}g)6U3uupc=1&dQi@6_(3b8-Z5WhY&WMEVGjz1J7?=$OYwb#hpbgJ2j&w{tjZ8JSwWXF{dar39|miPNh~>XY4B!4|%|8g;*YfK6v+p*kpqZ0(Yn zr8amVH!UVpCG|;`If3(qKp%YVbgd%#z~3I_vGjg%#1Oq^>w2sS@o}9@LmEp_@!oNC z&WL7l?)3YI8kQ!9ARnC0$OQ7NC`I9BMiWV8>HfPtVJD(=Zi$@5yh(wH5>2%2zy8RJ zPD6Wmy*TNre}#f@l^2}*M&O9|g1m)a#u*5NxgPkfu#ypiz8~^qoIAjg5pgpC`Y>o*fSeUZwBaF z?>|-rJcP1vyd$;ii~Oze_WD=rr)6&@!#A*cZNY7j_OZ0xCE`#^tyCjBn>ad^oP-AV zzK`h5M-N;AER&U7Ln}2mv%&%h$9(pHxV7#tMo<(;T@~w}kq|Bhws0S`8|p7C1K-wg zPVqE@5LcEO+=7{u5c7**& z*okH-_odswF~Gt-M7w8wI&q^3U4FdypA)$J_4ozK@OEukJhQM%@B?v^%*X|4HOE@o z9H3TS!d0EJd@LkVY+iIa=fs80a;hj$T3|J4Zx#yxPcC!dgJ~Xt_pDW4P~V}JDNte3 zq*36=Exo<{aN>|Pc(d9X%hq7ELcJd;RVjcg<`NOxd@wRFIby&;e3CP^a2H_hg?Q{i zub8tHiqAu_8g7rLxDxAucLE)PfAv<`iWeFxL_fd`9qtKNQk%A#5>kK#uS0#>6XJ~H zM0`WU-S6crqoeI?@Og)nHnCVN)3~#GFp(T zk8DL+K41<`gs;?M84$St*06?Rz$liL->U+{2lLMue*%f0oK!km8p(3 zU-PRX7#s@RhH^mZBgAApVrfr2`5FXO-+%n|03uJL?}3(DlQLC0O_dT$XN=D<#d)i- z0w?qOH$f;6va6CEm=Cirh2de&a$gGU?p01+M<6#pFL?@e+|iR z9m~d!Z8N1CinOga;i&>^uMVcb`|~-nYML`DiCSfvChpQje5nIWFZIv#bb(twxcXlj z2KH(zd%vul-(`3n#|`fz5!X5a7Eb?m3Uzbq-S?|V#-$~`2d(y|sSrxr7U{QNffTg) zn9dyOz=BtkpW)FylpEu|!THo1>05FSBf)LS{aRLNDH#}0^0?k~e> zn$GL;j$=1_P8Rq=2^nkQ-|^$;=F0#OD`xjMAJ`nnMrFF-D1)pLhttU5~%LFL-7^iOAIU9C!m(YrQ{<(?e9HWz4Hm zgh|*SBMU+QESH&=t9rg4_}Vm)_gv4U;SI}b$mGz-!yjyY(U^%fDd7-c6V}_Z{ben; z;#r9ej?llzxIm$i%+4z{-Ge%VE-ymUBVC(BS1TeL)n4I;>-@ICTK-yu!Lq;SVz1o0 zfAb+(;})~E8PXOT0PlLa;aAaSA6{SA@fha=QwakDP$SoC7c1_n8LJ^5F5g&8 zAi?k|B6MyJ^`PyAqdcK;$<{s-5`uh%_A5Ns^UB=_85cLaho5&PMMpQ-7z{IDJfpN8Z;`c0joyd`cVmdznWYx!(#k;wXuJ*r~?(KExk7oN>9=s(v z$Zbe;6l}eSEu?uqc z^`;%M0|Rl#n|%JHC*XpwWocgL;_ZjjSS{;<#p)UINm|Ypf1)AH6kL8*vA(MNPte&1 zVX&b^D(Pzq@?|=bTC4eB)UjS6W$IS#uxT+`-2`mli_BshVD2h(U4MZ;EdALKXL!{4 zK;qS0b(G%BiLZD&SJgRXCcNn)@C*@nQ-6#9*yyar=5$nUx*vWRP&t>e5ZMj`lHByo z-7mM&@FL*jlGKN|<|_#DmFb&io`1StFqPTZjy2k$A(-60$qcYK16SHYcr_%5(aPLG z=JdMVXrG-B%^PI{cbJAMqa>=PhcZn(BQ&gqZc%!rr0*LTo8IknBaNxxY$oABB;*0C zt~pROXy8>x$UzmEUCdvYNhAU#p;C(x5k{cK_d0aBlu*Dh)j{|r_$bw3@;QbZob&~* zmVwrVXNU~yGn0U8Ql}E-y}%BOE8eu~ZU44AGJ;ckyhl< z@K$xUuL;>_G~Sk*q(aq-qm?Aqr{?1Gxcr|-h!{iI(3(hK)a0w zwm{B7yB;7Xmj^ad-J07ZSt#4teA7J9aH)Y)FD^qzizD0-b>>7GdVYBxTY`(8)9uWMIey_KdWT6aw!fvbQA z+D$`^gzU_T3U(ZJpezsW~t;OXO;uqLPA<5%4k8gyS5JWfU0Xb974oZy~ab|q%``@U5X%Up5&$UOS0 zL0gv1pQ_+z?I}&M)xE-Kf+^Hb>TpOVMQ3DVd3m39hUOf9ni>C)m*kOyL)zfH5EP%l zkw|*bb{7q1WE_l(NPjOE2j{{$$V*bY^b^>tT7#?NsbZ8XUTt%D_*+Gva$FEb;*F1W%*8y7IBGMaelI>20P!9HG_Uir4f8`Ls?Fvu1!7@Tdb%~#DVo7uE%#!Nr< zetqM5DBrIAe`%Y4Ow9ktX#W4DG5=>4^Zx-6*8zRs5C2#dx9^XSA3{(hwg4yuqyZuz zOJi^qr&JK2Qw!MF|N6cE0Y3iUGC1tq|C!9r)&74op}m^ zbXpYllqkcPphFfSSVEYId5PhS^Ms)yoW#)3Eidg_HZ?9ip1gGPF>7_~^&vT5dfGs3 zybZl~y?4oXF^Rajy=(oyJ`8_06O|AUQp8BkTbveHekVu*Qk19EdJ_W)j9W2JBW|N^ zi76G1s1nm7WOy6;dbs-ceJMY@D8t?0cYglJ-N~f%N-8J4611KgdIfG+1HDCmOZpcgj~ox73>u5loBXwnJ}K;yJceU*eI^}II25^_=_#SE|`uf$@+i2vl_sdoM zE?Rv;UH-89^2z{`e(eCz{J&T}6mLdF|v8ao_zfXuI@a})`e)2PNQBM>v6!lrZ3}nN_ zo`fSFTQ;h6SaG)uX2bFX%$}MhAzv;~CQztXiM=dmgYZP%5}+eRUzVmMTWP-RVgue1 zr6X!zz(=Jx8GT=-mO^-}2(FY}Aw(0QqDrhrg{~m3l$a70Rb;S{%#)Bmv23O*j#t4Y zttnk&mVac)i`Yf^EbyF;4}#a5d{NqFrn8yvcZGFR;m)^aE|spT@BNGZ_SvD$S3yC6 zSi!p!@p5PWE6G(Se(v96(b9Pivq$5_>#T9WoRc-&`fBDy;p$7|W-0vIbsyi?u=Dn! zckKObK;g8tODfof0S{cA1m zXhZKW9pB)F-t#JkVDvNi3l-b61+&=`L=i;ltEAk);L@^`<`T5fP54l!UN$&ZS=~S9 z@Z5Ymz@aX7iNcQU#J?SENo4aI2N4F2r(GX8J>GwvxLPRc68TW{3GUOl%^v#E^twKG z9*hCEG0nBO_NF#omU#&F_GCOOuJ}!denb&YW&oZ2d^*k?-hc5T94kWp(dXI{!K`B5nM*8Kiz1x zLB6_d!;`LX+FMD7$~A#Q$tZVSu;Gm|pBtJ9kg0oq2e*m^mp)fIBV(C#RLS%b*rj~K zi{j%b#j?WAkvSifi#-Ich%rVDh>|RNsA)W$q#(-AH zmUZ!+fdH#gGTvr_)2NI;T$-OK`Ja5*;irTdQ-ruAHjCjQxiyeQ+s-h_DW!>maO~1Usbo;s@){ePlC2V zMGBgnt zR++7Rdbc;ndfQ_2nB1le0z=3=bwHqc;|Fkxego!LzqEtGOkAA2eB7Gr5{O{rv-#Q| zMq9W8UmZA0ciO$~8amX}AA5Ku4=g{+aiMKcR-+$*N6=>`rQ=ULrE%vPIWz{tc!$X%(IRNvzKiw-_lgxBr{1IkPpPtSfJxU2D4q}_01|NaXFRoTx zPTQkRmmd>&&2Da0_szM)jb1*ViY*}UR!A@8eX5584yA204-&#%fBu7n*$lH2rx#k4 z6ECa4POtQXPxr3g9%s)PyFZOR>Dy1iEy-LK^BIVWyB%H!M{T@sjGUSCGc9rI3*o_O zNLQrL&t2eFXk;8$zL&;YJ-%CGMcLh;UE%)23J|0-OtO^dpJ&Qcj+BVf@#p1lj+4yP z6i!f_cyM)7g((9i7jY)Pi~tW`k&4Ex=oudsv*4Z300&!h+TsE+)SBerUyHEYu0t}l zHlUEQ=j)^`6$zoeoPKnBnZBDjCCz9_w2S8*Ax`cya2nSRo4o8tUAB z*EMcw?>tNDv!wGp`pQv;%QNVS&VP z^YVN?h;ncb3G_LxUs3o?KZ?gUfUJ#JRIRI6%YA7NdIM0xLqs9~*t(^m^}cAd+nZ%m z2UU4Mc)Yd6bFba6NK#MJc%2MyX#L4Qq3b&7e=Ua`2PSo+=WckWeyv1#j|ksK(QDLM zaej@q=y@hcenYq=TyDpA%lg(9`k08A1+jKj;%|8KZ zH`@Vf8#hRg+6W_4H0{5gewXwlr#^msBDg6oUCKOSkIr2nBn_n zoj&pJ5ItvrsYMsUYyGj6sQv>uslUuK=%WbXeXjg-JJ3q*W8bdLuEt+UsB%Gt8Hc?Q zlg^zK*W79}GmmzJcqUn2+Vi--0mT5{h5 zMA$LsZ_c_MG0selT95n+K#<4sv?!Rb{~_}6EBj5A)GScEc}(bgE=8N}S?rw^u=V+w z?t?*`bb*`xDlT2O5UaY{Dg4Po-{AAtvh#p^~B||Gk{i-7rHOx$UlE2v{j!e6_$J= zmUtpjgQlN03G=*!!O#E}d?UnG4jd`wy!6hB5%EWymGurum*kXwqNL+!A?CYnFAE1O zxHr($s}3oD{Bp30<1N{*%i7yY-&eBF{$s9fA2?w#m$>bBG!wqY-8x*GG3Yc`^NZAg zu&H36f;wb*mG*R^()njp3V(jN0Jt|EOykTI|YAnV`3P_i*oXVcTGqmuXKp?$IkpNXZlTj=aN_6 zzQz%4LH|Ru`X{8sqf9P2fGv_w!KN<&b;Nb?K18fJbEIh}$^!&HXcdvfxa``R<;M7h z4g1j>N*bc@Yo%LD8aFm!ZHFROR&foZJ~OTPfQ}$)vqU1e`RmG2s@swD`Y&e(dlW6s zM47c|WWYIp4_sbNc{=k<@=Ixc@e{GnNBA#qM`pvUI(95}y1ac|THBpG6RFcJ+n+Wq zx#sqg9(9~#d$yxS@^O{H=#Mj-<{$301<4B?M_u3xr1Oe+n!NsgN>T#mI5g`@_amcW zw-;y3IL}J>jO<1q>|4UUV}6CeOv~besoE3M4_Yqx*x2^)iw7z9r8p#qc<$PrqV?Vu zJ}N31)X#J2_%Wu0<+M;Bhcj00o5N0*!ZyVnV0O#~*lYemuFx!-toE?UTyx0{(w1xy zSWgKNb?=gyJ5{c}BrCU8_&-gVD@p0k_VfTD1l!1Ug%R8a$h@F(lsA2FRe%|QD4v=L zTfFMs8P_(^ztA1=`ACiUlFe3&ux(ou*k_#JYXLOM;_y7o;*Z70&OPbX zdCx_^%g#k^>pQHtWIk#etW>>?9?=6wlOfy%X~h|F>o)^IVYOlPy6U$u{YE!04Tv=%gbkR zY%22~4s5fmA8T*%0T7%W$c?|2-Hme)A>jVM5%G9zT}Tbh@1zQ^~xttZ51Z-AQ=|18v^Di9(|-sw}uWR2JoW z3WchRy4$xXKfsHW{Q%Psqs+^c3DoX7%QNnXGQ_pKDxT4uFPp)DwTHn=?foM{NpKO^ ztM7XieYL-))mmz&F2~%{&4bsci5e2s_Pl9Sb0Tld&JgxRfx1b}EQ8s<5w~1PQYCCu>5m(S|EzY9<$4pvY_ol#@}O@^|U=| zwx-hynL2(V*8s?R5#R=CAtvor=(<5o!uV#Z9@6VgTtg4Gq(o}&d zSm<$0wpB4<`_M0q^)+Q(tk?Ul^wsoftg7o}P)~}_hdt4M4(zov&2)+hd$y zMfILh;NuSgQKnHXelz8&HCH|NTP=JF$YbLTLt;PQc$sWV<{G9J>Nu9uRg&gcq#lU- zFZOf`PzMsg6i5KZeojm_%nbSiX)UrJ=lveyVL7-sAun{{rfjl?r@p zS#hzAvZp9+S<85=IP_R1l1N&%f*AWNjg*r82Hu8B=r`>$HdzSE3HsWpNmo7RZ?9?1 z5LciTXn)<5yY?+B~)C9jl13ci{aoo1mFb$Wgu;1E#*l|k_m`4Pv%j&ld z;A4;00~89j)8Z$yPK0h^*-23cCLL;`J|ZqrrrHTKL*XN!U;3JklZds;fLP#I>C*#z zM9S^B%yIyNHm6C*?ps}PJ73QL-UH7x0lu-0%;cmj_nhyTDy{aJD`1lI(^2*2hnb|j zMfT{4dY4|)9vVg&6OtYM*eq*0$Jp)l9^Mu&IT^mPa~Asb-F^#<&VbDUqpwd>GN)Cu zx~ILZwhj+-yt{dn&Csuun_boL=#24U2zb#evy$k;#JJT|V%1))U!>lS=!SOW)@Y53 z&p1*fdbI^l?Bk)G0%tqh&q_eSLPU#ZW>&n6MqKg%>3CJQ7QS_r`Cwv4vY*d{=^PLD zUrX3G?+uG@@W;ED>I+qPY?ZQHg^oqJ#Qf7?E{wevpO9M7|l-oLJUsoP-3JnfCGo8kTvy?0w?)dGJJ zez!WMS{{urJ^J91aB?-T+ijxU)WS5@EaQ;o&79WpbsJ#Kyd|X+g7wO3%8+hKm%2nK z%%)#0y!I2qK~uyN$`QYt={_&)gwpGQKmH1l-hBp)8?__8T7dJ=ELIV_!AgPZ-IRHb z<>p?bS?7%J6}h@C3UMlHcm~J>ISYC_PX)=sO|jcc+0{SC7H}@5=45d4_vB~Yu)>_ zxZFdyCIfcY z7-{q<-wzFg9%Z8T7w1!_o2YZWzAIYUuQ*Nj{-{n;ttPXI3OOhZNL^*%>8G~T%E$S# z*zD!EWq5mJMxzwoLQ|?%Ar6m)6U_az+2rcXe#yRBLh$gw?$n@{H%?#1;SVO5{d4|3 z+e_AZ4F6|1V)Lu$*}3qR@MM!9wBHL{9h#EU{ca7^C3{OC;^y!?0z~Y0UO?J5BfWFx zTJJQ=exUgJ8=msEhxI))ui@&R{Loo?oV|URSvvQ2SLnmO2Tx{pl-R(--Sy07P^JUS z=_o15zF7hivd&NXIM-s7e`MvSbVE5apHp3zb9C(Gp>fms?^a%~z}MITgE zC(xLP*cw;XbIonybWYb!N-~BxilaM>)8>iBLS!~>oMcURhREf6SCu6{yNhEQzNu9j zDeh&I9%PStJxdLsB___Eu?#HH&84g;h^J^I5g%13i7^9lvv~(9*|8Zl^%*oHIQHa% z2c!qie4vf)=SsweiXYQ_?C^AW&ZGpTk@Q4LrZawM@AF*4(!h|=(yMM5M?UAJPynIF zqm_7Qs5`q4!+G7T$sHjen?)rojM|x!l`LgId7bx`hEc72T+l+okT;@S&-``h3LhX9 zGr7x*a_?PFd{gM!((PW{s+yi)4t6L{$FCmk{gYJilD<%zc`gxlb+7S)2YK7v2;F-r zn=D3FK8oHfY9cKJi^n};xll;Y^iuSx>fV;yfEy*7AXOJ@aNoW4r?ElT!$rWk7(kl( zaNn5Fb97WoCp4lDSaM961sF}91Gt#>c7-dx`_cl1(+@3O55|t3X z764V<5Bqaan3cK)sX6FSwjYbIkJ^@ zRu6I=lVyy?rY&#WKvH)UoI}Q+PAH8KsppgsD5eS?w;fa$u{zfnwXH#;GjJ6;lp!`e z#Yh|6q{pi(G5Pfm%rhTWB%alZ>yHTQxm+^(q@pYwZoH9_S!X^=|c-oYA}DrIS8 zn4Y_WTBpi27pva*tNZJ_jJ(T3k!;gpF`mdU+?$rs&7Mp|+G}J&W@kU~)!5^^a1mLC zqGi1his8)fk(d;_`LmUFuAuH%KiKA#%K)GC)0PavlSlFuP28#o*>Gthl4a1$u;o5{ z3(!??Gf@weHQND~M!9y!cC1_Q<$^=1KJaDt4~0ne4>lRNb7vkyw&8}1FftbKe$Laj zBUlU8!liqK#FxN@HKcNDsJzJF(mZ#xD2#Ct_1g#*0927Vr4;fEdNr>k`tmA6sAl&n z!l%X`GAlP5KXTb{;WB6#S#;_{k*Eps`6V{-ih~m{AmM-rzBd4>V!~N+!Zg`jq0iZw1R-g+0>xTab_x|6i|19iG?EiU% zXwraHK~dkzK}--7K^@ZIHa5>!RfGlBxmqxR4lrVMF>4o6n4q=aIsMpJ-8clQPd~MRc!zpW6=qT9SM&Ic}!?zxeVc+4?)m z=cQhgvaF}mob0>olWOAWC}ZNa9F@JsuKi+N{2ys>8J8fl_upy;p?YRZfLM0W;QkJK}U~cK`df-UXN|$t*f{xn@3uOsBJE#l2@sLl`-54Yj zhRG@HsqG1&ze|4uFk2u8d=3Pw8*Jo60e5N+dMX9%(F0Po4;cwmhy%ixw$@yhs`#Y9 zUcc*AykNBM6+OC@Z$;##9>Pu3yfC}6fop@jYBL}G!9gdtPAda-g3c)`c^P5$nDQ}6dQ!P}sG zJNhI#P>?~fiC1?z9bp*NKR*{N$|q1+ z@iNG@uS9Gd&japvE^6MO;7S7OLw@6ph076>0QO{995ysmx7;0U3SfO{uX%5 zAWc~ZG>1g2QP!!A0}~LCzcPnFxpl>ncWP-j78g5SY_~W`h4aEAq*gCZEK9*ih5V8W~}&{OFo^ z3^#10b+WWZH&0bwLSZSs&m8!KwaZPex6d%qHAGNAp`DfUr&3aSc?LExr8Ic~Kc^gJ zSLOx!Mw0}(BV>^?*UWv{4oIF}Z@`uwD1zv;he;&IS7x{*q!jEJtYH1p-JBeVQa?KZ zq!pi+H8Arq`(u`phMRXu*qY&#+S(_FU5DcG!fO59Ym@OuY)M+!E>F-~9(iSiv#t8_ zS7{Msz5g4NaqNJ)B}^>C4J^=HEHUo~Me)|@IMLgteH51X_;77~l!#d>jys z+dzJ>{9{?ywg-3ihYz+RHZBenDwuYtErKdMD*_@NruN7bQZgCa`_T2&&3)cD8i?uE zLT9qo);$}f`XD1?9Le(+pF)#W)>9 z&K;tZOXM4giA^lgvH)OhU8QMZpl{j^KZYOI)FcviQngDf<5!bZvH*1y@_5wvFIJW} z4H_7gQBKiOqyD)h)VwN32!7R;vly~u8QHY5+Uz%2caqS6K*c=Z`a9n}(C84g1dZaY zLJG>3kstbe7hsS!SkuOUvJPF9t%=y_glAt<#&HYF-Mcz7L^?Cri}}GV`CU24hi@pw zg|dZ$d}B&M?nB;An4>Fzl3l#O(rGMWCVuDni}>3CdD9v^&O-G4rQ@6DkHE*l^B zZ|m6)O$8w|AD9K&UxppYK9o%3R>Z^yvw29YcLTCbLy&TP$8A~9Zffay*4FzvA^ z{Cb-WP~WkOD?-T00PXG`*PG!CJc{oVhfS3l=R&v8UKt-$Yu1b@%pHqyykk)Lq#4L0$;L!zTQ_jd{x zwoZ4zTMbTFWX6!~?~F5x4_kk$#?_4pUnY!b53fIbV}{^C!EMs(>^t!@rB9iS?@$V+ zn1jxyR{{?VpUqjWcJyWPriy+TacgMV^Stf4xFf*+o!k10CKf6&^rdo`#fjmnlI|e7 z5TRxnNOJ1)wO)|fW>nElu#jUec7H42lE93IOTB>C1J_Fd;5cP5?76QR`+y#1M4De_+&p zZ^roO(c&+YzJKKm3^wP$*e&SMZ^Y^!;Vr}YM2(xjwiyD*Un)4OBkoVmYc2lNV$~?( z9(@IpLwG0D4@7l`qYMvk9>Myw6EIW1x~*wOqGWWn%NOB)b$O@GDXW# z<5Xw~-59e{XwxgQ)Ahu-8`F&+-V+ezAoxs&r;}8e5;6X+kAK5dc5>+&MfMuXt7lGk zzd1KQ`umi3nSWfpNk0I#jhqR;xp`qbx}cUKb9tjq!SOndGK_77)%X_2Q1EK6k@RB@ zVdQi&U>zY?VSFQu2r@+9hxtKvx+6Q&)zV1T!feGjaMO4#fEi!c>p_}Ckx}V3h!P5w z3>SRVBCWB5nnO&?Mw%Z4nk>S;Tj$D01sLW+kNpNsG(Av9)p~X}wkyD>Gr7-SwEx0O^}PGCpkt_J}KMyliD@ zlDAp|?utC@9V-mJ_bSwOzj@R)Q>-5rx^ft*}H5HGm7t1ZoK;mqGb zyD81tUG=&gPGl3gkUx8_IuUEQ)`>Yf81+#)4L(J%=8OIF@scId%z{^f)F6dd<}>g- zAcd%h77ce!rx%&lL1mjm`*Z3MIZ89T9bxhudS6LKMpw4V%BIn&4rq-PN?^elDh zQ&Nv3)47FhTdKn&LuXI#Gg>_=DWWBoPK#~(64x;xs%3&gpjl;{&Jwa9tP<13u*k$P zPYMz=x^-UWR>5+UxUe;&t?4H7J|{zcO(y;u=DQo=86_yE`Oz{ybIh5_L-t3&CbYvw zJ$;43<@Fag7pv&Zac6kF-3hw5`R)A_g{h;fF9~l3V$+t0J%h|0yG921LFn}0V9aiH z9c3t8%DwwY^4w8lYNkdi7{|t62#`?vC1g5D79p4?xm>Ls?a7SNH_L(!umdT(thu$+ z8RUO8Lm?Fe1yivhJZt{!AIZ`g$uS8(bBF_7bk`nEU1mf+(7qt?M9hoUZ&>F9M!D=e zl0wNjwkJ5@)!!kdL(-x?vUC^Om@+XtqoRdacB}8eWi@nppH6dV1u-`Qdw6^eTzNj- z=Y6(^?bm$rvy%s!h|3i4Qrnp=dSor%VB!VxScN16-{%rsoh)uEFs9)$Uju?svTO;V z(pLg6Qs^Dm7gN-97F8URh=kr<14%t=cP(}4A5*gr{XBgRVN9aP8Ap(0Q4rfCM+FK9 zHN}8bkKDGdLaG$kqM+E){Kl$$-q9q-+cAD*-6mo0P|{3Xa&tH9=HEI{mh6zUz3L$9 zFH2n{`q&SRPr9~i_YifJ4Qa#8wGFK&1@KGuqEke6xrvUVa#2HwDDuTX6|68I-T29G z+Df!Si~t^iB|H#Q7K)x_oQo18H!xjH3O~Ude5L+gh?Be>0bBTGC$!@uO_+e?9gHUP zj3}+9nl=6|cq4K23=jF~=$Vwqej)#)1gQX99QN)WLHsgMY*peQ^tiWzL+effRq%Re z6J-M6j+$_z7U3;eJ8$O2sgkS^h_M9CH)cGRB=GCRQjV{WI0tT|cz*wG;`;6w;9nRX z5Ktfw4)wSiCRMhFE3C){rrzLT{|Kxmd~^ZB-TB?=5GV#8 zi-KAX;#F2Vatr5X33DLDB$-t$S&*f;WDRWmF=LuI^sjCSmKS7Q5C&}@!FdY;2HL$|NV+J&yGk z94jpH?#u@${3q#4QC@N7JZO?MwU=z=l=H+yMLQh8_FiA9j3Bwr$NLIW)k_^K-D@15%L$CAf^O znyet0MI>!RM3h|8n=AMe!ZXk4ba5VcN8y!@RrhK?4%=4k>mQgQEjBvGaVWoTX&pQV zkEI5PE7|CuMe9N>C&W|~A{Qc{keZ*uP|sd??>t0K^B=?Lb_rOr0ZT8NiFi6e7)5}8 zC{#b|8--X&QhCMU!uT>xMpmjuu76@OX}#ENd>G2TZ}+_Gq&+IB26BHC{IeR(L%0*J zl~V-4m*1O?QF~+-MR^3RvKcNobOcL!WM)PFZpMt7LcBRcQi6_6UwbzP{RzXZA^3Y0 zkg$CD-=_e{mXo2B9rfT~=03>V`xBT9Q`)-{Ab9&MJd?66g9USm)3$N!{-M^Jtoyvv z=+#jTzCp~hO4+LW@Hhku(6%_X?VIAdE-)VfP(bo=I}wjmWG(?!f5hLdXtZ@wF99pd znfNsPhF$vZ4(~suK%?`1DK=>1H%>?CJgpw}3A}Z;>=fo}?@3lauh!4bACFLxWhIv# zlM^!03dhu`I*zN{*K|In=7fdfHxd97Gq8-z`A30qUzu-ZoOHTfqsKxjn zSh@eRY{vXQithejmZvJJPGgbLUJxJ-^`C6^15B?MoS5T>T{)!wf8FyRR^9(w@r?6d zJ^6o%XM!9@on%7}xaO^4<@q>kBS*H~odWGGhC zN~VORhMkLxCK_Y{^Yb}i&s^F)YkKB4DXx5dwlJ znWzYvZAAP5+0l_G>9Lt){r$hI4^nbMItJ0?7@D{}zZ1$lit#-%3NdLKbVM7{D^ zIGb&Fq&qo)ncqm&(%Z;P&**QZCK8fIL+32kzB{3Q0uMKU{WXB}iq!+55TS?i zI$+14AzQP7%W|pwP?}iXE<7`femqWMY%E4XVj@mfb~@uz+u!fY%SFvr%$h6iJ(oj= z{Qhcpb2_6hV>DwhW75n2nb3~znrO>=i=6=N61RTrOjOnvrSSL?vf{~f^o6Skx5jJ^ZNM4;tn#l zIAPjM6b9lPk7=|NwCNZV5Q5idX{*|{IMFew4;!0a)DuY#HGlC$mssV{*!=b7yOq+w z=LG+^I9QWZqGUc84r;w>nF_phwS7OeIjj#7D{?aourBdY)U`x1D^+UXFcR}=FC}x*9_{D`iyi&X!kfa%;`iS zlLH)0YHdKgKu=(m9(E-Q*m9z81z#m8LyK4vsICZQ*sR49?|fc~EoQ^SXwV+2kgh_G zRd&}K8H8SyZitE~Lr@5fQV=UmO0e2+;lhF(BlcY21=0=24;WJ&60yy5oIj(#c5!PW zCc4~!piOom@~P^|>RRBN_H?jj!%u8WfafK=g))16J^6|Q4nAJt!$!PrDgNm zvyfZDc2U>|E}DeaHkR!iyggEDbEkICP62Pw^fUrEemhRXu;7&6{-wgRq_NYoqp0kq z=jY{}Y}}N-mgi%5w?tC0=a30?mRYPPY|a2|Fd_cnuOB%iI}HRsK~*ncklM}r*fqd! zLNdrUv52(7*m6}!^9U}{swV$h9c{xd*=b|HbFdyl+7k8RlecfkIYB)p-*ma<-|9M_ z(1Y(gysmtOy=t7Uh!%LQM6pY@xU>e}V3@NHZ|RitX%k8j=}K6_2;o~ya7r>UL@RS zsiv3GBU#f}SS&G>P6Oa;7L|;_C={NWZ~)3e!q6r#&IV;NA?g+7P$i9_;@c%XL)bf^~$F+ez`Y% zEFE^Z*n^Oe)Aa$h6#>pH(kkjdqxyFI6^KHVEbuCGS3wL-;VKId@?`V5s8qmnerap# zjPUA$0fOY!7aZin#@c#uZwfy9Y9~;@*%~2 zlIAUUjZUar1f!}Fe34co5P~r_23JKP+XUrsn#c$2Q8|iAn-Ik3%$nCn2}z`6Wb*K7 zXp@flqN1Q9UE`-yC2N&FtHNlGYcntR}kZ*6}tkM@QX3`g>>KDaE;_K6e}(1tkv1Q64^p=~reY%SfbZn$RlCU%x=> zIFr!N6VJ{7$VT8(p1f8QkhySk?hgHZ@3%y#+&yzZ`Yf!)o22m6*)rZts@S5WFJXR& zZjH-Qad>c@^l#-Ye^y}ceY;vP;Bb8aRmfVECd%1qqcex7SOPS9wXJ16r1L0OvebddQWn9*$k?oe=Tr~qxQ<|H?H|^( z5(91*e~nZ3;wf%k+I~Zli;Ray9TfIy?m4QYv~~6#x^l}av$`lOisnqo_dg?r8p(-| z23mHNG;gf${NM#*8#=b;23fW#=!u5;(%+JVK*y`7(I%;t|<|E|8i3APotx6|*ah438LJjLT&JD}KFG`UGw&~$j4ZJtZtkiqH8C+yg(8{GP$F*xw~`C3IYuHd-J%o<-LD%(@a{{OTufj zH>yU-i*^=b`tq+a>aDXRwX&ALm9-?_iw8yf^wj9ON8=Icx9|aCE&$juvS2cJ{!;tGO4*`a=}j>auoXY_{BMrLeQN8ZB4eO4Jma(g&Wa3y~{Kcx6Cz zVAnUK{Mo*|Dio57FC`)>s%}V8>#+91t=Vyw!7)K*KO*Q;B)wSWo<>yx23A$BfSL0B z^Ak*l;PBurI=28j@Cj-vA%@>$M`T5N<8bSzO)Lr) znLH^Q`J~j~^Jx&4nr*Ynia=P$>AiB&a>ewtvZ5o>mc4|KG>!m zm?6@nb!2JxN-7b0NfenXMAhZxmn(c774mk7U+up@U6kEF_I`jzzCopc7E>a2*FbwB zwW?mlk!imrJSX zCP+4!?cnQ0_)TgSbggHH5Xvu-;TO5Tj;A%BRC_c{LQdsz5d2 z%Rvl1$KZ|$d?(gZmX)@*KjQ}_q*}^hN{WYUtEVu^X?lX_=xF28Kfds<{h)N;wny~C zDmL|m-TuWNj?x)6SqR@$HMMkdSB;t z+=$+jk+zhGwVM;i*w_|WIkYES*Ypr34-W=Mj#O=D6cqKhFAz9=oS(l2RH~$*Pc^Fe zM1@mYO=Y`N(zlBHr%q%U>u$>oJ{{Y5icWA`kAlA`57#qkZDBbAU6Fa;?jg=4XjvFw z3@8J&SlbQ+Y^U|~#j7x0JONW$qcba3g2wW&pd`N~|E_9@Ss0mUF{tAP3E$vOt!&L; z%9y;j4fXDN#NB~Q>S!15A#->_-Fxd)vVM{GGn$xT!1$OsH3j*iL`2N=L8*580};NX zm_ZjD;AFbs&p3?}q(#t2jT*ihhCsI&M-a(_^t5Db&*ZpPw3jzD;LAIxr<~YhOa|OO z=i=mlf?j`RFfku=+_>ij?`jC{PeV=H7|0{>6(Aica(p~<)!YV|M#4pm0gYS5OsQ#H z806Zk=FjY|jXs2xW0|TnC2LwRGpHp2&MW0VV9d3DHr!n7w21tMumqGjcFdpWuFit+ zJu_spyzJRgZ8og0t*=i%=v2_1bnhxk64GesfD&xTIJDJQ+ln77WpOk20@5d&W*5?J zET&85!WzqL7**<7_=V-h_oUT?9X0SK`MBMiil5?hECbWZ4M#P?8T{HHH-t)LElC0=wM4v03*V3j!kyme}%` z)@mYT$vl4dbtrYF5@)*Uv?Fj-`tudd`n7N#pz7=?n|xkts#Hw z>fZOt6Kg&4%{K$Ncy3!etBLwx_doWZ#bavYL+5)@T-Mx(c$}_KGc4#6gEoz2C=jw6 zWjkcx#)OBr9Vt$vVCv$Mdk2a$(Q)}=12I9l*5}?yMXkJ{DVPt~@U%J#BP%OsX=rv= z{JDDE-Fde)4%NF1RDy`ykgn#S&_WJce7P#Rd5qj*6KTSQ?5+=ps!+E?&8dx0hX_z}t@_E!^$6gBAKr7nYBl27kNU}ibSWSy5$J62g+JSAg4=BY-y4YL zv`klcWbIB6v#K9JtS6fHfHBPH^GR}cDQ(5zF&Pa97e1zkRttZC@#%93K+w&3lJU50 zLzuag2qrJ^5VZweG4MrsY~)B+SXQHN>io z;G`-)$w?YhTR37(mq(_S)fVWiv0;YOD%h^Wl_6)&ga+tSRwiyrlL^mGtRYs?gtSQx z!_|fQ(QV3*h-k%fMnM%*3*a;;MhE|5u$&44dCWS2WMJ!olQ0s zW*#wSXM}%a?|!0TLOB5;!VW97n*n<2HArZA>+i|M$JeVihxYFWV<_G?aUO>CtH&Kw z9+dBs^QUu8+_BQbY8*Gc?l=EASdg)o`iH1|x1*{IaPUbR&{1yPDSIy*^gBUj~mK8J>h!`H9X{cR836|+7u-a zI1iUwZgZ3SuvCZ`cQEXW8&u*;_t5ZnHLUt6l(7WH)?L%~Mjb((Z6;1c8wrAjX4a70 zK%d)nCR30{3|gJNEo_Z)+Wy`T{?5#8EZB(>XFj7LS@QA0-NC8Nhy(gS0iR$cWNN}*_MWo z=wS6WU5h2Hr>BMZ*L&*7eGG8Olm*7y_vtKxy>wcRzSkH?L$E=vbQGa#B$W*E-oB1- z!3&==Ju6To$-EHuHG%uLBOF%;(EgJiNjI*3-iV$1M|%cdtKKUsx>#~%0vS}*SZ4KQ z4>s=8GYf0W%pAp}!do!)kcox`4At%lU*Z0x?ow>5ZLv?d@B^{)3w<>5w1l@#JKlX> z!Iy(I(Vm+xvKpSmm&^eRmz0!@Cm9$Us%iLq*{|ZZuF>}KH4$x`3$OFhL@KXl`_0*d zt0;mlx$gT1zze*8#WyAIfRb-U?mx9=vnMAPLjf(oy`NY7P#RUH%m}P%%}`-vr1neH ze2`wx;=K>TtX`5h%kXI^hLG9V>Wj%TJ)V1L^{AeMb{E~8yRvBN8*FOtCM+BDVU#;r zXKTw%w3m8iT|`{neLh=qi~4tvae44s<9F#pBd4}5x;=<0vf4c#>05k#i-0IzR=&~S zH==3n{hAdxArjKB-b{49HD9F51JLadDbcF6ugrf@Ms+Ro=8=n2+b%NFrux#Z9PjU{ z9^KD;)75<3#3e!ya){e;-~nZ1k0DDwdzwlSp(og_W4}^E(%ympv`@_1#kwheSADQy5O|%<#~N5kn9t`iEY-x-9Q|hOy%f^7#(*KUX?tgYx6D zD>$};nJ;H%N$WJ%WbJ~RtQ?WIPvk=jqjB)P-(ep)w|@o zexsW6^NH3^`HH~DuI%bbETtr29GIht*6<~NV7K>Rgj_-K*HGnF<_dVz3#1K;9M;l* z9jijrj9Y_*MC~oxZDHq|M@I)NtUknIv!r+2)a_8exdW^AhC(89K@2F~zrJhjr&!p$>(7fmON3qDfWyeotMz%9q-p6^Uxw@pH~~2^ugi%`0UrWa=VcPH0b*fT0ejeDF&};wWwI{MTHP`QGW$YS z!%_#SWx#1w^%^l|@X8Va=K@kZN%Ofv;AV0cv87|$cO=>pC8%gsrwa}SM4NxDostY! zipS!c$AX8Ax#+Rd6i0>JIl~H@YCbl@Ox-(-LLrX2LNJe-!nd@h8?rv?2JLZHtCTIz ziK*UzN(D+9)h%hXop|@R#n|(&O{fMj>ckD`*?1H*uEVE9Z1=UKRA1m3)SLc@6Dk1&jS6vqX;T zs=t7xTLE>Zz@GiZXDa?NhO`g8tg`}U4v>dgQTA)^^@4sxK@VHCCF@F;vIu2UHU^Kn zQ>#}6r#N#w zuzBkUKGjiviW2B_+y)br!2060JDjKne&CYJXBwgD6D)I_S}K>&WvQG=yHNY%1xX^S zi3%hxim7p1(*FsFk|wD(I6o-_Cy(G}%3`7nEzdBIlU29Qn}j^4maxoKEP>QuY*px| zmU%25N}b$Y4tSsZjcfm&OFk{r^6Lvj(V!WVx=gB~YfiKP9sLdRF?iya%VN?vgcT2q zXM|7H{YG_pP_up9>d{kt-kX&MpL_Gi!D0h&bQ?V2`0K}{`|UwKN3AAttXK9L_4W2X z+x6X5(Q_`v&#>uvbDVsmVz!KeJx>~vM$KYSh%zZZXJu0Ff)Dq3oUiAAh9zI87rQ|e zLpipzGbx)fFwM*NKbGZP6(15fSt_fkKIvQyCErc|fcSg1Ebo{eU5~uTrKsRb@YnMz zz?&t@W7qUA+dVrFh#aRj7KVKNAb2u|C4lE*X`L^9z;}xA@fUa%uagV02sGsZVHB-zk7q#T`K=a8QcuK8DH*VW*b zmhqHW6}RyPP4Ikp1t__0;t6l&9~Yo4#oAZW9e6?E>0GFt9qTFi*GGP2hMb$_8wdA+ zRmEFlGNgKS4ct30pavD<7}@t0OuEhS@5KF#+RA5+f8*ehrw1cbBscp_C2|XRZVfxd zyGmnGNXdq)&^3k1s%j+IG^+_kF9G0|DQpK|c%HZYa&WSS9-AE7X`ksgNRNI$mK-T_ zT2a5?5qm&DM>GpNWXJaQA6Xcx(R}wS>3;w07#j!irE!>@s#lpn+h3flXlf{m z%DX0>*4U4<^Uy3c%lX^@3A0n0k}=JM%acS;?oYJXVy!AA^E&m#&iqn$1&}U;I5-F` zh#$!_ORj=cy6p{Yg-R#~Yl-6|iZYDB36ik&O|P2k`Z13w=b7glms_@143d+RhliHY zzba&1*_g6y<1}UN5KAf}Y0fHFQl4A)F@}~FNZoGUf2s_%?VN}k7x_hLK!;;P^r5YtkQD zdKtA)xCV!(2hW95S_9l#mVVVK-@w+=Ql+|A*2fcfyUG_P>+S`Y`x46$$C!d%v3@8m z{l3>@dFHK`kGuMtPZoFG+s|sSeu3F(LYD^57&DUEeIl+*?~gSu%1x@>VqN@~(Z#OE z4-4<2T}1zi^Xk0tt%F&OF7odtBXe8pM?K|NiXBkVdkD?>8;vFATvWEN=r#+Ev91nF zl1TxvM0RS>Ez}^S7L3+Ky{%k`I`h&dtZYoJxHUzMF>UZv_ib;7Vq)t)V1%QT?Gj9YEy8yG7!Y)C7&LHv8(CM&owU?#8<4>J-BAsKw=gf0G?| z?z8V$)9H++Cn#N$J3NKkh5a6&7C* zXY+Tw*IBJ9yC7ZW88hGw`?#Jypi*spYmg-`!b`t&8q6f_VC$a3OIOYTo92`wu%s#+bhZzC&9X);c{H$77NfyhCnlVd_fST<*;3l)D_H4bOJq&Shc^ zC!T@7Fro%vDmRsaa1=4nkh60e%7OX}!?4UA1LjaGx;(zXG}-)1lJgnj6$w4>Eri%* z@erSz0alnK^zQx9kgI2%D`_{!iRa6-)W?Zt>8BMRMRz5@4=F^67V6K2n5Q{a=g|I+ z<%+2{?8G2Z6!J}>wF1XESL6WI_b>RuT`%aXJ2tX!!*0KN3|V1i?H^EJ0j?idztK1B z9nU))cl zT;I(Io6Ity%Ms@wJ}=W?T2DrYP|2S};+C;$7kN4Zx0yFyw;!e$tI42^f?T%l0L_(> zZ*8y9esb^VsR+vh{34+ODq4tt*GHMs#l9l-n2rUDCV^C(+^|`j;PqV>^~7%iI)x~F zB+W{*sI3N6+3cMq932=b&0IQ~B398@rLZe2?{)B)P0*^OhKg%}1!%u2X zJ>0ZtW?r<~{7-62tb8}QCw@QT+1XD2tNG_YxOx9SCZqq++x!2RjB2O9KK!UR{U${6ykJ!B44iLa7Ms7-3wae8z~aKbR%J zeDWcj23Q2Q&uf-aNn6KlukW|zX)RQH%e8lIub1vk2})^cDdOKN?R1)0jRSxiS#yfi z+{>+_qLBOo4opoaV)2Mh5tS$8FpY5d6!*fWK~AgjY7OrN#pan=$1rCGQAuK((K_{O z-#wS}yn~iJ*QJ3;Smbjg)Xk^_1vM3YDLJZA0?K#=dVQv0ZeYXo`xalo?$<73A~^@Q zd>RfaF3Q>UIYxEn!3B>;=PQTqDU)E^ij}m0f{KQJ&m3SzyUjh&aTNS;E|;?YtOgek zwRGcR|G3Ggf(cmR*c8{nL_9&kB6Es^jf#ZJW)|q!l;ih@iJFo{K+-q#&HDKk=KfYq z4BYcQn0nyTI|+8VQmaY_5f!uA`Eh#>1@oxD*-?plz}q{?cXzk%S|$?{f0vtxa=~p+ z%~5vc?kK`^Wq2e?(FVZm0+HfU5-8d_oX4qSM=$559QsU zQtX0)B_?YMws=fQW-0W7$eFAqGHaS=RJvG~tZd2urWI}#m?<`taVEjC#-+>C=AtV_ zl@2aIB>|d(wWMfE)D!?^stcB5Sz7WoxhhFehmszO8D+HpvOvPGieC$C)c$L7m$`wZ z2GqeYMg3(G)aj9VMrBzGbTH59R)TC{-v3_w(=wW%^E2TxfxD~IOSd_f_DC~Hiz(%I z3PKUcoKwAF{l2q)`xbRci>lrBmO~f9bKMEbW9TMMlify(Ywgtucg?j^#vxm(P0701 zimxI2>J>>x$7lKl-o<=cOPWp?7W{WS_c-8<`&s_N&qCnDUmubjzLO1jmiuc^V^IBq z`YDj)ycD0u{f2ic<~<@V@RKboOTzzmU@Mi>+^dD3Ax(@ESJ6MW3}~cjkSoP-;myj- zVl}I;G9mPYZ-Q&=~SOP*Kk>#uGq@<0>bQ5|eLzGJXT{ z`bGA|ET*pZwt_EE-?@%0W_)A)e^K^M(Y=ISw`Z_p+qP}nwr$&XvSVk*#*S^<{>QfM zr1u%!7w^~o_8H^cJy%bSs!>&|YW~)m({Rk9*Y+`M_+#;*iIWB@UXk(K$q?gVZB_W9 z06H$S8_({O!b4R(ExyvT3(1nJF<^7(Rq=%`HX3Dhx6v80ao3 zZ1d?-pYmH#Mfx2M7p`JS`i!0iZ^k`a?t~kiBJi>sf(rG#4*1Px$4BTWy`#$ab~u>{ z*Cp(5o#u0s>4cs`m_sWwkQd?hqkE3Jd7w0TK0_1&X0bM{x6@lM>H5t=*P^79k+l6%sz~eGg7vw zU4)ngy6E_%GHm^w6s7vCkr?!KrzX|g0rML{)Ay&3w5MPY=V~+fK0kSRely}*zI2)HkB`2 zx(faREDw|FP3v_`f2WeGRV`B@KOi^0e0t+}&K!rqLhW~7OFE-M^ijslus9mP_j}Tg z-Feqc9=W|vrS@}U$|$al94LWvrIEIQ+3us;XLPwx#YjZI7#3e9I~1LG+{Rw7!B9Mk zPQeQ`5i*gK%Vz?I!X`1s3{!l8c}qcC9}gQ?m0lst2d^$nU#ythlf>h2VOWNv1<`=c>yTn`uAqY+n_%r^a5z)jSe%eRG$s3`;@F5_IJ6sX&u z>&c2*3e6}TiIRbl)1yeEG0upA#0te=bmwWwOXibu!4-kA8z{|AG44X!itTLF_1h|} zf{nh-0f}L(B}Dw4Aqp$l0qR%IGjnNrtY(Q7@aorXoYVpkyqZApQ#`sca#Tc;WeRqc z%vQx7yJ!up=F~osH>PWLgi1rSuBuLLd&@PZ!}_^;L*TGVDeUN1-Tp~EBN}-#AH(rz zh;Ur8nbmZ-$k9i&wzc;Ch308aIK(TKB&>gpeMr=FVWF1u<8#Rd<6TRbCe-Aipd8A| z%~4IpIYOS&=f3Z+Nk)Ny5zctzRUG`yrfPhe6G}&e{7oTv75nWl{cPl#@zsb|pI^?N zmvm<{+4=jR(KIiO+V*%GT?sTd-Xi?dRwoloH1RuacSbrUSP&r=QV0?Fzc&Th7vp!e zsRYG5iebZ|Kw!~nxyzym#-=gdzV4w(lm+q%2W=rF6P_6v4AH6M=i{CA53*$)^&!ym zQ~H-CUL0@uNN<0na=&B)4UE&~9@v3iaf7h(7DsE4>iM%jz4md9Q)!9Tg z2*5!*C~k%nOexhPvQGr%-XX@ryDoy4b7D%CT~9CK85$jeCa7DS-6J=7H|b1E{B>RQ zY-rq+b`kb8N!rdg^B{VX$0sN-QS=oP()M;oU)}a)ZcXiuAn&~h7B{+JT>ZVM&+9Uh zqOP%A`8wyKpt-qTT;j0h8Iv+irEnb*yT-cTB8s>wCbf$`MmuD_&?9)SiAf`0X5)q> zl<4iJ3lb4<=50_JtWMjXM!gPr>~81TI=hzd*(Dm41c#)TwA1IT1k)sm^z*Jf(sWU2 zgJW_IT6vcf+P;j28fy#J=)X;LWrco(KiL-sVFkWis&G45eaJ1_ul275nrvW!;Au0V zTSeeE4)`FDIl)SAZ@1C) z`5nM|qXZ~IMA78G_dK+@w`-2L?1ZG9(}SSSD9DX28zQ=&0F1;sQCH_dj4u5;8TCw^ zHM+Z9W;t=7-`GT)fq1iO5u@H;SZ)2~c&D8%sS);3v6dhF#xbM6mhNjb4;-h3-{rB) z%o+!`771I?C6U%qA)5H7hl1sg$={H{_4tcQElmIO5i}y#09~Zs+HzjHS;G>UWil&N z*}UDk{fw-v{RL`xh~McB!ZGA7Q<=Ntr}v2@r}tZ(mh~6J=->p0k+*e-Cvtv zs$)V9T6~i8$lJ%mf(=#EAcwuODGXB|w@tl)RLVqD4Osjp2^1Gx;8=cR=8BvI0l;qo zE`^=PNmu^DEuB|T3+#!yh51-LebYbw!K&JiJ~?14I(MXD&smWlFffF9-)?db^5Vil+rq%_d%ozA1Z{&j ztwR*-%Sjd~n%RHX<6{(MmTRQI<#y+B10&>n*ZXAfTbS^wRE|M<*NN;CoGL#lO%+%8 z17Ivvy48SO(!lSMIG?UD4`xQ$oW-!7V>mYNK7RWa>AnyfPw}J~b3uU4!lwXeO@PuJ(rC@Br8*dTJ@EAZn zO*1v#F$G;*Z5<+_1UX5`WJfB=BtsLserStd+hNKrs3T_s5jmZ&ms^>K~Kthor>eGL>fBOnT$O(JI^=s}^MfEz=x7k250%uXvb z0V*@+y<&1mpoCaEw>2+p&mqx*=5$Qhlw5voYIWS$i)k(s{50%F>Iu1Tx9}qo&~_tI zpF7vQf>F8(6)AEG$p)?Vz*$lSUKYu=VBL%@R>!&Yx!}TV?jEX7P<({h%q|-d3{XVV zVrI_~pQbJ1a~;6#6Q-PQ8y&)4Fn$#*+Ey$;1OtUz)>9~!byJo1x5n2=>!zT{i2z5E zf!m79$TRYe)YcN;dJk#$S?kh#V}|lZUa30S=ubTJyt7wW=XY_yyY6z|8bQ1^S`sZn z;4wQQUj@Ra%xaIa_?gL^`5_Cram^M`M0(o3fc%Y)(Cj1>m2;Mp#RDa>S zKAy1MPua{*BlTi<*}dX!;mS4*OGCACA^pl-EksaoiY?*+hxS$c+owm{A=1=I79s8j zYdB>`$@L2*+N>#K{i!;oLUN4lGzOrZqB0(1uz&_Ws82Eqz^Yo9({Jend;xR1lvI7F zl(^`e;SXdQb$ss(K5~S`C4@Pjt{MfOOebB;#g_;6o0mSteliF9W=BTE`9sh!zAW0- z*`YSnusR_%$t>J+2F&oR{4)(^AK|FBg~)T@)$|l~BJ{0o_0Wu*9XO!r52g&}a1erz zfcPQxfWu<4<9)wBp*X$RnNjZ`D|LC>n1c=wuJ>0XI8SMI^|;~MHJx7rK{%|#iw`W| zL>)E6j~~&wLs#54LIkVt>xaDEuUo`_``k+ILU*M9b1d=KD82LY%bKP4%J+VGBRXc} z20mcIZ_~T|oz~~BG5lO5u+6v*iJj7jk0@ z5A0^(H;+Pp+915wJr$%%Mn5db`3#b4*DH`m-J_xxgwN@md@pp*CPDRf{;4@@p?I4l zq#Q_>kR;PMcZp|gjbJ;GHJ-H8zIqP_u2_RoC9~E%mB^V^PZeTvhb8YPu3H`6?DX&X z(#Et)2X`9RM@wW&W|2J-^09)|)0{=ZSKc6aeOor3GaPF|QUuT4 zD(?0=VFRLzOIQyIpKW-u0TTlN1AS^8UeoXO;ZD`lLvne&K-d!K+oDXObLEhNx&#|L zu0*YV{clUEmH?`Eedr#XfW;l|fPe0AO|@XnxGYic=pQk^P;^je*>XaZcw}YwFK3=j zz1XRvq85kCPPquCk^N|KdO&lYjx%MfJwJ?beuGEtGZ-C0#d(qrsaGu%>&YYkB1o+g@hApwtWv?gx4Dphx#7!qr(@wL$A1*-L?4&o zvn1m0w|6!QdL1-hw+n9?bXe{&6a9h96NSaQcZI&ilYrJ)k7D)BEWUQs!4GM2O5D7s zyFSOeOfs`DM1=hk=6qS6$GRA!(T2?5kqCymJeMO)e{Y7;m`1{<_NS(Zb_ZUMelx2f zu;pxP>?r6dRJ)~}!)jZ|TKRN;4(iuAO6+2xjy7oEJnbHaCg27sQCBaRqOM8vf4)5^ zg|4CfvAhBU!=F!m_3$yX?|mXKzgfwRgTxIW^7guAinz&$$PxIWtObN2lRQP;dCR9_ zW7dc0rMW&SQrAw(e9Pw5Urd~P&l1zrt$TbfP(+uttS}T?q&BKi79~X>bdZTR=;xImvwKNyXwc5A2@bt)I*DN1>}cZmd;Aqh z07oXn%G; zdso1>mQ0ctKv*dI74no74wO8`4&cxW3$2oE;>1e1Zz&h=?aubl6Fi;*sjAkBdH6N_ z7E%5yPjP4GR8+aQ?XV!04?;B%~eEd#NlYBh+ zdKA5eqBNB7?@5BvHL|8&e_CLdYPHj{vQ*$2wX}&Y0luP8#L_`PLHvCfKydbn@IXk? zL(+@t?S52cq+q5L#}p!yyWej90bg~9np0!3qVjsm&zXg0VPC8X^Mx%Lq!0QPeB$cRrAeJau#f`Ny4C;#JF`;H^x{xrf?+XZLYhxxLQ+4dJJOxn zpO1bcD3~H9IzXw(;kV|^B6H+QpPXfH84%TEW#m98VWaj2$H3^b&pM+7EVFJ9kjdFl z5t&LasCFOb<9flpkah7Gqh%cpr!NrFI83e&La9;65j0NSC4sKrN^f(pk$XlA^fH&X zw^x>)b*+XG0gx2(qFKxjyEZxk|B(5jxrc#$&vWGO)|+Jcl4h|u+c~-@F}F4X>(M9) z_9hQh5X@gHk+SMY1#}Qe!b63YAcUC?h`H^9coln%v8bU(u?^WI93O6n?p;3B-~ggX zx1@*_W*aQVm3)$lbCNv|Xt2YNdScAlNh8&*w0D0X>!>HbvBp$E9+5Ie3;6)!0;=tc zFrWj$>iIFLxJ&(#K`9$*)Y<~pU#IihGzLk!JGE)Io;-&?K!ak@G zCJ7JwE4R}cw3DZzw^eB5I{R%RrbY#4yu zCcFEaQ5OnVg%(|y(&%Zuycof~MAK@iab6xhJ_%}?VmXUJPnJ(-0cq99CoR?v3kk!OL?oHe8;>Ng366b_omhqJS zCf^8Rq8+emcwogFS?&U58uyhOx45Q-_^%B!DQjjCJ!i+=C%i=a z41GVDqd=PLM-ZyBxx$++p2N+q@7p-z5rR0^cLeF9yNsxapw?SZWUH5SA>;D#u-jG% zxN_p4K-HI+ZcKKzeIyBA7ndrIkO47XCvtU|=n$-9PSB6?!Zt0S#BJR))U_gtw`D+l zN-*}Zm~hZto0g=EVS%xAQX4zVAP^d`uWRB(k8l%6NjD`s+cCDzslD=uX>eqTWxr=> zb;@o)a9Or7^iF#=-?uE0*bz6{*r~qvwoiUW(s(CteqiB>6Y$5L?c}BQXOFZPan{|u zltR66`K(es|&M`D8d}A0cx%yvh3@zp24lRh0ew!M^OOiU@u-h^xwQ0}&8z zxS^OaICW!tBShpI!T%f2LY$~fq;|!c?blHOC&Z*-?;{CFuq@5fy)?_^q1wN{Za2vo z)XwQuN0wV_szyu7Ln$nU2e%e&+JCHhb!MWkqAH%1{i4KfSc|tP0RC;(={pbIh?6&+ z*#(+;p>ei>kNG>3umW*bD{|)%<9OZ^+?G%XV4$s;koiQXbcND9IPE|=wOVrc(8(s* z>hr={7Gx5b)`AH7ZtcY2{7wxw13*LQD=MC^@391}DkQ+nLt2p@6}2!W7JVoF!6co7 zc}e%KG8J8wnTC}!L!M1Y2Zf`~H;9k~#Ay%(|4PZ1lnar;38Fd?<<9KF#TGSQ3PV1QG{90c4O<7!pDwT>!n|S_i%$`YW!J|e1WILv_`x#I z`4&peRrdFY{L*==Ipj%C&515ofjj8iOZtwhBgHScGd+N;HJT5AeWf&k;UFebiZaap z_O$y>2&e(Jh68YOx{v%*XIiQwEZ(anw+i;LyVWyCVc0!05UvN~z4^vk*n;g^gFV4@ ze(amJboyEptnwX7(oM@Qo-%*<*GDw8kF@n1H`T>#)lH>9IDR<<2=BZXpMAVTPha!a zSoGb>zJlON%Wf6rb4))gZ6CH02{QdC_hKrDHgd*|Jg~lRDf6C3U9ObLA)HUB9MH6D z$~j)5hk58lo*C-7T|mXhw5<}Si~byK?#a!t=;!2T zT39z$#h9vPj>V7W^<=N^*31CkSKp0q6row0?DlBdb8p{;_5^hAUEEXK>C&x|yiD6O zmXJrS#a0VyWe5nr_cG#b?Cov0alEwdG8F#U&J*zOwBtkB6kQtljScd?{=8EmurMl^ z9z6*?0q;TG-9h2D41vDbg*kDQh;gBL!9{CKAH!32QV>WhCMD%(Lo*+r|F~=zjU)$e zP&sVt-&}S3b+#(_3A(uWiJ(BVfBiI=n|zNV@FX_lb7d5kw@&?xGi~bUP|(i?$sM(O zG1tT&ofBSckG;bcAdGDT99Xeot9s54U}E!-vhwjzIIXQjO^t2KNBk^WI2Cb2eK`}0MD>X) zd58LQ_YoO*H%A}p;x)>E39u-;?>6kt2&0oyo}35*P9eH|!xJ37Lj1xz7@9s{i@NwI zp_U`g72t}&RS?LOqiPSAcW_|fH6p~OVB#ZJ#V(Xb!GD3rQlaLn%%pY~dEkuZ)OR2_FoqJ%FmlfT$9kn>w>;KXq{HqoE_AVRwp^Y!_~T6?KBsi*#387d#sLP5eos*HuyARCF0uvG0Rhg{A^n@p=RuR3t6 z44eN$vfqqUsZ^v&Z6_K^EnOz#Y4d2QXKWg%jl$*qFHC`lyXAxE%JQW{sSzWBmY~^j z`?nU+q&e8BvTG%sbu2ZnFa|bW72K;zWPk^gXmu1!Y{{4n;S>1(%GxTbU|Q1re`w&J zEO{`M8^y-*wIy6@`hP)PqTModC22~N|InYfH42(^n39qzYjbLJ!G8HKX$dkfWWcx$ zC);KY5Ce6LH|ZMX+onmjM92xE!XJ%DjYd{cZ~5m+Td?Xv1y6)q_?PQTqf@8mliOS$ zpK))vE4Rf_fKOpp1h0~Rqk?Rnj$iuIS6klvDh~YEFnk7e-^+NCIAkay;FQY$iehfk z8COn=7aloXlIG!em^b@kcDmW&UFZzcduS6J%rq!#)AX95TLXujau9rTCbmq<@YsrH zM94Jr3A2@xvzKeGGG5dIC*0Q%y`3$Sj`crcrcQlpyoQiKk?OHT*1;{_PHOkB&%eLX zgwK>(T1hDl|Hw>-lb06b#S_P;{@^xg(GlnyydZ-9>)jF=9x!RK{V>iK4+r3{SBWi`^X0J-wO&+o;{)ySr7pd1 z>QZJ?DO=?5w`P#fUZN*y0?TX2&Qn0Z=p+w4$*NPjCx9&I?#j4tHW!b)ttim!l?`&J zv0dKFHuf@0j$qtlWiHYDi&Y+nX2OgSCA|NlF7zj6=XMF}Lf!FV5PeA2tX{QcM%OhE z17RM*R&10jVPfW+#BP1`bDqrXpp51SPhXOgJ`xlR>apz?!PX-xgGd2LTfrOz!jWT< zxO;yh#)!wnDWl1@t~_WgE37}rHe+PoAqN);D^<9R>`s$6D~}wySrfsr7?&Tw$YH-` zd_DfJO!aP#wZ*BUF*#iOu8Kw{%r>b}Y&U2kh%6$swr|{6?n&fk`uH$HA`lfw zC`^yUy5h!B3pB84u#_SG>9Dr4(va;9>y`Fq-mq%xOWi56pPR(JuCaTyIJ<|BGb0BK z`D6#NH>nA{(yks(7@66SBeZO)d(Q_f{%qN8z`yA2 zy%ogZ>ow~p-FiRrKL9)o`k4<4aBQ^Om^*nc$y<2eY7xGfLT9$n#A<}ydI zmAGKOdfs~q=MEWf$3h!ob@!v$MkL*@I+7~keB%Z~6PR(1N*`WHbE2ImW2##kkgsho z))vg4CH;hj$$B}ap0~x#P_=P;gJ5D2JO z(xv^ig%4Q9qKXYGz1xCX8OQXao&L3k;2)>0Sz2(!%ZzuZ$L*cf{x|a{F854%*BL7% z##tCMS{Aqz#!>i|Zy8=tvQJw0FIzK`CU;`yCv0>F+ltnstVHli2 zBPmcS?iJzJ)Hu9ICj&zQy)RuFR{58L?J|`Yt%ksd`(O;4$rHmImrr;}-X0R(Ag}E$ z^D45x1nR@>ThjGTto4{xmQYdq!xfxJP<3PsS_O{qlKr7u>D0{~I^y8#=~fdfqS8Un zIGC~-p|*~pQb|KI#Yd6!9}D9-aSb}Q9+{08TK^bu|NiqT&)}Ur&$)O7-A;Mac0>=l z|9k!Df;{p8F)V%CXn@E1OZV~J)0H}D6#Nx`J1jpWmcmA$8Q$={(^A}Q9X$kDvozpP z*);yxTPOLltmT#yvtd){vL3%4fe@{Hvd$6^`eM5xt1ptC3G?tcvD8%jC<{-qzpOm> zDd0j|^mD-u+vieTqQ#@koJytbLhp6D<8GBRXFYlh zRI6)lwo7HH?2b{H$>5QZf$`F!kyN8wS?sbTK>5o}n@+mJmCeWtLZ(bs|uFP8bMz1#wB(HEmR>D{3_Mt0hFb&R6R zzZ`w0-B-Z-_xe@5(Z#>GoKZ|Bg*(Gr4^PHbDle&tG0a7n>6dSUECz_eHNtj z`-#p;&oRYoSdkSVeGu8R)#p(^DTpDfC$mlu$D7#eeh8&-h7!Ap?e0$7&eu1#rJ$g+ zH0ZF5ZQiOjf<>P5DygkVBK~8N=lNSjDRLsxaf(T^t)kuNoz%T#kJ7X3{(bUIcNI}yd<-_H5eKJ_V+~GS3wkM5YOHm-A4Do%Q;8H<;XP96;n6)vb zQRy(zk^XphEt~xL&lbnIS2lf|O1ZiHfHM3`I9>y{j#O+;V_KUc+Xr4(^etrY7HIGm zJB95icne&!*_+S5S)(v} zUBsK5pdU^LhApynscGDtK1z6%#ZXn9sLl`qsUxcaJ!ecv+8p@&MBnyfsI(xSkc;pe$y}tw|4yVJ+lG#V=HDKl@rfQ}){ZUB0!pk9v;{ewAaFxtf zwFcgR$!8-vxKwU4oO}^VCdZ?mY}NWaE(ofWQHI5v8t*6#UAuZF2e9q&O$%B+1)4cSSxFDZ1h54+ zraQqSXW1z)6`e6Rf@se|wZ9^9is^I7#N2#eGyRxAUsF-=QivzdV?kpl*r^4%*$Agl z;ds-ZkZ_91fp}gW+-z4@8m+iw)mAp?T?iyiRw2LHv@7cJ17gaN>;wNqJR2!%hLbSDZznX z;4|f53@@wU%k#ti3>XX=EjYf&qwIzIw0xbDn%v$#m$h9U5D&W?~ zNp4Rxfd&3I&k=Mt(H-!$IXtntn{I&LL2B>`($SeKI@2p+UP(n~p_I10VF)RlNvlsp zva!V9NgdCop$5@qc1fuJ$l;9rA*=Sxu7Oys{V`t5L&_S{3 zj_sqM$wpxhfcFdmJ&|!fG8Wn9u zC0Qbq?)%=ppl)U1WV)ySo_tjy!k zu4>wF~4w_UGVxlrmlAE9hN{;Y3bKXoD` zN?4{rXgVU;xlri|AEhd%Vz-O;3T5Yf&7pTl*CwTpvmSkZzHR1ii5;qUD2v#q6BJS}qh@AGC0R!kn_qiAVm zoij64Q%@${`z&cqyvd#aZNFh|{r9S$*vxGuYc=$!(JWd_P}UYpQ^tJ8wUFi)AL75gN%fh(G(PbqJe3C3?u>s0~2NIDrpkl zxK9HjkD`bB>-4Ii@(-tzn`aY6boWKTkZ2QTV#?Zc7T~fH6SkojX$rop6nT&;?3QvOTM%@synT zi0NRv+(%mp5B|W=1$|KJqMzXt8xYcJ?WgZM&E;`s1WV+gx*Uu)fhn&L#^S+73$v;;3NU??fIWy0Bg^HzpFkI zAKXq%MwpkTg6o<42eVFyt@O#0)7-6hD>;ji#JgzKdqclb8Ki(J>T6Ak0EV(2k!={N zg0cO(FE73D(e&di6#Uc8qu4TVu;8`l;VEFDJL(OLz>F4c9C(b(S42XgSf6L35_ zJ{(*FPUAcWuEz%WXLSsr0_%|SgujDBMO;6k$o(3H;(KtDbHDCL2|eZd(mep*;J>VZ zd~RMlUjo4U1Wu1HCSRnE&%8Uh6_8m7A*^EBeECkplFCi>pd?mi!Ri+GF5UM|xWVZa z47X~$yGx}s7)YGkL58fY7k0vMff0V)evHefA;T^BcX#Ph)t<6Fj>L7d53zVHqvoK+ z_4iIe_PzB|Vg7yPH?h-S%NgA@`usEjI=hVckttZ(kU)${vtlm*JD9k;4fH4^xWR{( z>zG4*77Kv;Fhw*H2A}YBr+LDLyehK!&_pL1Y z*kq!e7@HFR({D}c+{QFy-qL!z4a4p#=GUD=|A}WPB0R&w zI247?8g^N=qA6($L%Ij}LPBuiSM38W!QB!jpejrV`(}nUfe0EC%O7vs_Nxv#-Lzqt>S9OAWz7|#K|CTQ)-^psha?9~@(coc{;nu*SsPjX_9frfxNVjjM$7Bl}nqGFNj!<%Sv$2tastPn=wSCm^Uio$I4%UUxN>O^TMOV(LwC3zu+ zmNQZ62vpydoUIHs0wb!0cT`3&O(V0360@rW!!-zcLFXK!x$B_bgpBlkPj?^g>R{S@ z!a0Pap9M`2blbHwtUz~<#ZEAJx4hIZU)PF-q-_Eg9}_Xr4E1y=pSNwwY(xr{GG9}0 zkiBsrUxAki`aID>Jw!5yH=;(c@`=3Vk_Cs?+4s0T&PPO_xCa(oPyky zGa0i(q;;m3MFl#kmNxKcq_r3b6R}E)ov3YsKGP5_`fU~_ zk^yLFP)*oeJ>(%xD4Jvu27;9Ey)a^LKUWhe*e{SMm0NJ8o2K}b4H8WBY- zG70q5`(`Z)jry)7l5)-7FQ?>kTk->G*HK1@|9>;+K4ZJ?~el})Uh$# z3dn&pXE?ZQn~7Gz{70liZt`Go3Eb4cn%ktYy_5sAjx>BYFCFAS+#5-8Oo~ISNN;Q_ zpqoIG-^`Q>%TQwdft+9!k-L$2h}8OgfO25=aW7LK08u|!AQ~CjE4qv^{N4!505G$e zY_T-{01L?4YiU0YBBYdxlqn3FF)<^h@sprK+$fPzDKvum{ANPKucU%ZxrbS9R#GNl zDRN6G?8ub`)^z%ezhJLa#v(b0o7g~0ott7XVD@~jj|V2s{(fdBVZuknI<1p zKR*{09y4De5)fvx2gwa_S~dr5U~+u&$s2-UUzQHYl^OK-&1fZ<<@gZGGPur+?!~_I zodx*g=hl?UU0l>MrP;I2ccJ)ZK-;?H4DcYxe*il?PpDVNFSH-ZXCK*1j11*YhJpPeCLzT&2B;sP)tN}Jdp zI?~Ry0V)UNn~tHO${^c(T=qojN+*XUo=Dv)Diwe9W1bckewgIwE&1Cb5j6TWRn}jA zG-TIiStZH!eVq-M)uL4C@(Ki;4VHF{=U6-uMpjVg9?wi>RFUX3;GuosXzz5#FpoGRJg_S7?-tmLlNgSXJh((Go$cAguJDvfg?el5`Y7)n4i8Fovy{aY z3cz~RZN+4guCg-)@mWv?L15&kuRVlGf9rl z*hQMyXgMB}C=QPK#K6A0+&FK51eZMq*DA-g05{VSRfd*_D;ajpkHv;yF!4}?g>KNO zt5MAkrlgi%hNA-s6p$>Nhu9;QEnO~0o7Jg5EOx>cv_(?K(2y!|h>)UcilCZMmfT^}lVE`>&-JxB6^Pl%?pCX%s6vwcC4$;gMy5^uWy2^2 zg&fx?N=%PK{4XC1M-ZyKxGK~$5;5XWBzOLns9l&l@lcLEkKzm+R0yO44~~yVZWfW2 zr)SzCdWFC_Hgi6@@D$m$57s(xBdDIG3cQOlMFSpcpo{y;j45a0)m;v23uB6*ITS1G zuRS`PKr5Dv_kSJhxE>71WV@u%jftC?fA#iH(9uc+#X`oi6 zdFqMDlzBTF6DtU$b^{vchl=QBtxu%`{gaYh*;L9?*v+)<-EQ zUToDR2>NH)jzDS&J;6y)-h8o(iM1H_(3Fgiu3z)0jHls1CJFp|K-IjFNuak)1%AX3 zkz0aM#BLJul}z=hau%}C)MmtakgP|h^cvEq&Na3XOB!4< zS=|ex^Jgrb;)@wf(pfXFx}0#9fdvOZ^^hbthsR}MgHYrvZ`#2Gr5)e`lxN@oA$f%n@A~(b-WVI&R z1*O=RlKeKsy)(^4&XtQamz-OoJgK6NQkzc;1t?4ngp#QV8Ktv04G>E!iO*SdftX5a z?eftrD;pN)Te4cQ1C0mkP~z=YDqaRfAtfIy#a7Km`jG#-_p-XwXR$r_!?hDn%F!lt zts#X>vxm_2gx*yRaPUU?D|Ba!;*sRlplt#d_E2CpqjvlJUjO#(S^Gba(#vIf1$+E|YyV5_s%R>wVL zS?eq=Gy%<+sk$qj1w!bH)uM`T^@kA_#WBd*@>p4}Kc^^_J~Fk@(gDHoYCmz-Xsyn7 zNSM%5DDZft6{m<|;Ys6#SwYGuXhR_^h>QioD=QWk`|6&_4pcsY&cx* zZ;13iLwqsu1ax67j$ZHK`>B9i@Vu2rwnsp0L=Z3-;O2GVY@YZLwYr0M!>987uw!Gq zM0_cLHa*w0UBrzHI`rClfO8DjUQXAkz;=Fh8o=|21#IF4e4uUd@;*lU_?myd?3k?j z44=9K{4f#1lf%M1Y;T~0fGsqf6hNSQfAp~~yTCW_x0H2qb;K(kd&q*#PcWCss6<-+ z2;ib_bA$^vgbplz_Gk_WPi)^jL$B*8Cb}D2GnGz< zgHKo(Ym4#gsI)lX)un%J2tgDYN@bn#DFug37zpe^=vv~?e@HCr&9O8MF_r83ih*cvSyf$oj*#mBC7etOyQWk>%H?g; zssq@HS}WfjmQFF2^A|-&x84CC=U=w0zAlzgIMHZrLs!!T{gcW^Ab8pPVotkZ&s$B7 zvvKJqxY-9_q0y*}s6Dksx@nJf^v0ojp;I2I+2yDV6uzeSln=>Pbvt-*Bb|9JW14jb zzVGx$*`Z%WjjJbR4DJf@@L&d_;h%Ba88KMw0nyMfgsO^(6Rt9+KSwJ0oLq@@2T-)A zR*7wS)h3nzdD3GUxsga@$xDp17kvJc%TmmfOZwj4S*^0uy)T0l!PQrmtxnL*?=b>= z=atDD2X3y;0Mjpt=jKWL4%=6+KJhIcRs56q%RQI$t$lAyx3%4#HW41rE4cSdU=*7< zqgK%KGL7Hjwo8)|d23sBW23_fe20Th95-$qdHnTuErafB_&(#$Yc%eC@M|{iLvd?R zJZ266ET75kdKdTp?M4~*;hHsw=fo%J9_G10d#wnxOO#HNJgxLEf{&0bmfwM2<5gobDV{KtImEK?3Ylq2xbk#EI?$KWb)p($oCu&Du&U zwXFttcz*dkS&yOne~?@3kXw#b;DjI;&IeWm2yGj(XDRPQ*Gq~om;#7XAyO=qiJ;*c!l5*Vhv)(F*smr7Ezo2aTs9aE4Dj1{ z3V6V+N(OQauh!2JzHF_$h$+N5&XH$(RZ_o#UEyUUzp{JQnZea{*;HJXH?eEhli*jL zmiDPaqs!3S3`SL8x~y%$43<@RxI6j%U6AE`LYmc_i{i2{6RN7rzv=YL7+z2-y^c1T4{F`Q@gVTt z!5kBtIgS7D{p7-)Yv9ys*GGc0e&eqC$M4=b;=A>MJ2m+YIXeyR_2+x(h!LelxbONW z@>wuE|z4*b3uu@N+#ei*;Sw|Jiu!@x(DF6dHCy8HEB*l&)$W**U) zNs0`nrUIC-=b!yk^phtza27!dlr{$Y3q!Vr_m8{&Hn4uu($&qR z)XMHh7-1mmW=v4Vj__=4oI2Wic91Jdhjr$*zU>`-yg0a*_59u`Z#}!%F5MM4v|BHs z3DGazF0Ds#P>E<`w#;4J&>iWEZpEtHE=9EQ{3FAyxw`S2LZ)iF^zed#%z*&!(w|p4 zjY>w|9)v-de)lNixnjz>>vV!W^)5NpbY09~NJiCRVqq3{O1Je3?~>NUJQ}aS8lYt{ zYApp}bE9=8b{Y9p@6zt^cD}F2oHc#vFk#DTj!mEzJ1*MZS+mr5 ziB^lA!B<>aj2&CkWT9)#!XwROt6 zuGWp)bAO*`qb;x!3IgqXY8dXK_9C8D>BGYE!?D#l1e#yFrcA_topdztnzF(naY(CD0VeOizn@CQA|Up&C#ovDgj zE+Y(eNqxUl)wG3M&=!sGNsbyNjn*$4U;i?U0e|30|={MNrB zHGjsx&EW_T_`$W+9td-36cgaj)=og^DA(X6?xCZmslc>~`O zKM;0`@s05at^L0WyV7VV7_Xm_5!tsSWNb4^82et#*u%_N5|eetBkMC`%bK!{Wok5p zL^PHVvacZ$(@+r^WH-!2Wp6S3d!A44d;aIV?>YC}b3fcq_shNKcYpW(+Dd~-FF@WW z-pb6(6jz&~Qn0)$=P13N!;%zT5)K5ICPkC(w&b6JEN z2so=)E|Dpk;BQ-HsGA3xsVJxm#f7Fr;XFWm8C#IUHH4>SlDtUHC7x}G{?@I=ix1a) zC*gJ%5e&IWW25M8=F0S$ZjGyyx@YskS#AaQLIRuD6qiiKa{lIbTw5!fY&?4x5s<5@ zAs-ZG=G0>E5X%iynRbod-Rs+&_MWQqnZX7k#ZnU4z1sb)y_8%maj$e?6UE^egNzfVqFIg-r8sy_M0 zl}MT@mvmmaRWVB_)*z)cOuPUE!)HrQXZQm+noh{l65f7HkXi2;{>Dx|N#e5r++irJ zDKN^`k_U!V!v}Z5{@=qE_nKT%L*9q=)$K5BH`&*xnczd7j4+a+sb=`QP&?BOR;J z$j(6zY%hzrBO$7Xg`+)`JF5zTmVVbBdybp3mBoR2k}$0s-`u)q^wSspymD{FHEPzS zho@xXt#=z?)T#@LW#PO}#C^ds7jVN4_v-V0!L^yw)#C`0$2S)3LH63xK>*IsBn?@?=r9UIA5081QWu{})zQ%dgmYkQvP zj94Z#-Qrc@NDc69zHxIYTc*^ePZyy*IEN zD-c~Y;?hrY`c1IDlkdw~$k9+zQR2RNd50pvS2#xV#cc4!We4k=SPBk$MLFd2gu%?u zw&5ZCaFf@2tYWJaUV(ZoZ?n1mrq@bZ^e_F@+WmJUOB9m_Uul!|cqePSz4y|ULix6P ztx8`c?DnX8%MZUzC<1O4&f3*}O)al>LGg|^C{0xBuo;~Tc6T2Qi2ih*qv3_-!@NJL zytnhg@n|u{+kyGV-ooR#R}h7~HGKv$x5D{#kxda@V%lzJ z&lzqXz{`Wv^pZ04OLqXLOP?C2IWCZ^k{(;PR0t}Rg+3qYzZpPhzHnI#mb*W5i{-h$ z5=43!?6E*6I7|)9>HLl8R5+wrhd>;3UARBod{aT6x5@T3nPnDKbKDH_H2`Fe9fW?RQ1jf7+qupR%;4 zYZ<3EI~0uaGhJk+eUjEMvb!ul5xY=*V4hNyJ6RN(ujo@lMY?BxjWKNBE^%@E`gP+* zXN;tym5^Q0kxl~cZ5%;Vu@ztF7-mlSbi5t2l8dOpdM zz)kCE9sXMHI#wZHzIlcK8go!ZU8@j+k;_K9db*8^h5kuyacyad__4*j87GRxrSPr1vU|GB$I_q}{e7)z z%a<=ESIQ~us&Qu2%f1xrNEh1kDwdU1&Gv<7^u13;R&>!r4>L~W!=pLlg6N_D2DsH! zHU9^v|6hdr8Ul?`v4pxBptUu;Fy0sqZ*PbeT31I)Q(ePHT}?|<*9)z#j#2k9`u{Uf zDv03VP_BOn{RkDyAWZOi$iE@dFA9BLO;t-(#o1Nuy!v?v>i+=HA=IPLbjy+Y6mfgr@EAoA~+_b6cD`&c-g+XkRK9%6@`b6XmuK zS`&bN3i~s3U30mX6uYnA{c|;%9)p>Uy%j+pIS4x4r+TBaPJGX2iEF!lxGqp*3Oe=L zOcJAvF~p$Gm`$n%Brm9+{;{grI7QqH^n8+|1KQAeDbrx2o+JJy;8nmtz)*ld+be9_ zolNJoV|`)H{kDuj;`7`<4|WLoQ}1kK`>)wS-wOwzF5A8EI|8i2)b!DlW*fJFK~|qq zW5A2Wp-ba>>Pwy)H2JO@d*S6(YQ(BAy-Qt2dkQ^kO|X7D#t`uo^(%2!aa6)1Sf%~! z*dv;lSw3ojUDxbZJpI@iZ(pn6)GpTA-8@UG4@L>cnb8@6j>%mb4@>R^>Bt6+3VE)d zJue8u$9%#I61hlnXG+bXN(hc#5O{3=pd8IhgEu@wIc zISw+tUH6i29Bi5pOP^SIB zu`i1-CIXW1nT>eHN;HI71l$EJ-Nv#ucEPlst{@-}NVmsZnFqX-uqp!e0t`16d6X3CJ8s(efC@KrF<^NX|GXaf6BSZv{^Af(>!ihOKD;==~f+zcSOmbH~D$0-2mH5@VRS z@J1gE15w~A54)r5WC^t9pH^eIZtHU5H+$@g6e+Ck-Dn5$INEUi!WJ|NaU&_#|D}Zr zg<~?kJbkAu;10_q-$I(=UpL248huzVzSpr2{RMCCiL33fh^J^xc0ZTRvH&NthSZ2` zq>Y&iW<3jm7me;8>Ye)#CG`N*G5=SygAacxC!x?E#(@m)BOchu<<$cSq>Dship0S{ zC>=yUqXUW0R(p1?fsc^qjwi$S`d*lPQ#1tu=0TmZ5E7Q3AR8|vZU#GIoIRrUW`2i>QoD;d?%U)*gp-y+1{fmx`B<(I z!d!YraY1rJ_n)^s6mcE(9DGJ;=gHO3uDyED>O3`C4nn|6jnIaGG!l2nrTB|krr;#p z7fa$pu-Jk@h=q^AieN!7(=g=t3Z$UiEY*hWmasi#MYJUOhr}6}FN;vZbfj&C^K9DK zR_&s4%I#;9-#&kr|BMtdUwK^#l8NATKEawUM+Wtc%fNj&R(Rd;D?oLZjbk-%02B+> zY8_x8v7)beKkWnpZwUk3(szI5UH!Ya$@ZJWPho90Sk&yQy+Md%SUR;dazP0t2f4SH zQsq{}*aow;8hz-FWs@Jw){?5JH5PKW;OpH*iV$HWu8^+xjx;YTSnF^fFuug$PR9tE zC{I!fX?d^SK|+XpfExm0QBp4c)w5lnkX{Qf;izRtE7?|K zreb}9AYh+G07`%}7Y^^e+)}VYwif;QE@V3_7mh_qMIhUIaHvmm(IC{q&-6IL9-_S$=REg78)P_ttJ-Dq`N`(}d@Iaho-G2&Sbk$}jWSB?Q;Ga#I^vi#s;a*wN%GTf{4FO$q@ssYO zXNlXS4+USusWTSe_(r1>y1eJ#zK?eWqc6rFo6|_}`gzx7!8QwVz#Ipv<3@>3UrR^J zAezGd!zu`0u|JIe{md$Jf-?Aj^98QSn3x(zEY|U2C1r5Q`P_~SuXcGx3`#NoONFaq@Rd+jg8Y!XkR z)aJ+ZALo8Vh~V!+#169r1tidH2ij(-lVI+Jqc1`N0JOltQ6y-Qd@=bb&$%Dw@`^_F zrOWUi*hhU{N2Oh6O#`JU5cWlGXeVifb4OWp6VAnd=Bwx?(g~>AhPSv~&y@fxN@oXG z2~293$w6Jxd)Q*7Uy;H%NxD!QN)-E{frVV!meO%PBcW%PX^B1e&_EGzt;}C@UY2g+whK0YEuG9u9gzi{2weoSy=lnsC zMYv3pcZK40!`P*~n|tHxB@+$Tqi;SA^{Tw(u-~byUYJK+A6Xx^@!`e1q@JVL_+lWq zTxO^J?#2Zw!^RO+Wp&Nbz0%Ba|LS;Lr7bf1cI8ut;ipV~NA(IJtH%uHfuk=PY|<^_ z@_Rep+4bj6LU#8zQb(vr@oH!Ai*M;}raD1s@*7*w8rd0{u`FoHAWtGd?s`@M8qGA> zY!Q$eg->Y<6bdy)IcEs8C580DtixgHop(dvZSpCC)dr(86z}qCgM|lbE1X4c!9z*q zz!rf^uCg2YobgegnXI((kY!<2evxfzR?6M#1NsXc{=?>U`FmWj0M2-0)Kqw4yo4k} zGcy~=o7?JzXO*N1l`R3RXS&l`J)$J8FLqp5Ocoz(Akzf}_^4A8v8s>C(;_{aK~3bq zoK!wc$J?CHG=a^&bvF;od#8!VsELnrc18qFy;^VR%ZiJDnyAW-2@(^+ps!RPD7a?n znf520V|==+k@V6 zKOCLA-Tff^L@u`=8Fi9g=s6k(9=-H1+%b3cjb#Ut9BVx_?(wq2bPDD9($}Ixj~dUC z*^p8_GK5ckNZo2LH3W?oDr}rhO)~;*&{8Ye{61w==XH$+^#@P`C;=k@!vSvt-Z=yd zF^wl0$, there +exists $\de>0$ such that $p(U_{\de}(x))\subset U_{\epz}(p(x))$. + +Algebraic topology assigns discrete algebraic invariants to topological +spaces and continuous maps. More narrowly, one wants the algebra to be +invariant with respect to continuous deformations of the topology. +Typically, one associates a group $A(X)$ to a space $X$ and a homomorphism +$A(p): A(X)\rtarr A(Y)$ to a map $p: X\rtarr Y$; one usually writes $A(p) = p_*$. + +A ``homotopy'' $h:p\htp q$\index{homotopy} between maps $p,q: X\rtarr Y$ is a continuous +map $h: X\times I \rtarr Y$ such that $h(x,0)=p(x)$ and $h(x,1)=q(x)$, +where $I$ is the unit interval $[0,1]$. We usually want $p_*=q_*$ if +$p\htp q$, or some invariance property close to this. + +In oversimplified outline, the way homotopy theory works is roughly this. +\begin{enumerate} +\item One defines some algebraic construction $A$ and proves that it is +suitably homotopy invariant. +\item One computes $A$ on suitable spaces and maps. +\item One takes the problem to be solved and deforms it to the point that +step 2 can be used to solve it. +\end{enumerate} + +The further one goes in the subject, the more elaborate become the constructions +$A$ and the more horrendous become the relevant calculational techniques. This +chapter will give a totally self-contained paradigmatic illustration of the basic +philosophy. Our construction $A$ will be the ``fundamental group.'' We will calculate +$A$ on the circle $S^1$ and on some maps from $S^1$ to itself. We will then use the +computation to prove the ``Brouwer fixed point theorem'' and the ``fundamental +theorem of algebra.'' + +\section{The fundamental group} + +Let $X$ be a space. Two paths $f,g: I\rtarr X$ from $x$ to $y$ are +equivalent\index{equivalent!paths} +if they are homotopic through paths from $x$ to $y$. That is, there must exist +a homotopy $h:I\times I\rtarr X$ such that +$$h(s,0)=f(s), \ \ h(s,1)=g(s), \ \ h(0,t)=x, \ \tand \ h(1,t)=y$$ +for all $s,t\in I$. Write $[f]$ for the equivalence class of $f$. We say that +$f$ is a loop\index{loop} if $f(0)=f(1)$. Define $\pi_1(X,x)$\index{fundamental group|(} to +be the set of equivalence +classes of loops that start and end at $x$. + +For paths $f:x\to y$ and $g:y\to z$, define $g\cdot f$ to be the path +obtained by traversing first $f$ and then $g$, going twice as fast on each: +$$(g\cdot f)(s)= +\begin{cases} +f(2s) & \text{if $0\leq s\leq 1/2$} \\ +g(2s-1) & \text{if $1/2\leq s\leq 1$}. +\end{cases} +$$ +Define $f^{-1}$ to be $f$ traversed the other way around: $f^{-1}(s)=f(1-s)$. +Define $c_x$ to be the constant loop at $x$: $c_x(s)=x$. Composition of paths +passes to equivalence classes via $[g][f]=[g\cdot f]$. It is easy to check that +this is well defined. Moreover, after passage to equivalence classes, this +composition becomes associative and unital. It is easy enough to write down +explicit formulas for the relevant homotopies. It is more illuminating to draw a +picture of the domain squares and to indicate schematically how the +homotopies are to behave on it. In the following, we assume given paths +$$f:x\to y,\ \ \ g:y\to z,\ \tand \ \ h: z\to w.$$ + +$$h\cdot (g\cdot f) \htp (h\cdot g)\cdot f$$ +$$\diagram +\xline[0,4]^<(0.25)f ^<(0.65)g ^<(0.85)h \xline[4,0]_{c_x} + & & \xline[4,-1] & \xline[4,-1] & \xline[4,0]^{c_w} \\ + & & & & \\ + & & & & \\ + & & & & \\ +\xline[0,4]_<(0.15)f _<(0.35)g _<(0.75)h & & & & \\ +\enddiagram$$ + +$$f\cdot c_x \htp f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ c_y\cdot f\htp f$$ +$$\diagram +\rrline^f \ddline_{c_x} \ddrline & & \ddline^{c_y} & + & \rrline^f \ddline_{c_x} & & \ddline^{c_y} \ddlline\\ +& & & & & & \\ +\rrline_<(0.25){c_x} _<(0.75)f & & & & \rrline_<(0.25){f} _<(0.75){c_y} & & \\ +\enddiagram$$ +Moreover, $[f^{-1}\cdot f] = [c_x]$ and $[f\cdot f^{-1}]=[c_y]$. For the first, +we have the following schematic picture and corresponding formula. In the +schematic picture, +$$f_t=f|[0,t] \ \ \ \tand \ \ \ f^{-1}_t=f^{-1}|[1-t,1].$$ +$$\diagram +\xline[0,4]^<(0.25){f} ^<(0.75){f^{-1}} \xline[4,0]_{c_x} +& & \xline[4,-2] \xline[4,2] & & \xline[4,0]^{c_x} \\ +& & & & \\ +\xdotted[0,4]^<(0.15){f_t} ^<(0.5){c_{f(t)}} ^<(0.85){f^{-1}_t} & & & & \\ +& & & & \\ +\xline[0,4]_{c_x} & & & &\\ +\enddiagram$$ +$$h(s,t) = +\begin{cases} +f(2s) & \text{if $0\leq s\leq t/2$} \\ +f(t) & \text{if $t/2\leq s\leq 1-t/2$} \\ +f(2-2s) & \text{if $1-t/2\leq s\leq 1$.} +\end{cases} +$$ +We conclude that $\pi_1(X,x)$ is a group with identity element $e=[c_x]$ and +inverse elements $[f]^{-1}=[f^{-1}]$. It is called the fundamental +group\index{fundamental group|)} of +$X$, or the first homotopy group of $X$. There are higher homotopy groups $\pi_n(X,x)$ +defined in terms of maps $S^n\rtarr X$. We will get to them later. + +\section{Dependence on the basepoint} + +For a path $a: x\to y$, define $\ga [a]: \pi_1(X,x)\rtarr \pi_1(X,y)$ +by $\ga [a][f]=[a\cdot f\cdot a^{-1}]$. It is easy to check that $\ga [a]$ +depends only on the equivalence class of $a$ and is a homomorphism of groups. +For a path $b:y\to z$, we see that $\ga [b\cdot a]=\ga [b]\com \ga [a]$. It +follows that $\ga [a]$ is an isomorphism with inverse $\ga [a^{-1}]$. For +a path $b:y\to x$, we have $\ga[b\cdot a][f] = [b\cdot a][f][(b\cdot a)^{-1}]$. +If the group $\pi_1(X,x)$ happens to be Abelian, which may or may not be the +case, then this is just $[f]$. By taking $b=(a')^{-1}$ for another path +$a': x\to y$, we see that, when $\pi_1(X,x)$ is Abelian, $\ga [a]$ is +independent of the choice of the path class $[a]$. Thus, in this case, we have +a canonical way to identify $\pi_1(X,x)$ with $\pi_1(X,y)$. + +\section{Homotopy invariance} + +For a map $p: X\rtarr Y$, define $p_*: \pi_1(X,x)\rtarr \pi_1(Y,p(x))$ by +$p_*[f] = [p\com f]$, where $p\com f$ is the composite of $p$ with the loop +$f:I\rtarr X$. Clearly $p_*$ is a homomorphism. The identity map +$\id: X\rtarr X$ induces the identity homomorphism. For a map +$q: Y\rtarr Z$, $q_*\com p_* = (q\com p)_*$. + +Now suppose given two maps $p,q: X\rtarr Y$ and a homotopy $h: p\htp q$. +We would like to conclude that $p_*=q_*$, but this doesn't quite make sense +because homotopies needn't respect basepoints. However, the homotopy $h$ +determines the path $a: p(x)\to q(x)$ specified by $a(t)=h(x,t)$, and the +next best thing happens. + +\begin{prop} +The following diagram is commutative: +$$\diagram +& \pi_1(X,x) \dlto_{p_*} \drto^{q_*} & \\ +\pi_1(Y,p(x)) \rrto_{\ga [a]} & & \pi_1(Y,q(x)). \\ +\enddiagram$$ +\end{prop} +\begin{proof} +Let $f: I\rtarr X$ be a loop at $x$. We must show that $q\com f$ is +equivalent to $a\cdot (p\com f)\cdot a^{-1}$. It is easy to check that this is +equivalent to showing that $c_{p(x)}$ is equivalent to +$a^{-1}\cdot (q\com f)^{-1}\cdot a\cdot (p\com f)$. +Define $j: I\times I\rtarr Y$ by $j(s,t)=h(f(s),t)$. Then +$$j(s,0)=(p\com f)(s), \ \ \ j(s,1)=(q\com f)(s), \ \tand \ j(0,t)=a(t)=j(1,t).$$ +Note that $j(0,0)=p(x)$. Schematically, on the boundary of the square, $j$ is +$$\diagram +\rrline^{q\com f}|\tip & &\\ +& &\\ +\uuline^{a}|\tip \rrline_{p\com f}|\tip & & \uuline_{a}|\tip \\ +\enddiagram$$ +Thus, going counterclockwise around the boundary starting at $(0,0)$, we +traverse $a^{-1}\cdot (q\com f)^{-1}\cdot a\cdot (p\com f)$. The map $j$ induces +a homotopy through loops between this composite and $c_{p(x)}$. Explicitly, +a homotopy $k$ is given by $k(s,t)=j(r_t(s))$, where $r_t: I\rtarr I\times I$ +maps successive quarter intervals linearly onto the edges of the bottom left +subsquare of $I\times I$ with edges of length $t$, starting at $(0,0)$: +$$\diagram +\rrline \ddline|<(0.75)\tip & & \ddline \\ +& \lline|\tip & \\ +\rrline|<(0.25)\tip & \uline|\tip & \\ +\enddiagram$$ +\end{proof} + +\section{Calculations: $\pi_1(\bR )=0$ and $\pi_1(S^1)=\bZ$} + +Our first calculation is rather trivial. We take the origin $0$ as a convenient +basepoint for the real line $\bR$. + +\begin{lem} +$\pi_1(\bR,0)=0$. +\end{lem} +\begin{proof} +Define $k: \bR\times I\rtarr \bR$ by $k(s,t)=(1-t)s$. Then $k$ is a homotopy +from the identity to the constant map at $0$. For a loop $f: I\rtarr \bR$ at +$0$, define $h(s,t)=k(f(s),t)$. The homotopy $h$ shows that $f$ is equivalent +to $c_0$. +\end{proof} + +Consider the circle $S^1$ to be the set of complex numbers $x=y+iz$ of norm $1$, +$y^2+z^2=1$. Observe that $S^1$ is a group under multiplication of complex +numbers. It is a topological group: multiplication is a continuous function.\index{topological +group} +We take the identity element $1$ as a convenient basepoint for $S^1$. + +\begin{thm} +$\pi_1(S^1,1)\iso \bZ$. +\end{thm} +\begin{proof} +For each integer $n$, define a loop $f_n$ in $S^1$ by $f_n(s)=e^{2\pi ins}$. This is +the composite of the map $I\rtarr S^1$ that sends $s$ to $e^{2\pi is}$ and the $n$th +power map on $S^1$; if we identify the boundary points $0$ and $1$ of $I$, then the +first map induces the evident identification of $I/\pa I$ with $S^1$. It is easy +to check that $[f_m][f_n]=[f_{m+n}]$, and we define a homomorphism +$i:\bZ\rtarr \pi_1(S^1,1)$ by $i(n)=[f_n]$. We claim that $i$ is +an isomorphism. The idea of the proof is to use the +fact that, locally, $S^1$ looks just like $\bR$. + +Define $p: \bR\rtarr S^1$ by +$p(s)=e^{2\pi i s}$. Observe that $p$ wraps each interval $[n,n+1]$ around +the circle, starting at $1$ and going counterclockwise. Since the +exponential function converts addition to multiplication, we easily check that +$f_n=p\com \tilde{f}_n$, where $\tilde{f}_n$ is the path in $\bR$ defined by +$\tilde{f}_n(s)=sn$. + +This lifting of paths works generally. For any path +$f:I\rtarr S^1$ with $f(0)=1$, there is a unique path $\tilde{f}:I\rtarr\bR$ +such that $\tilde{f}(0)=0$ and $p\com \tilde{f}=f$. To see this, observe that +the inverse image in $\bR$ of any small connected neighborhood in $S^1$ is a +disjoint union of a copy of that neighborhood contained in each interval $(r+n,r+n+1)$ for +some $r\in [0,1)$. Using the fact that $I$ is compact, we see that we can +subdivide $I$ into finitely many closed subintervals such that $f$ carries each +subinterval into one of these small connected neighborhoods. Now, proceeding +subinterval by subinterval, we obtain the required unique lifting of $f$ by +observing that the lifting on each subinterval is uniquely determined by the +lifting of its initial point. + +Define a function $j:\pi_1(S^1,1)\rtarr \bZ$ by +$j[f]=\tilde{f}(1)$, the endpoint of the lifted path. This is an integer +since $p(\tilde{f}(1)) =1$. We must show that this integer is independent +of the choice of $f$ in its path class $[f]$. In fact, if we have a homotopy +$h: f\htp g$ through loops at $1$, then the homotopy lifts uniquely to a +homotopy $\tilde{h}: I\times I\rtarr \bR$ such that $\tilde{h}(0,0)=0$ and +$p\com \tilde{h}=h$. The argument is just the same as for $\tilde{f}$: we use +the fact that $I\times I$ is compact to subdivide it into finitely many subsquares +such that $h$ carries each into a small connected neighborhood in $S^1$. We then +construct the unique lift $\tilde{h}$ by proceeding subsquare by subsquare, starting +at the lower left, say, and proceeding upward one row of squares at a time. By +the uniqueness of lifts of paths, which works just as well for paths with any +starting point, $c(t)=\tilde{h}(0,t)$ and $d(t)=\tilde{h}(1,t)$ specify +constant paths since $h(0,t)=1$ and $h(1,t)=1$ for all $t$. Clearly $c$ is +constant at $0$, so, again by the uniqueness of lifts of paths, we must have +$$\tilde{f}(s)=\tilde{h}(s,0) \ \ \ \tand \ \ \ \tilde{g}(s)=\tilde{h}(s,1).$$ +But then our second constant path $d$ starts at $\tilde{f}(1)$ and ends at +$\tilde{g}(1)$. + +Since $j[f_n]=n$ by our explicit formula for $\tilde{f}_n$, +the composite $j\com i:\bZ\rtarr \bZ$ is the identity. It suffices to +check that the function $j$ is one-to-one, since then both $i$ and $j$ will be +one-to-one and onto. Thus suppose that $j[f]=j[g]$. This means that +$\tilde{f}(1)=\tilde{g}(1)$. Therefore $\tilde{g}^{-1}\cdot \tilde{f}$ is a +loop at $0$ in $\bR$. By the lemma, $[\tilde{g}^{-1}\cdot \tilde{f}]=[c_0]$. +It follows upon application of $p_*$ that +$$[g^{-1}][f]=[g^{-1}\cdot f]=[c_1].$$ +Therefore $[f]=[g]$ and the proof is complete. +\end{proof} + +\section{The Brouwer fixed point theorem} + +Let $D^2$ be the unit disk $\{ y+iz| y^2+z^2\leq 1\}$. Its boundary is $S^1$, +and we let $i: S^1\rtarr D^2$ be the inclusion. Exactly as for $\bR$, we see that +$\pi_1(D^2)=0$ for any choice of basepoint. + +\begin{prop} +There is no continuous map $r: D^2\rtarr S^1$ such that $r\com i=\id$. +\end{prop} +\begin{proof} +If there were such a map $r$, then the composite homomorphism +$$\diagram +\pi_1(S^1,1)\rto^<(0.2){i_*} & \pi_1(D^2,1) \rto^<(0.2){r_*} & \pi_1(S^1,1) \\ +\enddiagram$$ +would be the identity. Since the identity homomorphism of $\bZ$ does not factor +through the zero group, this is impossible. +\end{proof} + +\begin{thm}[Brouwer fixed point theorem]\index{Brouwer fixed point theorem} +Any continuous map +$$f: D^2\rtarr D^2$$ +has a fixed point. +\end{thm} +\begin{proof} +Suppose that $f(x)\neq x$ for all $x$. Define $r(x)\in S^1$ to be the +intersection with $S^1$ of the ray that starts at $f(x)$ and passes through $x$. +Certainly $r(x)=x$ if $x\in S^1$. By writing an equation for $r$ in terms of $f$, +we see that $r$ is continuous. This contradicts the proposition. +\end{proof} + +\section{The fundamental theorem of algebra} + +Let $\io\in\pi_1(S^1,1)$ be a generator. For a map $f: S^1\rtarr S^1$, define +an integer $\text{deg}(f)$\index{degree of a map} by letting the composite +$$\diagram +\pi_1(S^1,1)\rto^<(0.2){f_*} & \pi_1(S^1,f(1)) \rto^{\ga [a]} & \pi_1(S^1,1) \\ +\enddiagram$$ +send $\io$ to $\text{deg}(f)\io$. Here $a$ is any path $f(1)\to 1$; $\ga [a]$ is +independent of the choice of $[a]$ since $\pi_1(S^1,1)$ is Abelian. If $f\htp g$, +then $\text{deg}(f)=\text{deg}(g)$ by our homotopy invariance diagram and this independence of +the choice of path. Conversely, our calculation of $\pi_1(S^1,1)$ implies that if +$\text{deg}(f)=\text{deg}(g)$, then $f\htp g$, but we will not need that for the moment. It is +clear that $\text{deg}(f)=0$ if $f$ is the constant map at some point. It is also clear that if +$f_n(x)=x^n$, then $\text{deg}(f_n)=n$: we built that fact into our proof that $\pi_1(S^1,1)=\bZ$. + +\begin{thm}[Fundamental theorem of algebra]\index{fundamental theorem!of algebra} Let +$$f(x) = x^n+c_1x^{n-1}+\cdots + c_{n-1}x + c_n$$ +be a polynomial with complex coefficients $c_i$, where $n>0$. Then there is a +complex number $x$ such that $f(x)=0$. Therefore there are $n$ such complex +numbers (counted with multiplicities). +\end{thm} +\begin{proof} +Using $f(x)/(x-c)$ for a root $c$, we see that the last statement will follow +by induction from the first. We may as well assume that $f(x)\neq 0$ for +$x\in S^1$. This allows us to define $\hat{f}: S^1\rtarr S^1$ by +$\hat{f}(x)=f(x)/|f(x)|$. We proceed to calculate $\text{deg}(\hat{f})$. +Suppose first that $f(x)\neq 0$ for all $x$ such that $|x|\leq 1$. +This allows us to define $h: S^1\times I\rtarr S^1$ by $h(x,t)=f(tx)/|f(tx)|$. +Then $h$ is a homotopy from the constant map at $f(0)/|f(0)|$ to $\hat{f}$, +and we conclude that $\deg(\hat{f})=0$. Suppose next that $f(x)\neq 0$ for all +$x$ such that $|x|\geq 1$. This allows us to define $j:S^1\times I\rtarr S^1$ by +$j(x,t)=k(x,t)/|k(x,t)|$, where +$$k(x,t)=t^nf(x/t)=x^n+t(c_1x^{n-1}+tc_2x^{n-2}+\cdots +t^{n-1}c_n).$$ +Then $j$ is a homotopy from $f_n$ to $\hat{f}$, and we conclude that +$\deg(\hat{f})=n$. One of our suppositions had better be false! +\end{proof} + +It is to be emphasized how technically simple this is, requiring nothing remotely +as deep as complex analysis. Nevertheless, homotopical proofs like this are +relatively recent. Adequate language, elementary as it is, was not developed +until the 1930s. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Let $p$ be a polynomial function on $\bC$ which has no root on $S^1$. +Show that the number of roots of $p(z) = 0$ with $|z| < 1$ is the degree +of the map $\hat{p}: S^1\rtarr S^1$ specified by $\hat{p}(z) = p(z)/|p(z)|$. +\item Show that any map $f: S^1 \rtarr S^1$ such that $\text{deg}(f)\neq 1$ has +a fixed point. +\item Let $G$ be a topological group and take its identity element $e$ as its basepoint. +Define the pointwise product of loops $\al$ and $\be$ by $(\al\be)(t) = \al (t)\be (t)$. +Prove that $\al\be$ is equivalent to the composition of paths $\be\cdot\al$. +Deduce that $\pi_1(G,e)$ is Abelian. +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Categorical language and the van Kampen theorem} + +We introduce categorical language and ideas and use them to prove the van Kampen +theorem. This method of computing fundamental groups illustrates the general principle +that calculations in algebraic topology usually work by piecing together a few pivotal +examples by means of general constructions or procedures. + +\section{Categories} + +Algebraic topology concerns mappings from topology to algebra. Category theory gives +us a language to express this. We just record the basic terminology, without being +overly pedantic about it. + +A category\index{category} $\sC$ consists of a collection of objects, a set $\sC(A,B)$ of +morphisms (also called maps) between +any two objects, an identity morphism $\id_A\in\sC(A,A)$ for each object $A$ (usually +abbreviated $\id$), and a composition law +$$\com : \sC (B,C)\times\sC (A,B)\rtarr \sC (A,C)$$ +for each triple of objects $A$, $B$, $C$. Composition must be associative, and identity +morphisms must behave as their names dictate: +$$h\com (g\com f)=(h\com g)\com f,\ \ \ \id\com f =f, \ \tand \ f\com\id=f$$ +whenever the specified composites are defined. A category is ``small''\index{category!small} if +it has a set of objects. + +We have the category $\sS$ of sets and functions, the category $\sU$\index{U@$\sU$} of +topological spaces and continuous functions, the category $\sG$ of groups and homomorphisms, the +category $\sA b$ of Abelian groups and homomorphisms, and so on. + +\section{Functors} + +A functor\index{functor} $F:\sC \rtarr \sD$ is a map of categories. It assigns an object +$F(A)$ of $\sD$ +to each object $A$ of $\sC$ and a morphism $F(f):F(A)\rtarr F(B)$ of $\sD$ to each morphism +$f:A\rtarr B$ of $\sC$ in such a way that +$$F(\id_A)=\id_{F(A)} \ \ \tand \ \ F(g\com f)=F(g)\com F(f).$$ +More precisely, this is a covariant functor\index{functor!covariant}. A contravariant +functor\index{functor!contravariant} $F$ reverses the +direction of arrows, so that $F$ sends $f:A\rtarr B$ to $F(f):F(B)\rtarr F(A)$ and +satisfies $F(g\com f)=F(f)\com F(g)$. A category $\sC$ has an +opposite category\index{category!opposite} +$\sC^{op}$ with the same objects and with $\sC^{op}(A,B)=\sC(B,A)$. A contravariant +functor $F:\sC\rtarr \sD$ is just a covariant functor $\sC^{op}\rtarr \sD$. + +For example, we have forgetful functors from spaces to sets and from Abelian groups +to sets, and we have the free Abelian group functor from sets to Abelian groups. + +\section{Natural transformations} + +A natural transformation\index{natural transformation} +$\al: F\rtarr G$ between functors $\sC\rtarr \sD$ is a map +of functors. It consists of a morphism $\al_A: F(A)\rtarr G(A)$ for each object $A$ of $\sC$ +such that the following diagram commutes for each morphism $f:A\rtarr B$ of $\sC$: +$$\diagram +F(A) \rto^{F(f)} \dto_{\al_A} & F(B) \dto^{\al_B}\\ +G(A) \rto_{G(f)} & G(B).\\ +\enddiagram$$ +Intuitively, the maps $\al_A$ are defined in the same way for every $A$. + +For example, if $F:\sS\rtarr \sA b$ is the functor that sends a set to the free +Abelian group that it generates and $U:\sA b\rtarr \sS$ is the forgetful functor +that sends an Abelian group to its underlying set, then we have a natural inclusion of +sets $S\rtarr UF(S)$. The functors $F$ and $U$ are left adjoint and right +adjoint\index{functor!adjoint}\index{adjoint functors} to each +other, in the sense that we have a natural isomorphism +$$\sA b(F(S),A)\iso \sS(S,U(A))$$ +for a set $S$ and an Abelian group $A$. This just expresses +the ``universal property''\index{universal property} of +free objects: a map of sets $S\rtarr U(A)$ extends uniquely to a homomorphism of groups +$F(S)\rtarr A$. Although we won't bother with a formal definition, the notion of an +adjoint pair of functors will play an important role later on. + +Two categories $\sC$ and $\sD$ are equivalent\index{equivalent!categories} if there are +functors $F:\sC\rtarr \sD$ +and $G:\sD\rtarr \sC$ and natural isomorphisms $FG\rtarr \Id$ and $GF\rtarr \Id$, +where the $\Id$ are the respective identity functors. + +\section{Homotopy categories and homotopy equivalences} + +Let $\sT$\index{T@$\sT$} be the category of spaces $X$ with a chosen basepoint $x\in X$; its +morphisms are continuous maps $X\rtarr Y$ that carry the basepoint of $X$ to the basepoint of $Y$. +The fundamental group specifies a functor $\sT\rtarr\sG$, where $\sG$ is the category of +groups and homomorphisms. + +When we have a (suitable) relation of homotopy between maps in a category $\sC$, we define +the homotopy category\index{category!homotopy}\index{homotopy category} $h\sC$ to be the +category with the same objects as $\sC$ but with +morphisms the homotopy classes of maps. We have the homotopy category $h\sU$ of unbased +spaces. On $\sT$, we require homotopies to map basepoint to basepoint at all times $t$, +and we obtain the homotopy category $h\sT$ of based spaces. The fundamental group is a +homotopy invariant functor\index{functor!homotopy invariant} on $\sT$, in the sense that it +factors through a functor $h\sT\rtarr \sG$. + +A homotopy equivalence\index{homotopy equivalence} in $\sU$ is an isomorphism in $h\sU$. Less +mysteriously, a map +$f:X\rtarr Y$ is a homotopy equivalence if there is a map $g: Y\rtarr X$ such that +both $g\com f\htp \id$ and $f\com g\htp \id$. Working in $\sT$, we obtain the +analogous notion of a based homotopy equivalence. Functors carry isomorphisms to +isomorphisms, so we see that a based homotopy equivalence induces an isomorphism +of fundamental groups. The same is true, less obviously, for unbased homotopy equivalences. + +\begin{prop} +If $f: X\rtarr Y$ is a homotopy equivalence, then +$$f_*:\pi_1(X,x)\rtarr \pi_1(Y,f(x))$$ +is an isomorphism for all $x\in X$. +\end{prop} +\begin{proof} +Let $g:Y\rtarr X$ be a homotopy inverse of $f$. By our homotopy invariance diagram, we +see that the composites +$$\pi_1(X,x)\overto{f_*} \pi_1(Y,f(x)) \overto{g_*} \pi_1(X,(g\com f)(x))$$ +and +$$\pi_1(Y,y)\overto{g_*} \pi_1(X,g(y)) \overto{f_*} \pi_1(Y,(f\com g)(y))$$ +are isomorphisms determined by paths between basepoints given by chosen homotopies +$g\com f\htp\id$ and $f\com g\htp\id$. Therefore, in each displayed composite, the +first map is a monomorphism and the second is an epimorphism. Taking $y=f(x)$ in +the second composite, we see that the second map in the first composite is an +isomorphism. Therefore so is the first map. +\end{proof} + +A space $X$ is said to be contractible\index{contractible space} if it is homotopy +equivalent to a point. + +\begin{cor} +The fundamental group of a contractible space is zero. +\end{cor} + +\section{The fundamental groupoid} + +While algebraic topologists often concentrate on connected spaces with chosen basepoints, +it is valuable to have a way of studying fundamental groups that does not require such +choices. For this purpose, we define the ``fundamental groupoid''\index{fundamental groupoid} +$\PI(X)$ of a space $X$ to be the category whose objects are the points of $X$ and whose +morphisms $x\rtarr y$ +are the equivalence classes of paths from $x$ to $y$. Thus the set of endomorphisms of +the object $x$ is exactly the fundamental group $\pi_1(X,x)$. + +The term ``groupoid''\index{groupoid} is used for a category all morphisms of which are +isomorphisms. +The idea is that a group may be viewed as a groupoid with a single object. Taking morphisms +to be functors, we obtain the category $\sG\sP$ of groupoids. Then we may view $\PI$ as a +functor $\sU\rtarr \sG\sP$. + +There is a useful notion of a skeleton\index{skeleton!of a category} $sk\sC$ of a category $\sC$. +This is a ``full'' subcategory \index{full subcategory} with one object from each isomorphism +class of objects of $\sC$, ``full'' meaning +that the morphisms between two objects of $sk\sC$ are all of the morphisms between these +objects in $\sC$. The inclusion functor $J: sk\sC\rtarr \sC$ is an +equivalence of categories. An inverse functor $F:\sC\rtarr sk\sC$ is obtained by letting +$F(A)$ be the unique object in $sk\sC$ that is isomorphic to $A$, choosing an isomorphism +$\al_A: A\rtarr F(A)$, and defining $F(f)=\al_B\com f\com\al_A^{-1}:F(A)\rtarr F(B)$ for +a morphism $f:A\rtarr B$ in $\sC$. We choose $\al$ to be the identity morphism if $A$ is +in $sk\sC$, and then $FJ=\Id$; the $\al_A$ specify a natural isomorphism $\al:\Id\rtarr JF$. + +A category $\sC$ is said to be connected\index{category!connected} if any two of its objects +can be connected by a sequence of morphisms. For example, a sequence $A \longleftarrow B \rtarr C$ +connects $A$ to $C$, although there need be no morphism $A\rtarr C$. However, a groupoid $\sC$ is +connected if and only if any two of its objects are isomorphic. The group of endomorphisms of +any object $C$ is then a skeleton of $\sC$. Therefore the previous paragraph specializes to give +the following relationship between the fundamental group and the fundamental groupoid of a +path connected space $X$. + +\begin{prop} Let $X$ be a path connected space. For each point $x\in X$, the inclusion +$\pi_1(X,x)\rtarr \PI(X)$ is an equivalence of categories. +\end{prop} +\begin{proof} +We are regarding $\pi_1(X,x)$ as a category with a single object $x$, and it is a +skeleton of $\PI(X)$. +\end{proof} + +\section{Limits and colimits} + +Let $\sD$ be a small category and let $\sC$ be any category. A $\sD$-shaped diagram +in $\sC$ is a functor $F:\sD\rtarr \sC$. A morphism $F\rtarr F'$ of $\sD$-shaped +diagrams\index{diagram!$\sD$-shaped} is a natural transformation, and we have the +category $\sD[\sC]$ of $\sD$-shaped +diagrams in $\sC$. Any object $C$ of $\sC$ determines the constant diagram $\ul{C}$ that +sends each object of $\sD$ to $C$ and sends each morphism of $\sD$ to the identity +morphism of $C$. + +The colimit, $\colim F$,\index{colimit} of a $\sD$-shaped diagram $F$ is an object of $\sC$ +together with a morphism of diagrams $\io: F\rtarr \ul{\colim F}$ that is +initial among all such morphisms. This means that if $\et: F\rtarr \ul A$ is +a morphism of diagrams, then there is a unique map $\tilde{\et}: \colim F\rtarr A$ +in $\sC$ such that $\tilde{\eta}\com \io=\et$. Diagrammatically, this property +is expressed by the assertion that, for each map $d:D\rtarr D'$ in $\sD$, we have a +commutative diagram +$$\diagram +F(D)\rrto^{F(d)} \drto_{\io} \ddrto_{\et} && F(D') \dlto^{\io} \ddlto^{\et}\\ + & \colim F \dto^{\tilde{\et}} & \\ + & A. &\\ +\enddiagram$$ + +The limit\index{limit} of $F$ is defined by reversing arrows: it is an object $\lim F$ of $\sC$ +together with a morphism of diagrams $\pi: \ul{\lim F}\rtarr F $ that is +terminal among all such morphisms. This means that if $\epz: \ul A\rtarr F$ is +a morphism of diagrams, then there is a unique map $\tilde{\epz}: A\rtarr\lim F$ +in $\sC$ such that $\pi\com\tilde{\epz}=\epz$. Diagrammatically, this property +is expressed by the assertion that, for each map $d:D\rtarr D'$ in $\sD$, we have a +commutative diagram +$$\diagram +F(D)\rrto^{F(d)} && F(D') \\ + & \lim F \ulto^{\pi} \urto_{\pi} & \\ + & A. \uto_{\tilde{\epz}} \uulto^{\epz} \uurto_{\epz} &\\ +\enddiagram$$ + +If $\sD$ is a set regarded as a discrete category\index{category!discrete} (only identity +morphisms), then +colimits and limits indexed on $\sD$ are coproducts\index{coproduct} and products\index{product} +indexed on the set $\sD$. +Coproducts are disjoint unions in $\sS$ or $\sU$, wedges (or one-point unions)\index{wedge} in +$\sT$, free products in $\sG$, and direct sums in $\sA b$. Products are Cartesian products in +all of these categories; more precisely, they are Cartesian products of underlying sets, +with additional structure. If $\sD$ is the category displayed schematically as +$$\diagram +e & d \lto \rto & f & \text{or} & d \rto<.5ex> \rto<-.5ex> & d',\\ +\enddiagram$$ +where we have displayed all objects and all non-identity morphisms, then the co\-limits +indexed on $\sD$ are called pushouts\index{pushout} or coequalizers\index{coequalizer}, +respectively. Similarly, if $\sD$ is +displayed schematically as +$$\diagram +e \rto & d & f \lto & \text{or} & d \rto<.5ex> \rto<-.5ex> & d',\\ +\enddiagram$$ +then the limits indexed on $\sD$ are called pullbacks\index{pullback} or +equalizers,\index{equalizer} respectively. + +A given category may or may not have all colimits, and it may have some but not others. +A category is said to be cocomplete\index{category!cocomplete} if it has all colimits, +complete\index{category!complete} if it has all +limits. The categories $\sS$, $\sU$, $\sT$, $\sG$, and $\sA b$ are complete and cocomplete. +If a category has coproducts and coequalizers, then it is cocomplete, and similarly for +completeness. The proof is a worthwhile exercise. + +\section{The van Kampen theorem} + +The following is a modern dress treatment of the van Kampen theorem. I should admit that, +in lecture, it may make more sense not to introduce the fundamental groupoid and to +go directly to the fundamental group statement. The direct proof is shorter, but +not as conceptual. However, as far as I know, the deduction of the fundamental group version +of the van Kampen theorem from the fundamental groupoid version does not appear in the literature +in full generality. The proof well illustrates how to manipulate colimits formally. We have used +the van Kampen theorem as an excuse to introduce some basic categorical language, and we shall use +that language heavily in our treatment of covering spaces in the next chapter. + +\begin{thm}[van Kampen]\index{van Kampen theorem|(} +Let $\sO=\sset{U}$ be a cover of a space $X$ by path connected open subsets such that +the intersection of finitely many subsets in $\sO$ is again in $\sO$. Regard $\sO$ as +a category whose morphisms are the inclusions of subsets and observe that the functor +$\PI$, restricted to the spaces and maps in $\sO$, gives a diagram +$$\PI|\sO: \sO\rtarr \sG\sP$$ +of groupoids. The groupoid $\PI(X)$ is the colimit of this diagram. In symbols, +$$\PI (X) \iso \colim_{U\in\sO} \PI(U).$$ +\end{thm} +\begin{proof} +We must verify the universal property. For a groupoid $\sC$ and a map +$\et: \PI|\sO\rtarr \ul{\sC}$ of $\sO$-shaped diagrams of groupoids, we must +construct a map $\tilde{\et}: \PI(X)\rtarr \sC$ of groupoids that restricts to $\et_U$ on +$\PI(U)$ for each $U\in\sO$. On objects, that is on points of $X$, we must define +$\tilde{\et}(x)=\et_U(x)$ for $x\in U$. This is independent of the choice of $U$ +since $\sO$ is closed under finite intersections. If a path $f:x\to y$ lies entirely +in a particular $U$, then we must define $\tilde{\et}[f]=\et([f])$. Again, since $\sO$ +is closed under finite intersections, this specification is independent of the choice +of $U$ if $f$ lies entirely in more than one $U$. Any path $f$ is the composite of +finitely many paths $f_i$, each of which does lie in a single $U$, and we must +define $\tilde{\et}[f]$ to be the composite of the $\tilde{\et}[f_i]$. Clearly this +specification will give the required unique map $\tilde{\et}$, provided that $\tilde{\et}$ +so specified is in fact well defined. Thus suppose that $f$ is equivalent to $g$. The +equivalence is given by a homotopy $h:f\htp g$ through paths $x\to y$. We may subdivide +the square $I\times I$ into subsquares, each of which is mapped into one of the $U$. +We may choose the subdivision so that the resulting subdivision of $I\times\sset{0}$ refines the +subdivision used to decompose $f$ as the composite of paths $f_i$, and similarly for $g$ and +the resulting subdivision of $I\times\sset{1}$. We see that the relation $[f]=[g]$ in $\PI(X)$ is +a consequence of a finite number of relations, each of which holds in one of the $\PI(U)$. +Therefore $\tilde\et([f])=\tilde\eta([g])$. This verifies the universal property and proves +the theorem. +\end{proof} + +The fundamental group version of the van Kampen theorem ``follows formally.'' That +is, it is an essentially categorical consequence of the version just proved. Arguments +like this are sometimes called proof by categorical nonsense. + +\begin{thm}[van Kampen]\index{van Kampen theorem|)} +Let $X$ be path connected and choose a basepoint $x\in X$. Let $\sO$ +be a cover of $X$ by path connected open subsets such that the intersection of finitely +many subsets in $\sO$ is again in $\sO$ and $x$ is in each $U\in\sO$. Regard $\sO$ as +a category whose morphisms are the inclusions of subsets and observe that the functor +$\pi_1(-,x)$, restricted to the spaces and maps in $\sO$, gives a diagram +$$\pi_1|\sO: \sO\rtarr \sG$$ +of groups. The group $\pi_1(X,x)$ is the colimit of this diagram. In symbols, +$$\pi_1(X,x) \iso \colim_{U\in\sO} \pi_1(U,x).$$ +\end{thm} + +We proceed in two steps. + +\begin{lem} The van Kampen theorem holds when the cover $\sO$ is finite. +\end{lem} +\begin{proof} This step is based on the nonsense above about skeleta of categories. +We must verify the universal property, this time in the category of groups. For a group $G$ +and a map $\et: \pi_1|\sO\rtarr \ul{G}$ of $\sO$-shaped diagrams of groups, we must show +that there is a unique homomorphism $\tilde{\et}: \pi_1(X,x)\rtarr G$ that restricts to +$\et_U$ on $\pi_1(U,x)$. Remember that we think of a group as a groupoid with a single +object and with the elements of the group as the morphisms. The inclusion of categories +$J: \pi_1(X,x)\rtarr \PI(X)$ is an equivalence. An inverse equivalence $F: \PI(X)\rtarr \pi_1(X,x)$ +is determined by a choice of path classes $x\rtarr y$ for $y\in X$; we choose $c_x$ when +$y=x$ and so ensure that $F\com J = \Id$. Because the cover $\sO$ is finite and closed +under finite intersections, we can choose our paths inductively so that the path $x\rtarr y$ +lies entirely in $U$ whenever $y$ is in $U$. This ensures that the chosen paths determine +compatible inverse equivalences +$F_U: \PI(U)\rtarr \pi_1(U,x)$ to the inclusions $J_U: \pi_1(U,x)\rtarr \PI(U)$. Thus the functors +$$\diagram +\PI(U)\rto^{F_U} & \pi_1(U,x) \rto^(0.6){\et_U} & G +\enddiagram$$ +specify an $\sO$-shaped diagram of groupoids $\PI|\sO\rtarr \ul{G}$. By the fundamental groupoid +version of the van Kampen theorem, there is a unique map of groupoids +$$\xi: \PI(X)\rtarr G$$ +that restricts to $\et_U\com F_U$ on $\PI(U)$ for each $U$. The composite +$$\diagram +\pi_1(X,x)\rto^{J} & \PI(X)\rto^(0.6){\xi} & G +\enddiagram$$ +is the required homomorphism $\tilde{\et}$. It restricts to $\et_U$ on $\pi_1(U,x)$ +by a little ``diagram chase'' and the fact that $F_U\com J_U=\Id$. It is unique because +$\xi$ is unique. In fact, if we are given $\tilde{\et}: \pi_1(X,x)\rtarr G$ that restricts +to $\et_U$ on each $\pi_1(U,x)$, then $\tilde{\et}\com F:\PI(X)\rtarr G$ restricts to +$\et_U\com F_U$ on each $\PI(U)$; therefore $\xi = \tilde{\et}\com F$ and thus +$\xi\com J = \tilde\et$. +\end{proof} + +\begin{proof}[Proof of the van Kampen theorem] +We deduce the general case from the case just proved. Let $\sF$ be the set of those finite +subsets of the cover $\sO$ that are closed under finite intersection. For $\sS\in \sF$, +let $U_{\sS}$ be the union of the $U$ in $\sS$. Then $\sS$ is a cover of $U_{\sS}$ to +which the lemma applies. Thus +$$ \colim_{U\in\sS}\pi_1(U,x)\iso \pi_1(U_{\sS},x).$$ +Regard $\sF$ as a category with a morphism $\sS\rtarr \sT$ whenever $U_{\sS}\subset U_{\sT}$. +We claim first that +$$\colim_{\sS\in\sF}\pi_1(U_{\sS},x)\iso \pi_1(X,x).$$ +In fact, by the usual subdivision argument, any loop $I\rtarr X$ and any +equivalence $h: I\times I\rtarr X$ between loops has image in some $U_{\sS}$. +This implies directly that $\pi_1(X,x)$, together with the homomorphisms +$\pi_1(U_{\sS},x)\rtarr \pi_1(X,x)$, has the universal property that characterizes +the claimed colimit. We claim next that +$$\colim_{U\in\sO}\pi_1(U,x)\iso \colim_{\sS\in\sF}\pi_1(U_{\sS},x),$$ +and this will complete the proof. Substituting in the colimit on the right, we have +$$\colim_{\sS\in\sF}\pi_1(U_{\sS},x)\iso \colim_{\sS\in\sF}\colim_{U\in\sS}\pi_1(U,x).$$ +By a comparison of universal properties, this iterated colimit is isomorphic to the single +colimit +$$\colim_{(U,\sS)\in (\sO,\sF)}\pi_1(U,x).$$ +Here the indexing category $(\sO,\sF)$ has objects the pairs $(U,\sS)$ with $U\in \sS$; there +is a morphism $(U,\sS)\rtarr (V,\sT)$ whenever both $U\subset V$ and $U_{\sS}\subset U_{\sT}$. +A moment's reflection on the relevant universal properties should convince the reader of the +claimed identification of colimits: the system on the right differs from the system on the left +only in that the homomorphisms $\pi_1(U,x)\rtarr \pi_1(V,x)$ occur many times in the system +on the right, each appearance making the same contribution to the colimit. If we assume known +a priori that colimits of groups exist, we can formalize this as follows. We have a functor +$\sO\rtarr \sF$ that sends $U$ to the singleton set $\sset{U}$ and thus a functor +$\sO\rtarr (\sO,\sF)$ that sends $U$ to $(U,\sset{U})$. The functor $\pi_1(-,x):\sO\rtarr \sG$ +factors through $(\sO,\sF)$, hence we have an induced map of colimits +$$\colim_{U\in\sO}\pi_1(U,x)\rtarr \colim_{(U,\sS)\in (\sO,\sF)}\pi_1(U,x).$$ +Projection to the first coordinate gives a functor $(\sO,\sF)\rtarr \sO$. Its composite with +$\pi_1(-,x):\sO\rtarr \sG$ defines the colimit on the right, hence we have an induced map of +colimits +$$\colim_{(U,\sS)\in (\sO,\sF)}\pi_1(U,x)\rtarr \colim_{U\in\sO}\pi_1(U,x).$$ +These maps are inverse isomorphisms. +\end{proof} + +\section{Examples of the van Kampen theorem} + +So far, we have only computed the fundamental groups of the circle and of contractible +spaces. The van Kampen theorem lets us extend these calculations. We now drop notation +for the basepoint, writing $\pi_1(X)$ instead of $\pi_1(X,x)$. + +\begin{prop} +Let $X$ be the wedge of a set of path connected based spaces $X_i$, each of which +contains a contractible neighborhood $V_i$ of its basepoint. Then $\pi_1(X)$ is the +coproduct (= free product)\index{free product} of the groups $\pi_1(X_i)$. +\end{prop} +\begin{proof} +Let $U_i$ be the union of $X_i$ and the $V_j$ for $j\neq i$. We apply the van Kampen +theorem with $\sO$ taken to be the $U_i$ and their finite intersections. Since any +intersection of two or more of the $U_i$ is contractible, the intersections make no +contribution to the colimit and the conclusion follows. +\end{proof} + +\begin{cor} +The fundamental group of a wedge of circles is a free group with one generator for +each circle. +\end{cor} + +Any compact surface is homeomorphic to a sphere, or to a connected sum of tori\index{torus} +$T^2=S^1\times S^1$, or to a connected sum of projective planes\index{projective plane} +$\bR P^2=S^2/\bZ_2$ (where we write $\bZ_2 = \bZ/2\bZ$). +We shall see shortly that $\pi_1(\bR P^2) =\bZ_2$. We also have the following observation, +which is immediate from the universal property of products. Using this information, +it is an exercise to compute the fundamental group of any compact surface from the +van Kampen theorem. + +\begin{lem} +For based spaces $X$ and $Y$, $\pi_1(X\times Y)\iso \pi_1(X)\times \pi_1(Y)$. +\end{lem} + +We shall later use the following application of the van Kampen theorem to prove +that any group is the fundamental group of some space. We need a definition. + +\begin{defn} +A space $X$ is said to be simply connected if it is path connected and satisfies +$\pi_1(X)=0$. +\end{defn} + +\begin{prop} +Let $X=U\cup V$, where $U$, $V$, and $U\cap V$ are path connected open neighborhoods of +the basepoint of $X$ and $V$ is simply connected. Then $\pi_1(U)\rtarr \pi_1(X)$ is +an epimorphism whose kernel is the smallest normal subgroup of $\pi_1(U)$ that contains +the image of $\pi_1(U\cap V)$. +\end{prop} +\begin{proof} +Let $N$ be the cited kernel and consider the diagram +$$\diagram + & \pi_1(U) \drto \drrto & & \\ +\pi_1(U\cap V) \drto \urto & &\pi_1(X) \rdashed^(0.4){\xi}|>\tip & \pi_1(U)/N\\ +& \pi_1(V)=0 \urto \urrto & & \\ +\enddiagram$$ +The universal property gives rise to the map $\xi$, and +$\xi$ is an isomorphism since, by an easy algebraic inspection, $\pi_1(U)/N$ is the +pushout in the category of groups of the homomorphisms $\pi_1(U\cap V)\rtarr \pi_1(U)$ +and $\pi_1(U\cap V)\rtarr 0$. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Compute the fundamental group of the two-holed torus (the compact surface of genus $2$ +obtained by sewing together two tori along the boundaries of an open disk removed from each). +\item The Klein bottle\index{Klein bottle} +$K$ is the quotient space of $S^1\times I$ obtained by identifying +$(z,0)$ with $(z^{-1},1)$ for $z\in S^1$. Compute $\pi_1(K)$. +\item$*$ Let $X = \{ (p,q)| p \neq -q\}\subset S^n\times S^n$. Define a map $f: S^n\rtarr X$ by +$f(p) = (p,p)$. Prove that $f$ is a homotopy equivalence. +\item Let $\sC$ be a category that has all coproducts and coequalizers. Prove that $\sC$ is +cocomplete (has all colimits). Deduce formally, by use of opposite categories, that a category +that has all products and equalizers is complete. +\end{enumerate} + +\chapter{Covering spaces} + +We run through the theory of covering spaces and their relationship to +fundamental groups and fundamental groupoids. This is standard material, +some of the oldest in algebraic topology. However, I know of no published +source for the use that we shall make of the orbit category $\sO(\pi_1(B,b))$ +in the classification of coverings of a space $B$. This point of view gives us +the opportunity to introduce some ideas that are central to equivariant +algebraic topology, the study of spaces with group actions. In any case, this +material is far too important to all branches of mathematics to omit. + +\section{The definition of covering spaces} + +While the reader is free to think about locally contractible spaces, +weaker conditions are appropriate for the full generality of the theory +of covering spaces. A space $X$ is +said to be locally path connected\index{locally path connected space} if for +any $x\in X$ and any neighborhood +$U$ of $x$, there is a smaller neighborhood V of $x$ each of whose points +can be connected to $x$ by a path in $U$. This is equivalent to the +seemingly more stringent requirement that the topology of $X$ have a basis +consisting of path connected open sets. In fact, if $X$ is locally path +connected and $U$ is an open neighborhood of a point $x$, then the set +$$V=\{y\,|\,y \ \text{can be connected to}\ x \ \text{by a path in}\ U\}$$ +is a path connected open neighborhood of $x$ that is contained in $U$. +Observe that if $X$ is connected and locally path connected, then it is +path connected. Throughout this chapter, we assume that all given spaces +are connected and locally path connected. + +\begin{defn} +A map $p: E\rtarr B$ is a covering (or cover, or covering +space)\index{cover}\index{covering}\index{covering space} if it is +surjective and if each +point $b\in B$ has an open neighborhood $V$ such that each component of +$p^{-1}(V)$ is open in $E$ and is mapped homeomorphically onto $V$ by $p$. +We say that a path connected open subset $V$ with this property is a +fundamental neighborhood\index{fundamental neighborhood} of $B$. We call +$E$ the total space,\index{total space} $B$ the base +space,\index{base space} and $F_b=p^{-1}(b)$ a fiber\index{fiber} of the +covering $p$. +\end{defn} + +Any homeomorphism is a cover. A product of covers is a cover. The projection +$\bR\rtarr S^1$ is a cover. Each $f_n: S^1\rtarr S^1$ is a cover. The +projection $S^n\rtarr \bR P^n$ is a cover, where the real projective +space $\bR P^n$ is obtained from $S^n$ by identifying antipodal points. If +$f: A\rtarr B$ is a map (where $A$ is connected and locally path connected) +and $D$ is a component of the pullback of $f$ along $p$, then $p: D\rtarr A$ +is a cover. + +\section{The unique path lifting property} + +The following result is abstracted from what we saw in the case of the +particular cover $\bR\rtarr S^1$. It describes the behavior of $p$ with +respect to path classes and fundamental groups. + +\begin{thm}[Unique path lifting]\index{unique path lifting theorem} Let +$p: E\rtarr B$ be a covering, let $b\in B$, +and let $e,e'\in F_b$. +\begin{enumerate} +\item[(i)] A path $f:I\rtarr B$ with $f(0)=b$ lifts uniquely to a path +$g:I\rtarr E$ such that $g(0)=e$ and $p\com g=f$. +\item[(ii)] Equivalent paths $f\htp f':I\rtarr B$ that start at $b$ lift +to equivalent paths $g\htp g': I\rtarr E$ that start at $e$, hence +$g(1)=g'(1)$. +\item[(iii)] $p_*: \pi_1(E,e)\rtarr \pi_1(B,b)$ is a monomorphism. +\item[(iv)] $p_*(\pi_1(E,e'))$ is conjugate to $p_*(\pi_1(E,e))$. +\item[(v)] As $e'$ runs through $F_b$, the groups $p_*(\pi_1(E,e'))$ +run through all conjugates of $p_*(\pi_1(E,e))$ in $\pi_1(B,b)$. +\end{enumerate} +\end{thm} +\begin{proof} For (i), subdivide $I$ into subintervals each of which maps to a +fundamental neighborhood under $f$, and lift $f$ to $g$ inductively by use of +the prescribed homeomorphism property of fundamental neighborhoods. For (ii), +let $h:I\times I\rtarr B$ be a homotopy $f\htp f'$ through paths +$b\rtarr b'$. Subdivide the square into subsquares each of which maps to a +fundamental neighborhood under $f$. Proceeding inductively, we see that $h$ lifts +uniquely to a homotopy $H:I\times I\rtarr E$ such that $H(0,0)=e$ and $p\com H=h$. +By uniqueness, $H$ is a homotopy $g\htp g'$ through paths $e\rtarr e'$, where +$g(1)=e'=g'(1)$. Parts (iii)--(v) are formal consequences of (i) and (ii), as we +shall see in the next section. +\end{proof} + +\begin{defn} +A covering $p: E\rtarr B$ is regular\index{covering!regular} if $p_*(\pi_1(E,e))$ is a +normal subgroup of $\pi_1(B,b)$. It is universal\index{covering!universal} if $E$ is +simply connected. +\end{defn} + +As we shall explain in \S4, for a universal cover $p: E\rtarr B$, the +elements of $F_b$ are in bijective correspondence with the elements of $\pi_1(B,b)$. +We illustrate the force of this statement. + +\begin{exmp} +For $n\geq 2$, $S^n$ is a universal cover of $\bR P^n$. Therefore $\pi_1(\bR P^n)$ +has only two elements. There is a unique group with two elements, and this proves +our earlier claim that $\pi_1(\bR P^n)=\bZ_2$. +\end{exmp} + +\section{Coverings of groupoids} + +Much of the theory of covering spaces can be recast conceptually in terms +of fundamental groupoids. This point of view separates the essentials +of the topology from the formalities and gives a convenient language in +which to describe the algebraic classification of coverings. + +\begin{defn} (i) Let $\sC$ be a category and $x$ be an object of $\sC$. The +category $x\backslash \sC$ of objects under $x$ has objects the maps +$f: x\rtarr y$ in $\sC$; for objects $f:x\rtarr y$ and $g: x\rtarr z$, the +morphisms $\ga: f\rtarr g$ in $x\backslash\sC$ are the morphisms +$\ga: y\rtarr z$ in $\sC$ such that $\ga\com f = g:x\rtarr z$. Composition and +identity maps are given by composition and identity maps in $\sC$. When +$\sC$ is a groupoid, $\ga = g\com f^{-1}$, and the objects of +$x\backslash \sC$ therefore determine the category. + +(ii) Let $\sC$ be a small groupoid. Define the star\index{star} of $x$, denoted $St(x)$ +or $St_{\sC}(x)$, to be the set of objects of $x\backslash \sC$, that is, the +set of morphisms of $\sC$ with source $x$. Write $\sC(x,x)=\pi(\sC,x)$ for the +group of automorphisms of the object $x$. + +(iii) Let $\sE$ and $\sB$ be small connected groupoids. A +covering\index{covering!of a groupoid} +$p: \sE \rtarr \sB$ is a functor that is surjective on objects and +restricts to a bijection +$$p: St(e)\rtarr St(p(e))$$ +for each object $e$ of $\sE$. For an object $b$ of $\sB$, let $F_b$ +denote the set of objects of $\sE$ such that $p(e) = b$. Then +$p^{-1}(St(b))$ is the disjoint union over $e\in F_b$ of $St(e)$. +\end{defn} + +Parts (i) and (ii) of the unique path lifting theorem can be restated +as follows. + +\begin{prop} If $p: E\rtarr B$ is a covering of spaces, then the induced +functor $\PI(p): \PI(E)\rtarr \PI(B)$ is a covering of groupoids. +\end{prop} + +Parts (iii), (iv), and (v) of the unique path lifting theorem are categorical +consequences that apply to any covering of groupoids, where they read as follows. + +\begin{prop} Let $p: \sE\rtarr \sB$ be a covering of groupoids, let $b$ +be an object of $\sB$, and let $e$ and $e'$ be objects of $F_b$. +\begin{enumerate} +\item[(i)] $p: \pi(\sE ,e)\rtarr \pi(\sB ,b)$ is a monomorphism. +\item[(ii)] $p(\pi(\sE ,e'))$ is conjugate to $p(\pi(\sE,e))$. +\item[(iii)] As $e'$ runs through $F_b$, the groups $p(\pi(E,e'))$ +run through all conjugates of $p(\pi(\sE ,e))$ in $\pi(\sB ,b)$. +\end{enumerate} +\end{prop} +\begin{proof} For (i), if $g,g'\in \pi(\sE ,e)$ and $p(g) = p(g')$, then +$g = g'$ by the injectivity of $p$ on $St(e)$. For (ii), there is a map +$g: e\rtarr e'$ since $\sE$ is connected. Conjugation by $g$ gives a +homomorphism $\pi(\sE ,e)\rtarr \pi(\sE, e')$ that maps under $p$ to +conjugation of $\pi(\sB,b)$ by its element $p(g)$. +For (iii), the surjectivity of $p$ on $St(e)$ gives that any $f\in\pi(\sB ,b)$ +is of the form $p(g)$ for some $g\in St(e)$. If $e'$ is the target of $g$, +then $p(\pi(\sE,e'))$ is the conjugate of $p(\pi(\sE,e))$ by $f$. +\end{proof} + +The fibers $F_b$ of a covering of groupoids are related by translation functions. + +\begin{defn} Let $p: \sE\rtarr \sB$ be a covering of groupoids. Define the +fiber translation functor\index{fiber translation functor} $T=T(p): \sB\rtarr \sS$ +as follows. For an object $b$ of +$\sB$, $T(b) = F_b$. For a morphism $f: b\rtarr b'$ of $\sB$, $T(f): F_b\rtarr F_{b'}$ +is specified by $T(f)(e) = e'$, where $e'$ is the target of the unique $g$ in +$St(e)$ such that $p(g)=f$. +\end{defn} + +It is an exercise from the definition of a covering of a groupoid to verify that +$T$ is a well defined functor. For a covering space $p: E\rtarr B$ and a path +$f: b\rtarr b'$, $T(f): F_b\rtarr F_{b'}$ is given by $T(f)(e)=g(1)$ where $g$ +is the path in $E$ that starts at $e$ and covers $f$. + +\begin{prop} Any two fibers $F_b$ and $F_{b'}$ of a covering of groupoids have the +same cardinality. Therefore any two fibers of a covering of spaces have the same +cardinality. +\end{prop} +\begin{proof} +For $f: b\rtarr b'$, $T(f): F_b\rtarr F_{b'}$ is a bijection with inverse $T(f^{-1})$. +\end{proof} + +\section{Group actions and orbit categories} + +The classification of coverings is best expressed in categorical language +that involves actions of groups and groupoids on sets. + +A (left) action of a group $G$\index{group action} on a set $S$ is a function +$G\times S\rtarr S$ such that $es=s$ (where $e$ is the identity element) and +$(g'g)s=g'(gs)$ for all $s\in S$. The {\em isotropy group}\index{isotropy group} +$G_s$ of a point $s$ is the subgroup $\{ g| gs=s\}$ of $G$. +An action is {\em free}\index{group action!free} if $gs=s$ implies $g=e$, that is, +if $G_s=e$ for every $s\in S$. + +The orbit generated by a point $s$ is $\{ gs|g\in G\}$. An action is +{\em transitive}\index{group action!transitive} +if for every pair $s,s'$ of elements of $S$, there is an element $g$ of $G$ such +that $gs=s'$. Equivalently, $S$ consists of a single orbit. If $H$ is a subgroup +of $G$, the set $G/H$ of cosets $gH$ is a transitive $G$-set. When $G$ acts +transitively on a set $S$, we obtain an isomorphism of $G$-sets between $S$ and +the $G$-set $G/G_s$ for any fixed $s\in S$ by sending $gs$ to the coset $gG_s$. + +The following lemma describes the group of automorphisms of a transitive \linebreak +$G$-set $S$. +For a subgroup $H$ of $G$, let $NH$ denote the normalizer of $H$ in $G$ and define +$WH=NH/H$. Such quotient groups $WH$ are sometimes called Weyl groups.\index{Weyl group} + +\begin{lem} Let $G$ act transitively on a set $S$, choose $s\in S$, and let $H=G_s$. +Then $WH$ is isomorphic to the group {\em Aut}$_G(S)$\index{AutGS@Aut$_G(S)$} of automorphisms +of the $G$-set $S$. +\end{lem} +\begin{proof} +For $n\in NH$ with image $\bar{n}\in WH$, define an automorphism $\ph(\bar{n})$ of $S$ +by $\ph(\bar{n})(gs)=gns$. For an automorphism $\ph$ of $S$, we have $\ph(s)=ns$ for some +$n\in G$. For $h\in H$, $hns=\ph(hs)=\ph(s)=ns$, hence $n^{-1}hn\in G_s=H$ and $n\in NH$. +Clearly $\ph=\ph(\bar{n})$, and it is easy to check that this bijection between $WH$ and +Aut$_G(S)$ is an isomorphism of groups. +\end{proof} + +We shall also need to consider $G$-maps between different $G$-sets $G/H$. + +\begin{lem} A $G$-map $\al: G/H\rtarr G/K$ has the form $\al(gH) = g\ga K$, where +the element $\ga\in G$ satisfies $\ga^{-1} h \ga\in K$ for all $h\in H$. +\end{lem} +\begin{proof} +If $\al(eH) = \ga K$, then the relation +$$\ga K = \al (eH) = \al(hH) = h\al(eH) = h\ga K$$ +implies that $\ga^{-1}h\ga\in K$ for $h\in H$. +\end{proof} + +\begin{defn} The category $\sO(G)$ of canonical +orbits\index{category!of canonical orbits}\index{orbit category} has +objects the $G$-sets $G/H$ and morphisms the $G$-maps of $G$-sets. +\end{defn} + +The previous lemmas give some feeling for the structure of $\sO(G)$ and lead +to the following alternative description. + +\begin{lem} The category $\sO(G)$ is isomorphic to the category $\sG$ whose +objects are the subgroups of $G$ and whose morphisms are the distinct +subconjugacy relations $\ga^{-1}H\ga \subset K$ for $\ga\in G$. +\end{lem} + +If we regard $G$ as a category with a single object, then a (left) action of +$G$ on a set $S$ is the same thing as a covariant functor $G\rtarr \sS$. +(A right action is the same thing as a contravariant functor.) If $\sB$ is +a small groupoid, it is therefore natural to think of a covariant functor +$T:\sB\rtarr \sS$ as a generalization of a group action.\index{groupoid action} For +each object $b$ of $\sB$, $T$ restricts to an action of $\pi(\sB ,b)$ on $T(b)$. We +say that the functor $T$ is {\em transitive}\index{groupoid action!transitive} if +this group action is transitive for each object $b$. If $\sB$ is connected, this +holds for all objects $b$ if it holds for any one object $b$. + +For example, for a covering of groupoids $p: \sE\rtarr \sB$, the fiber translation +functor $T$ restricts to give an action of $\pi(\sB,b)$ on the set $F_b$. For $e\in F_b$, +the isotropy group of $e$ is precisely $p(\pi(\sE,e))$. That is, $T(f)(e)=e$ if and only +if the lift of $f$ to an element of $St(e)$ is an automorphism of $e$. Moreover, the +action is transitive since there is an isomorphism in $\sE$ connecting any two points of +$F_b$. Therefore, as a $\pi(\sB,b)$-set, +$$F_b\iso \pi(\sB,b)/p(\pi(\sE,e)).$$ + +\begin{defn} A covering $p: \sE\rtarr \sB$ of groupoids is +regular\index{covering!regular} if +$p(\pi(\sE,e))$ is a normal subgroup of $\pi(\sB,b)$. It is +universal\index{covering!universal} if $p(\pi(\sE,e))=\sset{e}$. +Clearly a covering space is regular or universal if and only if its +associated covering of fundamental groupoids is regular or universal. +\end{defn} + +A covering of groupoids is universal if and only if $\pi(\sB,b)$ acts freely on $F_b$, +and then $F_b$ is isomorphic to $\pi(\sB,b)$ as a $\pi(\sB,b)$-set. Specializing +to covering spaces, this sharpens our earlier claim that the elements of $F_b$ and +$\pi_1(B,b)$ are in bijective correspondence. + +\section{The classification of coverings of groupoids} + +Fix a small connected groupoid $\sB$ throughout this section and the next. We explain +the classification of coverings of $\sB$. This gives an algebraic prototype for +the classification of coverings of spaces. We begin with a result that should be +called the fundamental theorem\index{fundamental theorem!of covering groupoid theory} +of covering groupoid theory. We assume once and for +all that all given groupoids are small and connected. + +\begin{thm} +Let $p: \sE\rtarr \sB$ be a covering of groupoids, let $\sX$ be a groupoid, and let +$f: \sX\rtarr \sB$ be a functor. Choose a base object $x_0\in \sX$, let $b_0=f(x_0)$, and +choose $e_0\in F_{b_0}$. Then there exists a functor $g: \sX\rtarr \sE$ such that +$g(x_0)=e_0$ and $p\com g= f$ if and only if +$$f(\pi(\sX,x_0))\subset p(\pi(\sE,e_0))$$ +in $\pi(\sB,b_0)$. When this condition holds, there is a unique such functor $g$. +\end{thm} +\begin{proof} +If $g$ exists, its properties directly imply that $\im(f)\subset\im(p)$. For an +object $x$ of $\sX$ and a map $\al: x_0\rtarr x$ in $\sX$, let $\tilde \al$ +be the unique element of $St(e_0)$ such that $p(\tilde\al)=f(\al)$. If $g$ +exists, $g(\al)$ must be $\tilde\al$ and therefore $g(x)$ must be the target +$T(f(\al))(e_0)$ of $\tilde\al$. The inclusion $f(\pi(\sX,x_0))\subset p(\pi(\sE,e_0))$ +ensures that $T(f(\al))(e_0)$ is independent of the choice of $\al$, so that $g$ so +specified is a well defined functor. In fact, given another map $\al': x_0\rtarr x$, +$\al^{-1}\com\al'$ is an element of $\pi(\sX,x_0)$. Therefore +$$f(\al)^{-1}\com f(\al') = f(\al^{-1}\com\al') = p(\be)$$ +for some $\be\in \pi(\sE,e_0)$. Thus +$$p(\tilde\al\com \be) = f(\al)\com p(\be) = f(\al)\com f(\al)^{-1}\com f(\al') = f(\al').$$ +This means that $\tilde\al\com\be$ is the unique element $\tilde\al'$ of $St(e_0)$ such that +$p(\tilde\al')=f(\al')$, and its target is the target of $\tilde\al$, as required. +\end{proof} + +\begin{defn} +A map $g: \sE\rtarr \sE'$ of coverings of $\sB$ is a functor $g$ such that the +following diagram of functors is commutative: +$$\diagram +\sE \drto_p \rrto^g & & \sE' \dlto^{p'}\\ +& \sB. & \\ +\enddiagram$$ +Let Cov$(\sB)$\index{CovBb@Cov$(\sB)$} denote the category of coverings of $\sB$; when $\sB$ +is understood, we write Cov$(\sE,\sE')$ for the set of maps $\sE \rtarr \sE'$ of coverings +of $\sB$. +\end{defn} + +\begin{lem} +A map $g:\sE\rtarr \sE'$ of coverings is itself a covering. +\end{lem} +\begin{proof} +The functor $g$ is surjective on objects since, if $e'\in \sE'$ and we choose an object +$e\in \sE$ and a map $f: g(e)\rtarr e'$ in $\sE'$, then $e'= g(T(p'(f))(e))$. +The map $g: St_{\sE}(e)\rtarr St_{\sE'}(g(e))$ is a bijection since its +composite with the bijection $p': St_{\sE'}(g(e))\rtarr St_{\sB}(p'(g(e)))$ +is the bijection $p: St_{\sE}(e)\rtarr St_{\sB}(p(e))$. +\end{proof} + +The fundamental theorem immediately determines all maps of coverings of $\sB$ in +terms of group level data. + +\begin{thm} +Let $p:\sE\rtarr \sB$ and $p': \sE'\rtarr \sB$ be coverings and choose base objects +$b\in \sB$, $e\in \sE$, and $e'\in \sE'$ such that $p(e)=b=p'(e')$. There exists a map +$g:\sE\rtarr \sE'$ of coverings with $g(e)=e'$ if and only if +$$p(\pi(\sE,e))\subset p'(\pi(\sE',e')),$$ +and there is then only one such $g$. In particular, two maps of covers $g,g': \sE\rtarr \sE'$ +coincide if $g(e)=g'(e)$ for any one object $e\in \sE$. Moreover, $g$ is an isomorphism if and +only if the displayed inclusion of subgroups of $\pi(\sB,b)$ is an equality. Therefore +$\sE$ and $\sE'$ are isomorphic if and only if $p(\pi(\sE,e))$ and $p'(\pi(\sE',e'))$ are +conjugate whenever $p(e)=p'(e')$. +\end{thm} + +\begin{cor} If it exists, the universal cover of $\sB$ is unique up to isomorphism and +covers any other cover. +\end{cor} + +That the universal cover does exist will be proved in the next section. +It is useful to recast the previous theorem in terms of actions on fibers. + +\begin{thm} Let $p:\sE\rtarr \sB$ and $p': \sE'\rtarr \sB$ be coverings, choose a base +object $b\in \sB$, and let $G=\pi(\sB,b)$. If $g: \sE\rtarr \sE'$ is a map of coverings, +then $g$ restricts to a map $F_b\rtarr F'_b$ of $G$-sets, and restriction to fibers +specifies a bijection between {\em Cov}$(\sE,\sE')$ and the set of $G$-maps $F_b\rtarr F'_{b}$. +\end{thm} +\begin{proof} +Let $e\in F_b$ and $f\in \pi(\sB,b)$. By definition, $fe$ is the target of the map +$\tilde f\in St_{\sE}(e)$ such that $p(\tilde f)=f$. Clearly $g(fe)$ is the target +of $g(\tilde f)\in St_{\sE'}(g(e))$ and $p'(g(\tilde f))= p(\tilde f) = f$. Again +by definition, this gives $g(fe) = fg(e)$. The previous theorem shows that restriction +to fibers is an injection on Cov$(\sE,\sE')$. To show surjectivity, let $\al: F_b\rtarr F'_{b}$ +be a $G$-map. Choose $e\in F_b$ and let $e'=\al(e)$. Since $\al$ is a $G$-map, the isotropy +group $p(\pi(\sE,e))$ of $e$ is contained in the isotropy group $p'(\pi(\sE',e'))$ of $e'$. +Therefore the previous theorem ensures the existence of a covering map $g$ that restricts to +$\al$ on fibers. +\end{proof} + +\begin{defn} Let Aut$(\sE)\subset$\, Cov$(\sE,\sE)$\index{AutEb@Aut($\sE$)} denote the group of +automorphisms of a cover $\sE$. Note that, since it is possible to have conjugate subgroups +$H$ and $H'$ of a group $G$ such that $H$ is a proper subgroup of $H'$, it is possible to have +a map of covers $g: \sE \rtarr \sE$ such that $g$ is not an isomorphism. +\end{defn} + +\begin{cor} +Let $p:\sE\rtarr \sB$ be a covering and choose objects $b\in \sB$ and $e\in F_b$. Write +$G=\pi(\sB,b)$ and $H=p(\pi(\sE,e))$. Then {\em Aut}$(\sE)$ is isomorphic to the group of +automorphisms of the $G$-set $F_b$ and therefore to the group $WH$. If $p$ is +regular,\index{covering!regular} then {\em Aut}$(\sE)\iso G/H$. If $p$ is +universal,\index{covering!universal} then {\em Aut}$(\sE)\iso G$. +\end{cor} + +\section{The construction of coverings of groupoids} + +We have given an algebraic classification of all possible covers of $\sB$: there +is at most one isomorphism class of covers corresponding to each conjugacy class of +subgroups of $\pi(\sB,b)$. We show that all of these possibilities are actually +realized. Since this algebraic result is not needed in the proof of its topological +analogue, we shall not give complete details. + +\begin{thm} Choose a base object $b$ of $\sB$ and let $G=\pi(\sB,b)$. There is a functor +$$\sE(-): \sO(G)\rtarr \text{\em{Cov}}(\sB)$$ +that is an equivalence of categories. For each subgroup $H$ of $G$, the covering +$p: \sE(G/H)\rtarr \sB$ has a canonical base object $e$ in its fiber over $b$ such that +$$p(\pi(\sE(G/H),e)) = H.$$ +Moreover, $F_b=G/H$ as a $G$-set and, for a $G$-map $\al: G/H\rtarr G/K$ in $\sO(G)$, +the restriction of $\sE(\al): \sE(G/H)\rtarr \sE(G/K)$ to fibers over $b$ coincides +with $\al$. +\end{thm} +\begin{proof} +The idea is that, up to bijection, $St_{\sE(G/H)}(e)$ must be the same set for each $H$, +but the nature of its points can differ with $H$. At one extreme, $\sE(G/G)=\sB$, $p=\id$, +$e=b$, and the set of morphisms from $b$ to any other object $b'$ is a copy of $\pi(\sB,b)$. +At the other extreme, $\sE(G/e)$ is a universal cover of $\sB$ and there is just one +morphism from $e$ to any other object $e'$. In general, the set of objects of $\sE(G/H)$ +is defined to be $St_{\sB}(b)/H$, the coset of the identity morphism being $e$. Here $G$ +and hence its subgroup $H$ act from the right on $St_{\sB}(b)$ by composition in $\sB$. +We define $p: \sE(G/H)\rtarr \sB$ on objects by letting $p(fH)$ be the target of $f$, which +is independent of the coset representative $f$. We define morphism sets by +$$ \sE(G/H)(fH,f'H) = \sset{f'\com h\com f^{-1} | h\in H} \subset \sB(p(fH),p(f'H)).$$ +Again, this is independent of the choices of coset representatives $f$ and $f'$. Composition +and identities are inherited from those of $\sB$, and $p$ is given on morphisms by the +displayed inclusions. It is easy to check that $p: \sE(G/H)\rtarr \sB$ is a covering, +and it is clear that $p(\pi(\sE(G/H),e)) = H$. + +This defines the object function of the functor $\sE: \sO(G)\rtarr \text{Cov}(\sB)$. +To define $\sE$ on morphisms, consider $\al: G/H\rtarr G/K$. If $\al(eH) =gK$, then +$g^{-1}Hg\subset K$ and $\al(fH)=fg K$. The functor $\sE(\al):\sE(G/H)\rtarr \sE(G/K)$ +sends the object $fH$ to the object $\al(fH)=fgK$ and sends the morphism $f'\com h\com f^{-1}$ +to the same morphism of $\sB$ regarded as $f'g\com g^{-1}hg\com g^{-1}f^{-1}$. It is easily +checked that each $\sE(\al)$ is a well defined functor, and that $\sE$ is functorial in $\al$. + +To show that the functor $\sE(-)$ is an equivalence of categories, it suffices to show that +it maps the morphism set $\sO(G)(G/H,G/K)$ bijectively onto the morphism set +Cov$(\sE(G/H),\sE(G/K))$ and that every covering of $\sB$ is isomorphic to one of the +coverings $\sE(G/H)$. These statements are immediate from the results of the previous section. +\end{proof} + +The following remarks place the orbit category $\sO(\pi(\sB,b))$ in perspective by relating +it to several other equivalent categories. + +\begin{rem} Consider the category $\sS^{\sB}$ of functors $T:\sB\rtarr \sS$ and natural +transformations. Let $G=\pi(\sB,b)$. Regarding $G$ as a category with one object $b$, it is +a skeleton of $\sB$, hence the inclusion $G \subset \sB$ is an equivalence of categories. +Therefore, restriction of functors $T$ to $G$-sets $T(b)$ gives an equivalence of categories +from $\sS^{\sB}$ to the category of $G$-sets. This restricts to an equivalence between the +respective subcategories of transitive objects. We have chosen to focus on transitive objects +since we prefer to insist that coverings be connected. The inclusion of the orbit category +$\sO(G)$ in the category of transitive $G$-sets is an equivalence of categories because +$\sO(G)$ is a full subcategory that contains a skeleton. We could shrink $\sO(G)$ to a +skeleton by choosing one $H$ in each conjugacy class of subgroups of $G$, but the resulting +equivalent subcategory is a less natural mathematical object. +\end{rem} + +\section{The classification of coverings of spaces} + +In this section and the next, we shall classify covering spaces and their maps by arguments +precisely parallel to those for covering groupoids in the previous sections. In fact, applied +to the associated coverings of fundamental groupoids, some of the algebraic results directly +imply their topological analogues. We begin with the following result, which deserves +to be called the fundamental theorem of covering space theory and has many other +applications. It asserts that the fundamental group gives the only ``obstruction'' +to solving a certain lifting problem. Recall our standing assumption that all +given spaces are connected and locally path connected.\index{fundamental +theorem!of covering space theory} + +\begin{thm} +Let $p: E\rtarr B$ be a covering and let $f: X\rtarr B$ be a continuous map. +Choose $x\in X$, let $b=f(x)$, and choose $e\in F_{b}$. There exists +a map $g: X\rtarr E$ such that $g(x)=e$ and $p\com g= f$ if and only if +$$f_*(\pi_1(X,x))\subset p_*(\pi_1(E,e))$$ +in $\pi_1(B,b)$. When this condition holds, there is a unique such map $g$. +\end{thm} +\begin{proof} +If $g$ exists, its properties directly imply that $\im(f_*)\subset\im(p_*)$. +Thus assume that $\im(f_*)\subset\im(p_*)$. Applied to the covering +$\PI(p): \PI(E)\rtarr \PI(B)$, the analogue for groupoids gives a functor +$\PI(X)\rtarr \PI(E)$ that restricts on objects to the unique map $g: X\rtarr E$ +of sets such that $g(x)=e$ and $p\com g= f$. We need only check that $g$ is +continuous, and this holds because $p$ is a local homeomorphism. In detail, if +$y\in X$ and $g(y)\in U$, where $U$ is an open subset of $E$, then there is a smaller +open neighborhood $U'$ of $g(y)$ that $p$ maps homeomorphically onto an open subset $V$ +of $B$. If $W$ is any path connected neighborhood of $y$ such that $f(W)\subset V$, +then $g(W)\subset U'$ by inspection of the definition of $g$. +\end{proof} + +\begin{defn} +A map $g: E\rtarr E'$ of coverings over $B$ is a map $g$ such that the following +diagram is commutative: +$$\diagram +E \drto_p \rrto^g & & E' \dlto^{p'}\\ +& B. & \\ +\enddiagram$$ +Let Cov$(B)$\index{CovBa@Cov$(B)$} denote the category of coverings of the space $B$; when $B$ +is understood, +we write Cov$(E,E')$ for the set of maps $E \rtarr E'$ of coverings of $B$. +\end{defn} + +\begin{lem} +A map $g:E\rtarr E'$ of coverings is itself a covering. +\end{lem} +\begin{proof} +The map $g$ is surjective by the algebraic analogue. The fundamental neighborhoods +for $g$ are the components of the inverse images in $E'$ of the neighborhoods of +$B$ which are fundamental for both $p$ and $p'$. +\end{proof} + +The following remarkable theorem is an immediate consequence of the +fundamental theorem of covering space theory. + +\begin{thm} +Let $p:E\rtarr B$ and $p': E'\rtarr B$ be coverings and choose $b\in B$, $e\in E$, and +$e'\in E'$ such that $p(e)=b=p'(e')$. +There exists a map $g:E\rtarr E'$ of coverings with $g(e)=e'$ if and only if +$$p_*(\pi_1(E,e))\subset p'_*(\pi_1(E',e')),$$ +and there is then only one such $g$. In particular, two maps of covers $g,g': E\rtarr E'$ +coincide if $g(e)=g'(e)$ for any one $e\in E$. Moreover, $g$ is a homeomorphism if and only +if the displayed inclusion of subgroups of $\pi_1(B,b)$ is an equality. Therefore $E$ and +$E'$ are homeomorphic if and only if $p_*(\pi_1(E,e))$ and $p'_*(\pi_1(E',e'))$ are +conjugate whenever $p(e)=p'(e')$. +\end{thm} + +\begin{cor} If it exists, the universal cover of $B$ is unique up to isomorphism and +covers any other cover. +\end{cor} + +Under a necessary additional hypothesis on $B$, we shall prove in the next section that +the universal cover does exist. + +We hasten to add that the theorem above is atypical of algebraic topology. It is not +usually the case that algebraic invariants like the fundamental group totally determine +the existence and uniqueness of maps of topological spaces with prescribed properties. +The following immediate implication of the theorem gives one explanation. + +\begin{cor} The fundamental groupoid functor induces a bijection +$$\text{\em Cov}(E,E') \rtarr \text{\em Cov}(\PI(E),\PI(E')).$$ +\end{cor} + +Just as for groupoids, we can recast the theorem in terms of fibers. In fact, via the +previous corollary, the following result is immediate from its analogue for groupoids. + +\begin{thm} Let $p:E\rtarr B$ and $p': E'\rtarr B$ be coverings, choose a basepoint +$b\in B$, and let $G=\pi_1(B,b)$. If $g: E\rtarr E'$ is a map of coverings, +then $g$ restricts to a map $F_b\rtarr F'_b$ of $G$-sets, and restriction to fibers +specifies a bijection between {\em Cov}$(E,E')$ and the set of $G$-maps $F_b\rtarr F'_{b}$. +\end{thm} + +\begin{defn} Let Aut$(E)\subset$\,Cov$(E,E)$\index{AutEb@Aut($\sE$)} denote the group of +automorphisms of a cover $E$. Again, just as for groupoids, it is possible to have +a map of covers $g: E \rtarr E$ such that $g$ is not an isomorphism. +\end{defn} + +\begin{cor} +Let $p:E\rtarr B$ be a covering and choose $b\in B$ and $e\in F_b$. Write $G=\pi_1(B,b)$ +and $H=p_*(\pi_1(E,e))$. Then {\em Aut}$(E)$ is isomorphic to the group of automorphisms of the +$G$-set $F_b$ and therefore to the group $WH$. If $p$ is regular,\index{covering!regular} +then {\em Aut}$(E)\iso G/H$. If $p$ is universal,\index{covering!universal} then +{\em Aut}$(E)\iso G$. +\end{cor} + +\section{The construction of coverings of spaces} + +We have now given an algebraic classification of all possible covers of $B$: there +is at most one isomorphism class of covers corresponding to each conjugacy class of +subgroups of $\pi_1(B,b)$. We show here that all of these possibilities are actually +realized. We shall first construct universal covers and then show that the existence +of universal covers implies the existence of all other possible covers. Again, while +it suffices to think in terms of locally contractible spaces, appropriate generality +demands a weaker hypothesis. We say that a space $B$ is semi-locally simply +connected\index{semi-locally simply connected space} if every point $b\in B$ has a +neighborhood $U$ such that $\pi_1(U,b)\rtarr \pi_1(B,b)$ is the trivial homomorphism. + +\begin{thm} +If $B$ is connected, locally path connected, and semi-locally simply connected, +then $B$ has a universal cover.\index{covering!universal} +\end{thm} +\begin{proof} +Fix a basepoint $b\in B$. We turn the properties of paths that must hold in +a universal cover into a construction. Define $E$ to be the set of equivalence +classes of paths $f$ in $B$ that start at $b$ and define $p:E\rtarr B$ by +$p[f]=f(1)$. Of course, the equivalence relation is homotopy through paths from +$b$ to a given endpoint, so that $p$ is well defined. Thus, as a set, $E$ is +just $St_{\PI(B)}(b)$, exactly as in the construction of the universal cover of $\PI(B)$. +The topology of $B$ has a basis consisting of path connected open subsets $U$ such that +$\pi_1(U,u)\rtarr \pi_1(B,u)$ is trivial for all $u\in U$. Since every loop in $U$ is +equivalent in $B$ to the trivial loop, any two paths $u\rtarr u'$ in such a $U$ are +equivalent in $B$. We shall topologize $E$ so that $p$ is a cover with these $U$ as +fundamental neighborhoods. For a path $f$ in $B$ that starts at $b$ and ends in $U$, +define a subset $U[f]$ of $E$ by +$$U[f]=\{[g]\,|\,[g]=[c\cdot f]\ \text{for some}\ c:I\rtarr U\}.$$ +The set of all such $U[f]$ is a basis for a topology on $E$ since if $U[f]$ and +$U'[f']$ are two such sets and $[g]$ is in their intersection, then +$$W[g]\subset U[f]\cap U'[f']$$ +for any open set $W$ of $B$ such that $p[g]\in W\subset U\cap U'$. For $u\in U$, +there is a unique $[g]$ in each $U[f]$ such that $p[g]=u$. Thus $p$ maps $U[f]$ +homeomorphically onto $U$ and, if we choose a basepoint $u$ in $U$, then $p^{-1}(U)$ +is the disjoint union of those $U[f]$ such that $f$ ends at $u$. It only remains to show +that $E$ is connected, locally path connected, and simply connected, and the second of +these is clear. Give $E$ the basepoint $e=[c_b]$. For $[f]\in E$, define a path +$\tilde{f}:I\rtarr E$ by $\tilde{f}(s)=[f_s]$, where $f_s(t)=f(st)$; $\tilde{f}$ is +continuous since each $\tilde{f}^{-1}(U[g])$ is open by the definition of $U[g]$ and +the continuity of $f$. Since $\tilde{f}$ starts at $e$ and ends at $[f]$, $E$ is path +connected. Since $f_s(1)=f(s)$, $p\com\tilde{f}=f$. Thus, by definition, +$$T[f](e)=[\tilde{f}(1)]=[f].$$ +Restricting attention to loops $f$, we see that $T[f](e)=e$ if and only if $[f]=e$ +as an element of $\pi_1(B,b)$. Thus the action of $\pi_1(B,b)$ on $F_b$ is free and +the isotropy group $p_*(\pi_1(E,e))$ is trivial. +\end{proof} + +We shall construct general covers by passage to orbit spaces from the universal cover, +and we need some preliminaries. + +\begin{defn} A $G$-space $X$ is a space $X$ that is a $G$-set with continuous +action map $G\times X\rtarr X$. Define the orbit space\index{orbit space} $X/G$ to +be the set of orbits $\sset{Gx|x\in X}$ with its topology as a quotient space of $X$. +\end{defn} + +The definition makes sense for general topological groups $G$. However, our interest +here is in discrete groups $G$, for which the continuity condition just means that +action by each element of $G$ is a homeomorphism. The functoriality on $\sO(G)$ of +our construction of general covers will be immediate from the following observation. + +\begin{lem} Let $X$ be a $G$-space. Then passage to orbit spaces +defines a functor $X/(-): \sO(G)\rtarr \sU$. +\end{lem} +\begin{proof} +The functor sends $G/H$ to $X/H$ and sends a map $\al: G/H\rtarr G/K$ +to the map $X/H\rtarr X/K$ that sends the coset $Hx$ to the coset $K\ga^{-1}x$, +where $\al$ is given by the subconjugacy relation $\ga^{-1}H\ga\subset K$. +\end{proof} + +The starting point of the construction of general covers is the following +description of regular covers and in particular of the universal cover. + +\begin{prop} +Let $p: E\rtarr B$ be a cover such that {\em Aut}$(E)$ acts transitively on $F_b$. Then the +cover $p$ is regular and $E/$\,{\em Aut}$(E)$ is homeomorphic to $B$. +\end{prop} +\begin{proof} For any points $e,e'\in F_b$, there exists $g\in \text{Aut}(E)$ +such that $g(e)=e'$ and thus $p_*(\pi_1(E,e))=p_*(\pi_1(E,e'))$. Therefore all conjugates of +$p_*(\pi_1(E,e))$ are equal to $p_*(\pi_1(E,e))$ and $p_*(\pi_1(E,e))$ is a normal subgroup +of $\pi_1(B,b)$. The homeomorphism is clear since, locally, both $p$ and passage +to orbits identify the different components of the inverse images of fundamental +neighborhoods. +\end{proof} + +\begin{thm} Choose a basepoint $b\in B$ and let $G=\pi_1(B,b)$. There is a functor +$$E(-):\sO(G)\rtarr \text{\em Cov}(B)$$ +that is an equivalence of categories. For each subgroup $H$ of $G$, the covering +$p: E(G/H)\rtarr B$ has a canonical basepoint $e$ in its fiber over $b$ such that +$$p_*(\pi_1(E(G/H),e)) = H.$$ +Moreover, $F_b\iso G/H$ as a $G$-set and, for a $G$-map $\al: G/H\rtarr G/K$ in $\sO(G)$, +the restriction of $E(\al): E(G/H)\rtarr E(G/K)$ to fibers over $b$ coincides with $\al$. +\end{thm} +\begin{proof} Let $p: E\rtarr B$ be the universal cover of $B$ and fix $e\in E$ such that $p(e)=b$. +We have the isomorphism Aut$(E)\iso\pi_1(B,b)$ given by mapping $g: E\rtarr E$ to the path +class $[f]\in G$ such that $g(e)=T(f)(e)$, where $T(f)(e)$ is the endpoint of the path +$\tilde f$ that starts at $e$ and lifts $f$. We identify subgroups of $G$ with subgroups of +Aut$(E)$ via this isomorphism. We define $E(G/H)$ to be the orbit space $E/H$ and we let +$q: E\rtarr E/H $ be the quotient map. We may identify $B$ with $E/\text{Aut}(E)$, and +inclusion of orbits specifies a map $p': E/H\rtarr B$ such that $p'\com q=p: E\rtarr B$. +If $U\subset B$ is a fundamental neighborhood for $p$ and $V$ is a component of +$p^{-1}(U)\subset E$, then +$$p^{-1}(U)=\textstyle{\coprod}_{g\in \text{Aut}(E)}\, gV.$$ +Passage to orbits over $H$ simply identifies some of these components, and we see +immediately that both $p'$ and $q$ are covers. If $e'=q(e)$, then $p_*'$ maps +$\pi_1(E/H,e')$ isomorphically onto $H$ since, by construction, the isotropy group +of $e'$ under the action of $\pi_1(B,b)$ is precisely $H$. Rewriting $p'=p$ and $e'=e$ +generically, this gives the stated properties of the coverings $E(G/H)$. +The functoriality on $\sO(G)$ follows directly from the previous lemma. + +The functor $E(-)$ is an equivalence of categories since the results of the previous +section imply that it maps the morphism set $\sO(G)(G/H,G/K)$ bijectively onto the +morphism set Cov$(E(G/H),E(G/K))$ and that every covering of $B$ is isomorphic +to one of the coverings $E(G/H)$. +\end{proof} + +The classification theorems for coverings of spaces and coverings of groupoids are +nicely related. In fact, the following diagram of functors commutes up to natural +isomorphism: +$$\diagram + & \sO(\pi_1(B,b))\dlto_{E(-)} \drto^{\sE(-)} & \\ +\text{Cov}(B) \rrto_{\PI} & & \text{Cov}(\PI(B)). \\ +\enddiagram$$ + +\begin{cor} $\PI: \text{\em Cov}(B) \rtarr \text{\em Cov}(\PI(B))$ is an equivalence of categories. +\end{cor} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} + +In the following two problems, let $G$ be a connected and locally path connected topological +group\index{topological group} with identity element $e$, let $p: H\rtarr G$ be a covering, +and fix $f\in H$ such +that $p(f)=e$. Prove the following. (Hint: Make repeated use of the fundamental theorem +for covering spaces.) +\begin{enumerate} +\item +\begin{enumerate} +\item[(a)] $H$ has a unique continuous product $H\times H\rtarr H$ with identity element $f$ +such that $p$ is a homomorphism. +\item[(b)] $H$ is a topological group under this product, and $H$ is Abelian if $G$ is. +\end{enumerate} +\item +\begin{enumerate} +\item[(a)] The kernel $K$ of $p$ is a discrete normal subgroup of $H$. +\item[(b)] In general, any discrete normal subgroup $K$ of a connected topological group $H$ +is contained in the center of $H$. +\item[(c)] For $k\in K$, define $t(k): H\rtarr H$ by $t(k)(h) = kh$. Then $k\rtarr t(k)$ +specifies an isomorphism between $K$ and the group Aut$(H)$. +\end{enumerate} +\end{enumerate} + +Let $X$ and $Y$ be connected, locally path connected, and Hausdorff. A map $f: X\rtarr Y$ +is said to be a local homeomorphism\index{local homeomorphism} +if every point of $X$ has an open neighborhood that maps +homeomorphically onto an open set in $Y$. + +\begin{enumerate} +\item[3.] Give an example of a surjective local homeomorphism that is not a covering. +\item[4.]* Let $f: X\rtarr Y$ be a local homeomorphism, where $X$ is compact. Prove that $f$ +is a (surjective!) covering with finite fibers. +\end{enumerate} + +Let $X$ be a $G$-space, where $G$ is a (discrete) group. For a subgroup $H$ of $G$, +define +$$X^H=\sset{x|hx = x\ \text{for all}\ \ h\in H}\subset X;$$ +$X^H$ is the $H$-fixed point subspace\index{fixed point space} of $X$. +Topologize the set of functions $G/H\rtarr X$ as the product of copies +of $X$ indexed on the elements of $G/H$, and give the set of $G$-maps +$G/H\rtarr X$ the subspace topology. + +\begin{enumerate} +\item[5.] Show that the space of $G$-maps $G/H\rtarr X$ +is naturally homeomorphic to $X^H$. In particular, $\sO(G/H,G/K)\iso (G/K)^H$. +\item[6.] Let $X$ be a $G$-space. Show that passage to fixed point spaces, +$G/H \longmapsto X^H$, is the object function of a {\em contravariant} +functor $X^{(-)}: \sO(G)\rtarr \sU$. +\end{enumerate} + +\chapter{Graphs} + +We define graphs, describe their homotopy types, and use them to +show that a subgroup of a free group is free and that any group +is the fundamental group of some space. + +\section{The definition of graphs} + +We give the definition in a form that will later make it clear that a +graph is exactly a one-dimensional CW complex. Note that the zero-sphere +$S^0$ is a discrete space with two points. We think of $S^0$ as +the boundary of $I$ and so label the points $0$ and $1$. + +\begin{defn} A graph\index{graph} $X$ is a space that is obtained from a (discrete) set $X^0$ +of points, called vertices\index{vertex}, and a (discrete) set $J$ of functions +$j: S^0\rtarr X^0$ +as the quotient space of the disjoint union $X^0\amalg (J\times I)$ that is +obtained by identifying $(j,0)$ with $j(0)$ and $(j,1)$ with $j(1)$. +The images of the intervals $\{ j\}\times I$ are called edges\index{edge}. A graph is +finite if it has only finitely many vertices and edges or, equivalently, if +it is a compact space. A graph is locally finite if each vertex is a boundary +point of only finitely many edges or, equivalently, if it is a locally compact +space. A subgraph $A$ of $X$ is a graph $A\subset X$ with $A^0\subset X^0$. +That is, $A$ is the union of some of the vertices and edges of $X$. +\end{defn} + +Observe that a graph is a locally contractible\index{locally contractible space} +space: any neighborhood of any point contains a contractible neighborhood of +that point. Therefore a connected graph has all possible covers. + +\section{Edge paths and trees} + +An oriented edge $k:I\rtarr X$ in a graph $X$ is the traversal of an edge in +either the forward or backward direction. An edge path\index{edge path} is a finite +composite of +oriented edges $k_n$ with $k_{n+1}(0)=k_n(1)$. Such a path is reduced\index{edge path!reduced} +if it is never the case that $k_{n+1}$ is $k_n$ with the opposite orientation. An edge +path is closed\index{edge path!closed} if it starts and ends at the same vertex +(and is thus a loop). + +\begin{defn} A tree\index{tree} is a connected graph with no closed reduced edge paths. +\end{defn} + +A subspace $A$ of a space $X$ is a deformation retract\index{deformation retract} if +there is a homotopy +$h:X\times I\rtarr X$ such that $h(x,0)=x$, $h(a,t)=a$, and $h(x,1)\in A$ +for all $x\in X$, $a\in A$, and $t\in I$. Such a homotopy is called a +deformation\index{deformation} of $X$ onto $A$. + +\begin{lem} +Any vertex $v_0$ of a tree $T$ is a deformation retract of $T$. +\end{lem} +\begin{proof} +This is true by induction on the number of edges when $T$ is finite since +we can prune the last branch. For the general case, observe that each vertex +$v$ lies in some finite connected subtree $T(v)$ that also contains $v_0$. +Choose an edge path $a(v):I\rtarr T(v)$ connecting $v$ to $v_0$. For an edge +$j$ from $v$ to $v'$, $T(v)\cup T(v')\cup j$ is a finite connected subtree of $T$. +On the square $j\times I$, we define +$$h: j\times I\rtarr T(v)\cup T(v')\cup j$$ +by requiring $h=a(v)$ on $\sset{v}\times I$, $h=a(v')$ on +$\sset{v'}\times I$, $h(x,0)=x$ and $h(x,1)=v_0$ for all +$x\in j$, and extending over the interior of the square by use of the +simple connectivity of $T(v)\cup T(v')\cup j$. As $j$ runs over the edges, +these homotopies glue together to specify a deformation $h$ of $T$ onto $v_0$. +\end{proof} + +A subtree of a graph $X$ is maximal{\index{tree!maximal} if it is contained in no +strictly larger tree. + +\begin{lem} If a tree $T$ is a subgraph of a graph $X$, then $T$ is contained in +a maximal tree. If $X$ is connected, then a tree in $X$ is maximal if and only if +it contains all vertices of $X$. +\end{lem} +\begin{proof} +Since the union of an increasing family of trees in $X$ is a tree, the first +statement holds by Zorn's lemma. If $X$ is connected, then a tree containing all +vertices is maximal since addition of an edge would result in a subgraph that +contains a closed reduced edge path and, conversely, a tree $T$ that does not +contain all vertices is not maximal since a vertex not in $T$ can be connected +to a vertex in $T$ by a reduced edge path consisting of edges not in $T$. +\end{proof} + +\section{The homotopy types of graphs} + +Graph theory is a branch of combinatorics. The homotopy theory of graphs is +essentially trivial, by the following result. + +\begin{thm} +Let $X$ be a connected graph with maximal tree $T$. Then the quotient space +$X/T$ is the wedge of one circle for each edge of $X$ not in $T$, and the +quotient map $q: X\rtarr X/T$ is a homotopy equivalence. +\end{thm} +\begin{proof} +The first clause is evident. The second is a direct consequence of a later +result (that will be left as an exercise): for a suitably nice inclusion, +called a ``cofibration,'' of a contractible space $T$ in a space $X$, the +quotient map $X\rtarr X/T$ is a homotopy equivalence. A direct proof in the +present situation is longer and uglier. With the notation in our proof that +a vertex $v_0$ is a deformation retract of $T$ via a deformation $h$, +define a loop $b_j=a(v')\cdot j\cdot a(v)^{-1}$ at $v_0$ for each edge $j: v\rtarr v'$ not +in $T$. The $b_j$ together specify a map $b$ from $X/T\iso\bigvee_j S^1$ to $X$. +The composite $q\com b: X/T\rtarr X/T$ is the wedge over $j$ of copies of the loop +$c_{v_0}\cdot \id \cdot\, c_{v_0}^{-1}:S^1\rtarr S^1$ and is therefore homotopic to the identity. +To prove that $b\com q$ is homotopic to the identity, observe that $h$ +is a homotopy $\id\htp b\com q$ on $T$. This homotopy extends to a homotopy +$H:\id\htp b\com q$ on all of $X$. To see this, we need only construct $H$ on +$j\times I$ for an edge $j:v\rtarr v'$ not in $T$. The following schematic +description of the prescribed behavior on the boundary of the square makes it +clear that $H$ exists: +$$\diagram +\xline[0,3]^<(0.2){a(v)^{-1}} ^<(0.5){j} ^<(0.8){a(v')} \xline[3,0]_{a(v)} +& \xline[3,-1]^{c_v} & \xline[3,1]_{c_{v'}} & \xline[3,0]^{a(v')} \\ +& & & \\ +& & & \\ +\xline[0,3]_{j} & & & \\ +\enddiagram$$ +\renewcommand{\qed}{}\end{proof} + +\section{Covers of graphs and Euler characteristics} + +Define the Euler characteristic\index{Euler characteristic! of a finite graph} $\ch (X)$ of a +finite graph $X$ to be $V-E$, where +$V$ is the number of vertices of $X$ and $E$ is the number of edges. By induction +on the number of edges, $\ch (T)=1$ for any finite tree. The determination of the +homotopy types of graphs has the following immediate implication. + +\begin{cor} If $X$ is a connected graph, then $\pi_1(X)$ is a free group with one +generator for each edge not in a given maximal tree. If $X$ is finite, then $\pi_1(X)$ +is free on $1-\ch (X)$ generators; in particular, $\ch (X)\leq 1$, with equality if and +only if $X$ is a tree. +\end{cor} + +\begin{thm} +If $B$ is a connected graph with vertex set $B^0$ and $p:E\rtarr B$ is a covering, +then $E$ is a connected graph with vertex set $E^0=p^{-1}(B^0)$ and with one edge for +each edge $j$ of $B$ and point $e\in F_{j(0)}$. Therefore, if $B$ is finite +and $p$ is a finite cover whose fibers have cardinality $n$, then $E$ is finite and +$\ch (E)= n\ch (B)$. +\end{thm} +\begin{proof} Regard an edge $j$ of $B$ as a path $I\rtarr B$ and let $k(e):I\rtarr E$ +be the unique path such that $p\com k = j$ and $k(e)(0)=e$, where $e\in F_{j(0)}$. We +claim that $E$ is a graph with $E^0$ as vertex set and the $k(e)$ as edges. An easy +path lifting argument shows that each point of $E-E^0$ is an interior point of exactly +one edge, hence we have a continuous bijection from the graph $E^0\amalg (K\times I)/(\sim )$ +to $E$, where $K$ is the evident set of ``attaching maps'' $S^0\rtarr E^0$ for the +specified edges. This map is a homeomorphism since it is a local homeomorphism over $B$. +\end{proof} + +\section{Applications to groups} + +The following purely algebraic result is most simply proved by topology. + +\begin{thm} +A subgroup $H$ of a free group\index{free group} $G$ is free. If $G$ is free on +$k$ generators and $H$ has +finite index $n$ in $G$, then $H$ is free on $1-n+nk$ generators. +\end{thm} +\begin{proof} +Realize $G$ as $\pi_1(B)$, where $B$ is the wedge of one circle for each generator of $G$ +in a given free basis. Construct a covering $p: E\rtarr B$ such that $p_*(\pi_1(E))=H$. +Since $E$ is a graph, $H$ must be free. If $G$ has $k$ generators, then $\ch (B)=1-k$. If +$[G:H]=n$, then $F_b$ has cardinality $n$ and $\ch (E)= n\ch(B)$. Therefore +$1-\ch(E)=1-n+nk$. +\end{proof} + +We can extend the idea to realize any group as the fundamental group of some connected +space.\index{fundamental group} + +\begin{thm} +For any group $G$, there is a connected space $X$ such that $\pi_1(X)$ is +isomorphic to $G$. +\end{thm} +\begin{proof} +We may write $G=F/N$ for some free group $F$ and normal subgroup $N$. As above, we +may realize the inclusion of $N$ in $F$ by passage to fundamental groups from a cover +$p:E\rtarr B$. Define the (unreduced) cone on $E$ to be $CE = (E\times I)/(E\times\sset{1})$ +and define +$$X=B\cup_pCE/(\sim),$$ +where $(e,0)\sim p(e)$. Let $U$ and $V$ be the images in $X$ of $B\amalg (E\times [0,3/4))$ +and $E\times (1/4,1]$, respectively, and choose a basepoint in $E\times \sset{1/2}$. Since +$U$ and $U\cap V$ are homotopy equivalent to $B$ and $E$ via evident deformations and $V$ +is contractible, a consequence of the van Kampen theorem gives the conclusion. +\end{proof} + +The space $X$ constructed in the proof is called the ``homotopy cofiber''\index{homotopy cofiber} +of the map $p$. It is an important general construction to which we shall return shortly. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Let $F$ be a free group on two generators $a$ and $b$. How many subgroups of $F$ have +index $2$? Specify generators for each of these subgroups. +\item Prove that a non-trivial normal subgroup $N$ with infinite index in a free group $F$ +cannot be finitely generated. +\item* Essay: Describe a necessary and sufficient condition for a graph to be embeddable +in the plane. +\end{enumerate} + +\chapter{Compactly generated spaces} + +We briefly describe the category of spaces in which algebraic topologists +customarily work. The ordinary category of spaces allows pathology that +obstructs a clean development of the foundations. The homotopy and homology +groups of spaces are supported on compact subspaces, and it turns out that if +one assumes a separation property that is a little weaker than the Hausdorff +property, then one can refine the point-set topology of spaces to eliminate +such pathology without changing these invariants. We shall leave the proofs +to the reader, but the wise reader will simply take our word for it, at least +on a first reading: we do not want to overemphasize this material, the +importance of which can only become apparent in retrospect. + +\section{The definition of compactly generated spaces} + +We shall understand compact spaces\index{compact space} to be both compact and Hausdorff, following +Bourbaki. A space $X$ is said to be ``weak Hausdorff''\index{weak Hausdorff space} if $g(K)$ is closed +in $X$ for every map $g: K\rtarr X$ from a compact space $K$ into $X$. When this holds, +the image $g(K)$ is Hausdorff and is therefore a compact subspace of $X$. This separation +property lies between $T_1$ (points are closed) and Hausdorff, but it is not much weaker +than the latter. + +A subspace $A$ of $X$ is said to be ``compactly closed''\index{compactly closed subspace} if +$g^{-1}(A)$ is closed in $K$ +for any map $g:K\rtarr X$ from a compact space $K$ into $X$. When $X$ is weak Hausdorff, +this holds if and only if the intersection of $A$ with each compact subset of $X$ is +closed. A space $X$ is a ``$k$-space''\index{kspace@$k$-space} if every compactly closed +subspace is closed. + +A space $X$ is ``compactly generated''\index{compactly generated space} if it is a weak Hausdorff +$k$-space. For example, +any locally compact space and any weak Hausdorff space that satisfies the first axiom of +countability\index{first axiom of countability} +(every point has a countable neighborhood basis) is compactly generated. We +have expressed the definition in a form that should make the following statement clear. + +\begin{lem} If $X$ is a compactly generated space and $Y$ is any space, then a function +$f:X\rtarr Y$ is continuous if and only if its restriction to each compact +subspace $K$ of $X$ is continuous. +\end{lem} + +We can make a space $X$ into a $k$-space by giving it a new topology in which a +space is closed if and only if it is compactly closed in the original topology. +We call the resulting space $kX$. Clearly the identity function $kX\rtarr X$ is +continuous. If $X$ is weak Hausdorff, then so is $kX$, hence $kX$ is compactly +generated. Moreover, $X$ and $kX$ then have exactly the same compact subsets. + +Write $X\times_c Y$ for the product of $X$ and $Y$ with its usual topology and +write $X\times Y=k(X\times_cY)$. If $X$ and $Y$ are weak Hausdorff, then +$X\times Y=kX\times kY$. If $X$ is locally compact and $Y$ is compactly generated, +then $X\times Y=X\times_cY$. + +By definition, a space $X$ is Hausdorff if the diagonal subspace $\DE X=\sset{(x,x)}$ +is closed in $X\times_c X$. The weak Hausdorff property admits a similar characterization. + +\begin{lem} If $X$ is a $k$-space, then $X$ is weak Hausdorff if and only if +$\DE X$ is closed in $X\times X$. +\end{lem} + + +\section{The category of compactly generated spaces} + +One major source of point-set level pathology can be passage to quotient spaces\index{quotient +space}. Use +of compactly generated topologies alleviates this. + +\begin{prop} +If $X$ is compactly generated and $\pi: X\rtarr Y$ is a quotient map, then $Y$ is +compactly generated if and only if $(\pi\times\pi)^{-1}(\DE Y)$ is closed in $X\times X$. +\end{prop} + +The interpretation is that a quotient space of a compactly generated space by a +``closed equivalence relation'' is compactly generated. We are particularly interested +in the following consequence. + +\begin{prop} +If $X$ and $Y$ are compactly generated spaces, $A$ is a closed subspace of $X$, and +$f: A\rtarr Y$ is any continuous map, then the pushout $Y\cup_f X$ is compactly generated. +\end{prop} + + +Another source of pathology is passage to colimits over sequences of maps $X_i\rtarr X_{i+1}$. +When the given maps are inclusions, the colimit is the union of the sets $X_i$ with the +``topology of the union;''\index{topology of the union} a set is closed if and +only if its intersection with each $X_i$ is closed. + +\begin{prop} +If $\sset{X_i}$ is a sequence of compactly generated spaces and inclusions +$X_i\rtarr X_{i+1}$ with closed images, then\, {\em colim}$\,X_i$ is compactly +generated. +\end{prop} + +We now adopt a more categorical point of view. We redefine $\sU$\index{U@$\sU$} to be the category +of compactly generated spaces and continuous maps, and we redefine $\sT$\index{T@$\sT$} to be its +subcategory of based spaces and based maps. + +Let $w\sU$ be the category of weak Hausdorff spaces. We have the functor $k: w\sU\rtarr \sU$, +and we have the forgetful functor $j:\sU\rtarr w\sU$, which embeds $\sU$ as a full subcategory +of $w\sU$. Clearly +$$\sU(X,kY)\iso w\sU(jX,Y)$$ +for $X\in\sU$ and $Y\in w\sU$ since the identity map $kY\rtarr Y$ is continuous and +continuity of maps defined on compactly generated spaces is compactly determined. +Thus $k$ is right adjoint to $j$. + +We can construct colimits and limits of spaces by performing these constructions +on sets: they inherit topologies that give them the universal properties of +colimits\index{colimit} and +limits\index{limit} in the classical category of spaces. Limits of weak Hausdorff spaces are weak +Hausdorff, but limits of $k$-spaces need not be $k$-spaces. We construct limits of compactly +generated spaces by applying the functor $k$ to their limits as spaces. It is +a categorical fact that functors which are right adjoints preserve limits, so this does give +categorical limits in $\sU$. This is how we defined $X\times Y$, for example. + +Point-set level colimits of weak Hausdorff spaces need not be weak Hausdorff. +However, if a point-set level colimit of compactly generated spaces is weak Hausdorff, +then it is a $k$-space and therefore compactly generated. We shall only be interested in +colimits in those cases where this holds. The propositions above give examples. +In such cases, these constructions give categorical colimits in $\sU$. + +From here on, we agree that all given spaces are to be compactly generated, and we +agree to redefine any construction on spaces by applying the functor $k$ to it. For +example, for spaces $X$ and $Y$ in $\sU$, we understand the function space\index{function space} +$\text{Map}(X,Y)=Y^X$ to mean the set of continuous maps from $X$ to $Y$ with the +$k$-ification of the standard compact-open topology;\index{compact-open topology} the latter +topology has as basis the +finite intersections of the subsets of the form $\{ f|f(K)\subset U\}$ for some compact subset +$K$ of $X$ and open subset $U$ of $Y$. This leads to the following adjointness homeomorphism, +which holds without restriction when we work in the category of compactly generated spaces. + +\begin{prop} +For spaces $X$, $Y$, and $Z$ in $\sU$, the canonical bijection +$$Z^{(X\times Y)} \iso (Z^Y)^X$$ +is a homeomorphism. +\end{prop} + +Observe in particular that a homotopy $X\times I\rtarr Y$ can equally well be +viewed as a map $X\rtarr Y^I$. These adjoint, or ``dual,'' points of view will +play an important role in the next two chapters. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item +\begin{enumerate} +\item[(a)] Any subspace of a weak Hausdorff space is weak Hausdorff. +\item[(b)] Any closed subspace of a $k$-space is a $k$-space. +\item[(c)] An open subset $U$ of a compactly generated space $X$ is compactly +generated if each point has an open neighborhood in $X$ with closure contained +in $U$. +\end{enumerate} +\item* A Tychonoff (or completely regular) space $X$ is a $T_1$-space (points are +closed) such that for each point $x\in X$ and each closed subset $A$ such that +$x\notin A$, there is a function $f: X\rtarr I$ such that $f(x)=0$ and $f(a)=1$ if +$a\in A$. Prove the following (e.g., Kelley, {\em General Topology}). +\begin{enumerate} +\item[(a)] A space is Tychonoff\index{Tychonoff space} if and only if it can be +embedded in a cube (a product of copies of $I$). +\item[(b)] There are Tychonoff spaces that are not $k$-spaces, but every cube is +a compact Hausdorff space. +\end{enumerate} +\item Brief essay: In view of Problems 1 and 2, what should we mean by a ``subspace'' of a +compactly generated space. (We do {\em not} want to restrict the allowable set of subsets.) +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Cofibrations} + +Exact sequences that feature in the study of homotopy, homology, and cohomology +groups all can be derived homotopically from the theory of cofiber and fiber +sequences that we present in this and the following two chapters. Abstractions of +these ideas are at the heart of modern axiomatic treatments of homotopical algebra +and of the foundations of algebraic $K$-theory. + +The theories of cofiber and fiber sequences illustrate an important, but +informal, duality theory, known as Eckmann-Hilton duality.\index{Eckmann-Hilton duality} It +is based on the +adjunction between Cartesian products and function spaces. Our standing +hypothesis that all spaces in sight are compactly generated allows the +theory to be developed without further restrictions on the given spaces. +We discuss ``cofibrations'' here and the ``dual'' notion of ``fibrations'' +in the next chapter. + +\section{The definition of cofibrations} + +\begin{defn} +A map $i: A\rtarr X$ is a cofibration\index{cofibration} if it satisfies the homotopy extension +property (HEP).\index{homotopy extension property}\index{HEP} This means that if $h\com i_0=f\com i$ in the +diagram +$$\diagram +A \rrto^{i_0} \ddto_{i} & & A\times I \dlto_{h} \ddto^{i\times\id} \\ +& Y & \\ +X \rrto_{i_0} \urto^{f} & & X\times I, \uldashed_{\tilde{h}}|>\tip\\ +\enddiagram$$ +then there exists $\tilde{h}$ that makes the diagram commute. +\end{defn} + +Here $i_0(x)=(x,0)$. We do not require $\tilde{h}$ to be unique, and it +usually isn't. Using our alternative way of writing homotopies, we see that +the ``test diagram'' displayed in the definition can be rewritten in the +equivalent form +$$\diagram +A \dto_i \rto^{h} & Y^I \dto^{p_0} \\ +X \urdashed^{\tilde{h}}|>\tip \rto_f & Y, \\ +\enddiagram$$ +where $p_0(\xi)=\xi(0)$. + +Pushouts\index{pushout} of cofibrations are cofibrations, in the sense +of the following result. We generally write $B\cup_g X$ for the pushout +of a given cofibration $i:A\rtarr X$ and a map $g:A\rtarr B$. + +\begin{lem} +If $i:A\rtarr X$ is a cofibration and $g :A\rtarr B$ is any map, then +the induced map $B\rtarr B\cup_g X$ is a cofibration. +\end{lem} +\begin{proof} +Notice that $(B\cup_g X)\times I\iso (B\times I)\cup_{g\times \id}(X\times I)$ +and consider a typical test diagram for the HEP. The proof is a formal +chase of the following diagram: +$$\diagram +A \xto[0,4]^{i_0} \xto[4,0]^{\ \ \text{pushout}}_{i} \drto^g & & & & +A\times I \xto[4,0]^{i\times\id}_{\text{pushout}\ \ \ \, } \dlto_{g\times \id}\\ +& B \ddto \rrto & & B\times I \dlto_h \ddto & \\ +& & Y & & \\ +& B\cup_g X \urto^{f} \rrto +& &(B\cup_g X)\times I \uldashed_{\tilde{h}}|>\tip & \\ +X \urto \xto[0,4]_{i_0} & & & & X\times I. \ulto +\xdashed '[-1,-2]^{\bar{h}} '[-2,-2]|>\tip \\ +\enddiagram$$ +We first use that $A\rtarr X$ is a cofibration to obtain a homotopy +$\bar{h}: X\times I\rtarr Y$ and then use the right-hand pushout to +see that $\bar{h}$ and $h$ induce the required homotopy $\tilde{h}$. +\end{proof} + +\section{Mapping cylinders and cofibrations} + +Although the HEP is expressed in terms of general test diagrams, there is a +certain universal test diagram. Namely, we can let $Y$ in our original test +diagram be the ``mapping cylinder''\index{mapping cylinder} +$$Mi \equiv X\cup_i(A\times I),$$ +which is the pushout of $i$ and $i_0$. Indeed, suppose that we can construct +a map $r$ that makes the following diagram commute: +$$\diagram +A \rrto^{i_0} \ddto_{i} & & A\times I \dlto \ddto^{i\times\id} \\ +& Mi & \\ +X \rrto_{i_0} \urto & & X\times I. \uldashed_{r}|>\tip\\ +\enddiagram$$ +By the universal property of pushouts, the given maps $f$ and $h$ in our original +test diagram induce a map $Mi\rtarr Y$, and its composite with $r$ gives a homotopy +$\tilde{h}$ that makes the test diagram commute. + +A map $r$ that makes the previous diagram commute satisfies $r\com j=\id$, where +$j: Mi\rtarr X\times I$ is the map that restricts to $i_0$ on $X$ and to $i\times \id$ +on $A\times I$. As a matter of point-set topology, left as an exercise, it follows that +a cofibration is an inclusion with closed image. + +\section{Replacing maps by cofibrations} + +We can use the mapping cylinder construction to decompose an arbitrary map +$f: X\rtarr Y$ as the composite of a cofibration and a homotopy equivalence. +That is, up to homotopy, any map can be replaced by a cofibration. To see this, +recall that $Mf = Y\cup_f (X\times I)$ and observe that $f$ +coincides with the composite +$$X \overto{j} Mf \overto{r} Y,$$ +where $j(x)=(x,1)$ and where $r(y)=y$ on $Y$ and $r(x,s)=f(x)$ on $X\times I$. +If $i: Y\rtarr Mf$ is the inclusion, then $r\com i=\id$ and $\id\htp i\com r$. +In fact, we can define a deformation $h: Mf\times I\rtarr Mf$ of $Mf$ onto $i(Y)$ +by setting +$$h(y,t) = y \ \ \tand \ \ h((x,s),t)=(x,(1-t)s).$$ +It is not hard to check directly that $j: X\rtarr Mf$ satisfies the HEP, and this +will also follow from the general criterion for a map to be a cofibration to which +we turn next. + +\section{A criterion for a map to be a cofibration} + +We want a criterion that allows us to recognize cofibrations when we see +them. We shall often consider pairs $(X,A)$ consisting of a space $X$ and +a subspace $A$. Co\-fibration pairs will be those pairs that ``behave +homologically'' just like the associated quotient spaces $X/A$. + +\begin{defn} +A pair $(X,A)$ is an NDR-pair\index{NDR-pair} (= neighborhood deformation retract pair) if +there is a map $u: X\rtarr I$ such that $u^{-1}(0)=A$ and a homotopy +$h:X\times I\rtarr X$ such that $h_0=\id$, $h(a,t)=a$ for $a\in A$ and +$t\in I$, and $h(x,1)\in A$ if $u(x)<1$; $(X,A)$ is a DR-pair\index{DR-pair} if $u(x)<1$ +for all $x\in X$, in which case $A$ is a deformation retract of $X$. +\end{defn} + +\begin{lem} +If $(h,u)$ and $(j,v)$ represent $(X,A)$ and $(Y,B)$ as NDR-pairs, then +$(k,w)$ represents the ``product pair'' $(X\times Y,X\times B\cup A\times Y)$ +as an NDR-pair, where $w(x,y)=\text{\em min}(u(x),v(y))$ and +$$k(x,y,t)= +\begin{cases} +(h(x,t),j(y,tu(x)/v(y))) \ \ \text{if} \ v(y)\geq u(x)\\ +(h(x,tv(y)/u(x)),j(y,t)) \ \ \text{if} \ u(x)\geq v(y). +\end{cases}$$ +If $(X,A)$ or $(Y,B)$ is a DR-pair, then so is $(X\times Y,X\times B\cup A\times Y)$. +\end{lem} +\begin{proof} +If $v(y)=0$ and $v(y)\geq u(x)$, then $u(x)=0$ and both $y\in B$ and $x\in A$; therefore +we can and must understand $k(x,y,t)$ to be $(x,y)$. It is easy to check from this and +the symmetric observation that $k$ is a well defined continuous homotopy as desired. +\end{proof} + +\begin{thm} +Let $A$ be a closed subspace of $X$. Then the following are equivalent: +\begin{enumerate} +\item[(i)] $(X,A)$ is an NDR-pair. +\item[(ii)] $(X\times I, X\times\sset{0}\cup A\times I)$ is a DR-pair. +\item[(iii)] $X\times\sset{0}\cup A\times I$ is a retract of $X\times I$. +\item[(iv)] The inclusion $i:A\rtarr X$ is a cofibration. +\end{enumerate} +\end{thm} +\begin{proof} +The lemma gives that (i) implies (ii), (ii) trivially implies (iii), and we +have already seen that (iii) and (iv) are equivalent. Assume given a retraction +$r: X\times I\rtarr X\times\sset{0}\cup A\times I$. Let +$\pi_1: X\times I\rtarr X$ and $\pi_2: X\times I\rtarr I$ be the projections +and define $u: X\rtarr I$ by +$$u(x) = \text{sup}\{ t-\pi_2r(x,t)|t\in I\}$$ +and $h: X\times I\rtarr X$ by +$$h(x,t)=\pi_1r(x,t).$$ +Then $(h,u)$ represents $(X,A)$ as an NDR-pair. Here $u^{-1}(0)=A$ since +$u(x)=0$ implies that $r(x,t)\in A\times I$ for $t>0$ and thus also for +$t=0$ since $A\times I$ is closed in $X\times I$. +\end{proof} + +\section{Cofiber homotopy equivalence} + +It is often important to work in the category of spaces under a given space $A$, and we +shall later need a basic result about homotopy equivalences in this category. We shall +also need a generalization concerning homotopy equivalences of pairs. The reader is warned +that the results of this section, although easy enough to understand, have fairly lengthy +and unilluminating proofs. + +A space +under $A$ is a map $i: A\rtarr X$. A map of spaces under $A$ is a commutative diagram +$$\diagram +& A \dlto_i \drto^{j}\\ +X\rrto_f & & Y \\ +\enddiagram$$ +A homotopy between maps under $A$ is a homotopy that at each time $t$ is a map under $A$. +We then write $h: f\htp f'\ \text{rel}\ A$ and have $h(i(a),t)=j(a)$ for all $a\in A$ and +$t\in I$. There results a notion of a homotopy equivalence under $A$. Such an equivalence +is called a ``cofiber homotopy equivalence.''\index{cofiber homotopy equivalence} The +name is suggested by the following result, +whose proof illustrates a more substantial use of the HEP than we have seen before. + +\begin{prop} Let $i: A\rtarr X$ and $j: A\rtarr Y$ be cofibrations and let $f: X\rtarr Y$ +be a map such that $f\com i = j$. Suppose that $f$ is a homotopy equivalence. Then $f$ is a +cofiber homotopy equivalence. +\end{prop} +\begin{proof} It suffices to find a map $g: Y\rtarr X$ under $A$ and a homotopy +$g\com f\htp \id \ \text{rel}\ A$. Indeed, $g$ will then be a homotopy equivalence, and +we can repeat the argument to obtain $f': X\rtarr Y$ such that $f'\com g\htp \id \ \text{rel}\ A$; +it will follow formally that $f'\htp f\ \text{rel}\ A$. +By hypothesis, there is a map $g'': Y\rtarr X$ that is a homotopy inverse to $f$. Since +$g''\com f\htp\id$, $g''\com j\htp i$. Since $j$ satisfies the HEP, it follows directly +that $g''$ is homotopic to a map $g'$ such that $g'\com j=i$. It suffices to prove that +$g'\com f: X\rtarr X$ has a left homotopy inverse $e: X\rtarr X$ under $A$, since +$g=e\com g'$ will then satisfy $g\com f\htp \id \ \text{rel}\ A$. Replacing our original +map $f$ with $g'\com f$, we see that it suffices to obtain a left homotopy inverse under $A$ +to a map $f:X\rtarr X$ such that $f\com i=i$ and $f\htp\id$. Choose a homotopy $h:f\htp \id$. +Since $h_0\com i=f\com i=i$ and $h_1=\id$, we can apply the HEP to +$h\com(i\times\id): A\times I\rtarr X$ and the identity map of $X$ to obtain a homotopy +$k:\id \htp k_1\equiv e$ such that $k\com(i\times\id)=h\com(i\times\id)$. Certainly $e\com i=i$. +Now apply the HEP to the following diagram: +$$\diagram +A\times I \rrto^{i_0} \ddto_{i\times\id} & +& A\times I\times I \ddto^{i\times\id\times\id} \dlto_K\\ +& X & \\ +X\times I \urto^J \rrto_{i_0} & & X\times I\times I. \uldashed_{L}|>\tip \\ +\enddiagram$$ +Here $J$ is the homotopy $e\com f\htp \id$ specified by +$$J(x,s)=\begin{cases} +k(f(x),1-2s)\ \ \text{if}\ \ s\leq 1/2 \\ +h(x,2s-1)\ \ \ \ \ \ \text{if}\ \ 1/2\leq s.\\ +\end{cases}$$ +The homotopy between homotopies $K$ is specified by +$$K(a,s,t)=\begin{cases} +k(i(a),1-2s(1-t))\ \ \ \ \ \ \ \ \ \ \text{if}\ \ s\leq 1/2 \\ +h(i(a),1-2(1-s)(1-t))\ \ \, \text{if}\ \ s\geq 1/2.\\ +\end{cases}$$ +Traversal of $L$ around the three faces of $I\times I$ other than that specified by $J$ +gives a homotopy +$$e\com f = J_0 = L_{0,0} \htp L_{0,1}\htp L_{1,1}\htp L_{1,0} = J_1=\id \ \text{rel}\ A. \qed$$ +\renewcommand{\qed}{}\end{proof} + +The proposition applies to the following previously encountered situation. + +\begin{exmp} +Let $i: A\rtarr X$ be a cofibration. We then have the commutative diagram +$$\diagram +& A \dlto_j \drto^i \\ +Mi \rrto_r & & X, \\ +\enddiagram$$ +where $j(a)=(a,1)$. The obvious homotopy inverse $\io: X\rtarr Mi$ has $\io(x)=(x,0)$ +and is thus very far from being a map under $A$. The proposition ensures that $\io$ is +homotopic to a map under $A$ that is homotopy inverse to $r$ under $A$. +\end{exmp} + +The following generalization asserts that, for inclusions that are cofibrations, +a pair of homotopy equivalences is a homotopy equivalence of +pairs.\index{homotopy equivalence!of pairs} It is often +used implicitly in setting up homology and cohomology theories on pairs of spaces. + +\begin{prop} Assume given a commutative diagram +$$\diagram +A \rto^{d} \dto_{i} & B \dto^{j} \\ +X \rto_{f} & Y\\ +\enddiagram$$ +in which $i$ and $j$ are cofibrations and $d$ and $f$ are homotopy equivalences. +Then $(f,d):(X,A)\rtarr (Y,B)$ is a homotopy equivalence of pairs. +\end{prop} +\begin{proof} +The statement means that there are homotopy inverses $e$ of $d$ and $g$ +of $f$ such that $g\com j=i\com e$ together with homotopies $H: g\com f\htp\id$ and +$K: f\com g\htp \id$ that extend homotopies $h: e\com d\htp\id$ and $k: d\com e\htp\id$. +Choose any homotopy inverse $e$ to $d$, together with homotopies +$h: e\com d\htp \id$ and $\ell: d\com e\htp\id$. By HEP for $j$, there is a homotopy +inverse $g'$ for $f$ such that $g'\com j = i\com e$. Then, by HEP for $i$, there is +a homotopy $m$ of $g'\com f$ such that $m\com (i\times \id)=i\com h$. Let $\ph = m_1$. Then +$\ph\com i = i$ and $\ph$ is a cofiber homotopy equivalence by the previous result. +Let $\ps: X\rtarr X$ be a homotopy inverse under $i$ and let $n: \ps\com\ph\htp \id$ +be a homotopy under $i$. Define $g= \ps\com g'$. Clearly $g\com j = i\com e$. Using that +the pairs $(I\times I, I\times \sset{0})$ and $(I\times I, I\times \sset{0}\cup \pa I\times I)$ +are homeomorphic, we can construct a homotopy between homotopies $\LA$ by applying HEP to the +diagram +$$\diagram (A\times I \times {0})\cup (A\times \pa I\times I) \ddto_{i\times \id} +\rrto^{\subset} & & A\times I\times I \ddto^{i\times \id} \dlto_{\GA}\\ +& X & \\ +(X\times I \times {0})\cup (X\times \pa I\times I) \urto^{\ga} +\rrto_{\subset} & & X\times I\times I. \ulto_{\LA} \\ +\enddiagram$$ +Here +$$\ga(x,s,0) = \left\{ \begin{array}{ll} + \ps (m(x,2s)) & \mbox{if $s\leq 1/2$} \\ + n(x, 2s-1) & \mbox{if $s\geq 1/2$,} + \end{array} + \right. $$ +$$\ga(x,0,t) = (g\com f)(x) = (\ps\com g'\com f)(x),$$ +and +$$\ga(x,1,t) = x,$$ +while +$$\GA(a,s,t) = \left\{ \begin{array}{ll} + i(h(a,2s/(1+t))) & \mbox{if $2s\leq 1+t$} \\ + i(a) & \mbox{if $2s\geq 1+t$} + \end{array} + \right. $$ +Define $H(x,s)= \LA(x,s,1)$. Then $H: g\com f\htp\id$ and $H\com(i\times\id)=i\com h$. +Application of this argument with $d$ and $f$ replaced by $e$ and $g$ gives a left +homotopy inverse $f'$ to $g$ and a homotopy $L: f'\com g\htp \id$ such that +$f'\com i = j\com d$ and $L\com(j\times \id) = j\com \ell$. Adding homotopies by +concentrating them on successive fractions of the unit interval and letting +the negative of a homotopy be obtained by reversal of direction, define +$$k=(-\ell)(de\times \id) + dh(e\times \id) + \ell$$ +and +$$K=(-L)(fg\times \id) + f'H(g\times \id)+ L.$$ +Then $K: f\com g\htp\id$ and $K\com(j\times \id)= j\com k$. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Show that a cofibration $i: A\rtarr X$ is an inclusion with closed image. +\item Let $i: A\rtarr X$ be a cofibration, where $A$ is a contractible space. +Prove that the quotient map $X\rtarr X/A$ is a homotopy equivalence. +\end{enumerate} + +\chapter{Fibrations} + +We ``dualize'' the definitions and theory of the previous chapter to the study +of fibrations, which are ``up to homotopy'' generalizations of covering spaces. + +\section{The definition of fibrations} + +\begin{defn} +A surjective map $p: E\rtarr B$ is a fibration\index{fibration} if it satisfies the +covering homotopy property (CHP).\index{CHP}\index{covering homotopy property} This +means that if $h\com i_0=p\com f$ in the diagram +$$\diagram +Y \rto^f \dto_{i_0} & E \dto^p \\ +Y\times I \rto_h \urdashed^{\tilde{h}}|>\tip & B,\\ +\enddiagram$$ +then there exists $\tilde{h}$ that makes the diagram commute. +\end{defn} + +This notion of a fibration is due to Hurewicz. There is a more general notion of a +Serre fibration\index{fibration!Serre}, in which the test spaces $Y$ are restricted +to be cubes $I^n$. Serre fibrations are more appropriate for many purposes, but we +shall make no use of them. The test diagram in the definition can be rewritten in the +equivalent form +$$\diagram +E \ddto_{p} & & E^I \llto_{p_0} \ddto^{p^I} \\ +& Y \urdashed^{\tilde{h}}|>\tip \ulto^f \drto_h & \\ +B & & B^I. \llto^{p_0}\\ +\enddiagram$$ +Here $p_0(\be)=\be(0)$ for $\be\in B^I$. With this formulation, we can +``dualize'' the proof that pushouts of cofibrations are cofibrations to +show that pullbacks of fibrations are fibrations. We often write +$A\times_g E$ for the pullback\index{pullback} of a given fibration +$p:E\rtarr B$ and a map $g:A\rtarr B$. + +\begin{lem} +If $p:E\rtarr B$ is a fibration and $g :A\rtarr B$ is any map, then +the induced map $A\times_g E\rtarr A$ is a fibration. +\end{lem} + +\section{Path lifting functions and fibrations} + +Although the CHP is expressed in terms of general test diagrams, there is a +certain universal test diagram. Namely, we can let $Y$ in our original test +diagram be the ``mapping path space''\index{mapping path space} +$$Np \equiv E\times_p B^I =\{ (e,\be)| \be(0)=p(e)\} \subset E\times B^I.$$ +That is, $Np$ is the pullback of $p$ and $p_0$ in the second form of the test +diagram and, with $Y=Np$, $f$ and $h$ in that diagram are the evident projections. +A map $s: Np\rtarr E^I$ +such that $k\com s=\id$, where $k: E^I\rtarr Np$ has coordinates $p_0$ and +$p^I$, is called a path lifting function.\index{path lifting function} Thus +$$s(e,\be)(0)=e \ \ \tand \ \ p\com s(e,\be)=\be.$$ +Given a general test diagram, there results a map $g: Y\rtarr Np$ determined +by $f$ and $h$, and we can take $\tilde{h}= s\com g$. + +In general, path lifting functions are not unique. In fact, we have already +studied the special kinds of fibrations for which they are unique. + +\begin{lem} If $p: E\rtarr B$ is a covering, then $p$ is a fibration with +a unique path lifting function $s$. +\end{lem} +\begin{proof} +The unique lifts of paths with a given initial point specify $s$. +\end{proof} + +Fibrations and cofibrations are related by the following useful observation. + +\begin{lem} +If $i: A\rtarr X$ is a cofibration and $B$ is a space, then the induced map +$$p= B^i: B^X \rtarr B^A$$ +is a fibration. +\end{lem} +\begin{proof} +It is an easy matter to check that we have a homeomorphism +$$B^{Mi} = B^{X\times\sset{0}\cup A\times I} \iso B^X\times_p (B^A)^I = Np.$$ +If $r: X\times I\rtarr Mi$ is a retraction, then +$$B^r: Np \iso B^{Mi}\rtarr B^{X\times I}\iso (B^X)^I$$ +is a path lifting function. +\end{proof} + +\section{Replacing maps by fibrations} + +We can use the mapping path space construction to decompose an arbitrary map +$f: X\rtarr Y$ as the composite of a homotopy equivalence and a fibration. +That is, up to homotopy, any map can be replaced by a fibration. To see this, +recall that $Nf = X\times_f Y^I$ and observe that $f$ +coincides with the composite +$$X \overto{\nu} Nf \overto{\rh} Y,$$ +where $\nu(x)=(x,c_{f(x)})$ and $\rh (x,\ch)=\ch(1)$. Let $\pi: Nf\rtarr X$ +be the projection. Then $\pi\com\nu=\id$ and $\id\htp \nu\com\pi$ since +we can define a deformation $h: Nf\times I\rtarr Nf$ of $Nf$ onto $\nu(X)$ by +setting +$$h(x,\ch)(t)=(x,\ch_t), \ \text{where}\ \ch_t(s)=\ch((1-t)s).$$ +We check directly that $\rh: Nf\rtarr Y$ satisfies the CHP. Consider a test +diagram +$$\diagram +A \rto^g \dto_{i_0} & Nf \dto^{\rh} \\ +A\times I \rto_h \urdashed^{\tilde{h}}|>\tip & Y.\\ +\enddiagram$$ +We are given $g$ and $h$ such that $h\com i_0=\rh\com g$ and must construct +$\tilde{h}$ that makes the diagram commute. We write $g(a)=(g_1(a),g_2(a))$ +and set +$$\tilde{h}(a,t)=(g_1(a),j(a,t)),$$ +where +$$j(a,t)(s)= +\begin{cases} +g_2(a)(s+st) \ \ \ \ \ \text{if}\ \ 0\leq s \leq 1/(1+t)\\ +h(a,s+ts-1) \ \ \text{if} \ \ 1/(1+t) \leq s\leq 1. +\end{cases}$$ + +\section{A criterion for a map to be a fibration} + +Again, we want a criterion that allows us to recognize fibrations when we see +them. Here the idea of duality fails, and we instead think of fibrations as +generalizations of coverings. When restricted to the spaces $U$ in a well +chosen open cover $\sO$ of the base space $B$, a covering is homeomorphic +to the projection $U\times F\rtarr U$, where $F$ is a fixed discrete set. + +The obvious generalization of this is the notion of a bundle. A map $p: E\rtarr B$ +is a bundle\index{bundle} if, when restricted to the spaces $U$ in a well chosen open +cover $\sO$ of $B$, there are homeomorphisms $\ph: U\times F\rtarr p^{-1}(U)$ such +that $p\com \ph= \pi_1$, where $F$ is a fixed topological space. We require of a ``well +chosen'' open cover that it be numerable.\index{numerable open cover} +This means that there are continuous maps $\la_U: B\rtarr I$ such that $\la_U^{-1}(0,1]=U$ +and that the cover is locally finite, in the sense that each $b\in B$ has a neighborhood +that intersects only finitely many $U\in \sO$. Any open cover of a paracompact space has a +numerable refinement. With this proviso on the open covers allowed in the +definition of a bundle, the following result shows in particular that every +bundle is a fibration. + +\begin{thm} Let $p: E\rtarr B$ be a map and let $\sO$ be a numerable open +cover of $B$. Then $p$ is a fibration if and only if $p: p^{-1}(U)\rtarr U$ +is a fibration for every $U\in \sO$. +\end{thm} +\begin{proof} +Since pullbacks of fibrations are fibrations, necessity is obvious. Thus +assume that $p|p^{-1}(U)$ is a fibration for each $U\in \sO$. We shall construct a +path lifting function for $B$ by patching together path lifting functions +for the $p|p^{-1}(U)$, but we first set up the scaffolding of the patching argument. +Choose maps $\la_U: B\rtarr I$ such that $\la_U^{-1}(0,1]=U$. For a finite ordered +subset $T=\sset{U_1,\ldots\!,U_n}$ of sets in $\sO$, +define $c(T)=n$ and define $\la_T: B^I\rtarr I$ by +$$\la_T(\be)= +\text{inf}\{ (\la_{U_i}\com\be)(t)|(i-1)/n\leq t\leq i/n,\ 1\leq i\leq n \}.$$ +Let $W_T=\la_T^{-1}(0,1]$. Equivalently, +$$W_T=\{ \be| \be(t)\in U_i \ \text{if}\ t\in [(i-1)/n,i/n] \} \subset B^I.$$ +The set $\sset{W_T}$ is an open cover of $B^I$, but it need not be locally +finite. However, $\{ W_T|c(T)0\}\subset W_T.$$ +Then $\sset{V_T}$ is a locally finite open cover of $B^I$. We choose a total +ordering of the set of all finite ordered subsets $T$ of $\sO$. + +With this scaffolding in place, choose path lifting functions +$$s_U:p^{-1}(U)\times_pU^I\rtarr p^{-1}(U)^I$$ +for $U\in\sO$, so that $(p\com s_U)(e,\be)=\be$ and $s_U(e,\be)(0)=e$. For a given +$T=\sset{U_1,\ldots\!,U_n}$, consider paths $\be\in V_T$. +For $0\leq u \tip \rto_{\pi_2} & I \rto_{\be} & B.\\ +\enddiagram$$ +At time $t$, $\tilde{\be}$ maps $F_b$ to the fiber $F_{\be(t)}$. In particular, at $t=1$, +this gives a map +$$\ta[\be]\equiv [\tilde{\be_1}]: F_b\rtarr F_{b'},$$ +which we call the translation of fibers along the path class $[\be]$. + +We claim that, as indicated by our choice of notation, the homotopy class of the +map $\tilde{\be_1}$ is independent of the choice of $\be$ in its path class. Thus +suppose that $\be$ and $\be'$ are equivalent paths from $b$ to $b'$, let +$h: I\times I\rtarr B$ be a homotopy $\be\htp\be'$ through paths from $b$ to +$b'$, and let $\tilde{\be}': F_b\times I\rtarr E$ cover $\be'\pi_2$. Observe that if +$$J^2=I\times\pa I\cup \sset{0}\times I\subset I^2,$$ +then the pairs $(I^2,J^2)$ and $(I\times I,I\times\sset{0})$ are homeomorphic. +Define $f: F_b\times J^2 \rtarr E$ to be $\tilde{\be}$ on $F_b\times I\times\sset{0}$, +$\tilde{\be'}$ on $F_b\times I\times\sset{1}$, and $i_b\com \pi_1$ on +$F_b \times\sset{0}\times I$. Then another application of the CHP gives a lift +$\tilde{h}$ in the diagram +$$\diagram +F_b\times J^2 \dto \rrto^f & & E \dto^p \\ +F_b\times I^2 \urrdashed^{\tilde{h}}|>\tip \rto_{\pi_2} & I^2 \rto_{h} & B.\\ +\enddiagram$$ +Thus $\tilde{h}:\tilde{\be}\htp\tilde{\be'}$ through maps $F_b\times I\rtarr E$, +each of which starts at the inclusion of $F_b$ in $E$. At time $t=1$, this gives +a homotopy $\tilde{\be_1}\htp\tilde{\be'_1}$. Thus $\ta[\be] = [\tilde{\be_1}]$ +is a well defined {\em homotopy class} of maps $F_b\rtarr F_{b'}$. + +We think of $\ta[\be]$ as a map in the homotopy category $h\sU$. It is clear +that, in the homotopy category, +$$\ta[c_b]=[\id] \ \ \ \tand \ \ \ \ta[\ga\cdot\be]=\ta[\ga]\com\ta[\be]$$ +if $\ga(0)=\be(1)$. It follows that $\ta[\be]$ is an isomorphism with inverse +$\ta[\be^{-1}]$. This can be stated formally as follows. + +\begin{thm} Lifting of equivalence classes of paths in $B$ to homotopy classes +of maps of fibers specifies a functor $\la: \PI(B)\rtarr h\sU$. Therefore, if +$B$ is path connected, then any two fibers of $B$ are homotopy equivalent. +\end{thm} + +Just as the fundamental group $\pi_1(B,b)$ of the base space of a covering acts +on the fiber $F_b$, so the fundamental group $\pi_1(B,b)$ of the base space of a +fibration acts ``up to homotopy'' on the fiber, in a sense made precise by the +following corollary. For a space $X$, let $\pi_0(X)$ denote the set of path components of $X$. +The set of homotopy equivalences of $X$ is denoted +$\text{Aut}(X)$ and is topologized as a subspace of the function space of maps $X\rtarr X$. +The composite of homotopy equivalences is a homotopy equivalence, and composition defines +a continuous product on $\text{Aut}(X)$. With this product, $\text{Aut}(X)$ is a +``topological monoid,'' namely a space with a continuous and associative multiplication +with a two-sided identity element, but it is not a group. However, the path components +of $\text{Aut}(X)$ are the homotopy classes of homotopy equivalences of $X$, and these +do form a group under composition. + +\begin{cor} +Lifting of equivalence classes of loops specifies a +homomorphism $\pi_1(B,b)\rtarr \pi_0(${\em Aut}$(F_b))$. +\end{cor} + +We have the following naturality statement with respect to maps of fibrations. + +\begin{thm} +Let $p$ and $q$ be fibrations in the commutative diagram +$$\diagram +D \rto^g \dto_q & E \dto^p\\ +A \rto_f & B.\\ +\enddiagram$$ +For a path $\al: I\rtarr A$ from $a$ to $a'$, the following diagram commutes +in $h\sU$: +$$\diagram +F_a \rto^g \dto_{\ta[\al]} & F_{f(a)} \dto^{\ta[f\com\al]} \\ +F_{a'}\rto_g & F_{f(a')}. \\ +\enddiagram$$ +If, further, $h:f\htp f'$ and $H:g\htp g'$ in the commutative diagram +$$\diagram +D\times I \rto^H \dto_{q\times\id} & E \dto^p\\ +A\times I \rto_h & B,\\ +\enddiagram$$ +then the following diagram in $h\sU$ also commutes, where $h(a)(t)=h(a,t)$: +$$\diagram +& F_a \dlto_g \drto^{g'} & \\ +F_{f(a)} \rrto_{\ta[h(a)]} & & F_{f'(a)}. \\ +\enddiagram$$ +\end{thm} +\begin{proof} +Let $\tilde{\al}: F_a\times I\rtarr D$ lift $\al$ and +$\tilde{\be}:F_{f(a)}\times I\rtarr E$ +lift $f\com\al$. Define $j: F_a\times J^2 \rtarr E$ to be $g\com \tilde{\al}$ on +$F_a \times I\times\sset{0}$, $\tilde{\be}\com (g\times\id)$ on +$F_a \times I\times\sset{1}$, and $g\com \pi_1$ on $F_a \times \sset{0}\times I$. Define +$k: I^2\rtarr B$ to be the constant homotopy which at each time $t$ is $f\com \al$. +Another application of the CHP gives a lift $\tilde{k}$ in the diagram: +$$\diagram +F_a\times J^2 \dto \rrto^j & & E \dto^p\\ +F_a\times I^2 \urrdashed^{\tilde{k}}|>\tip \rto_{\pi_2} & I^2 \rto_{k} & B.\\ +\enddiagram$$ +Here $\tilde{k}$ is a homotopy $g\com\tilde{\al}\htp\tilde{\be}\com(g\times\id)$ through +homotopies starting at $g\com\pi_1: F_a\times I\rtarr E$. This gives the diagram +claimed in the first statement. For the second statement, define +$\al: I\rtarr A\times I$ by $\al(t)=(a,t)$, +so that $h(a)=h\com\al$. Define $\tilde{\al}: F_a\rtarr F_a\times I$ by +$\tilde{\al}(f)=(f,t)$. Then $\tilde{\al}$ lifts $\al$ and +$$\ta[\al]=[\id]:F_a=F_a\times \sset{0}\rtarr F_a\times \sset{1}=F_a.$$ +We conclude that the second statement is a special case of the first. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEM +\end{center} +\begin{enumerate} +\item Prove the proposition stated in \S5. +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Based cofiber and fiber sequences} + +We use cofibrations and fibrations in the category $\sT$ of based spaces +to generate two ``exact sequences of spaces'' from a given map of based +spaces. We shall write $*$ generically for the basepoints of based spaces. +Much that we do for cofibrations can be done equally well in the unbased +context of the previous chapter. However, the dual theory of fibration +sequences only makes sense in the based context. + +\section{Based homotopy classes of maps} + +For based spaces $X$ and $Y$, we let $[X,Y]$ denote the set of based +homotopy classes of based maps $X\rtarr Y$. This set has a natural +basepoint, namely the homotopy class of the constant map from $X$ to +the basepoint of $Y$. + +The appropriate analogue of the Cartesian product in the category of based +spaces is the ``smash product''\index{smash product} $X\sma Y$ defined by +$$ X\sma Y = X\times Y/X\wed Y.$$ +Here $X\wed Y$ is viewed as the subspace of $X\times Y$ consisting of +those pairs $(x,y)$ such that either $x$ is the basepoint of $X$ or +$y$ is the basepoint of $Y$. + +The appropriate based analogue of the function space is the subspace $F(X,Y)$ +of $Y^X$ consisting of the based maps, with the constant based map as +basepoint.\index{function space!based} With these definitions, we have a natural +homeomorphism of based spaces +$$F(X\sma Y,Z)\iso F(X,F(Y,Z))$$ +for based spaces $X$ and $Y$. + +Recall that $\pi_0(X)$ denotes the set of path components of $X$. +When $X$ is based, so is this set, and we sometimes denote it by $\pi_0(X,*)$. +Observe that $[X,Y]$ may be identified with $\pi_0(F(X,Y))$. + +\section{Cones, suspensions, paths, loops} + +Let $X$ be a based space. We define the cone\index{cone} on $X$ to be $CX=X\sma I$, +where $I$ is given the basepoint $1$. That is, +$$CX = X\times I/(\sset{*}\times I\cup X\times\sset{1}).$$ +We view $S^1$ as $I/\pa I$, denote its basepoint by $1$, and define the +suspension\index{suspension} of $X$ to be $\SI X= X\sma S^1$. That is, +$$\SI X= X\times S^1/(\sset{*}\times S^1\cup X\times\sset{1}).$$ +These are sometimes called the reduced cone and suspension,\index{cone!reduced} +\index{suspension!reduced} to distinguish them +from the unreduced constructions, in which the line $\sset{*}\times I$ +through the basepoint of $X$ is not identified to a point. We shall make use of +both constructions in our work, but we shall not distinguish them notationally. + +Dually, we define the path space\index{path space} of $X$ to be $PX=F(I,X)$, where $I$ is +given the basepoint $0$. Thus the points of $PX$ are the paths in $X$ that +start at the basepoint. We define the loop space\index{loop space} of $X$ to be $\OM X=F(S^1,X)$. +Its points are the loops at the basepoint. + +We have the adjunction +$$F(\SI X,Y) \iso F(X,\OM Y).$$ +Passing to $\pi_0$, this gives that +$$[\SI X,Y]\iso [X,\OM Y].$$ + +Composition of loops defines a multiplication on this set. Explicitly, for +$f,g:\SI X\rtarr Y$, we write +$$(g+f)(x\sma t) = (g(x)\cdot f(x))(t)= +\begin{cases} +f(x\sma 2t) \ \ \ \ \ \ \ \ \ \, \text{if} \ 0\leq t\leq 1/2 \\ +g(x\sma(2t-1)) \ \ \text{if} \ 1/2\leq t\leq 1. +\end{cases}$$ + +\begin{lem} $[\SI X,Y]$ is a group and $[\SI^2 X,Y]$ is an Abelian group. +\end{lem} +\begin{proof} +The first statement is proved just as for the fundamental group. For the +second, think of maps $f,g: \SI^2 X\rtarr Y$ as maps $S^2\rtarr F(X,Y)$ +and think of $S^2$ as the quotient $I^2/\pa I^2$. Then a homotopy between +$g+f$ and $f+g$ can be pictured schematically as follows: +$$\diagram +\rrline \ddline & & \ddline & +\rrline \ddline & \ddline & \ddline & +\rrline \ddline & \ddline & \ddline & +\rrline \ddline & & \ddline \\ +\rrline^{^f} & & \rto & \rrline^<(0.25){^*} ^<(0.75){^f} & & \rto +& \rrline^<(0.25){^g} ^<(0.75){^*} & & \rto & \rrline^{^g} & & \\ +\rrline^{^g} & & & \rrline^<(0.25){^g} ^<(0.75){^*} & & +& \rrline^<(0.25){^*} ^<(0.75){^f} & & & \rrline^{^f} & & \\ +\enddiagram$$ +\end{proof} + +\section{Based cofibrations} + +The definition of a cofibration\index{cofibration!based} has an evident based variant, in which +all given and constructed maps in our test diagrams are required to be +based. A based map $i: A\rtarr X$ that is a cofibration in the unbased +sense is necessarily a cofibration in the based sense since the basepoint +of $X$ must lie in $A$. + +We say that $X$ is ``nondegenerately based,'' or ``well pointed,''\index{nondegenerately +based space}\index{well pointed space} if the inclusion of its basepoint is a cofibration in the unbased +sense. If $A$ and $X$ are nondegenerately based and $i: A\rtarr X$ is a based cofibration, +then $i$ is necessarily an unbased cofibration. + +We refer to based cofibrations simply as cofibrations in the rest of this +chapter. + +Write $Y_+$ for the union of a space $Y$ and a disjoint basepoint and observe +that we can identify $X\sma Y_+$ with $X\times Y/\sset{*}\times Y$. + +The space $X\sma I_+$ is called the reduced cylinder\index{cylinder!reduced} on $X$, and a based +homotopy\index{homotopy!based} $X\times I\rtarr Y$ is the same thing as a based map +$X\sma I_+\rtarr Y$. We change notations and write $Mf$ for the based +mapping cylinder $Y\cup_f (X\sma I_+)$ of a based map $f$. + +As in the unbased case, we conclude that a based map $i:A\rtarr X$ is a +cofibration if and only if $Mi$ is a retract of $X\sma I_+$. + +\section{Cofiber sequences} + +For a based map $f:X\rtarr Y$, define the ``homotopy cofiber''\index{homotopy cofiber} $Cf$ to be +$$Cf=Y\cup_f CX= Mf/j(X),$$ +where $j: X\rtarr Mf$ sends $x$ to $(x,1)$. As in the unbased case, our +original map $f$ is the composite of the cofibration $j$ and the evident +retraction $r: Mf\rtarr Y$. Thus $Cf$ is constructed by first replacing +$f$ by the cofibration $j$ and then taking the associated quotient space. + +Let $i: Y\rtarr Cf$ be the inclusion. It is a cofibration since it is the +pushout of $f$ and the cofibration $X\rtarr CX$ that sends $x$ to $(x,0)$. +Let +$$\pi:Cf\rtarr Cf/Y\iso \SI X$$ +be the quotient map. The sequence +$$ X\overto{f} Y\overto{i} Cf\overto{\pi} \SI X +\overto{-\SI f} \SI Y \overto{-\SI i} \SI Cf \overto{-\SI \pi} \SI^2 X +\overto{\SI^2f} \SI^2 Y\rtarr\cdots$$ +is called the cofiber sequence\index{cofiber sequence} generated by the map $f$; here +$$(-\SI f)(x\sma t)=f(x)\sma(1-t).$$ + +These ``long exact sequences of based spaces''\index{long exact sequence!of based spaces} +give rise to long exact +sequences of pointed sets,\index{long exact sequence!of pointed sets} where a sequence +$$S'\overto{f} S\overto{g} S''$$ +of pointed sets is said to be exact if $g(s)=*$ if and only if $s=f(s')$ +for some $s'$. + +\begin{thm} +For any based space $Z$, the induced sequence +$$\cdots \rtarr [\SI Cf,Z] \rtarr [\SI Y,Z]\rtarr [\SI X,Z] +\rtarr [Cf,Z]\rtarr [Y,Z]\rtarr [X,Z]$$ +is an exact sequence of pointed sets, or of groups to the left of $[\SI X,Z]$, +or of Abelian groups to the left of $[\SI^2 X,Z]$. +\end{thm} + +Exactness is clear at the first stage, where we are considering the composite of +$f: X\rtarr Y$ and the inclusion $i$ of $Y$ in the cofiber $Cf$. To see this, consider +the diagram +$$\diagram +X\rto^f & Y \dto_g \rto^(0.2)i & Cf= Y\cup_f CX \dldashed^{\tilde{g}=g\cup h}|>\tip \\ +& Z. &\\ +\enddiagram$$ +Here $h:g\com f\htp c_*$, and we view $h$ as a map $CX\rtarr Z$. Thus we +check exactness by using any given homotopy to extend $g$ over the cofiber. We emphasize +that this applies to any composite pair of maps of the form $(f,i)$, where $i$ is the +inclusion of the target of $f$ in the cofiber of $f$. + +We claim that, up to homotopy equivalence, each consecutive pair of maps +in our cofiber sequence is the composite of a map and the inclusion of its +target in its cofiber. This will imply the theorem. We observe that, for any +map $f$, interchange of the cone and suspension coordinate gives a homeomorphism +$$\SI Cf\iso C(\SI f)$$ +such that the following diagram commutes: +$$\diagram +\SI X\rto^{\SI f} \ddouble & \SI Y \ddouble \rto^{\SI i(f)} & \SI Cf \rto^{\SI \pi(f)} \dto^{\iso} +& \SI^2X\dto^{\tau} \\ +\SI X\rto_{\SI f} & \SI Y \rto_(0.4){ i(\SI f)} & C (\SI f) \rto_{\pi(\SI f)} & \SI^2X.\\ +\enddiagram$$ +Here $\ta: \SI^2X\rtarr \SI^2X$ is the homeomorphism obtained by interchanging the two +suspension coordinates; we shall see later, and leave as an exercise here, that $\ta$ is +homotopic to $-\id$. We have written $i(f)$, $\pi(f)$, etc., to indicate the maps to which the +generic constructions $i$ and $\pi$ are applied. Using this inductively, we see that we need only +verify our claim for the two pairs of maps $(i(f),\pi(f))$ and $(\pi(f),-\SI f)$. The +following two lemmas will imply the claim in these two cases. More precisely, they will +imply the claim directly for the first pair and will imply that the second pair is equivalent +to a pair of the same form as the first pair. + +\begin{lem} +If $i: A\rtarr X$ is a cofibration, then the quotient map +$$\ps: Ci\rtarr Ci/CA\iso X/A$$ +is a based homotopy equivalence. +\end{lem} +\begin{proof} +Since $i$ is a cofibration, there is a retraction +$$r: X\sma I_+\rtarr Mi = X\cup_i (A\sma I_+).$$ +We embed $X$ as $X\times\sset{1}$ in the source and collapse out +$A\times\sset{1}$ from the target. The resulting composite $X\rtarr Ci$ +maps $A$ to $\sset{*}$ and so induces a map $\ph: X/A\rtarr Ci$. The +map $r$ restricts to the identity on $A\sma I_+$, and if we collapse out +$A\sma I_+$ from its source and target, then $r$ becomes a homotopy +$\id\htp \ps\com\ph$. The map $r$ on $X\sma I_+$ glues together with the +map $h: CA\sma I_+\rtarr CA$ specified by +$$h(a,s,t)=(a,\text{max}(s,t))$$ +to give a homotopy $Ci\sma I_+\rtarr Ci$ from the identity to $\phi\com\ps$. +\end{proof} + +\begin{lem} +The left triangle commutes and the right triangle commutes up to homotopy +in the diagram +$$\diagram + X\rto^{f} & Y\rto^{i(f)} & Cf\rto^{\pi(f)} \drto_{i(i(f))} & \SI X +\rto^{-\SI f} & \SI Y \rto & \cdots \\ + & & & Ci(f) \uto_{\ps} \urto_{\pi(i(f))}& & \\ +\enddiagram$$ +\end{lem} +\begin{proof} +Observe that $Ci(f)$ is +obtained by gluing the cones $CX$ and $CY$ along their bases via the map +$f: X\rtarr Y$. The left triangle commutes since collapsing out $CY$ from +$Ci(f)$ is the same as collapsing out $Y$ from $Cf$. A homotopy +$h: Ci(f)\sma I_+\rtarr \SI Y$ from $\pi$ to $(-\SI f)\com\ps$ is given by +$$h(x,s,t)=(f(x),t-st) \ \ \text{on} \ \ CX$$ +and +$$h(y,s,t)=(y,s+t-st) \ \ \ \text{on} \ \ CY. \qed$$ +\renewcommand{\qed}{}\end{proof} + +\section{Based fibrations} + +Similarly, the definition of a fibration\index{fibration!based} has an evident based variant, +in which all given and constructed maps in our test diagrams are required +to be based. A based fibration $p: E\rtarr B$ is necessarily a fibration +in the unbased sense, as we see by restricting to spaces of the form $Y_+$ +in test diagrams and noting that $Y_+\sma I_+\iso (Y\times I)_+$. Less +obviously, if $p$ is a based map that is an unbased fibration, then it +satisfies the based CHP for test diagrams in which $Y$ is nondegenerately +based. + +We refer to based fibrations simply as fibrations in the rest of this +chapter. + +Observe that a based homotopy\index{homotopy!based} $X\sma I_+\rtarr Y$ is the same thing as a +based map $X\rtarr F(I_+,Y)$. Here $F(I_+,Y)$ is the same space as $Y^I$, +but given a basepoint determined by the basepoint of $Y$. Therefore the based version +of the mapping path space $Nf$\index{mapping path space} of a based map $f:X\rtarr Y$ +is the same space +as the unbased version, but given a basepoint determined by the given basepoints +of $X$ and $Y$. However, because path spaces are always defined with $I$ having +basepoint $0$ rather than $1$, we find it convenient to redefine +$Nf$ correspondingly, setting +$$Nf=\{ (x,\ch)|\ch (1)=f(x)\} \subset X\times Y^I.$$ + +As in the unbased case, we easily check that a based map $p:E\rtarr B$ is a +fibration if and only if there is a based path lifting function\index{path lifting function!based} +$$s: Np\rtarr F(I_+,E).$$ + +\section{Fiber sequences} + +For a based map $f:X\rtarr Y$, define the ``homotopy fiber''\index{homotopy fiber} $Ff$ to be +$$Ff=X\times_f PY= \{ (x,\ch)| f(x)=\ch(1)\}\subset X\times PY.$$ +Equivalently, $Ff$ is the pullback displayed in the diagram +$$\diagram +Ff\rto \dto_{\pi} & PY \dto^{p_1}\\ +X\rto_f & Y, \\ +\enddiagram$$ +where $\pi(x,\ch)=x$. As a pullback of a fibration, $\pi$ is a fibration. + +If $\rh: Nf\rtarr Y$ is defined by $\rh(x,\ch)=\ch(0)$, then $f=\rh\com\nu$, +where $\nu(x)=(x,c_{f(x)})$, and $Ff$ is the fiber $\rh^{-1}(*)$. Thus the +homotopy fiber $Ff$ is constructed by first replacing $f$ by the fibration +$\rh$ and then taking the actual fiber. + +Let $\io: \OM Y\rtarr Ff$ be the inclusion specified by $\io(\ch)=(*,\ch)$. +The sequence + +$$ \cdots \rtarr \OM^2X \overto{\OM^2f} \OM^2Y \overto{-\OM\io} \OM Ff +\overto{-\OM \pi} \OM X +\overto{-\OM f} \OM Y \overto{\io} Ff \overto{\pi} X +\overto{f} Y$$ +is called the fiber sequence generated by the map $f$; here +$$(-\OM f)(\ze)(t)=(f\com \ze)(1-t) \ \ \text{for}\ \ze\in \OM X.$$ + +These ``long exact sequences of based spaces''\index{long exact sequence!of based spaces} +also give rise to long exact +sequences of pointed sets,\index{long exact sequence!of pointed sets} this time covariantly. + +\begin{thm} +For any based space $Z$, the induced sequence +$$\cdots \rtarr [Z,\OM Ff]\rtarr [Z,\OM X] \rtarr [Z,\OM Y]\rtarr [Z,Ff] +\rtarr [Z,X]\rtarr [Z,Y]$$ +is an exact sequence of pointed sets, or of groups to the left of $[Z,\OM Y]$, +or of Abelian groups to the left of $[Z,\OM^2 Y]$. +\end{thm} + +Exactness is clear at the first stage. To see this, consider the diagram +$$\diagram +& Z \dldashed_{\tilde{g}=g\times h}|>\tip \dto^g &\\ +Ff=X\times_f PY\rto_(0.7){\pi} & X \rto_f & Y\\ +\enddiagram$$ +Here $h:c_*\htp f\com g$, and we view $h$ as a map $Z\rtarr PY$. Thus we +check exactness by using any given homotopy to lift $g$ to the fiber. + +We claim that, up to homotopy equivalence, each consecutive pair of maps +in our fiber sequence is the composite of a map and the projection from its +fiber onto its source. This will imply the theorem. We observe that, for any +map $f$, interchange of coordinates gives a homeomorphism +$$\OM Ff\iso F(\OM f)$$ +such that the following diagram commutes: +$$\diagram +\OM^2 Y\rto^{\OM \io(f)} \dto_{\ta} & \OM Ff \dto^{\iso}\rto^(0.55){\OM \pi(f)} & \OM X \rto^{\OM f} +\ddouble +& \OM Y\ddouble \\ +\OM^2 Y\rto_(0.45){\io(\OM f)} & F(\OM f) \rto_(0.55){ \pi(\OM f)} & \OM X \rto_{\OM f} & \OM Y.\\ +\enddiagram$$ +Here $\ta$ is obtained by interchanging the loop coordinates and is homotopic to $-\id$. +We have written $\io(f)$, $\pi(f)$, etc., to indicate the maps to which the generic +constructions $\io$ and $\pi$ are applied. Using this inductively, we see that we need only +verify our claim for the two pairs of maps $(\io(f),\pi(f))$ and $(-\OM f,\io(f))$. The +following two lemmas will imply the claim in these two cases. More precisely, they will +imply the claim directly for the first pair and will imply that the second pair is equivalent +to a pair of the same form as the first pair. The proofs of the lemmas are left as exercises. + +\begin{lem} +If $p: E\rtarr B$ is a fibration, then the inclusion +$$\ph: p^{-1}(*)\rtarr Fp$$ +specified by $\ph (e)=(e,c_*)$ is a based homotopy equivalence. +\end{lem} + +\begin{lem} +The right triangle commutes and the left triangle commutes up to homotopy +in the diagram +$$\diagram +\cdots \rto & \OM X \rto^{-\OM f} \drto_{\io(\pi (f))} & \OM Y +\dto^{\ph} \rto^{\io (f)} & Ff \rto^{\pi (f)} & X \rto^f & Y.\\ + & & F\pi (f) \urto_{\pi (\pi (f))} & & & \\ +\enddiagram$$ +\end{lem} + +\section{Connections between cofiber and fiber sequences} + +It is often useful to know that cofiber sequences and fiber sequences can be +connected to one another. The adjunction between loops and suspension has +``unit'' and ``counit'' maps +$$\et: X\rtarr \OM\SI X\ \ \tand \ \ \epz: \SI\OM X\rtarr X.$$ +Explicitly, $\et(x)(t)=x\sma t$ and $\epz(\ch\sma t)= \ch(t)$ for $x\in X$, $\ch\in\OM X$, +and $t\in S^1$. For a map $f: X\rtarr Y$, we define +$$\et: Ff\rtarr \OM Cf \ \ \tand \ \ \epz: \SI Ff\rtarr Cf$$ +by +$$\et(x,\ga)(t)=\epz(x,\ga,t)=\begin{cases} +\ga(2t) \ \ \ \ \ \ \ \ \ \ \text{if}\ \ t\leq 1/2 \\ +(x,2t-1) \ \ \ \, \text{if}\ \ t\geq 1/2\\ +\end{cases}$$ +for $x\in X$ and $\ga\in PY$ such that $\ga(1)=f(x)$. Thus $\epz$ is just the +adjoint of $\et$. + +\begin{lem} Let $f: X\rtarr Y$ be a map of based spaces. Then the following +diagram, in which the top row is the suspension of part of the fiber sequence +of $f$ and the bottom row is the loops on part of the cofiber sequence of $f$, +is homotopy commutative: +$$\diagram + & \SI\OM Ff \dto_{\epz} \rto^{\SI\OM p} & \SI\OM X \dto_{\epz} \rto^{\SI\OM f} +& \SI \OM Y \rto^{\SI\io} \dto^{\epz} +& \SI Ff \dto^{\epz} \rto^{\SI p} & \SI X \ddouble \\ +\OM Y\rto^{\io} \ddouble & Ff \rto^{p} \dto_{\eta} & X \rto^{f} \dto_{\et} & +Y \rto^{i} \dto^{\et} & Cf \rto^{\pi} \dto^{\et} & \SI X \\ +\OM Y\rto_{\OM i} & \OM Cf \rto_{\OM\pi} & +\OM\SI X \rto_{\OM\SI f} & \OM\SI Y \rto_{\OM\SI i} & \OM\SI Cf.\\ +\enddiagram$$ +\end{lem} +\begin{proof} +Four of the squares commute by naturality and the remaining four squares +consist of two pairs that are adjoint to each other. To see that the +two bottom left squares commute up to homotopy one need only write down +the relevant maps explicitly. +\end{proof} + +Another easily verified result along the same lines relates the quotient +map $(Mf,X)\rtarr (Cf,*)$ to $\et: Ff\rtarr \OM Cf$. Here in the based +context we let $Mf$ be the reduced mapping cylinder, in which the line +through the basepoint of $X$ is collapsed to a point. + +\begin{lem} +Let $f: X\rtarr Y$ be a map of based spaces. Then the following diagram is +homotopy commutative, where $j: X\rtarr Mf$ is the inclusion, $r:Mf\rtarr Y$ +is the retraction, and $\pi$ is induced by the quotient map $Mf\rtarr Cf$: +$$\diagram +Fj=X\times_jPMf\rrto^{Fr=\id\times Pr} \drto_{\pi} & &X\times_f PY=Ff \dlto^{\et}\\ +& \OM Cf. & \\ +\enddiagram$$ +\end{lem} + +\vspace{.1in} + +\begin{center} +PROBLEM +\end{center} +\begin{enumerate} +\item Prove the two lemmas stated at the end of \S6. +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Higher homotopy groups} + +The most basic invariants in algebraic topology are the homotopy groups. +They are very easy to define, but very hard to compute. We give the +basic properties of these groups here. + +\section{The definition of homotopy groups} + +For $n\geq 0$ and a based space $X$, define\index{homotopy groups} +$$\pi_n(X)=\pi_n(X,*)=[S^n,X],$$ +the set of homotopy classes of based maps $S^n\rtarr X$. This is a +group if $n\geq 1$ and an Abelian group if $n\geq 2$. When $n=0$ and +$n=1$, this agrees with our previous definitions. Observe that +$$\pi_n(X)=\pi_{n-1}(\OM X)=\cdots=\pi_0(\OM^nX).$$ + +For $*\in A\subset X$, the (homotopy) fiber of the inclusion $A\rtarr X$ +may be identified with the space $P(X;*,A)$ of paths in $X$ that begin at +the basepoint and end in $A$. For $n\geq 1$, define +$$\pi_n(X,A)=\pi_n(X,A,*)=\pi_{n-1}P(X;*,A).$$ +This is a group if $n\geq 2$ and an Abelian group if $n\geq 3$. Again, +$$\pi_n(X,A)=\pi_0(\OM^{n-1}P(X;*,A)).$$ +These are called relative homotopy groups.\index{homotopy groups!relative} + +\section{Long exact sequences associated to pairs} + +With $Fi=P(X;*,A)$, we have the fiber sequence +$$\cdots\rtarr \OM^2A\rtarr \OM^2X \rtarr \OM Fi\rtarr \OM A +\rtarr \OM X \overto{\io} Fi\overto{p_1} A \overto{i}X$$ +associated to the inclusion $i: A\rtarr X$, where $p_1$ is the endpoint +projection and $\io$ is the inclusion. Applying the functor +$\pi_0(-)=[S^0,-]$ to this sequence, we obtain the long exact sequence +$$\cdots\rtarr \pi_n(A) \rtarr \pi_n(X) \rtarr \pi_n(X,A) +\overto{\pa} \pi_{n-1}(A) +\rtarr \cdots \rtarr \pi_0(A)\rtarr \pi_0(X).$$ + +Define +$$J^n=\pa I^{n-1}\times I\cup I^{n-1}\times\sset{0}\subset I^n,$$ +with $J^1=\sset{0}\subset I$. We can write +$$\pi_n(X,A,*)=[(I^n,\pa I^n,J^n),(X,A,*)],$$ +where the notation indicates the homotopy classes of maps of triples:\index{triple} +maps and homotopies carry $\pa I^n$ into A and $J^n$ to the basepoint. Then +$$\pa: \pi_n(X,A)\rtarr \pi_{n-1}(A)$$ +is obtained by restricting maps +$$(I^n,\pa I^n,J^n)\rtarr (X,A,*)$$ +to maps +$$(I^{n-1}\times\sset{1},\pa I^{n-1}\times\sset{1})\rtarr (A,*),$$ +while $\pi_n(A)\rtarr \pi_n(X)$ and $\pi_n(X)\rtarr \pi_n(X,A)$ are +induced by the inclusions +$$(A,*)\subset (X,*) \ \ \ \tand \ \ \ (X,*,*)\subset (X,A,*).$$ + +\section{Long exact sequences associated to fibrations} + +Let $p: E\rtarr B$ be a fibration, where $B$ is path connected. Fix a +basepoint $*\in B$, let $F=p^{-1}(*)$, and fix a basepoint $*\in F\subset E$. +The inclusion $\ph: F\rtarr Fp$ is a homotopy equivalence, and, being +pedantically careful to choose signs appropriately, we obtain the following +diagram, in which two out of each three consecutive squares commute and the +third commutes up to homotopy: +$$\diagram +\cdots\rto & \OM^2E \rto^{-\OM\io} \dto^{\id} +& \OM Fi \rto^{-\OM p_1} \dto^{-\OM p} & \OM F \dto^{\OM\ph} +\rto^{-\OM i} & \OM E \dto^{\id} \rto^{\io} & Fi \rto^{p_1} \dto^{-p} +& F \rto^{i} \dto^{\ph} & E \dto^{\id} \\ +\cdots\rto & \OM^2E \rto_{\OM^2p} & \OM^2B \rto_{-\OM \io} & \OM Fp +\rto_{-\OM \pi} & \OM E \rto_{-\OM p} & \OM B\rto_{\io} & Fp \rto_{\pi} + & E.\\ +\enddiagram$$ +Here $Fi=P(E;*,F)$, $p(\xi)=p\com \xi\in\OM B$ for $\xi\in Fi$, and the next to +last square commutes up to the homotopy $h: \io\com(-p)\htp\ph\com p_1$ +specified by +$$h(\xi,t)=(\xi(t),p(\xi[1,t])),$$ +where $\xi[1,t](s)=\xi(1-s+st)$. + +Passing to long exact sequences of homotopy groups and using the five lemma, +together with a little extra argument in the case $n=1$, we conclude that +$$p_*: \pi_n(E,F)\rtarr \pi_n(B)$$ +is an isomorphism for $n\geq 1$. This can also be derived directly from the +covering homotopy property. + +Using $\ph_*$ to identify $\pi_*F$ with $\pi_*(Fp)$, we may rewrite the long +exact sequence of the bottom row of the diagram as +$$\cdots\rtarr \pi_n(F) \rtarr \pi_n(E) \rtarr \pi_n(B) +\overto{\pa} \pi_{n-1}(F) +\rtarr \cdots \rtarr \pi_0(E)\rtarr \sset{*}.$$ +(At the end, a little path lifting argument shows that $\pi_0(F)\rtarr \pi_0(E)$ is +a surjection.) This is one of the main tools for the computation of homotopy groups. + +\section{A few calculations} + +We observe some easily derived calculational facts about homotopy groups. + +\begin{lem} If $X$ is contractible, then $\pi_n(X)=0$ for all $n\geq 0$. +\end{lem} + +\begin{lem} If $X$ is discrete, then $\pi_n(X)=0$ for all $n > 0$. +\end{lem} + +\begin{lem} If $p: E\rtarr B$ is a covering, then +$p_*: \pi_n(E)\rtarr \pi_n(B)$ is an isomorphism for all $n\geq 2.$ +\end{lem} + +\begin{lem} $\pi_1(S^1)=\bZ$ and $\pi_n(S^1)=0$ if $n\neq 1$. +\end{lem} + +\begin{lem} If $i\geq 2$, then $\pi_1(\bR P^i)=\bZ_2$ and +$\pi_n(\bR P^i)\iso \pi_n(S^i)$ for $n\neq 1$. +\end{lem} + +\begin{lem} For all spaces $X$ and $Y$ and all $n$, +$$\pi_n(X\times Y)\iso \pi_n(X)\times \pi_n(Y).$$ +\end{lem} + +\begin{lem} If $in>1$ are all finite +except for $\pi_{4n-1}(S^{2n})$, which is the direct sum of $\bZ$ and +a finite group. + +The difficulty of computing homotopy groups is well illustrated by the fact +that there is no non-contractible simply connected compact manifold (or +finite CW complex) all of whose homotopy groups are known. We shall find +many non-compact spaces whose homotopy groups we can determine completely. +Such computations will rely on the following observation. + +\begin{lem} +If $X$ is the colimit of a sequence of inclusions $X_i\rtarr X_{i+1}$ +of based spaces, then the natural map +$$ \colim_i\pi_n(X_i)\rtarr \pi_n(X)$$ +is an isomorphism for each $n$. +\end{lem} +\begin{proof} +This follows directly from the point-set topological fact that if $K$ is a +compact space, then a map $K\rtarr X$ has image in one of the $X_i$. +\end{proof} + +\section{Change of basepoint} + +We shall use our results on change of fibers to generalize our results on +change of basepoint from the fundamental group to the higher absolute and +relative homotopy groups. In the absolute case, we have the identification +$$\pi_n(X,x)=[(S^n,*),(X,x)],$$ +where we assume that $n\geq 1$. Since the inclusion of the basepoint in +$S^n$ is a cofibration, evaluation +at the basepoint gives a fibration $p: X^{S^n}\rtarr X$. We may identify +$\pi_n(X,x)$ with $\pi_0(F_x)$ since a path in $F_x$ is just a based homotopy +$h: S^n\times I\rtarr X$ with respect to the basepoint $x$. Another way to see +this is to observe that $F_x$ is the $n$th loop space $\OM^nX$, specified with +respect to the basepoint $x$. A path class +$[\xi]: I\rtarr X$ from $x$ to $x'$ induces a homotopy equivalence +$\ta[\xi]: F_x\rtarr F_{x'}$, and we continue to write $\ta[\xi]$ for +the induced bijection +$$\ta[\xi]: \pi_n(X,x)\rtarr \pi_n(X,x').$$ + +This bijection is an isomorphism of groups. One conceptual way to see this +is to observe that addition is induced from the ``pinch map'' $S^n\rtarr S^n\wed S^n$ +that is obtained by collapsing an equator to the basepoint. That is, the sum of maps +$f,g: S^n\rtarr X$ is the composite +$$S^n \rtarr S^n\wed S^n \overto{f\wed g} X\wed X\overto{\triangledown} X,$$ +where $\triangledown$ is the folding map, which restricts to the identity map +$X\rtarr X$ on each wedge summand. Evaluation at the basepoint of $S^n\wed S^n$ gives +a fibration $X^{S^n\wed S^n}\rtarr X$, and the pinch map induces a map of fibrations +$$\diagram +X^{S^n\wed S^n} \dto \rto & X^{S^n} \dto\\ +X \rdouble & X.\\ +\enddiagram$$ +The fiber over $x$ in the left-hand fibration is the product $F_x\times F_x$, +where $F_x$ is the fiber over $x$ in the right-hand fibration. In fact, the induced map of +fibers can be identified as the map $\OM^nX\times \OM^nX\rtarr \OM^nX$ given by composition +of loops (using the first loop coordinate say). By the naturality of +translations of fibers with respect to maps of fibrations, we have a homotopy commutative +diagram +$$\diagram +F_x\times F_x \rto \dto_{\ta[\xi]\times \ta[\xi]} & F_x \dto^{\ta[\xi]}\\ +F_{x'}\times F_{x'} \rto & F_{x'} +\enddiagram$$ +in which the horizontal arrows induce addition on passage to $\pi_0$. + +We can argue similarly in the relative case. The triple $(I^n,\pa I^n,J^n)$ +is homotopy equivalent to the triple $(CS^{n-1},S^{n-1},*)$, as we see by +quotienting out $J^n$. Therefore, for $a\in A$, we have the identification +$$\pi_n(X,A,a)\iso [(CS^{n-1},S^{n-1},*),(X,A,a)].$$ +Using that the inclusions $\sset{*}\rtarr S^{n-1}$ and $S^{n-1}\rtarr CS^{n-1}$ +are both cofibrations, we can check that evaluation at $*$ specifies a fibration +$$p: (X,A)^{(CS^{n-1},S^{n-1})}\rtarr A,$$ +where the domain is the subspace of $X^{CS^{n-1}}$ consisting of the +indicated maps of pairs. We may identify $\pi_n(X,A,a)$ with $\pi_0(F_a)$. A path +class $[\al]: I\rtarr A$ from $a$ to $a'$ induces a homotopy equivalence +$\ta[\al]: F_a\rtarr F_{a'}$, and we continue to write $\ta[\al]$ for +the induced isomorphism +$$\ta[\al]: \pi_n(X,A,a)\rtarr \pi_n(X,A,a').$$ +Our naturality results on change of fibers now directly imply the desired results +on change of basepoint. + +\begin{thm} +If $f: (X,A)\rtarr (Y,B)$ is a map of pairs and $\al: I\rtarr A$ is a path +from $a$ to $a'$, then the following diagram commutes: +$$\diagram +\pi_n(X,A,a) \dto_{\ta[\al]} \rto^{f_*} & \pi_n(Y,B,f(a)) \dto^{\ta[f\com\al]}\\ +\pi_n(X,A,a') \rto^{f_*} & \pi_n(Y,B,f(a'))\\ +\enddiagram$$ +If $h:f\htp f'$ is a homotopy of maps of pairs and $h(a)(t)=h(a,t)$, then the +following diagram commutes: +$$\diagram +& \pi_n(X,A,a) \dlto_{f_*} \drto^{f'_*} &\\ +\pi_n(Y,B,f(a)) \rrto_{\ta[h(a)]} & & \pi_n(Y,B,f'(a)).\\ +\enddiagram$$ +The analogous conclusions hold for the absolute homotopy groups. +\end{thm} + +Therefore, up to non-canonical isomorphism, the homotopy groups of $(X,A)$ are +independent of the choice of basepoint in a given path component of $A$. + +\begin{cor} +A homotopy equivalence of spaces or of pairs of spaces induces an isomorphism +on all homotopy groups. +\end{cor} + +We shall soon show that the converse holds for a quite general class of spaces, +namely the class of CW complexes, but we first need a few preliminaries. + +\section{$n$-Equivalences, weak equivalences, and a technical lemma} + +\begin{defn} +A map $e: Y\rtarr Z$ is an $n$-equivalence\index{nequivalence@$n$-equivalence} if, for all $y\in Y$, the map +$$e_*:\pi_q(Y,y)\rtarr \pi_q(Z,e(y))$$ +is an injection for $q\tip & & +CS^n \uldashed^{\tilde{g}}|>\tip \llto^{i_1} \\ +\enddiagram $$ +\item[(iii)] The conclusion of (ii) holds when $f|S^n=e\com g$ and $h$ is the +constant homotopy at this map. +\end{enumerate} +\end{lem} +\begin{proof} +Trivially (ii) implies (iii). We first show that (iii) implies (i). If $n=0$, (iii) +says (in part) that if $e(y)$ and $e(y')$ can be connected by a path in $Z$, then +$y$ and $y'$ can be connected by a path in $Y$. If $n>0$, then (iii) says (in part) +that if $e\com g$ is null homotopic, then $g$ is null homotopic. Therefore +$\pi_n(e)$ is injective. If we specialize (iii) by letting $g$ be the constant map +at a point $y\in Y$, then $f$ is a map $(CS^n,S^n)\rtarr (Z,e(y))$, $\tilde{g}$ is a map +$(CS^n,S^n)\rtarr (Y,y)$, and $\tilde{h}: f\htp e\com \tilde{g}\ \text{rel}\ S^n$. +Therefore $\pi_{n+1}(e)$ is surjective. + +Thus assume (i). We must prove (ii), and we assume given $f$, $g$, and $h$ making +the solid arrow part of the diagram commute. The idea is to use (i) to show that +the $n$th homotopy group of the fiber $F(e)$ is zero, to use the given part of the +diagram to construct a map $S^n\rtarr F(e)$, and to use a null homotopy of that +map to construct $\tilde{g}$ and $\tilde{h}$. However, since homotopy groups involve +choices of basepoints and the diagram makes no reference to basepoints, the details +require careful tracking of basepoints. Thus fix a basepoint $*\in S^n$, let $\bullet$ be +the cone point of $CS^n$, and define +$$y_1=g(*),\ \ z_1=e(y_1),\ \ z_0=f(*,0),\ \ \tand\ \ z_{-1}=f(\bullet).$$ +For $x\in S^n$, let $f_x: I\rtarr Z$ and $h_x: I\rtarr Z$ be the paths +$f_x(s)=f(x,s)$ from $f(x,0)=h(x,0)$ to $z_{-1}$ and $h_x(t)=h(x,t)$ from $h(x,0)$ to +$h(x,1)=(e\com g)(x)$. Consider the homotopy fiber +$$F(e;y_1)=\sset{(y,\ze)|\ze(0)=z_1 \, \tand \, e(y)=\ze(1)}\subset Y\times Z^I.$$ +This has basepoint $w_1=(y_1,c_{z_1})$. By (i) and the exact sequence +$$\pi_{n+1}(Y,y_1)\overto{e_*}\pi_{n+1}(Z,z_1)\rtarr \pi_n(F(e;y_1),w_1)\rtarr +\pi_n(Y,y_1)\overto{e_*}\pi_n(Z,z_1),$$ +we see that $\pi_n(F(e;y_1),w_1)=0$. Define $k_0: S^n\rtarr F(e;y_1)$ by +$$k_0(x)=(g(x),h_x\cdot f_x^{-1}\cdot f_*\cdot h_*^{-1}).$$ +While $k_0$ is not a based map, $k_0(*)$ is connected to the basepoint since +$h_*\cdot f_*^{-1}\cdot f_*\cdot h_*^{-1}$ is equivalent to $c_{z_1}$. By HEP for +the cofibration $\sset{*}\rtarr S^n$, $k_0$ is homotopic to a based map. This based map is +null homotopic in the based sense, hence $k_0$ is null homotopic in the unbased +sense. Let $k: S^n\times I\rtarr F(e;y_1)$ be a homotopy from $k_0$ to the +trivial map at $w_1$. Write +$$k(x,t)=(\tilde{g}(x,t),\ze(x,t)).$$ +Then $\tilde{g}(x,1)=y_1$ for all $x\in S^n$, so that $\tilde{g}$ factors through +a map $CS^n\rtarr Y$, and $\tilde{g}=g$ on $S^n$. We have a map +$j: S^n\times I\times I$ given by $j(x,s,t)=\ze(x,t)(s)$ that behaves +as follows on the boundary of the square for each fixed $x\in S^n$, where +$\tilde{g}_x(t)=\tilde{g}(x,t)$: +$$\diagram +\rrline^{c_{z_1}}|\tip & & \\ +& & \\ +\uuline^{c_{z_1}}|\tip \rrline_{h_x\cdot f_x^{-1}\cdot f_*\cdot h_*^{-1}}|\tip +& & \uuline_{e\com \tilde{g}_x}|\tip \\ +\enddiagram$$ +The desired homotopy $\tilde{h}$, written $\tilde{h}(x,s,t)$ where $s$ is the cone +coordinate and $t$ is the interval coordinate, should behave as follows on the boundary +of the square: +$$\diagram +\rrline^{e\com \tilde{g}_x}|\tip & & \\ +& & \\ +\uuline^{h_x}|\tip \rrline_{f_x}|\tip +& & \uuline_{h_*\cdot f_*^{-1}}|\tip \\ +\enddiagram$$ +Thus we can obtain $\tilde{h}$ by composing $j$ with a suitable +reparametrization $I^2\rtarr I^2$ of the square. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Show that, if $n\geq 2$, then $\pi_n(X\wed Y)$ is isomorphic to +$$\pi_n(X)\oplus\pi_n(Y)\oplus \pi_{n+1}(X\times Y, X\wed Y).$$ +\item Compute $\pi_n(\bR P^n,\bR P^{n-1})$ for $n\geq 2$. Deduce that the quotient map +$$(\bR P^n,\bR P^{n-1})\to (\bR P^n/\bR P^{n-1},*)$$ +does not induce an isomorphism of homotopy groups. +\item Compute the homotopy groups of complex projective space $\bC P^n$ in terms +of the homotopy groups of spheres. +\item Verify that the ``Hopf bundles'' are in fact bundles. +\item Show that $\pi_7(S^4)$ contains an element of infinite order. +\item Compute all of the homotopy groups of $\bR P^{\infty}$ and $\bC P^{\infty}$. +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{CW complexes} + +We introduce a large class of spaces, called CW complexes, between which a +weak equivalence is necessarily a homotopy equivalence. Thus, +for such spaces, the homotopy groups are, in a sense, a complete set of +invariants. Moreover, we shall see that every space is weakly +equivalent to a CW complex. + +\section{The definition and some examples of CW complexes} + +Let $D^{n+1}$ be the unit disk\index{disk} $\{ x\, |\, |x|\leq 1\} \subset \bR^{n+1}$ +with boundary $S^n$. + +\begin{defn} (i) A CW complex\index{CW complex} $X$ is a space $X$ which is the union of an +expanding sequence of subspaces $X^n$ such that, inductively, $X^0$ is +a discrete set of points (called vertices)\index{vertex} and $X^{n+1}$ is the pushout +obtained from $X^n$ by attaching disks $D^{n+1}$ along ``attaching maps''\index{attaching map} +$j: S^n\rtarr X^n$. Thus $X^{n+1}$ is the quotient space obtained from +$X^n\cup (J_{n+1}\times D^{n+1})$ by identifying $(j,x)$ with $j(x)$ for +$x\in S^n$, where $J_{n+1}$ is the discrete set of such attaching maps $j$. +Each resulting map +$D^{n+1}\rtarr X$ is called a ``cell.''\index{cell} The subspace $X^n$ is called the +$n$-skeleton of $X$.\index{skeleton!of a CW complex} + +(ii) More generally, given any space $A$, we +define a relative +CW complex\index{CW complex!relative} $(X,A)$ in the same fashion, but with +$X^0$ replaced by the union of +$A$ and a (possibly empty) discrete set of points; we write $(X,A)^n$, or $X^n$ +when $A$ is clear from the context, for the relative $n$-skeleton, and we say +that $(X,A)$ has dimension $\leq n$ if $X=X^n$. + +(iii) A subcomplex\index{subcomplex!of a CW complex} $A$ of a CW +complex $X$ is a subspace and a CW complex such that the composite of each +cell $D^n\rtarr A$ of $A$ and the inclusion of $A$ in $X$ is a cell of $X$. +That is, $A$ is the union of some of the cells of $X$. The pair $(X,A)$ can +then be viewed as a relative CW complex. + +(iv) A map of pairs $f:(X,A)\rtarr (Y,B)$ +between relative CW complexes is said to be ``cellular'' if $f(X^n)\subset Y^n$ +for all $n$.\index{cellular map} +\end{defn} + +Of course, pushouts and unions are understood in the topological sense, with the +compactly generated topologies. A subspace of $X$ is closed if and only if its +intersection with each $X^n$ is closed. + +\begin{exmps} (i) A graph is a one-dimensional CW complex. + +(ii) Via a homeomorphism $I\times I\iso D^2$, the standard presentations of the +torus\index{torus} +$T=S^1\times S^1$, the projective plane\index{projective plane} $\bR P^2$, and the +Klein bottle\index{Klein bottle} $K$ as quotients +of a square display these spaces as CW complexes with +one or two vertices, two edges, and one $2$-cell: + +\begin{small} +$$\diagram +& T & \\ +v \rrline^{e_1}|\tip \ddline_{e_2}|{\rotate\tip} & & v \ddline^{e_2}|{\rotate\tip} \\ +& & \\ +v \rrline_{e_1}|\tip & & v \\ +\enddiagram +\hspace{.2in} +\diagram +& \bR P^2 & \\ +v_1 \rrline^{e_1}|\tip \ddline_{e_2}|{\rotate\tip} & & v_2 \ddline^{e_2}|\tip \\ +& & \\ +v_2 \rrline_{e_1}|{\rotate\tip} & & v_1 \\ +\enddiagram +\hspace{.2in} +\diagram +& K & \\ +v \rrline^{e_1}|\tip \ddline_{e_2}|{\rotate\tip} & & v \ddline^{e_2}|\tip \\ +& & \\ +v \rrline_{e_1}|\tip & & v \\ +\enddiagram$$ +\end{small} + +(iii) For $n\geq 1$, $S^n$ is a CW complex with one vertex $\sset{*}$ and +one $n$-cell, the attaching map $S^{n-1}\rtarr \sset{*}$ being the only possible +map. Note that this entails a choice of homeomorphism $D^n/S^{n-1}\iso S^n$. If +$m\tip & & +X \uldashed^{\tilde{g}}|>\tip \llto^{i_1} \\ +\enddiagram $$ +\end{thm} +\begin{proof} +Proceed by induction over skeleta, applying the case $(D^n,S^{n-1})$ one +cell at a time to the $n$-cells of $X$ not in $A$. +\end{proof} + +In particular, if we take $e$ to be the identity map of $Y$, we see that the +inclusion $A\rtarr X$ is a cofibration. Observe that, by passage to colimits, +we are free to take $n=\infty$ in the theorem. + +We write $[X,Y]$ for homotopy classes of unbased maps in this chapter, and we +have the following direct and important application of HELP. + +\begin{thm}[Whitehead]\index{Whitehead theorem} If $X$ is a CW complex and $e:Y\rtarr Z$ is an +$n$-equivalence, then $e_*:[X,Y]\rtarr [X,Z]$ is +a bijection if \text{\em dim}\,$X 1$ and $X$ is not contractible, then it is known that $X$ has infinitely +many non-zero homotopy groups. The Whitehead theorem is thus surprisingly strong: in its +first statement, if low dimensional homotopy groups are mapped isomorphically, then so are +all higher homotopy groups. + +\section{The cellular approximation theorem} + +Cellular maps are under much better algebraic control than general maps, as will become +both clear and important later. Fortunately, any map between CW complexes is homotopic to +a cellular map. We need a lemma. + +\begin{defn} +A space $X$ is said to be $n$-connected\index{nconnected@$n$-connected space} if $\pi_q(X,x)=0$ +for $0\leq q\leq n$ and all $x$. +A pair $(X,A)$ is said to be $n$-connected if $\pi_0(A)\rtarr \pi_0(X)$ is surjective and +$\pi_q(X,A,a)=0$ for $1\leq q\leq n$ and all $a$. It is equivalent that the inclusion +$A\rtarr X$ be an $n$-equivalence. +\end{defn} + +\begin{lem} +A relative CW complex $(X,A)$ with no $m$-cells for $m\leq n$ is $n$-connected. In particular, +$(X,X^n)$ is $n$-connected for any CW complex $X$. +\end{lem} +\begin{proof} +Consider $f:(I^q,\pa I^q,J^q)\rtarr (X,A,a)$, where $q\leq n$. Since the image of $f$ +is compact, we may assume that $(X,A)$ has finitely many cells. By induction on the number +of cells, we may assume that $X=A\cup_jD^r$, where $r>n$. By smooth (or simplicial) +approximation, there is a map $f': I^q\rtarr X$ such that $f'=f$ on $\pa I^q$, +$f'\htp f \ \text{rel}\ \pa I^q$ and $f'$ misses a point $p$ in the interior of $D^r$. Clearly +we can deform $X-\sset{p}$ onto $A$ and so deform $f'$ to a map into $A$. +\end{proof} + +\begin{thm}[Cellular approximation]\index{cellular approximation theorem} +Any map $f:(X,A)\rtarr (Y,B)$ between relative CW complexes is homotopic relative to $A$ to +a cellular map. +\end{thm} +\begin{proof} +We proceed by induction over skeleta. To start the induction, note that any point of $Y$ +is connected by a path to a point in $Y^0$ and apply this to the images of points of +$X^0-A$ to obtain a homotopy of $f|X^0$ to a map into $Y^0$. Assume given +$g_n: X^n\rtarr Y^n$ and $h_n: X^n\times I\rtarr Y$ such +that $h_n: f|X^n\htp \io_n\com g_n$, where $\io_n: Y^n\rtarr Y$ +is the inclusion. For an attaching map $j: S^n\rtarr X^n$ of a cell +$\tilde{j}: D^{n+1}\rtarr X$, we apply HELP to the following diagram: +$$\diagram +S^n \ddto \rrto^{i_0} & & S^n\times I \dlto_{h_n\com (j\times\id)} \ddto & & S^n \llto_{i_1} +\ddto \dlto_{g_n\com j}\\ +& Y & & Y^{n+1} \llto_<(0.25){\io_{n+1}}\\ +D^{n+1} \urto^{f\com\tilde{j}} \rrto_{i_0} & & D^{n+1}\times I \uldashed_{h_{n+1}}|>\tip +& & D^{n+1} \llto^{i_1} \uldashed_{g_{n+1}}|>\tip \\ +\enddiagram$$ +where $g_n\com j: S^n\rtarr Y^n$ is composed with the inclusion $Y^n\rtarr Y^{n+1}$; +HELP applies since $\io_{n+1}$ is an $(n+1)$-equivalence. +\end{proof} + +\begin{cor} +For CW complexes $X$ and $Y$, any map $X \rtarr Y$ is homotopic to a +cellular map, and any two homotopic cellular maps are cellularly homotopic. +\end{cor} + +\section{Approximation of spaces by CW complexes} + +The following result says that there is a functor $\GA: h\sU \rtarr h\sU$ and +a natural transformation $\ga: \GA\rtarr \Id$ that assign a CW complex $\GA X$ +and a weak equivalence $\ga: \GA X\rtarr X$ to a space $X$. + +\begin{thm}[Approximation by CW complexes] For any space $X$, there +is a CW complex\, $\GA X$ and a weak equivalence $\ga:\GA X \rtarr X$. +For a map $f:X\rtarr Y$ and another such CW approximation $\ga: \GA Y\rtarr Y$, +there is a map $\GA f: \GA X\rtarr \GA Y$, unique up to homotopy, such that +the following diagram is homotopy commutative: +$$\diagram +\GA X \rto^{\GA f} \dto_{\ga} & \GA Y \dto^{\ga} \\ +X \rto_{f} & Y.\\ +\enddiagram$$ +If $X$ is $n$-connected, $n\geq 1$, then $\GA X$ can be chosen to have a unique vertex and no +$q$-cells for $1\leq q\leq n$. +\end{thm} +\begin{proof} The existence and uniqueness up to homotopy of $\GA f$ will be immediate +since the Whitehead theorem will give a bijection +$$\ga_*: [\GA X,\GA Y]\rtarr [\GA X,Y].$$ +Proceeding one path component at a time, we may as well assume that $X$ is path +connected, and we may then work with based spaces and based maps. We construct $\GA X$ as the +colimit of a sequence of cellular inclusions +$$\diagram +X_1\rto^{i_1} \ddrrto_{\ga_1} & X_2\rto^{i_2} \ddrto^{\ga_2} +& \cdots \rto & X_n\rto^{i_n} \ddlto_{\ga_n} \rto & X_{n+1} \ddllto^{\ga_{n+1}} \rto & \cdots \\ +& & & & & \\ +& & X. & & & \\ +\enddiagram$$ +Let $X_1$ be a wedge of spheres $S^q$, $q\geq 1$, one for each pair $(q,j)$, where +$j: S^q\rtarr X$ represents a generator of the group $\pi_q(X)$. On the $(q,j)$th +wedge summand, the map $\ga_1$ is the given map $j$. Clearly $\ga_1: X_1\rtarr X$ +induces an epimorphism on all homotopy groups. We give $X_1$ the CW structure induced +by the standard CW structures on the spheres $S^q$. Inductively, suppose that we have +constructed CW complexes $X_m$, cellular inclusions $i_{m-1}$, and maps $\ga_m$ for +$m\leq n$ such that $\ga_m\com i_{m-1}=\ga_{m-1}$ and $(\ga_m)_*:\pi_q(X_m)\rtarr \pi_q(X)$ +is a surjection for all $q$ and a bijection for $qn$ to arrange the +surjectivity of $\pi_*(X_0)\rtarr \pi_*(X)$. To construct $\GA f$, we first construct +it on $\GA A$ and then use HELP to extend to $\GA X$: +$$\diagram +\GA A \xto[0,3] \xto[3,0] \drto^{\ga} & & & \GA A\times I +\xto[3,0] \dlto_h & & & \GA A \xto[0,-3] \xto[3,0] \dlto_{\GA f}\\ +& A\rto^f \dto & B \dto & & & \GA B \dto \xto[0,-3]_{\ga} \dto & \\ +& X\rto_f & Y & & & \GA Y \xto[0,-3]^{\ga} & \\ +\GA X \urto^{\ga} \xto[0,3] & & & \GA X\times I +\uldashed_{\tilde{h}}|>\tip & & & \GA X \xto[0,-3] \uldashed_{\GA f}|>\tip \\ +\enddiagram$$ +The uniqueness up to homotopy of $\GA f$ is proved similarly. +\end{proof} + +\section{Approximation of excisive triads by CW triads} + +We will need another, and considerably more subtle, relative approximation theorem. +A triad $(X;A,B)$\index{triad} is a space $X$ together with subspaces $A$ and $B$. This must +not be confused with a triple $(X,A,B)$,\index{triple} which would require $B\subset A\subset X$. +A triad $(X;A,B)$ is said to be excisive\index{triad!excisive} if $X$ is the union of the +interiors of $A$ and $B$. Such triads play a fundamental role in homology and cohomology theory, +and some version of the arguments to follow must play a role in any treatment. +We prefer to use these arguments to prove a strong homotopical result, rather than +its pale homological reflection that is seen in standard treatments of the subject. + +A CW triad $(X;A,B)$\index{triad!CW} is a CW complex $X$ with subcomplexes $A$ and $B$ such that +$X=A\cup B$. + +\begin{thm} +Let $(X;A,B)$ be an excisive triad and let $C=A\cap B$. Then there is a CW triad +$(\GA X;\GA A,\GA B)$ and a map of triads +$$\ga: (\GA X;\GA A,\GA B)\rtarr (X;A,B)$$ +such that, with $\GA C = \GA A\cap \GA B$, the maps +$$ \ga: \GA C\rtarr C,\ \ \ga: \GA A\rtarr A,\ \ \ga: \GA B\rtarr B,\ \ \tand \ \ +\ga: \GA X\rtarr X$$ +are all weak equivalences. If $(A,C)$ is $n$-connected, then $(\GA A,\GA C)$ can be +chosen to have no $q$-cells for $q\leq n$, and similarly for $(B,C)$. Up to homotopy, +CW approximation of excisive triads is functorial in such a way that $\ga$ is natural. +\end{thm} +\begin{proof} +Choose a CW approximation $\ga: \GA C\rtarr C$ and use the previous +result to extend it to CW approximations +$$\ga: (\GA A,\GA C)\rtarr (A,C) \ \ \ \tand \ \ \ \ga: (\GA B,\GA C)\rtarr (B,C).$$ +We then define $\GA X$ to be the pushout $\GA A\cup_{\GA C}\GA B$ and let $\ga: \GA X\rtarr X$ +be given by the universal property of pushouts. Certainly $\GA C=\GA A\cap \GA B$. All of the +conclusions except for the assertion that $\ga: \GA X\rtarr X$ is a weak equivalence follow +immediately from the result for pairs, and the lemma and theorem below will complete the proof. +\end{proof} + +A CW triad $(X;A,B)$ is not excisive, since $A$ and $B$ are closed in $X$, but it is equivalent +to an excisive triad. To see this, +we describe a simple but important general construction. Suppose that maps $i: C\rtarr A$ +and $j: C\rtarr B$ are given. Define the double mapping cylinder +$$M(i,j)= A\cup (C\times I)\cup B$$ +to be the space obtained from $C\times I$ by gluing $A$ to $C\times\sset{0}$ along $i$ and +gluing $B$ to $C\times\sset{1}$ along $j$. Let $A\cup_C B$ denote the pushout of $i$ and $j$ +and observe that we obtain a natural quotient map $q: M(i,j)\rtarr A\cup_C B$ by collapsing +the cylinder, sending $(c,t)$ to the image of $c$ in the pushout. + +\begin{lem} +For a cofibration $i: C\rtarr A$ and any map $j: C\rtarr B$, the quotient map +$q: M(i,j)\rtarr A\cup_C B$ is a homotopy equivalence. +\end{lem} +\begin{proof} +Because $i$ is a cofibration, the retraction $r: Mi\rtarr A$ is a cofiber homotopy +equivalence. That is, there is a homotopy inverse map and a pair of homotopies under $C$. +These maps and homotopies induce maps of the pushouts that are obtained by gluing $B$ to +$Mi$ and to $C$, and $q$ is induced by $r$. +\end{proof} + +When $i$ is a cofibration and $j$ is an inclusion, with $X=A\cup B$ and $C=A\cap B$, +we can think of $q$ as giving a map of triads +$$ q: (M(i,j); A\cup(C\times[0,2/3)), (C\times (1/3,1])\cup B)\rtarr (A\cup_C B;A,B).$$ +The domain triad is excisive, and $q$ restricts to homotopy equivalences from the domain +subspaces and their intersection to the target subspaces $A$, $B$, and $C$. This applies +when $(X;A,B)$ is a CW triad with $C=A\cap B$. Now our theorem on the approximation of +excisive triads is a consequence of the following result. + +\begin{thm} +If $e: (X;A,B)\rtarr (X';A',B')$ is a map of excisive triads such that the maps +$$e: C\rtarr C',\ \ \ e: A\rtarr A',\ \ \ \tand \ \ \ e: B\rtarr B'$$ +are weak equivalences, where $C=A\cap B$ and $C'=A'\cap B'$, then $e: X\rtarr X'$ +is a weak equivalence. +\end{thm} +\begin{proof} +By our technical lemma giving equivalent conditions for a map $e$ to be a weak +equivalence, it suffices to show that if $f|S^n=e\com g$ in the following diagram, +then there exists a map $\tilde{g}$ such that $\tilde{g}|S^n = g$ and +$f\htp e\com \tilde{g}\ \text{rel} \ S^n$: +$$\diagram +X\rto^e & X' \\ +S^n \uto^g \rto & D^{n+1} \uldashed_{\tilde{g}}|>\tip \uto_f. \\ +\enddiagram$$ +We may assume without loss of generality that $S^n\subset U\subset D^{n+1}$, where $U$ is +open in $D^{n+1}$ and $g$ is the restriction of a map $\hat{g}: U\rtarr X$ such that +$f|U=e\com \hat{g}$. To see this, define a deformation $d: D^{n+1}\times I\rtarr D^{n+1}$ by +$$d(x,t)=\begin{cases} +2x/(2-t) \ \ \ \text{if}\ \ |x|\leq (2-t)/2\\ +x/|x| \ \ \ \ \ \ \ \ \ \ \text{if}\ \ |x|\geq (2-t)/2. +\end{cases}$$ +Then $d(x,0)=x$, $d(x,t)=x$ if $x\in S^n$, and $d_1$ maps the boundary collar +$\sset{x\ |\ |x|\geq 1/2}$ onto $S^n$. Let $U$ be the open boundary collar +$\sset{x\ |\ |x|> 1/2}$. Define $\hat{g}=g\com d_1: U\rtarr X$ and define +$f'=f\com d_1: D^{n+1}\rtarr X'$. Then $\hat{g}|S^n = g$, $e\com \hat{g}=f'|U$, +and $f'\htp f \ \text{rel}\ S^n$. Thus the conclusion will hold for $f$ if it holds +with $f$ replaced by $f'$. + +With this assumption on $g$ and $f$, we claim first that the closed sets +$$C_A=g^{-1}(X-\text{int}\,A)\cup \overline{f^{-1}(X'-A')}$$ +and +$$C_B=g^{-1}(X-\text{int}\,B)\cup \overline{f^{-1}(X'-B')},$$ +have empty intersection. Indeed, these sets are contained in the sets +$\hat{C}_A$ and $\hat{C}_B$ that are obtained by replacing $g$ by $\hat{g}$ in the +definitions of $C_A$ and $C_B$, and we claim that $\hat{C}_A\cap\hat{C}_B=\emptyset$. Certainly +$$\hat{g}^{-1}(X-\text{int}\,A)\cap \hat{g}^{-1}(X-\text{int}\,B)=\emptyset$$ +since $(X-\text{int}\,A)\cap (X-\text{int}\,B)=\emptyset$. Similarly, +$$f^{-1}(X'-\text{int}\,A')\cap f^{-1}(X'-\text{int}\,B')=\emptyset.$$ +Since $\overline{f^{-1}(X'-A')}\subset f^{-1}(X'-\text{int}\,A')$ and similarly +for $B$, this implies that +$$\overline{f^{-1}(X'-A')}\cap \overline{f^{-1}(X'-B')}=\emptyset.$$ +Now suppose that $v\in \hat{C}_A\cap\hat{C}_B$. In view of the possibilities that we have ruled +out, we may assume that +$$v\in \hat{g}^{-1}(X-\text{int}\,A)\cap \overline{f^{-1}(X'-B')}\subset +\hat{g}^{-1}(\text{int}\,B)\cap \overline{f^{-1}(X'-B')}.$$ +Since $\hat{g}^{-1}(\text{int}\,B)$ is an open subset of $D^n$, there must be a point +$$u\in \hat{g}^{-1}(\text{int}\,B) \cap f^{-1}(X'-B').$$ +Then $\hat{g}(u)\in \text{int}\,B\subset B$ but $f(u)\not\in B'$. This contradicts +$f|U=e\com\hat{g}$. + +We can subdivide $D^{n+1}$ sufficiently finely (as a simplicial or CW complex) that no cell +intersects both $C_A$ and $C_B$. Let $K_A$ be the union of those cells $\si$ such that +$$g(\si\cap S^n)\subset\ \text{int}\,A\ \ \tand \ \ f(\si)\subset\ \text{int}\,A'$$ +and define $K_B$ similarly. If $\si$ does not intersect $C_A$, then $\si\subset K_A$, and if +$\si$ does not intersect $C_B$, then $\si\subset K_B$. Therefore $D^{n+1}=K_A\cup K_B$. By +HELP, we can obtain a map $\bar{g}$ such that the lower triangle in the diagram +$$\diagram +A\cap B \rto^e & A'\cap B' \\ +S^n\cap (K_A\cap K_B) \uto^g \rto & K_A\cap K_B \uto_f \uldashed_{\bar{g}}|>\tip \\ +\enddiagram$$ +commutes, together with a homotopy $\bar{h}: (K_A\cap K_B)\times I\rtarr A'\cap B'$ +such that +$$\bar{h}: f\htp e\com\bar{g}\ \text{rel}\,S^n\cap (K_A \cap K_B).$$ +Define $\bar{g}_A: K_A\cap(S^n\cup K_B)\rtarr A$ to be $g$ on $K_A\cap S^n$ and $\bar{g}$ on +$K_A\cap K_B$. Since $f=e\com g$ on $K_A\cap S^n$ and $\bar{h}: f\htp e\com\bar{g}$ on +$K_A\cap K_B$, $\bar{h}$ induces a homotopy +$$\bar{h}_A: f|K_A\cap(S^n\cup B)\htp e\com g_A\ \text{rel}\,S^n\cap K_A .$$ +Applying HELP again, we can obtain maps $\tilde{g}_A$ and $\tilde{h}_A$ such that the +following diagram commutes: +\begin{small} +$$ +\diagram +K_A\cap(S^n\cup K_B) \ddto \rrto^{i_0} & & K_A\cap(S^n\cup K_B) \times I \dlto_{\bar{h}_A} \ddto +& & K_A\cap(S^n\cup K_B) \llto_{i_1} \dlto_{\bar{g}_A} \ddto \\ +& A' & & A \llto_<(0.4){e} & \\ +K_A \rrto_{i_0} \urto^{f} && K_A \times I \uldashed^{\tilde{h}_A}|>\tip & & +K_A \uldashed^{\tilde{g}_A}|>\tip \llto^{i_1} \\ +\enddiagram $$ +\end{small} +We have a symmetric diagram with the roles of $K_A$ and $K_B$ reversed. The maps $\tilde{g}_A$ +and $\tilde{g}_B$ agree on $K_A\cap K_B$ and together define the desired map +$\tilde{g}: D^{n+1}\rtarr X$. The homotopies $\tilde{h}_A$ and $\tilde{h}_B$ agree on +$(K_A\cap K_B)\times I$ and together define the desired homotopy +$\tilde{h}_A: f\htp e\com \tilde{g}\ \text{rel}\,S^n$. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Show that complex projective space $\bC P^n$ is a CW complex with one $2q$-cell for each $q$, +$0\leq q\leq n$. +\item Let $X = \sset{x| x = 0 \ \text{or}\ x = 1/n \ \text{for a positive integer $n$}}\subset \bR$. +Show that $X$ does not have the homotopy type of a CW complex. +\item Assume given maps $f: X\rtarr Y$ and $g: Y\rtarr X$ such that $g\com f$ is homotopic to +the identity. (We say that $Y$ ``dominates'' $X$.) Suppose that $Y$ is a CW complex. Prove +that $X$ has the homotopy type of a CW complex. +\end{enumerate} + +Define the Euler characteristic\index{Euler characteristic!of a CW complex} $\ch (X)$ of a +finite CW complex $X$ to be the alternating +sum $\sum(-1)^n\ga_n(X)$, +where $\ga_n(X)$ is the number of $n$-cells of $X$. Let $A$ be a subcomplex of a CW complex $X$, +let $Y$ be a CW complex, let $f: A\rtarr Y$ be a cellular map, and let $Y\cup_f X$ be the +pushout of $f$ and the inclusion $A\rtarr X$. + +\begin{enumerate} +\item[4.] Show that $Y\cup_f X$ is a CW complex with $Y$ as a subcomplex and +$X/A$ as a quotient complex. Formulate and prove a formula relating the Euler characteristics +$\ch(A)$, $\ch(X)$, $\ch(Y)$, and $\ch(Y\cup_fX)$ when $X$ and $Y$ are finite. +\item[5.]* Think about proving from what we have done so far that $\ch(X)$ depends only on the +homotopy type of $X$, not on its decomposition as a finite CW complex. +\end{enumerate} + +\chapter{The homotopy excision and suspension theorems} + +The fundamental obstruction to the calculation of homotopy groups is +the failure of excision: for an excisive triad $(X;A,B)$, the inclusion +$(A,A\cap B)\rtarr (X,B)$ fails to induce an isomorphism of homotopy +groups in general. It is this that distinguishes homotopy groups from +the far more computable homology groups. However, we do have such an +isomorphism in a range of dimensions. This implies the Freudenthal +suspension theorem, which gives that $\pi_{n+q}(\SI^n X)$ is independent +of $n$ if $q$ is small relative to $n$. We shall rely on the consequence +$\pi_n(S^n)\iso\bZ$ in our construction of homology groups. + +\section{Statement of the homotopy excision theorem} + +We shall prove the following theorem later in this chapter, but we first +explain its consequences. + +\begin{defn} +A map $f:(A,C)\rtarr (X,B)$ +of pairs is an $n$-equivalence,\index{nequivalence@$n$-equivalence} $n\geq 1$, if +$$(f_*)^{-1}(\im(\pi_0(B)\rtarr \pi_0(X)))=\im(\pi_0(C)\rtarr \pi_0(A))$$ +(which holds automatically when $A$ and $X$ are path connected) and, for all +choices of basepoint in $C$, +$$f_*:\pi_q(A,C )\rtarr \pi_q(X,B)$$ +is a bijection for $qn. +\end{cases}$$ + +This calculation well illustrates general facts about the homology of compact connected +closed $n$-manifolds $M$ that we shall prove later. The $n$th integral homology group of +such a manifold $M$ is $\bZ$ if $M$ is orientable and zero if $M$ is not orientable. The +$n$th mod $2$ homology group of $M$ is $\bZ_2$ whether or not $M$ is orientable. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item If $X$ is a finite CW complex, show that $\ch(X)=\ch(H_*(X;k))$ for any field $k$. +\item Let $A$ be a subcomplex of a CW complex $X$, let $Y$ be a CW complex, and let +$f: A\rtarr Y$ be a cellular map. What is the relationship between $H_*(X,A)$ and +$H_*(Y\cup_fX,Y)$? Is there a similar relationship between $\pi_*(X,A)$ and +$\pi_*(Y\cup_fX,Y)$? If not, give a counterexample. +\item Fill in the details of the computation of the differentials on the cellular +chains in the examples in \S5. +\item Compute $H_*(S^m\times S^n)$ for $m\geq 1$ and $n\geq 1$. Convince yourself that +you can do this by use of CW structures, by direct deduction from the axioms, and by +the K\"{u}nneth theorem (for which see Chapter 17). +\item Let $p$ be an odd prime number. Regard the cyclic group $\pi$ of order $p$ as the group +of $p$th roots of unity contained in $S^1$. Regard $S^{2n-1}$ as the unit sphere in $\bC^n$, +$n \geq 2$. Then $\pi\subset S^1$ acts freely on $S^{2n-1}$ via +$$\ze (z_1,\ldots\!, z_n) = (\ze z_1,\ldots\!,\ze z_n). $$ +Let $L^n = S^{2n-1}/\pi$ be the orbit space; it is called a lens space and is an odd primary +analogue of $\bR P^n$. The obvious quotient map $S^{2n-1}\rtarr L^n$ is a universal covering. +\begin{enumerate} +\item[(a)] Compute the integral homology of $L^n$, $n\geq 2$, by mimicking the calculation of +$H_*(\bR P^n)$. +\item[(b)] Compute $H_*(L^n;\bZ_p)$, where $\bZ_p = \bZ/p\bZ$. +\end{enumerate} +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Derivations of properties from the axioms} + +Returning to the axiomatic approach to homology, we assume given a theory on pairs +of spaces and make some deductions from the axioms. We abbreviate notations by setting +$E_q(X,A)=H_q(X,A;\pi)$. However, the arguments in this chapter make no use whatever +of the dimension axiom. A ``generalized homology theory''\index{homology theory!generalized} $E_*$ +is defined to be a +system of functors $E_q(X,A)$ and natural transformations $\pa:E_q(X,A)\rtarr E_{q-1}(A)$ +that satisfy all of our axioms except for the dimension axiom. Similarly, we have the +notion of a generalized homology theory on CW pairs, and the results of the first section +of the previous chapter generalize directly to give the following result. + +\begin{thm} A homology theory $E_*$ on pairs of spaces determines and is determined +by its restriction to a homology theory $E_*$ on pairs of CW complexes. +\end{thm} + +The study of such generalized homology theories pervades modern algebraic topology, +and we shall describe some examples later on. The brave reader may be willing to think +of $E_*$ in such generality in this chapter. The timorous reader may well prefer to +think of $E_*(X,A)$ concretely, following our proposal that $E_*(X,A)$ be taken as +an alternative notation for $H_*(X,A;\pi)$. + +\section{Reduced homology; based versus unbased spaces} + +One of the themes of this chapter is the relationship between homology theories on +pairs of spaces and reduced homology theories on based spaces. The latter are more +convenient in most advanced work in algebraic topology. For a based space $X$, we +define the reduced homology\index{reduced homology} of $X$ to be +$$\tilde{E}_q(X)=E_q(X,*).$$ +Since the basepoint is a retract of $X$, there results a direct sum +decomposition +$$ E_*(X) \iso \tilde{E}_*(X)\oplus E_*(*)$$ +that is natural with respect to based maps. For $*\in A\subset X$, the summand $E_*(*)$ +maps isomorphically under the map $E_*(A)\rtarr E_*(X)$, and the exactness axiom implies +that there is a reduced long exact sequence +$$\cdots\rtarr \tilde{E}_q(A)\rtarr \tilde{E}_q(X)\rtarr +E_q(X,A)\overto{\pa} \tilde{E}_{q-1}(A)\rtarr \cdots .$$ + +We can obtain the unreduced homology groups as special cases of the reduced ones. For an +unbased space $X$, we define a based space $X_+$ by adjoining a disjoint basepoint +to $X$. By the additivity axiom, we see immediately that +$$ E_*(X)=\tilde{E}_*(X_+).$$ +Similarly, a map $f: X\rtarr Y$ of unbased spaces induces a map $f_+: X_+\rtarr Y_+$ +of based spaces, and the map $f_*$ on unreduced homology coincides with the map +$(f_+)_*$ on reduced homology. + +We shall make considerable use of cofiber sequences in this chapter. +To be consistent about this, we should always work with reduced cones and +cofibers. However, it is more convenient to make the convention that we work with +unreduced cones and cofibers when we apply unreduced homology theories, and we work with +reduced cones and cofibers when we apply reduced homology theories. In fact, the +unreduced cone\index{cone!unreduced} on a space $Y$ coincides with the reduced +cone\index{cone!reduced} on $Y_+$: the line through +the disjoint basepoint is identified to the cone point when constructing the reduced cone +on $Y_+$. Therefore the unreduced cofiber of an unbased map $f$ coincides with the reduced +cofiber of the based map $f_+$. Our convention really means that we are always working with +reduced cofibers, but when we are studying unreduced homology theories we are implicitly +applying the functor $(-)_+$ to put ourselves in the based context before constructing +cones and cofibers. + +The observant reader will have noticed that the unreduced suspension\index{suspension!unreduced} of +$X$ is {\em not} the reduced suspension\index{suspension!reduced} on $X_+$. Rather, under either +interpretation of suspension, $\SI(X_+)$ is homotopy equivalent to the wedge of $\SI(X)$ and a +circle. + +\section{Cofibrations and the homology of pairs} + +We use cofibrations to show that the homology of pairs of spaces is in principle a special +case of the reduced homology of spaces. + +\begin{thm} +For any cofibration\index{cofibration} $i: A\rtarr X$, the quotient map $q: (X,A)\rtarr (X/A,*)$ +induces an isomorphism +$$E_*(X,A)\rtarr E_*(X/A,*)=\tilde{E}_*(X/A).$$ +\end{thm} +\begin{proof} +Consider the (unreduced) cofiber +$$Ci= X\cup_iCA = X\cup_i A\times I/A\times\sset{1}.$$ +We have an excisive triad +$$(Ci; X\cup_i A\times [0,2/3], A\times [1/3,1]/A\times \sset{1}).$$ +The excision axiom gives that the top inclusion in the following +commutative diagram induces an isomorphism on passage to homology: +$$\diagram +(X\cup_i A\times [0,2/3], A\times [1/3,2/3])\rto \dto_r +& (Ci,A\times [1/3,1]/A\times \sset{1}) \dto^{\psi}\\ +(X,A)\rto_q & (X/A,*)\\ +\enddiagram$$ +The map $r$ is obtained by restriction of the retraction $Mi\rtarr X$ and +is a homotopy equivalence of pairs. The map $\psi$ collapses $CA$ to a point +and is also a homotopy equivalence of pairs. The conclusion follows. +\end{proof} + +As in our construction of cellular homology, we choose a homotopy inverse +$\ps^{-1}: X/A\rtarr Ci$ and consider the composite +$$X/A\overto{\ps^{-1}} Ci\overto{\pi} \SI A$$ +to be a topological boundary map +$$\pa: X/A\rtarr \SI A.$$ +Observe that we may replace any inclusion $i: A\rtarr X$ by the canonical +cofibration $A\rtarr Mi$ and then apply the result just given to obtain +$$E_*(X,A)\iso \tilde{E}_*(Ci).$$ + +\section{Suspension and the long exact sequence of pairs} + +We have a fundamentally important consequence of the results of the previous +section, which should be contrasted with what happened with homotopy groups. +Recall that a basepoint $*\in X$ is nondegenerate if the inclusion +$\sset{*}\rtarr X$ is a cofibration. This ensures that the inclusion of +the line through the basepoint in the unreduced suspension of $X$ is a +cofibration, so that the map from the unreduced suspension to the suspension +that collapses out the line through the basepoint is a homotopy equivalence. +We apply reduced homology here, so we use reduced cones and suspensions. + +\begin{thm} For a nondegenerately based space $X$, there is a natural isomorphism +$$\SI: \tilde{E}_q(X)\iso \tilde{E}_{q+1}(\SI X).$$ +\end{thm} +\begin{proof} Since $CX$ is contractible, its reduced homology is identically +zero. By the reduced long exact sequence, there results an isomorphism +$$\diagram \tilde{E}_{q+1}(\SI X)\iso \tilde{E}_{q+1}(CX/X) +\overto{\pa} \tilde{E}_q(X). \qed +\enddiagram$$ +\renewcommand{\qed}{}\end{proof} + +An easy diagram chase gives the following consequence, which describes the axiomatically +given connecting homomorphism of the pair $(X,A)$ in terms of the topological boundary +map\index{topological boundary map} +$\pa: X/A\rtarr \SI A$ and the suspension isomorphism. + +\begin{cor} Let $*\in A\subset X$, where $i: A\rtarr X$ is a cofibration between +nondegenerately based spaces. In the long exact sequence +$$\cdots\rtarr \tilde{E}_q(A)\rtarr \tilde{E}_q(X)\rtarr +\tilde{E}_q(X/A)\overto{\pa} \tilde{E}_{q-1}(A)\rtarr \cdots $$ +of the pair $(X,A)$, the connecting homomorphism $\pa$ is the composite +$$\tilde{E}_q(X/A)\overto{\pa_*} \tilde{E}_{q}(\SI A)\overto{\SI^{-1}} \tilde{E}_{q-1}(A).$$ +\end{cor} + +Since $S^0$ consists of two points, $\tilde{E}_*(S^0)=E_*(*)$. Since $S^n$ is the +suspension of $S^{n-1}$, we have the following special case of the suspension +isomorphism. + +\begin{cor} +For any $n$ and $q$, +$$\tilde{E}_q(S^n)\iso E_{q-n}(*).$$ +\end{cor} + +Of course, for the theory $H_*(X;\pi)$, this was immediate from our construction in +terms of cellular chains. + +\section{Axioms for reduced homology} + +In the study of generalized homology theories, it is most convenient to +restrict attention to reduced homology theories\index{homology theory!reduced} defined +on nondegenerately +based spaces. The results of the previous sections imply that we can do so +without loss of generality. Again the reader has the choice of bravery or +timorousness in interpreting $E_*$, but we opt for bravery: + +\begin{defn} A reduced homology theory $\tilde{E}_*$ consists of functors +$\tilde{E}_q$ from the homotopy category of nondegenerately based spaces +to the category of Abelian groups that satisfy the following axioms. +\begin{itemize} +\item EXACTNESS\index{exactness axiom}\ \ If $i: A\rtarr X$ is a cofibration, then the sequence +$$\tilde{E}_q(A)\rtarr \tilde{E}_q(X)\rtarr +\tilde{E}_q(X/A)$$ +is exact. +\item SUSPENSION\index{suspension axiom}\ \ +For each integer $q$, there is a natural isomorphism +$$\SI: \tilde{E}_q(X)\iso \tilde{E}_{q+1}(\SI X).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $X$ is the wedge of a set of nondegenerately based spaces $X_i$, then +the inclusions $X_i\rtarr X$ induce an isomorphism +$$\textstyle{\sum}_i \tilde{E}_*(X_i)\rtarr \tilde{E}_*(X).$$ +\item WEAK EQUIVALENCE\index{weak equivalence axiom}\ \ If $f:X\rtarr Y$ is a weak equivalence, then +$$f_*: \tilde{E}_*(X)\rtarr \tilde{E}_*(Y)$$ +is an isomorphism. +\end{itemize} +\end{defn} + +The reduced form of the dimension axiom would read +$$\tilde{H}_0(S^0)=\pi \ \ \tand \ \ \tilde{H}_q(S^0)=0\ \text{for}\ q\neq 0.$$ + +\begin{thm} A homology theory $E_*$ on pairs of spaces determines and is +determined by a reduced homology theory $\tilde{E}_*$ on nondegenerately +based spaces. +\end{thm} +\begin{proof} +Given a theory on pairs, we define $\tilde{E}_*(X)=E_*(X,*)$ and deduce +the new axioms. For additivity, the specified wedge is the quotient +$(\amalg X_i)/(\amalg\sset{*_i})$, where $*_i$ is the basepoint of $X_i$, and our +result on quotients of cofibrations applies to compute its homology. Conversely, +assume given a reduced homology theory $\tilde{E}_*$, and define +$$E_*(X)=\tilde{E}_*(X_+) \ \ \tand \ \ E_*(X,A)=\tilde{E}_*(C(i_+)),$$ +where $C(i_+)$ is the cofiber of the based inclusion $i_+: A_+\rtarr X_+$. +Equivalently, $C(i_+)$ is the unreduced cofiber of $i: A\rtarr X$ with its +cone point as basepoint. We must show that the suspension axiom and our restricted +exactness axiom imply the original, seemingly much stronger, exactness and excision +axioms. We have the long exact cofiber sequence associated to the based inclusion +$i_+: A_+\rtarr X_+$, in which each consecutive pair of maps is equivalent to a +cofibration and the associated quotient map. Noting that $X_+/A_+=X/A$, we define +the connecting homomorphism $\pa_q: E_q(X,A)\rtarr E_{q-1}(A)$ to be the composite +$$\tilde{E}_q(X_+/A_+)\overto{\pa_*}\tilde{E}_q(\SI A_+)\overto{\SI^{-1}}\tilde{E}_{q-1}(A_+)$$ +and find that the exactness and suspension axioms for $\tilde{E}_*$ imply the exactness +axiom for $E_*$. For excision, we could carry out a similarly direct homotopical argument, +but it is simpler to observe that this follows from the equivalence of theories on pairs of +spaces with theories on pairs of CW complexes together with the next two theorems. For the +additivity axiom, we note that the cofiber of a disjoint union of maps is the wedge of the +cofibers of the given maps. +\end{proof} + +\begin{cor} For nondegenerately based spaces $X$, $E_*(X)$ is naturally isomorphic to +$\tilde{E}_*(X)\oplus E_*(*)$. +\end{cor} +\begin{proof} +The long exact sequence in $E_*$ of the pair $(X,*)$ is naturally split in each degree +by means of the homomorphism induced by the projection $X\rtarr \sset{*}$. +\end{proof} + +We require of based CW complexes that the basepoint be a vertex. It is certainly +a nondegenerate basepoint. We give the circle its standard CW structure and so +deduce a CW structure on the suspension of a based CW complex. + +\begin{defn} A reduced homology theory\index{homology theory!reduced} $\tilde{E}_*$ on based +CW complexes consists +of functors $\tilde{E}_q$ from the homotopy category of based CW complexes +to the category of Abelian groups that satisfy the following axioms. +\begin{itemize} +\item EXACTNESS\index{exactness axiom}\ \ If $A$ is a subcomplex of $X$, then the sequence +$$\tilde{E}_q(A)\rtarr \tilde{E}_q(X)\rtarr +\tilde{E}_q(X/A)$$ +is exact. +\item SUSPENSION\index{suspension axiom} \ \ +For each integer $q$, there is a natural isomorphism +$$\SI: \tilde{E}_q(X)\iso \tilde{E}_{q+1}(\SI X).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $X$ is the wedge of a set of based CW complexes $X_i$, then +the inclusions $X_i\rtarr X$ induce an isomorphism +$$\textstyle{\sum}_i \tilde{E}_*(X_i)\rtarr \tilde{E}_*(X).$$ +\end{itemize} +\end{defn} + +\begin{thm} A reduced homology theory $\tilde{E}_*$ on nondegenerately based spaces +determines and is determined by its restriction to a reduced homology theory on +based CW complexes. +\end{thm} +\begin{proof} +This is immediate by CW approximation of based spaces. +\end{proof} + +\begin{thm} +A homology theory $E_*$ on CW pairs determines and is determined by a reduced +homology theory $\tilde{E}_*$ on based CW complexes. +\end{thm} +\begin{proof} +Given a theory on pairs, we define $\tilde{E}_*(X)=E_*(X,*)$ and deduce +the new axioms directly. Conversely, given a reduced theory on based CW +complexes, we define +$$ E_*(X)=\tilde{E}_*(X_+)\ \ \tand\ \ E_*(X,A)=\tilde{E}_*(X/A).$$ +Of course $X/A$ is homotopy equivalent to $C(i_+)$, where $i_+: A_+\rtarr X_+$ is the +inclusion. The arguments for exactness and additivity are the same as those given in the +analogous result for nondegenerately based spaces, but now excision is obvious since if +$(X;A,B)$ is a CW triad, then the inclusion $A/A\cap B \rtarr X/B$ is an isomorphism of +based CW complexes. +\end{proof} + +\section{Mayer-Vietoris sequences} + +The Mayer-Vietoris sequences are long exact sequences associated to excisive triads +that will play a fundamental role in our later proof of the Poincar\'{e} duality theorem. +We need two preliminaries, both of independent interest. The first is the long exact +sequence of a triple $(X,A,B)$ of spaces $B\subset A\subset X$, which is just like its +analogue for homotopy groups. + +\begin{prop} For a triple $(X,A,B)$, the following sequence\index{triple!exact sequence of} is exact: +$$\cdots \rtarr E_q(A,B)\overto{i_*} E_q(X,B)\overto{j_*} E_q(X,A) \overto{\pa} +E_{q-1}(A,B)\rtarr \cdots.$$ +Here $i:(A,B)\rtarr (X,B)$ and $j:(X,B)\rtarr (X,A)$ are inclusions and $\pa$ is the +composite +$$E_q(X,A)\overto{\pa}E_{q-1}(A)\rtarr E_{q-1}(A,B).$$ +\end{prop} +\begin{proof} +There are two easy arguments. One can either use diagram chasing from the various long +exact sequences of pairs or one can apply CW approximation to replace $(X,A,B)$ by a +triple of CW complexes. After the replacement, we have that $X/A\iso(X/B)/(A/B)$ as a CW complex, +and the desired sequence is the reduced exact sequence of the pair $(X/B,A/B)$. +\end{proof} + +\begin{lem} +Let $(X;A,B)$ be an excisive triad and set $C=A\cap B$. The map +$$E_*(A,C)\oplus E_*(B,C)\rtarr E_*(X,C)$$ +induced by the inclusions of $(A,C)$ and $(B,C)$ in $(X,C)$ is an isomorphism. +\end{lem} +\begin{proof} +Again, there are two easy proofs. One can either pass to homology from the diagram +$$\diagram +(B,C) \ddto_{excision} \drto & & (A,C) \dlto \ddto^{excision} \\ +& (X,C) \drto \dlto & \\ +(X,A) & & (X,B) \\ +\enddiagram$$ +and use algebra or one can approximate $(X;A,B)$ by a CW triad, for which +$$X/C\iso A/C\wed B/C$$ +as a CW complex. +\end{proof} + +\begin{thm}[Mayer-Vietoris sequence]\index{Mayer-Vietoris sequence} Let +$(X;A,B)$ be an excisive triad and set $C=A\cap B$. +The following sequence is exact: +$$\cdots \rtarr E_q(C)\overto{\ps} E_q(A)\oplus E_q(B)\overto{\ph} E_q(X)\overto{\DE} +E_{q-1}(C)\rtarr \cdots.$$ +Here, if $i: C\rtarr A$, $j: C\rtarr B$, $k: A\rtarr X$, and $\ell: B\rtarr X$ +are the inclusions, then +$$\psi(c)=(i_*(c),j_*(c)), \ \ \ \ \ph(a,b)= k_*(a)-\ell_*(b),$$ +and $\DE$ is the composite +$$E_q(X)\rtarr E_q(X,B)\iso E_q(A,C)\overto{\pa} E_{q-1}(C).$$ +\end{thm} +\begin{proof} Note that the definition of $\ph$ requires a sign in order to make $\ph\com\ps = 0$. +The proof of exactness is algebraic diagram chasing and is left as an exercise. The following +diagram may help: +$$\diagram +& & E_q(C) \dlto \ddto^{i_*} \drto & & \\ +& E_q(B) \drto & & E_q(A) \dlto & \\ +& & E_q(X) \dlto \ddto^{j_*} \drto \xto '[0,2] '[4,2]^{\DE} '[4,1] +\xto '[0,-2] '[4,-2]_{-\DE} '[4,-1] & & \\ +& E_q(X,A) & & E_q(X,B) & \\ +& & E_q(X,C) \ulto \ddto^{\pa} \urto & & \\ +& E_q(B,C) \drto_{\pa} \urto \uuto^{\iso} & & E_q(A,C) \dlto^{\pa} \ulto \uuto_{\iso} & \\ +& & E_{q-1}(C) & & \\ +\enddiagram$$ +Here the arrow labeled ``$-\DE$'' is in fact $-\DE$ by an algebraic argument from the direct +sum decomposition of $E_q(X,C)$. Alternatively, one can use CW approximation. For a CW triad, +there is a short exact sequence +$$0\rtarr C_*(C)\rtarr C_*(A)\oplus C_*(B)\rtarr C_*(X)\rtarr 0$$ +whose associated long exact sequence is the Mayer-Vietoris sequence. +\end{proof} + +We shall also need a relative analogue, but the reader may wish to ignore this for now. It +will become important when we study manifolds with boundary. + +\begin{thm}[Relative Mayer-Vietoris sequence]\index{Mayer-Vietoris sequence!relative} Let +$(X;A,B)$ be an excisive \linebreak +triad and set +$C=A\cap B$. Assume that $X$ is contained in some ambient space $Y$. The following +sequence is exact: +$$\cdots\rtarr E_q(Y,C)\overto{\ps} E_q(Y,A)\oplus E_q(Y,B)\overto{\ph} E_q(Y,X)\overto{\DE} +E_{q-1}(Y,C)\rtarr \cdots.$$ +Here, if $i: (Y,C)\rtarr (Y,A)$, $j: (Y,C)\rtarr (Y,B)$, $k: (Y,A)\rtarr (Y,X)$, and +$\ell: (Y,B)\rtarr (Y,X)$ are the inclusions, then +$$\psi(c)=(i_*(c),j_*(c)), \ \ \ \ \ph(a,b)= k_*(a)-\ell_*(b),$$ +and $\DE$ is the composite +$$E_q(Y,X)\overto{\pa} E_{q-1}(X,B)\iso E_{q-1}(A,C)\rtarr E_{q-1}(Y,C).$$ +\end{thm} +\begin{proof} +This too is left as an exercise, but it is formally the same exercise. +The relevant diagram is the following one: +$$\diagram +& & E_q(Y,C) \dlto \ddto \drto & & \\ +& E_q(Y,B) \drto & & E_q(Y,A) \dlto & \\ +& & E_q(Y,X) \dlto_{\pa} \ddto^{\pa} \drto^{\pa} \xto '[0,2] '[4,2]^{\DE} '[4,1] +\xto '[0,-2] '[4,-2]_{-\DE} '[4,-1] & & \\ +& E_{q-1}(X,A) & & E_{q-1}(X,B) & \\ +& & E_{q-1}(X,C) \ulto \ddto \urto & & \\ +& E_{q-1}(B,C) \drto \urto \uuto^{\iso} & & E_{q-1}(A,C) \dlto \ulto +\uuto_{\iso} & \\ +& & E_{q-1}(Y,C) & & \\ +\enddiagram$$ +Alternatively, one can use CW approximation. For a CW triad $(X;A,B)$, with +$X$ a subcomplex of a CW complex $Y$, there is a short exact sequence +$$0\rtarr C_*(Y/C)\rtarr C_*(Y/A)\oplus C_*(Y/B)\rtarr C_*(Y/X)\rtarr 0$$ +whose associated long exact sequence is the relative Mayer-Vietoris sequence. +\end{proof} + +A comparison of definitions gives a relationship between these sequences. + +\begin{cor} +The absolute and relative Mayer-Vietoris sequences are related by the following +commutative diagram: +$$\diagram +E_q(Y,C)\rto^(0.35){\ps} \dto_{\pa} & E_q(Y,A)\oplus E_q(Y,B) \rto^(0.6){\ph} +\dto^{\pa+\pa} & E_q(Y,X) \rto^{\DE} \dto^{\pa} +& E_{q-1}(Y,C) \dto^{\pa}\\ +E_{q-1}(C)\rto_(0.35){\ps} & + E_{q-1}(A)\oplus E_{q-1}(B)\rto_(0.6){\ph} & E_{q-1}(X)\rto_{\DE} +& E_{q-2}(C).\\ +\enddiagram$$ +\end{cor} + +\section{The homology of colimits} + +In this section, we let $X$ be the union of an expanding sequence of subspaces $X_i$, +$i\geq 0$. We have seen that the compactness of spheres $S^n$ and cylinders $S^n\times I$ +implies that, for any choice of basepoint in $X_0$, the natural map +$$\colim\,\pi_*(X_i)\rtarr \pi_*(X)$$ +is an isomorphism. We shall use the additivity and weak equivalence axioms and the +Mayer-Vietoris sequence to prove the analogue for homology. + +\begin{thm} +The natural map +$$\colim E_*(X_i)\rtarr E_*(X)$$ +is an isomorphism.\index{colimit!homology of} +\end{thm} + +We record an algebraic description of the colimit of a sequence for use in the proof. + +\begin{lem} +Let $f_i: A_i\rtarr A_{i+1}$ be a sequence of homomorphisms of Abelian groups. +Then there is a short exact sequence +$$ 0\rtarr \textstyle{\sum}_i A_i\overto{\al} \textstyle{\sum}_i A_i\overto{\be} \colim\,A_i\rtarr 0,$$ +where $\al(a_i)=a_i-f_i(a_i)$ for $a_i\in A_i$ and the restriction of $\be$ to $A_i$ +is the canonical map given by the definition of a colimit. +\end{lem} + +By the additivity axiom, we may as well assume that $X$ and the $X_i$ are path connected. +The proof makes use of a useful general construction called the ``telescope'' of the $X_i$, +denoted $\tel\,X_i$. Let $j_i: X_i\rtarr X_{i+1}$ be the given inclusions and consider the +mapping cylinders +$$M_{i+1}=(X_i\times[i,i+1])\cup X_{i+1}$$ +that are obtained by identifying $(x,i+1)$ with $j_i(x)$ for $x\in X_i$. +Inductively, let $Y_0=X_0\times\sset{0}$ and suppose that we have constructed +$Y_i\supset X_i\times \sset{i}$. Define $Y_{i+1}$ to be the double mapping cylinder +$Y_i\cup M_{i+1}$ obtained by identifying $(x,i)\in Y_i$ with $(x,i)\in M_{i+1}$ for +$x\in X_i$. Define $\tel\,X_i$\index{telescope} to be the union of the $Y_i$, +with the colimit topology. Thus +$$\tel\,X_i= \bigcup_i X_i\times [i,i+1],$$ +with the evident identifications at the ends of the cylinders. + +Using the retractions of the mapping cylinders, we obtain composite retractions +$r_i: Y_i\rtarr X_i$ such that the following diagrams commute +$$\diagram +Y_i\rto^{\subset} \dto_{r_i} & Y_{i+1} \dto^{r_{i+1}} \\ +X_i \rto_{j_i} & X_{i+1} \\ +\enddiagram$$ +Since the $r_i$ are homotopy equivalences and since homotopy groups commute with colimits, it +follows that we obtain a weak equivalence +$$r: \tel X_i\rtarr X$$ +on passage to colimits. By the weak equivalence axiom, $r$ induces an isomorphism on +homology. It therefore suffices to prove that the natural map +$$\colim\,E_*(X_i)\iso \colim\,E_*(Y_i)\rtarr E_*(\tel\,X_i)$$ +is an isomorphism. We define subspaces $A$ and $B$ of $\tel\,X_i$ by choosing $\epz<1$ and +letting +$$A =X_0\times[0,1]\, \textstyle{\coprod} \, +\textstyle{\coprod}_{i\geq 1}\, X_{2i-1}\times[2i-\epz,2i] +\cup X_{2i}\times [2i,2i+1]$$ +and +$$B=\textstyle{\coprod}_{i\geq 0}\,X_{2i}\times[2i+1-\epz,2i+1] +\cup X_{2i+1}\times [2i+1,2i+2].$$ +We let $C=A\cap B$ and find that +$$C=\textstyle{\coprod}_{i\geq 0}\, X_i\times [i+1-\epz,i+1].$$ +This gives an excisive triad, and a quick inspection shows that we have canonical +homotopy equivalences +$$A\htp \textstyle{\coprod}_{i\geq 0} X_{2i},\ \ B\htp\textstyle{\coprod}_{i\geq 0}X_{2i+1},\ \ \tand +C\htp\textstyle{\coprod}_{i\geq 0}X_i.$$ +Moreover, under these equivalences the inclusion $C\rtarr A$ has restrictions +$$\id: X_{2i}\rtarr X_{2i} \ \ \tand\ \ j_{2i+1}: X_{2i+1}\rtarr X_{2i+2},$$ +while the inclusion $C\rtarr B$ has restrictions +$$j_{2i}: X_{2i}\rtarr X_{2i+1} \ \ \tand\ \ \id: X_{2i+1}\rtarr X_{2i+1}.$$ +By the additivity axiom, +$$E_*(A)=\textstyle{\sum}_i E_*(X_{2i}),\ \ E_*(B)=\textstyle{\sum}_i E_*(X_{2i+1}), +\ \tand\ E_*(C)=\textstyle{\sum}_i E_*(X_i).$$ +We construct the following commutative diagram, whose top row is the Mayer-Vietoris +sequence of the triad $(\text{tel}\, X_i;A,B)$ and whose bottom row is a short exact sequence +as displayed in our algebraic description of colimits: +$$\diagram +\cdots \rto & E_q(C) \rto \dto_{\iso} & E_q(A)\oplus E_q(B) \rto \dto^{\iso} + & E_q(\tel X_i) \rto \dto^{\iso} & \cdots \\ +\cdots \rto & \sum_i E_q(X_i) \rto^{\al'} \dto_{\sum(-1)^{i}} + & \sum_i E_q(X_i) \rto^{\be'} \dto^{\sum_i(-1)^{i}} +& E_q(X) \rto \ddashed^{\xi}|>\tip & \cdots \\ +0 \rto & \sum_i E_q(X_i) \rto^{\al} + & \sum_i E_q(X_i) \rto^{\be} +& \colim E_q(X_i) \rto & 0. \\ +\enddiagram$$ +By the definition of the maps in the Mayer-Vietoris sequence, $\al'(x_i)=x_i+(j_i)_*(x_i)$ +and $\be'_i(x_i)=(-1)^i(k_i)_*(x_i)$ for $x_i\in E_q(X_i)$, where $k_i: X_i\rtarr X$ is +the inclusion. The commutativity of the lower left square is just the relation +$$(\textstyle{\sum}_i (-1)^i)\al'(x_i)=(-1)^i(x_i-(j_i)_*(x_i)).$$ +The diagram implies the required isomorphism $\xi$. + +\begin{rem} There is a general theory of ``homotopy colimits,''\index{homotopy colimit} which are +up to homotopy versions of +colimits. The telescope is the homotopy colimit of a sequence. The double mapping cylinder +that we used in approximating excisive triads by CW triads is the homotopy pushout of a +diagram of the shape $\bullet\longleftarrow \bullet\rtarr \bullet$. We implicitly used +homotopy coequalizers in constructing CW approximations of spaces. +\end{rem} + +\vspace{.1in} + +\begin{center} +PROBLEM +\end{center} +\begin{enumerate} +\item Complete the proof that the Mayer-Vietoris sequence is exact. +\end{enumerate} + +\chapter{The Hurewicz and uniqueness theorems} + +We now return to the context of ``ordinary homology theories,''\index{homology theory!ordinary} +namely those that satisfy the dimension axiom. We prove a fundamental relationship, called the Hurewicz theorem, +between homotopy groups and homology groups. We then use it to prove the uniqueness of ordinary +homology with coefficients in $\pi$. + +\section{The Hurewicz theorem} + +Although the reader may prefer to think in terms of the cellular homology theory already +constructed, the proof of the Hurewicz theorem depends only on the axioms. It is this fact +that will allow us to use the result to prove the uniqueness of homology theories in the +next section. We take $\pi=\bZ$ and delete it from the notation. The dimension axiom +implicitly fixes a generator $i_0$ of $\tilde{H}_0(S^0)$, and we choose generators $i_n$ of +$\tilde{H}_n(S^n)$ inductively by setting $\SI i_n=i_{n+1}$. + +\begin{defn} +For based spaces $X$, define the Hurewicz homomorphism\index{Hurewicz homomorphism} +$$h:\pi_n(X)\rtarr \tilde{H}_n(X)$$ +by +$$h([f])=f_*(i_n).$$ +\end{defn} + +\begin{lem} If $n\geq 1$, then $h$ is a homomorphism for all $X$. +\end{lem} +\begin{proof} +For maps $f,g: S^n\rtarr X$, $[f+g]$ is represented by the composite +$$S^n\overto{p} S^n\wed S^n\overto{f\wed g} X\wed X\overto{\triangledown} X,$$ +where $p$ is the pinch map and $\triangledown$ is the codiagonal map; that is, +$\triangledown$ restricts to the identity on each wedge summand. Since +$p_*(i_n)=i_n+i_n$ and $\triangledown$ induces addition on $\tilde{H}_*(X)$, +the conclusion follows. +\end{proof} + +\begin{lem} The Hurewicz homomorphism is natural and the following diagram +commutes for $n\geq 0$: +$$\diagram +\pi_n(X) \dto_{\SI} \rto & \tilde{H}_n(X) \dto^{\SI} \\ +\pi_{n+1}(\SI X) \rto_{h} & \tilde{H}_{n+1}(\SI X).\\ +\enddiagram$$ +\end{lem} +\begin{proof} +The naturality of $h$ is clear, and the naturality of $\SI$ on homology +implies the commutativity of the diagram: +$$(h\com \SI)([f])=(\SI f)_*(\SI i_n)=\SI(f_*(i_n))=\SI(h([f])). \qed $$ +\renewcommand{\qed}{}\end{proof} + +\begin{lem} Let $X$ be a wedge of $n$-spheres. Then +$$h:\pi_n(X)\rtarr \tilde{H}_n(X)$$ +is the Abelianization homomorphism if $n=1$ and is an isomorphism if $n>1$. +\end{lem} +\begin{proof} +When $X$ is a single sphere, $h[\id]=i_n$ and the conclusion is obvious. +In general, $\pi_n(X)$ is the free group if $n=1$ or the free Abelian group +if $n\geq 2$ with generators given by the inclusions of the wedge summands. +Since $h$ maps these generators to the canonical generators of +the free Abelian group $\tilde{H}_n(X)$, the conclusion follows. +\end{proof} + +That is all that we shall need in the next section, but we can generalize +the lemma to arbitrary $(n-1)$-connected based spaces $X$. + +\begin{thm}[Hurewicz]\index{Hurewicz theorem} +Let $X$ be any $(n-1)$-connected based space. Then +$$h:\pi_n(X)\rtarr \tilde{H}_n(X)$$ +is the Abelianization homomorphism if $n=1$ and is an isomorphism if $n>1$. +\end{thm} +\begin{proof} +We can assume without loss of generality that $X$ is a CW complex with a single +vertex, based attaching maps, and no $q$-cells for $1\leq q1$, the homotopy excision theorem +implies that the top row is exact. To see this, factor $f$ as the composite of +the inclusion $K\rtarr Mf$ and the deformation retraction $r:Mf\rtarr L$. Since +$X=Cf$, we have the following commutative diagram, in which the top row is exact: +$$\diagram +\pi_n(K) \rto \ddouble & \pi_n(Mf)\rto \dto^{r_*} & \pi_n(Mf,K)\rto \dto & 0 \\ +\pi_n(K) \rto & \pi_n(L) \rto & \pi_n(X) \rto & 0.\\ +\enddiagram$$ +Since $K$ and $L$ are $(n-1)$-connected and $n>1$, a corollary of the homotopy +excision theorem gives that $X$ is $(n-1)$-connected and +$\pi_n(Mf,K)\rtarr \pi_n(X)$ is an isomorphism. +\end{proof} + +\section{The uniqueness of the homology of CW complexes} + +We assume given an ordinary homology theory on CW pairs and describe how it must +be computed. We focus on integral homology, taking $\pi=\bZ$ and deleting it from +the notation. With a moment's reflection on the case $n=0$, we see that the +Hurewicz theorem gives a natural isomorphism\index{reduced homology!provisional definition} +$$\tilde{H}'_n(X)\rtarr \tilde{H}_n(X)$$ +for $(n-1)$-connected based spaces $X$. Here the groups on the left are defined +in terms of homotopy groups and were used in our construction of cellular chains, +while the groups on the right are those of our given homology theory. We use the +groups on the right to construct cellular chains in our given theory, and we find +that the isomorphism is compatible with differentials. From here, to prove uniqueness, +we only need to check from the axioms that our given theory is computable from the +homology groups of these cellular chain complexes. + +Thus let $X$ be a CW complex. For each integer $n$, define +$$C_n(X)=H_n(X^n,X^{n-1})\iso\tilde{H}_n(X^n/X^{n-1}).$$ +Define +$$d: C_n(X)\rtarr C_{n-1}(X)$$ +to be the composite +$$H_n(X^n,X^{n-1})\overto{\pa}H_{n-1}(X^{n-1}) +\rtarr H_{n-1}(X^{n-1},X^{n-2}).$$ +It is not hard to check that $d\com d=0$. +\begin{thm} +$C_*(X)$ is isomorphic to the cellular chain complex of $X$.\index{cellular chain complex} +\end{thm} +\begin{proof} +Since $X^n/X^{n-1}$ is the wedge of an $n$-sphere for each $n$-cell of $X$, we +see by the additivity axiom that $C_n(X)$ is the free Abelian group with one +generator $[j]$ for each $n$-cell $j$. We must compare the differential with +the one that we defined earlier. Let $i:X^{n-1}\rtarr X^n$ be the inclusion. +We see from our proof of the suspension isomorphism that $d$ coincides with the +composite +$$\tilde{H}_n(X^n/X^{n-1})\iso \tilde{H}_n(Ci) +\to \tilde{H}_n(\SI X^{n-1}) +\overto{\SI^{-1}}\tilde{H}_{n-1}(X^{n-1})\to \tilde{H}_{n-1}(X^{n-1}/X^{n-2}).$$ +By the naturality of the Hurewicz homomorphism and its commutation with suspension, +this coincides with the differential that we defined originally. +\end{proof} + +Similarly, if we start with a homology theory $H_*(-;\pi)$, we can use the axioms to +construct a chain complex $C_*(X;\pi)$, and a comparison of definitions then gives an +isomorphism of chain complexes +$$C_*(X;\pi)\iso C_*(X)\otimes \pi.$$ +We have identified our axiomatically derived chain complex of $X$ with the cellular +chain complex of $X$, and we again adopt the notation $C_*(X,A)=\tilde{C}_*(X/A)$. + +\begin{thm}\index{homology theory!ordinary} +There is a natural isomorphism +$$H_*(X,A)\iso H_*(C_*(X,A))$$ +under which the natural transformation $\pa$ agrees with the natural transformation +induced by the connecting homomorphisms associated to the short exact sequences +$$0\rtarr C_*(A)\rtarr C_*(X)\rtarr C_*(X,A)\rtarr 0.$$ +\end{thm} +\begin{proof} +In view of our comparison of theories on pairs of spaces and theories on pairs of +CW complexes and our comparison of theories on pairs with reduced theories, it +suffices to obtain a natural isomorphism of reduced theories on based CW complexes $X$. +By the additivity axiom, we may as well assume that $X$ is connected. More precisely, +we must obtain a system of natural isomorphisms +$$\tilde{H}_n(X)\iso {H}_*(\tilde{C}_n(X))$$ +that commute with the suspension isomorphisms. + +By the dimension and additivity axioms, we know the homology of wedges of spheres. +Since $X^n/X^{n-1}$ is a wedge of $n$-spheres, +the long exact homology sequence associated to the cofiber sequence +$$X^{n-1}\rtarr X^n\rtarr X^n/X^{n-1}$$ +and an induction on $n$ imply that +$$\tilde{H}_q(X^{n-1})\rtarr \tilde{H}_q(X^{n})$$ +is an isomorphism for $qn$. Of course, the analogues for cellular homology are obvious. Note in particular +that $\tilde{H}_n(X^{n+1})\iso \tilde{H}_n(X^{n+i})$ for all $i>1$. Since homology +commutes with colimits on sequences of inclusions, this implies that the inclusion +$X^{n+1}\rtarr X$ induces an isomorphism +$$ \tilde{H}_n(X^{n+1})\rtarr \tilde{H}_n(X).$$ +Using these facts, we easily check from the exactness axiom that the rows and columns are +exact in the following commutative diagram: +$$\diagram +& \tilde{H}_{n+1}(X^{n+1}/X^n) \drto^{d_{n+1}} \dto_{\pa} & & 0 \dto \\ +0 \rto & \tilde{H}_n(X^n) \rto_{\rh_*} \dto_{i_*} & \tilde{H}_n(X^n/X^{n-1}) +\rto^{\pa} \drto_{d_n} & \tilde{H}_{n-1}(X^{n-1}) \dto \\ +& \tilde{H}_n(X)\iso\tilde{H}_n(X^{n+1}) \dto & & \tilde{H}_{n-1}(X^{n-1}/X^{n-2}). \\ +& 0 & & \\ +\enddiagram$$ +Define $\al: \tilde{H}_n(X)\rtarr H_n(\tilde{C}_*(X))$ by letting $\al(x)$ be the +homology class of $\rh_*(y)$ for any $y$ such that $i_*(y)=x$. It is an exercise in +diagram chasing and the definition of the homology of a chain complex to check that +$\al$ is a well defined isomorphism. + +The reduced chain complex of $\SI X$ can be +identified with the suspension of the reduced chain complex of $X$. That is, +$$\tilde{C}_{n+1}(\SI X)\iso \tilde{C}_n(X),$$ +compatibly with the differential. All maps in the diagram commute with suspension, +and this implies that the isomorphisms $\al$ commute with the suspension isomorphisms. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Let $\pi$ be any group. Construct a connected CW complex $K(\pi,1)$ such that +$\pi_1(K(\pi,1))=\pi$ and $\pi_q(K(\pi,1))=0$ for $q\neq 1$. +\item* In Problem 1, it is rarely the case that $K(\pi,1)$ can be constructed as a compact +manifold. What is a necessary condition on $\pi$ for this to happen? +\item Let $n\geq1$ and let $\pi$ be an Abelian group. Construct a connected CW complex +$M(\pi,n)$ such that $\tilde{H}_n(X;\bZ)=\pi$ and $\tilde{H}_q(X;\bZ)=0$ for $q\neq n$. +(Hint: construct $M(\pi,n)$ as the cofiber of a map between wedges of spheres.) +The spaces $M(\pi,n)$ are called Moore spaces.\index{Moore space} +\item Let $n\geq1$ and let $\pi$ be an Abelian group. Construct a connected CW complex +$K(\pi,n)$ such that $\pi_n(X)=\pi$ and $\pi_q(X)=0$ for $q\neq n$. (Hint: +start with $M(\pi,n)$, using the Hurewicz theorem, and kill its higher homotopy groups.) +The spaces $K(\pi,n)$ are called Eilenberg-Mac\,Lane spaces.\index{Eilenberg-Mac\,Lane space} +\item There are familiar spaces that give $K(\bZ,1)$, $K(\bZ_2,1)$, and $K(\bZ,2)$. Name them. +\item Let $X$ be any connected CW complex whose only non-vanishing homotopy +group is $\pi_n(X)\iso \pi$. Construct a homotopy equivalence $K(\pi,n)\rtarr X$, +where $K(\pi,n)$ is the Eilenberg-Mac\,Lane space that you have constructed. +\item* For groups $\pi$ and $\rh$, compute $[K(\pi,n),K(\rh,n)]$; here $[-,-]$ +means based homotopy classes of based maps. +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{Singular homology theory} + +We explain, without giving full details, how the standard approach to singular homology +theory fits into our framework. We also introduce simplicial sets and spaces and their +geometric realization. These notions play a fundamental role in modern algebraic topology. + +\section{The singular chain complex} + +The standard topological $n$-simplex\index{nsimplex@$n$-simplex!topological} is the subspace +$$\DE_n=\sset{(t_0,\ldots\!,t_n)|0\leq t_i\leq 1,\ \textstyle{\sum} t_i=1}$$ +of $\bR^{n+1}$. There are ``face maps''\index{face map} +$$\de_i: \DE_{n-1}\rtarr \DE_n,\ \ 0\leq i\leq n,$$ +specified by +$$\de_i(t_0,\ldots\!,t_{n-1})=(t_0,\ldots\!,t_{i-1},0,t_i,\ldots\!,t_{n-1})$$ +and ``degeneracy maps''\index{degeneracy map} +$$\si_i: \DE_{n+1}\rtarr \DE_{n},\ \ 0\leq i\leq n,$$ +specified by +$$\si_i(t_0,\ldots\!,t_{n+1})=(t_0,\ldots\!,t_{i-1},t_i+t_{i+1},\ldots\!, t_{n+1}).$$ + +For a space $X$, define $S_nX$ to be the set of continuous maps $f:\DE_n\rtarr X$. +In particular, regarding a point of $X$ as the map that sends $1$ to $x$, we may +identify the underlying set of $X$ with $S_0X$. Define the $i$th face operator +$$d_i: S_nX\rtarr S_{n-1}X,\ \ 0\leq i\leq n,$$ +by +$$d_i(f)(u)=f(\de_i(u)),$$ +where $u\in \DE_{n-1}$, and define the $i$th degeneracy operator +$$s_i: S_nX\rtarr S_{n+1}X, \ \ 0\leq i\leq n,$$ +by +$$s_i(f)(v)=f(\si_i(v)),$$ +where $v\in \DE_{n+1}$. The following identities are easily checked: +$$d_i\com d_j=d_{j-1}\com d_i \ \ \ \text{if}\ \ ij+1. +\end{cases}$$ +$$s_i\com s_j=s_{j+1}\com s_i \ \ \text{if}\ \ i\leq j.$$ +A map $f: \DE_n\rtarr X$ is called a singular $n$-simplex.\index{nsimplex@$n$-simplex!singular} It +is said to be nondegenerate +if it is not of the form $s_i(g)$ for any $i$ and $g$. Let $C_n(X)$\index{singular chain +complex} be the free Abelian +group generated by the nondegenerate $n$-simplexes, and think of $C_n(X)$ as the quotient +of the free Abelian group generated by all singular $n$-simplexes by the subgroup generated +by the degenerate $n$-simplexes. Define +$$d = \sum_{i=0}^{n}(-1)^i d_i: C_n(X)\rtarr C_{n-1}(X).$$ +The identities ensure that $C_*(X)$ is then a well defined chain complex. In fact, +$$d\com d =\sum_{i=0}^{n-1}\sum _{j=0}^{n}(-1)^{i+j}d_i\com d_j,$$ +and, for $i^{d_n} & B_{n-1} \ldashed<.5ex>^{\si_n}|>\tip \rto & 0; \\ +\enddiagram$$ +we choose a splitting $\si_n$ of the second. Writing $f^*=\Hom(f,M)$ consistently, we obtain a +commutative diagram with exact rows and columns +$$\diagram + & & 0 & 0 \dto & \\ +0 \rto & \Hom(H_n,M) \rto^{\pi_n^*} & \Hom(Z_n,M) \rto^{i_n^*} \uto +& \Hom(B_n,M) \dto^{d_{n+1}^*} & \\ +\cdots \rto & \Hom(X_{n-1},M) \rto^{d_n^*} \dto_{j_{n-1}^*} & \Hom(X_n,M) \uto_{j_n^*} +\rto^{d_{n+1}^*} \ddashed<-.5ex>_{\si_n^*}|>\tip & \Hom(X_{n+1},M) \rto & \cdots \\ + & \Hom(Z_{n-1},M) \rto_{i_{n-1}^*} \dto +& \Hom(B_{n-1},M) \rto^{\de} \uto<-.5ex>_{d_n^*} \urdashed_{0}|>\tip & \Ext^1_R(H_{n-1},M)\rto & 0 \\ + & 0 & 0 \uto & & \\ +\enddiagram$$ +By inspection of the diagram, we see that the canonical map $\al$ coincides with the composite +$$H^n(X;M)=\ker\,d^*_{n+1}/\im\,d^*_n = \ker\,i^*_nj^*_n/\im\,d_n^*i^*_{n-1} \overto{j_n^*} + \im \pi^*_n\,\overto{(\pi_n^*)^{-1}} \Hom(H_n,M).$$ +Since $j_n^*$ is an epimorphism, so is $\al$. The kernel of $\al$ is +$\im\,d_n^*/\im\,d_n^*i^*_{n-1}$, and $\de(d_n^*)^{-1}$ maps this group isomorphically onto +$\Ext^1_R(H_{n-1},M)$. The composite $\de\si_n^*$ induces the required splitting. +\end{proof} + +\section{Relations between $\otimes$ and Hom} + +We shall need some observations about cochain complexes and tensor products, and +we first recall some general facts about the category of $R$-modules. For $R$-modules $L$, $M$, +and $N$, we have an adjunction +$$\Hom(L\ten M,N)\iso \Hom(L,\Hom(M,N)).$$ +We also have a natural homomorphism +$$\Hom(L,M)\ten N\rtarr \Hom(L,M\ten N),$$ +and this is an isomorphism if either $L$ or $N$ is a finitely generated projective $R$-module. +Again, we have a natural map +$$\Hom(L,M)\ten \Hom(L',M')\rtarr \Hom(L\ten L',M\ten M'),$$ +which is an isomorphism if $L$ and $L'$ are finitely generated and projective or if $L$ is +finitely generated and projective and $M=R$. + +We can replace $L$ and $L'$ by chain complexes and obtain similar maps, inserting signs +where needed. For example, a chain homotopy $X\ten \sI\rtarr X'$ between chain maps +$f,g: X\rtarr X'$ induces a chain map +$$\Hom(X',M)\rtarr \Hom (X\ten \sI,M)\iso \Hom(\sI,\Hom(X,M))\iso \Hom(X,M)\ten\sI^*,$$ +where $\sI^*=\Hom(\sI,R)$. It should be clear that this implies that our original chain +homotopy induces a homotopy of cochain maps +$$f^*\htp g^*: \Hom(X',M)\rtarr \Hom(X,M).$$ + +If $Y$ and $Y'$ are cochain complexes, then we have the natural homomorphism +$$\al: H^*(Y)\ten H^*(Y')\rtarr H^*(Y\ten Y')$$ +given by $\al([y]\ten [y'])=[y\ten y']$, exactly as for chain complexes. (In fact, by +regrading, we may view this as a special case of the map for chain complexes.) The K\"{u}nneth +theorem applies to this map. For its flatness hypothesis, it is useful to remember that, for +any Noetherian ring $R$, the dual $\Hom(F,R)$ of a free $R$-module is a flat $R$-module. + +As indicated above, if $Y=\Hom(X,M)$ and $Y'=\Hom(X',M')$ for chain complexes $X$ and $X'$ +and $R$-modules $M$ and $M'$, then we also have the map of cochain complexes +$$\om: \Hom(X,M)\ten \Hom(X',M')\rtarr \Hom(X\ten X',M\ten M')$$ +specified by the formula +$$\om(f\ten f')(x\ten x') = (-1)^{(\text{deg}\,f')(\text{deg}\, x)}f(x)\ten f'(x').$$ +We continue to write $\om$ for the map it induces on cohomology, and we then have the composite +$$\om\com\al: H^*(X;M)\ten H^*(X';M')\rtarr H^*(X\ten X';M\ten M').$$ +When $M=M'=A$ is a commutative $R$-algebra, we may compose with the map +$$ H^*(X\ten X';A\ten A) \rtarr H^*(X\ten X';A)$$ +induced by the multiplication of $A$ to obtain a map +$$H^*(X;A)\ten H^*(X';A)\rtarr H^*(X\ten X';A).$$ +We are especially interested in the case when $R=\bZ$ and $A$ is either $\bZ$ or a field. + +\chapter{Axiomatic and cellular cohomology theory} + +We give a treatment of cohomology that is precisely parallel to our treatment of +homology. The essential new feature is the cup product structure that makes the +cohomology of $X$ with coefficients in a commutative ring $R$ a commutative graded +$R$-algebra. This additional structure ties together the cohomology groups in +different degrees and is fundamentally important to most of the applications. + +\section{Axioms for cohomology} + +Fix an Abelian group $\pi$ and consider pairs of spaces $(X,A)$. We +shall see that $\pi$ determines a ``cohomology theory on pairs $(X,A)$.''\index{cohomology +theory} + +\begin{thm} For integers $q$, there exist {\em contravariant} functors $H^q(X,A;\pi)$ +from the homotopy category of pairs of spaces to the category of Abelian groups together +with natural transformations $\de: H^q(A;\pi)\rtarr H^{q+1}(X,A;\pi)$, where +$H^q(X;\pi)$ is defined to be $H^q(X,\emptyset;\pi)$. These functors and natural +transformations satisfy and are characterized by the following axioms. +\begin{itemize} +\item DIMENSION\index{dimension axiom}\ \ If $X$ is a point, then $H^0(X;\pi) = \pi$ and $H^q(X;\pi)=0$ +for all other integers. +\item EXACTNESS\index{exactness axiom}\ \ The following sequence is exact, where the unlabeled arrows +are induced by the inclusions $A\rtarr X$ and $(X,\emptyset)\rtarr (X,A)$: +$$\cdots\rtarr H^q(X,A;\pi)\rtarr H^q(X;\pi)\rtarr +H^q(A;\pi)\overto{\de} H^{q+1}(X,A;\pi)\rtarr \cdots .$$ +\item EXCISION\index{excision axiom}\ \ +If $(X;A,B)$ is an excisive triad, so that $X$ is the union of the interiors +of $A$ and $B$, then the inclusion $(A,A\cap B)\rtarr (X,B)$ induces an +isomorphism +$$H^*(X,B;\pi)\rtarr H^*(A,A\cap B;\pi).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $(X,A)$ is the disjoint union of a set of pairs $(X_i,A_i)$, then +the inclusions $(X_i,A_i)\rtarr (X,A)$ induce an isomorphism +$$ H^*(X,A;\pi)\rtarr \textstyle{\prod}_i\, H^*(X_i,A_i;\pi).$$ +\item WEAK EQUIVALENCE\index{weak equivalence axiom}\ \ If $f:(X,A)\rtarr (Y,B)$ is a weak +equivalence, then +$$f^*: H^*(Y,B;\pi)\rtarr H^*(X,A;\pi)$$ +is an isomorphism. +\end{itemize} +\end{thm} + +We write $f^*$ instead of $H^*(f)$ or $H^q(f)$. As in homology, our approximation theorems +for spaces, pairs, maps, homotopies, and excisive triads directly imply that such a theory +determines and is determined by an appropriate theory defined on CW pairs, as spelled out +in the following CW version of the theorem.\index{cohomology theory} + +\begin{thm} For integers $q$, there exist functors $H^q(X,A;\pi)$ from the +homotopy category of pairs of CW complexes to the category of +Abelian groups together with natural transformations $\de: H^q(A)\rtarr H^{q+1}(X,A;\pi)$, +where $H^q(X;\pi)$ is defined to be $H^q(X,\emptyset;\pi)$. These functors and natural +transformations satisfy and are characterized by the following axioms. +\begin{itemize} +\item DIMENSION\index{dimension axiom}\ \ If $X$ is a point, then $H^0(X;\pi) = \pi$ and $H^q(X;\pi)=0$ +for all other integers. +\item EXACTNESS\index{exactness axiom}\ \ The following sequence is exact, where the unlabeled arrows +are induced by the inclusions $A\rtarr X$ and $(X,\emptyset)\rtarr (X,A)$: +$$\cdots\rtarr H^q(X,A;\pi)\rtarr H^q(X;\pi)\rtarr +H^q(A;\pi)\overto{\de} H^{q+1}(X,A;\pi)\rtarr \cdots .$$ +\item EXCISION\index{excision axiom}\ \ +If $X$ is the union of subcomplexes $A$ and $B$, then the inclusion +$(A,A\cap B)\rtarr (X,B)$ induces an isomorphism +$$ H^*(X,B;\pi) \rtarr H^*(A,A\cap B;\pi).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $(X,A)$ is the disjoint union of a set of pairs $(X_i,A_i)$, then +the inclusions $(X_i,A_i)\rtarr (X,A)$ induce an isomorphism +$$H^*(X,A;\pi)\rtarr \textstyle{\prod}_i\, H^*(X_i,A_i;\pi).$$ +\end{itemize} +Such a theory determines and is determined by a theory as in the previous +theorem. +\end{thm} + +\section{Cellular and singular cohomology} + +We define the cellular cochains\index{cellular cochains} of a CW pair $(X,A)$ with +coefficients in an Abelian group $\pi$ to be +$$C^*(X,A;\pi)=\Hom(C_*(X,A),\pi).$$ +We then define the cellular cohomology groups to be +$$H^*(X,A;\pi)=H^*(C^*(X,A;\pi)).$$ +If $M$ is a module over a commutative ring $R$, we have a natural identification +$$C^*(X,A;M)\iso \Hom_R(C_*(X,A)\ten R,M)$$ +which allows us to do homological algebra over $R$ rather than over $\bZ$ when +convenient. In particular, if $R$ is a field, then +$$ H^*(X,A;M)\iso \Hom_R(H_*(X,A;R),M).$$ +In general, with $R=\bZ$, we have a natural and splittable short exact sequence +$$0\rtarr \Ext^1_{\bZ}(H_{n-1}(X,A),\pi)\rtarr H^n(X,A;\pi)\rtarr \Hom(H_n(X,A),\pi)\rtarr 0.$$ + +The verification of the axioms listed in the previous section is immediate, as in homology. The +fact that cellularly homotopic maps induce the same map on cohomology uses our observations +relating homotopies of chain complexes with homotopies of cochain complexes. For exactness, the +fact that our chain complexes are free over $\bZ$ implies that we have a short exact sequence of +cochain complexes +$$ 0\rtarr C^*(X,A;\pi)\rtarr C^*(X;\pi)\rtarr C^*(A;\pi) \rtarr 0.$$ +The required natural long exact sequence follows. The rest is the same as in homology. + +For general spaces $X$, we can use $\GA X=|S_*X|$ as a canonical CW approximation functor. +We define the singular cochains\index{singular cochains} of $X$ to be the cellular cochains +of $\GA X$. Then our +passage from the cohomology of CW complexes to the cohomology of general spaces can be +realized by taking the cohomology of singular cochain complexes. + +\section{Cup products in cohomology} + +If $X$ and $Y$ are CW complexes, we have an isomorphism +$$C_*(X\times Y)\iso C_*(X)\ten C_*(Y)$$ +of chain complexes and therefore, for any Abelian groups $\pi$ and $\pi'$, an +isomorphism of cochain complexes +$$C^*(X\times Y;\pi\ten \pi')\iso \Hom(C_*(X)\ten C_*(Y),\pi\ten \pi').$$ +By our observations about cochain complexes, there results a natural homomorphism +$$H^*(X;\pi)\ten H^*(Y;\pi')\rtarr H^*(X\times Y;\pi\ten\pi').$$ +If $X=Y$ and if $\pi=\pi'=R$ is a commutative ring, we can use the +diagonal map $\DE: X\rtarr X\times X$ and the product $R\ten R\rtarr R$ to +obtain a ``cup product''\index{cup product} +$$\cup: H^*(X;R)\ten_R H^*(X;R)\rtarr H^*(X;R).$$ +More precisely, for $p\geq 0$ and $q\geq 0$, we have a product +$$\cup: H^p(X;R)\ten_R H^q(X;R)\rtarr H^{p+q}(X;R).$$ +We have noted that we can use $C_*(X;R)$ instead of $C_*(X)$ and so justify +tensoring over $R$ rather than $\bZ$. This product makes $H^*(X;R)$ into +a graded unital, associative, and ``commutative'' $R$-algebra. Here commutativity +is understood in the appropriate graded sense,\index{commutativity!graded} namely +$$xy=(-1)^{pq} yx \ \ \text{if}\ \ \text{deg}\,x=p\ \tand\ \text{deg}\,y=q.$$ +The image of $1\in R=H^0(*;R)$ under the map $\pi^*:H^0(*;R)\rtarr H^0(X;R)$ +induced by the unique map $\pi: X\rtarr \sset{*}$ is the unit (= identity element) for the product. +In fact, the diagrams that say that $H^*(X;R)$ is unital, associative, and commutative +result by passing to cohomology from the evident commutative diagrams +$$\diagram +& X \dto^{\DE} \drdouble \dldouble & \\ +X\times * & X\times X \lto^{\id\times \pi} \rto_{\pi\times\id} & *\times X, \\ +\enddiagram$$ +$$\diagram +X \rto^{\DE} \dto_{\DE} & X\times X \dto^{\DE\times \id} \\ +X\times X \rto_(0.4){\id\times\DE} & X\times X\times X,\\ +\enddiagram$$ +and +$$\diagram +& X \dlto_{\DE} \drto^{\DE} & \\ +X\times X\rrto_t & & X\times X.\\ +\enddiagram$$ +Here $t: X\times Y\rtarr Y\times X$ is the transposition, $t(x,y)=(y,x)$. The following +diagrams commute in homology and cohomology with cofficients in $R$: +$$\diagram +H_*(X)\ten_{R} H_*(Y)\dto_{\ta} \rto^(0.55){\al} & H_*(X\times Y) \dto^{t_*}\\ +H_*(Y)\ten_{R} H_*(X) \rto^(0.55){\al} & H_*(Y\times X)\\ +\enddiagram$$ +and +$$\diagram +H^*(X)\ten_{R} H^*(Y)\dto_{\ta} \rto^(0.55){\al} & H^*(X\times Y) \dto^{t^*}\\ +H^*(Y)\ten_{R} H^*(X) \rto^(0.55){\al} & H^*(Y\times X). +\enddiagram$$ +In both diagrams, +$$\ta(x\ten y)=(-1)^{pq} y\ten x \ \ \text{if}\ \ \text{deg}\,x=p\ \tand\ \text{deg}\,y=q.$$ +The reason is that, on the topological level, $t$ permutes $p$-cells past $q$-cells and, on +the level of cellular chains, this involves the transposition +$$ S^{p+q} = S^p\sma S^q \rtarr S^q\sma S^p = S^{p+q}.$$ +We leave it as an exercise that this map has degree $(-1)^{pq}$. It is this fact that forces +the cup product to be commutative in the graded sense. + +In principle, the way to compute cup products is to pass to cellular chains from a cellular +approximation to the diagonal map $\DE$. The point is that $\DE$ fails to be cellular since +it carries the $n$-skeleton of $X$ to the $2n$-skeleton of $X\times X$. In practice, this +does not work very well and more indirect means of computation must be used. + +\section{An example: $\bR P^n$ and the Borsuk-Ulam theorem} + +Remember that $\bR P^n$\index{projective space!real} is a CW complex with one $q$-cell for +each $q\leq n$. The differential +on $C_q(\bR P^n)\iso \bZ$ is zero if $q$ is odd and multiplication by $2$ if $q$ is even. +When we dualize to $C^*(\bR P^n)$, we find that the differential on $C^q(\bR P^n)$ is +multiplication by $2$ if $q$ is odd and zero if $q$ is even. We read off that +$$H^q(\bR P^n;\bZ)= +\begin{cases} +\bZ \ \ \ \text{if}\ \ q=0 \\ +\bZ_2 \ \ \text{if}\ \ 0n. +\end{cases}$$ +The reader may find it instructive to compare with the calculations in homology, checking +the correctness of the calculation by comparison with the universal coefficient theorem. + +We shall later use Poincar\'{e} duality to give a quick proof that the cohomology algebra +$H^*(\bR P^n;\bZ_2)$ is a truncated polynomial algebra $\bZ_2[x]/(x^{n+1})$, where $\deg\,x=1$. +That is, for $1\leq q\leq n$, the unique non-zero element of $H^q(\bR P^n;\bZ_2)$ is the +$q$th power of $x$. This means that the elements are so tightly bound together that knowledge +of the cohomological behavior of a map $f: \bR P^m\rtarr \bR P^n$ on cohomology in degree one +determines its behavior on cohomology in all higher degrees. We assume that $m\geq 1$ and +$n\geq 1$ to avoid triviality. + +\begin{prop} Let $f: \bR P^m\rtarr \bR P^n$ be a map such that +$f_*: \pi_1(\bR P^m)\rtarr \pi_1(\bR P^n)$ is non-zero. Then $m\leq n$. +\end{prop} +\begin{proof} +Since $\pi_1(\bR P^1)=\bZ$ and $\pi_1(\bR P^m)=\bZ_2$ if $m\geq 2$, the result is certainly +true if $n=1$. Thus assume that $n>1$ and assume for a contradiction that $m>n$. By the +naturality of the Hurewicz isomorphism, $f_*: H_1(\bR P^m;\bZ)\rtarr H_1(\bR P^n;\bZ)$ is +non-zero. By our universal coefficient theorems, the same is true for mod $2$ homology and +for mod $2$ cohomology. That is, if $x$ is the non-zero element of $H^1(\bR P^n;\bZ_2)$, then +$f^*(x)$ is the non-zero element of $H^1(\bR P^m;\bZ_2)$. +By the naturality of cup products +$$ (f^*(x))^m = f^*(x^m).$$ +However, the left side is non-zero in $H^m(\bR P^m;\bZ_2)$ and the right side is zero since +$x^m=0$ by our assumption that $m>n$. The contradiction establishes the conclusion. +\end{proof} + +We use this fact together with covering space theory to prove a celebrated result +known as the Borsuk-Ulam theorem. A map $g: S^m\rtarr S^n$ is said to be antipodal\index{antipodal +map} if it takes pairs of antipodal points to pairs of antipodal points. It then induces a map +$f: \bR P^m\rtarr \bR P^n$ such that the following diagram commutes: +$$\diagram +S^m\rto^g \dto_{p_m} & S^n \dto^{p_n}\\ +\bR P^m \rto_f & \bR P^n,\\ +\enddiagram$$ +where $p_m$ and $p_n$ are the canonical coverings. + +\begin{thm} If $m>n\geq 1$, then there exist no antipodal maps $S^m\rtarr S^n$. +\end{thm} +\begin{proof} +Suppose given an antipodal map $g:S^m\rtarr S^n$. According to +the proposition, $f_*:\pi_1(\bR P^m)\rtarr \pi_1(\bR P^n)$ is zero. According to +the fundamental theorem of covering space theory, there is a map +$\tilde{f}: \bR P^m\rtarr S^n$ such that $p_n\com\tilde{f}= f$. Let $s\in S^m$. +Then $\tilde{f}(p_m(s))=\tilde{f}(p_m(-s))$ must be either $g(s)$ or $g(-s)$, +since these are the only two points in $p_n^{-1}(f(p_m(s)))$. Thus either $t=s$ +or $t=-s$ satisfies $\tilde{f}(p_m(t))=g(t)$. Therefore, by the fundamental +theorem of covering space theory, the maps $\tilde{f}\com p_m$ and $g$ must be +equal since they agree on a point. This is absurd: $\tilde{f}\com p_m$ takes +antipodal points to the same point, while $g$ was assumed to be antipodal. +\end{proof} + +\begin{thm}[Borsuk-Ulam]\index{Borsuk-Ulam theorem} +For any continuous map $f: S^n\rtarr \bR^n$, there exists $x\in S^n$ such that +$f(x)=f(-x)$. +\end{thm} +\begin{proof} +Suppose for a contradiction that $f(x)\neq f(-x)$ for all $x$. We could then define a +continuous antipodal map $g: S^n\rtarr S^{n-1}$ by letting $g(x)$ be the point at +which the vector from $0$ through $f(x)-f(-x)$ intersects $S^{n-1}$. +\end{proof} + +\section{Obstruction theory} + +We give an outline of one of the most striking features of cohomology: the +cohomology groups of a space $X$ with coefficients in the homotopy groups of a +space $Y$ control the construction of homotopy classes of maps $X\rtarr Y$. +As a matter of motivation, this helps explain why one is interested in general +coefficient groups. It also explains why the letter $\pi$ is so often used to +denote coefficient groups. + +\begin{defn} Fix $n\geq 1$. A connected space $X$ is said to be $n$-simple\index{nsimple +space@$n$-simple space} if +$\pi _{1}(X)$ is Abelian and acts trivially on the homotopy groups $\pi _{q}(X)$ +for $q\leq n$; $X$ is said to be simple\index{simple space} if it is $n$-simple for all $n$. +\end{defn} + +Let $(X,A)$ be a relative CW complex with relative skeleta $X^n$ and let $Y$ be an +$n$-simple space. The +assumption on $Y$ has the effect that we need not worry about basepoints. Let +$f: X^{n}\rtarr Y$ be a map. We ask when $f$ can be extended to +a map $X^{n+1}\rtarr Y$ that restricts to the given map on $A$. + +If we compose the attaching maps $S^{n} \rightarrow X$ of cells of $X\setminus A$ +with $f$, we obtain elements of $\pi_{n}(Y)$. These elements specify a well defined +``obstruction cocycle''\index{obstruction cocycle} +\[ c_{f}\in C^{n+1}(X,A;{\pi}_{n}(Y)). \] +Clearly, by considering extensions cell by cell, $f$ extends to $X^{n+1}$ if and only +if $c_{f} = 0$. This is not a computable +criterion. However, if we allow ourselves to modify $f$ a little, then we can refine the +criterion to a cohomological one that often is computable. If $f$ and $f'$ +are maps $X^{n} \rightarrow Y$ and $h$ is a homotopy rel $A$ of the +restrictions of $f$ and $f'$ to $X^{n-1}$, +then $f$, $f'$, and $h$ together define a map +\[ h(f,f'): (X\times I)^{n} \rtarr Y. \] +Applying $c_{h(f,f')}$ to cells $j\times I$, we obtain a ``deformation +cochain''\index{deformation cochain} +\[ d_{f,f',h}\in C^{n}(X,A;{\pi}_{n}(Y)) \] +such that $\delta d_{f,f',h} = c_{f}-c_{f'}$. Moreover, given $f$ and $d$, +there exists $f'$ that coincides with $f$ on $X^{n-1}$ and satisfies +$d_{f,f'} = d$, where the constant homotopy $h$ is understood. This gives the +following result. + +\begin{thm} +For $f: X^{n}\rtarr Y$, the restriction of $f$ to +$X^{n-1}$ extends to a map $X^{n+1}\rightarrow Y$ if and only if $[c_{f}]=0$ +in $H^{n+1}(X,A;{\pi}_{n}(Y))$. +\end{thm} + +It is natural to ask further when such extensions are unique up to homotopy, +and a similar argument gives the answer. + +\begin{thm} +Given maps $f, f': X^{n}\rightarrow Y$ and a homotopy rel $A$ of their +restrictions to $X^{n-1}$, there is an obstruction class in +$H^{n}(X,A;{\pi}_{n}(Y))$ that vanishes +if and only if the restriction of the given homotopy to $X^{n-2}$ +extends to a homotopy $f\simeq f'$ rel $A$. +\end{thm} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} + +The first few problems here are parallel to those at the end of Chapter 16. +\begin{enumerate} +\item Let $X$ be a space that satisfies the hypotheses used to construct a universal +cover $\tilde{X}$ and let $A$ be an Abelian group. Using cellular or singular chains, +show that +$$C^*(X;A)\iso \Hom_{\bZ[\pi]}(C_*(\tilde{X}),A).$$ +\item Show that there is an isomorphism +$$H^*(K(\pi,1);A) \iso \Ext^*_{\bZ[\pi]}(\bZ,A).$$ +When $A$ is a commutative ring, the Ext groups have algebraically defined products, +constructed as follows. The evident isomorphism $\bZ\iso\bZ\ten\bZ$ is covered by a +map of free $\bZ[\pi]$-resolutions +$P \rtarr P\ten P$, where $\bZ[\pi]$ acts diagonally on tensor products, +$\al(x\ten y) = \al x\ten \al y$. This chain map is unique +up to chain homotopy. It induces a map of chain complexes +$$\Hom_{\bZ[\pi]}(P,A)\ten \Hom_{\bZ[\pi]}(P,A) \rtarr \Hom_{\bZ[\pi]}(P,A)$$ +and therefore an induced product on Ext$^*_{\bZ[\pi]}(\bZ,A)$. +Convince yourself that the isomorphism above preserves +products and explain the intuition (don't worry about technical exactitude). +\item* Now use homological algebra to determine $H^*(\bR P^{\infty};\bZ_2)$ as a ring. +\item Use the previous problem to deduce the ring structure on $H^*(\bR P^n;\bZ_2)$ +for each $n\geq 1$. +\item Let $p: Y\rtarr X$ be a covering space with finite fibers, say of cardinality $n$. +Construct a ``transfer homomorphism''\index{transfer homomorphism} +$t: H^*(Y;A)\rtarr H^*(X;A)$ and show that $t\com p^*: H^*(X;A)\rtarr H^*(X;A)$ +is multiplication by $n$. +\item Let $X$ and $Y$ be CW complexes. Show that the interchange map +$$t: X\times Y\rtarr Y\times X$$ +satisfies $t_*([i]\ten[j])=(-1)^{pq}[j]\ten[i]$ for a $p$-cell of $X$ and a $q$-cell of $Y$. +Deduce that the cohomology ring $H^*(X)$ is commutative in the graded +sense:\index{commutativity!graded} +$$ x\cup y = (-1)^{pq}y\cup x \ \ \text{if}\ \ \text{deg}\,x=p\ \tand\ \text{deg}\,y=q.$$ +\end{enumerate} + +An ``$H$-space''\index{Hspace@$H$-space} is a space $X$ with a basepoint $e$ and a product +$\ph: X\times X\rtarr X$ such that the maps $\la: X\rtarr X$ and $\rh: X\rtarr X$ +given by left and right multiplication by $e$ are each homotopic to the identity map. +Note that $\la$ and $\rh$ specify a map $X\wed X\rtarr X$ that is homotopic to the +codiagonal or folding map $\bigtriangledown$, which restricts to the identity on each +wedge summand. The following two problems are optional review exercises. + +\begin{enumerate} +\item[7.] If $e$ is a nondegenerate basepoint for $X$, then $\ph$ is homotopic to a product +$\ph'$ such that left and right multiplication by $e$ under the product $\ph'$ are +both identity maps. +\item[8.] Show that the product on $\pi_1(X,e)$ induced by the based map +$\ph': X\times X\rtarr X$ agrees with the multiplication given by composition +of paths and that both products are commutative. +\item[9.] For an $H$-space $X$, the following diagram is commutative: +$$\diagram +X\times X \dto_{\ph} \rrto^{\DE\times\DE} & & X\times X\times X\times X +\rrto^{\id\times t\times \id} & & X\times X\times X\times X \dto^{\ph\times \ph} \\ +X \xto[0,4]_{\DE} & & & & X\times X +\enddiagram$$ +(Check it: it is too trivial to write down.) Let $X$ be $(n-1)$-connected, $n\geq 2$, and +let $x\in H^n(X)$. +\begin{enumerate} +\item[(a)] Show that $\ph^*(x) = x\ten 1 + 1\ten x$. +\item[(b)] Show that +$$(\DE\times\DE)^*(\id\times\, t\times \id)^*(\ph\times \ph)^*(x\ten x) +=x^2\ten 1 +(1+(-1)^n)(x\ten x)+1\ten x^2.$$ +\item[(c)] Prove that, if $n$ is even, then either $2(x\ten x)=0$ in $H^*(X\times X)$ or +$x^2\neq 0$. Deduce that $S^{n}$ cannot be an $H$-space if $n$ is even. +\end{enumerate} +\end{enumerate} + +\chapter{Derivations of properties from the axioms} + +Returning to the axiomatic approach to cohomology, we assume given a theory on pairs +of spaces and give some deductions from the axioms. This may be viewed as a dualized +review of what we did in homology, and we generally omit the proofs. The only significant +difference that we will encounter is in the computation of the cohomology of colimits. +In a final section, we show the uniqueness of (ordinary) cohomology with coefficients +in $\pi$. + +Prior to that section, we make no use of the dimension axiom in this chapter. +A ``generalized cohomology theory'' +\index{cohomology theory!generalized} $E^*$ is defined to be a +system of functors $E^q(X,A)$ +and natural transformations $\de:E^q(A)\rtarr E^{q+1}(X,A)$ that satisfy all of our axioms +except for the dimension axiom. Similarly, we have the notion of a generalized cohomology +theory on CW pairs, and the following result holds. + +\begin{thm} A cohomology theory $E^*$ on pairs of spaces determines and is determined +by its restriction to a cohomology theory $E^*$ on pairs of CW complexes. +\end{thm} + +\section{Reduced cohomology groups and their properties} + +For a based space $X$, we define the reduced cohomology\index{reduced cohomology} of $X$ to be +$$\tilde{E}^q(X)=E^q(X,*).$$ +There results a direct sum decomposition +$$ E^*(X) \iso \tilde{E}^*(X)\oplus E^*(*)$$ +that is natural with respect to based maps. For $*\in A\subset X$, the summand $E^*(*)$ +maps isomorphically under the map $E^*(X)\rtarr E^*(A)$, and the exactness axiom implies +that there is a reduced long exact sequence +$$\cdots\rtarr \tilde{E}^{q-1}(A)\overto{\de} E^q(X,A) \rtarr \tilde{E}^q(X)\rtarr \tilde{E}^q(A) +\rtarr \cdots.$$ + +The unreduced cohomology groups are recovered as the special cases +$$ E^*(X)=\tilde{E}^*(X_+)$$ +of reduced ones, and similarly for maps. Relative cohomology groups are also special +cases of reduced ones. + +\begin{thm} +For any cofibration\index{cofibration} $i: A\rtarr X$, the quotient map $q: (X,A)\rtarr (X/A,*)$ +induces an isomorphism +$$\tilde{E}^*(X/A)=E^*(X/A,*)\iso E^*(X,A).$$ +\end{thm} + +We may replace any inclusion $i: A\rtarr X$ by the canonical cofibration $A\rtarr Mi$ +and then apply the result just given to obtain an isomorphism +$$ E^*(X,A)\iso \tilde{E}^*(Ci).$$ + +\begin{thm} For a nondegenerately based space $X$, there is a natural isomorphism +$$\SI: \tilde{E}^q(X)\iso \tilde{E}^{q+1}(\SI X).$$ +\end{thm} + +\begin{cor} Let $*\in A\subset X$, where $i: A\rtarr X$ is a cofibration between +nondegenerately based spaces. In the long exact sequence +$$\cdots\rtarr \tilde{E}^{q-1}(A)\overto{\de} \tilde{E}^q(X/A)\rtarr \tilde{E}^q(X)\rtarr +\tilde{E}^q(A)\rtarr \cdots $$ +of the pair $(X,A)$, the connecting homomorphism $\de$ is the composite +$$\tilde{E}^{q-1}(A)\overto{\SI} \tilde{E}^{q}(\SI A) \overto{\pa^*}\tilde{E}^q(X/A).$$ +\end{cor} + +\begin{cor} +For any $n$ and $q$, +$$\tilde{E}^q(S^n)\iso \tilde{E}^{q-n}(*).$$ +\end{cor} + +\section{Axioms for reduced cohomology} + +\begin{defn} A reduced cohomology theory\index{cohomology theory!reduced} $\tilde{E}^*$ consists of functors +$\tilde{E}^q$ from the homotopy category of nondegenerately based spaces +to the category of Abelian groups that satisfy the following axioms. +\begin{itemize} +\item EXACTNESS\index{exactness axiom}\ \ If $i: A\rtarr X$ is a cofibration, then the sequence +$$\tilde{E}^q(X/A)\rtarr \tilde{E}^q(X)\rtarr +\tilde{E}^q(A)$$ +is exact. +\item SUSPENSION\index{suspension axiom}\ \ +For each integer $q$, there is a natural isomorphism +$$\SI: \tilde{E}^q(X)\iso \tilde{E}^{q+1}(\SI X).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $X$ is the wedge of a set of nondegenerately based spaces $X_i$, then +the inclusions $X_i\rtarr X$ induce an isomorphism +$$\tilde{E}^*(X) \rtarr \textstyle{\prod}_i\, \tilde{E}^*(X_i).$$ +\item WEAK EQUIVALENCE\index{weak equivalence axiom}\ \ If $f:X\rtarr Y$ is a +weak equivalence, then +$$f^*: \tilde{E}^*(Y)\rtarr \tilde{E}^*(X)$$ +is an isomorphism. +\end{itemize} +\end{defn} + +The reduced form of the dimension axiom would read +$$\tilde{H}^0(S^0)=\pi \ \ \tand \ \ \tilde{H}^q(S^0)=0\ \text{for}\ q\neq 0.$$ + +\begin{thm} A cohomology theory $E^*$ on pairs of spaces determines and is +determined by a reduced cohomology theory $\tilde{E}^*$ on nondegenerately +based spaces. +\end{thm} + +\begin{defn} A reduced cohomology theory\index{cohomology theory!reduced} $\tilde{E}^*$ on +based CW complexes consists +of functors $\tilde{E}^q$ from the homotopy category of based CW complexes +to the category of Abelian groups that satisfy the following axioms. +\begin{itemize} +\item EXACTNESS\index{exactness axiom}\ \ If $A$ is a subcomplex of $X$, then the sequence +$$\tilde{E}^q(X/A)\rtarr \tilde{E}^q(X)\rtarr +\tilde{E}^q(A)$$ +is exact. +\item SUSPENSION\index{suspension axiom}\ \ +For each integer $q$, there is a natural isomorphism +$$\SI: \tilde{E}^q(X)\iso \tilde{E}^{q+1}(\SI X).$$ +\item ADDITIVITY\index{additivity axiom}\ \ +If $X$ is the wedge of a set of based CW complexes $X_i$, then +the inclusions $X_i\rtarr X$ induce an isomorphism +$$\tilde{E}^*(X) \rtarr \textstyle{\prod}_i\, \tilde{E}^*(X_i).$$ +\end{itemize} +\end{defn} + +\begin{thm} A reduced cohomology theory $\tilde{E}^*$ on nondegenerately based spaces +determines and is determined by its restriction to a reduced cohomology theory on +based CW complexes. +\end{thm} + +\begin{thm} +A cohomology theory $E^*$ on CW pairs determines and is determined by a reduced +cohomology theory $\tilde{E}^*$ on based CW complexes. +\end{thm} + +\section{Mayer-Vietoris sequences in cohomology} + +We have Mayer-Vietoris sequences in cohomology just like those in homology. The proofs are +the same. Poincar\'{e} duality between the homology and cohomology of manifolds will be proved +by an inductive comparison of homology and cohomology Mayer-Vietoris sequences. We record two +preliminaries. + +\begin{prop} For a triple $(X,A,B)$, the following sequence is exact:\index{triple!exact sequence +of} +$$\cdots E^{q-1}(A,B) \overto{\de} E^q(X,A)\overto{j^*} E^q(X,B)\overto{i^*} +E^{q}(A,B)\rtarr \cdots.$$ +Here $i:(A,B)\rtarr (X,B)$ and $j:(X,B)\rtarr (X,A)$ are inclusions and $\de$ is the composite +$$E^{q-1}(A,B)\rtarr E^{q-1}(A)\overto{\de} E^q(X,A).$$ +\end{prop} + +Now let $(X;A,B)$ be an excisive triad and set $C=A\cap B$. + +\begin{lem} +The map +$$E^*(X,C) \rtarr E^*(A,C)\oplus E^*(B,C) $$ +induced by the inclusions of $(A,C)$ and $(B,C)$ in $(X,C)$ is an isomorphism. +\end{lem} + +\begin{thm}[Mayer-Vietoris sequence]\index{Mayer-Vietoris sequence} Let $(X;A,B)$ be an excisive +triad and set $C=A\cap B$. +The following sequence is exact: +$$\cdots \rtarr E^{q-1}(C)\overto{\DE^*} E^q(X) \overto{\ph^*} E^q(A)\oplus E^q(B)\overto{\ps^*} +E^{q}(C)\rtarr \cdots.$$ +Here, if $i: C\rtarr A$, $j: C\rtarr B$, $k: A\rtarr X$, and $\ell: B\rtarr X$ +are the inclusions, then +$$\ph^*(\ch)= (k^*(\ch),\ell^*(\ch))\ \ \tand\ \ \psi^*(\al,\be)=i^*(\al)-j^*(\be) $$ +and $\DE^*$ is the composite +$$E^{q-1}(C)\overto{\de} E^q(A,C)\iso E^q(X,B)\rtarr E^q(X).$$ +\end{thm} + +For the relative version, let $X$ be contained in some ambient space $Y$. + +\begin{thm}[Relative Mayer-Vietoris sequence]\index{Mayer-Vietoris sequence!relative} The +following sequence is exact: +$$\cdots\rtarr E^{q-1}(Y,C)\overto{\DE^*} E^q(Y,X)\overto{\ph^*} E^q(Y,A)\oplus E^q(Y,B) +\overto{\ps^*} E^{q}(Y,C)\rtarr \cdots.$$ +Here, if $i: (Y,C)\rtarr (Y,A)$, $j: (Y,C)\rtarr (Y,B)$, $k: (Y,A)\rtarr (Y,X)$, and +$\ell: (Y,B)\rtarr (Y,X)$ are the inclusions, then +$$ \ph^*(\ch)= (k^*(\ch),\ell^*(\ch)) \ \ \tand\ \ \psi^*(\al,\be)=i^*(\al)-j^*(\be)$$ +and $\DE^*$ is the composite +$$E^{q-1}(Y,C)\rtarr E^{q-1}(A,C)\iso E^{q-1}(X,B)\overto{\de} E^{q}(Y,X).$$ +\end{thm} + +\begin{cor} +The absolute and relative Mayer-Vietoris sequences are related by the following +commutative diagram: +$$\diagram +E^{q-1}(C)\rto^{\DE^*} \dto_{\de} & E^{q}(X) \rto^(0.4){\ph^*} \dto^{\de} & + E^{q}(A)\oplus E^{q}(B)\rto^(0.6){\ps^*} \dto^{\de+\de} & E^{q}(C) \dto^{\de} \\ +E^q(Y,C)\rto_(0.46){\DE^*} & E^{q+1}(Y,X) \rto_(0.35){\ph^*} & +E^{q+1}(Y,A)\oplus E^{q+1}(Y,B) \rto_(0.65){\ps^*} & E^{q+1}(Y,C).\\ +\enddiagram$$ +\end{cor} + +\section{Lim$^1$ and the cohomology of colimits} + +In this section, we let $X$ be the union of an expanding sequence of subspaces $X_i$, +$i\geq 0$. We shall use the additivity and weak equivalence axioms and the +Mayer-Vietoris sequence to explain how to compute $E^*(X)$. The answer is more subtle +than in homology because, algebraically, limits are less well behaved than colimits: +they are not exact functors from diagrams of Abelian groups to Abelian groups. Rather +than go into the general theory, we simply display how the ``first right derived functor'' +$\lim^{1}$\index{lima@$\lim^{1}$} of an inverse sequence of Abelian groups can be computed. + +\begin{lem} +Let $f_i: A_{i+1}\rtarr A_{i}$, $i\geq 1$, be a sequence of homomorphisms of Abelian groups. +Then there is an exact sequence +$$ 0\rtarr \lim\,A_i\overto{\be} \textstyle{\prod}_i A_i\overto{\al} +\textstyle{\prod}_i A_i\rtarr \lim^{1}A_i\rtarr 0,$$ +where $\al$ is the difference of the identity map and the map with coordinates $f_i$ and $\be$ +is the map whose projection to $A_i$ is the canonical map given by the definition of a limit. +\end{lem} + +That is, we may as well define $\lim^{1}A_i$ to be the displayed cokernel. We then have the +following result. + +\begin{thm}\index{colimit!cohomology of} +For each $q$, there is a natural short exact sequence +$$0 \rtarr {\lim}^{1}\,E^{q-1}(X_i)\rtarr E^q(X)\overto{\pi} \lim\,E^q(X_i) \rtarr 0,$$ +where $\pi$ is induced by the inclusions $X_i\rtarr X$. +\end{thm} +\begin{proof} +We use the notations and constructions in the proof that homology commutes with +colimits and consider the excisive triad $(\tel\,X_i;A,B)$ with $C=A\cap B$ constructed +there. By the additivity axiom, +$$E^*(A)=\textstyle{\prod}_i\, E^*(X_{2i}),\ \ E^*(B) +=\textstyle{\prod}_i\, E^*(X_{2i+1}),\ \tand\ E^*(C)=\textstyle{\prod}_i\, E^*(X_i).$$ +We construct the following commutative diagram, whose top row is the cohomology Mayer-Vietoris +sequence of the triad $(\tel\, X_i;A,B)$ and whose bottom row is an exact sequence +of the sort displayed in the previous lemma. +\begin{footnotesize} +$$\diagram +\cdots \rto & E^q(\tel X_i) \rto \dto_{\iso} & E^q(A)\oplus E^q(B) \rto \dto_{\iso} + & E^q(C) \rto \dto^{\iso} & E^{q+1}(\tel\,X_i) \dto^{\iso} \rto & \cdots \\ +\cdots \rto & E^q(X) \rto^{\be'} \dto_{\pi'} +& \prod E^q(X_i) \rto^{\al'} \dto_{\prod(-1)^{i}} + & \prod_i E^q(X_i) \dto^{\prod_i(-1)^{i}} \rto & E^{q+1}(X) \rto & \cdots \\ +0 \rto & \lim\,E^q(X_i) \rto^{\be} & \prod_i E^q(X_i) \rto^{\al} + & \prod_i E^q(X_i) \rto & \lim^1 E^q(X_i) \rto & 0. \\ +\enddiagram$$ +\end{footnotesize} +The commutativity of the bottom middle square is a comparison based on the sign used in +the Mayer-Vietoris sequence. Here the map $\pi'$ differs by alternating signs from the +canonical map $\pi$, but this does not affect the conclusion. A chase of the diagram +implies the result. +\end{proof} + +The $\lim^1$ ``error terms'' are a nuisance, and it is important to know when they vanish. +We say that an inverse sequence $f_i: A_{i+1}\rtarr A_i$ satisfies the Mittag-Leffler +condition\index{Mittag-Leffler condition} if, for each fixed $i$, there exists $j\geq i$ such +that, for every $k>j$, the +image of the composite $A_k\rtarr A_i$ is equal to the image of the composite $A_j\rtarr A_i$. +For example, this holds if all but finitely many of the $f_i$ are epimorphisms or if +the $A_i$ are all finite. As a matter of algebra, we have the following vanishing result. + +\begin{lem} +If the inverse sequence $f_i: A_{i+1}\rtarr A_i$ satisfies the Mittag-Leffler condition, +then $\lim^1\,A_i=0$. +\end{lem} + +For example, for $qn$, and $\tilde{H}_n(M;\pi)=0$ +if $M$ is connected and is not compact. +\end{thm} + +We can use this together with Mayer-Vietoris sequences to construct $R$-fun\-da\-men\-tal classes +at compact subspaces from $R$-orientations. To avoid trivialities, we tacitly assume that $n>0$. +(The trivial case $n=0$ forced the use of reduced homology in the statement; where arguments use +reduced homology below, it is only to ensure that what we write is correct in dimension zero.) + +\begin{thm} +Let $K$ be a compact subset of $M$. Then, for any coefficient group $\pi$, $H_i(M,M-K;\pi)=0$ +if $i>n$, and an $R$-orientation of $M$ determines an $R$-fundamental class of $M$ at $K$. +In particular, if $M$ is compact, then an $R$-orientation of $M$ determines an $R$-fundamental +class of $M$. +\end{thm} +\begin{proof} +First assume that $K$ is contained in a coordinate chart $U\iso \bR^n$. By excision and +exactness, we then have +$$H_i(M,M-K;\pi)\iso H_i(U,U-K;\pi)\iso \tilde{H}_{i-1}(U-K;\pi).$$ +Since $U-K$ is open in $U$, the vanishing theorem implies that $\tilde{H}_{i-1}(U-K;\pi)=0$ +for $i>n$. In fact, a lemma used in the proof of the vanishing theorem will prove this +directly. In this case, an $R$-fundamental class in $H_n(M,M-U)$ maps to an $R$-fundamental +class in $H_n(M,M-K)$. A general compact subset $K$ of $M$ can be written as the union of +finitely many compact subsets, each of which is contained in a coordinate chart. By induction, +it suffices to prove the result for $K\cup L$ under the assumption that it holds for $K$, $L$, +and $K\cap L$. With any coefficients, we have the Mayer-Vietoris sequence +\begin{multline*} +\cdots \rtarr H_{i+1}(M,M-K\cap L)\overto{\DE}H_i(M,M-K\cup L)\\ +\overto{\ps}H_i(M,M-K)\oplus H_i(M,M-L)\overto{\ph} H_i(M,M-K\cap L) \rtarr \cdots. +\end{multline*} +The vanishing of $H_i(M,M-K\cup L;\pi)$ for $i>n$ follows directly. Now take $i=n$ and +take coefficients in $R$. Then $\ps$ is a monomorphism. The $R$-fun\-da\-men\-tal classes +$z_K\in H_n(M,M-K)$ and $z_L\in H_n(M,M-L)$ determined by a given $R$-orientation both map +to the $R$-fundamental class $z_{K\cap L}\in H_n(M,M-K\cap L)$ determined by the given +$R$-orientation. Therefore +$$\ph(z_K,z_L) = z_{K\cap L}- z_{K\cap L} = 0$$ +and there exists a unique $z_{K\cup L}\in H_n(M,M-K\cup L)$ such that +$$ \ps(z_{K\cup L}) = (z_K,z_L).$$ +Clearly $z_{K\cup L}$ is an $R$-fundamental class of $M$ at $K\cup L$. +\end{proof} + +The vanishing theorem also implies the following dichotomy, which we have already noticed +in our examples of explicit calculations. + +\begin{cor} +Let $M$ be a connected compact $n$-manifold, $n>0$. Then either $M$ is not orientable and +$H_n(M;\bZ)=0$ or $M$ is orientable\index{orientable} and the map +$$H_n(M;\bZ) \rtarr H_n(M,M-x;\bZ)\iso \bZ$$ +is an isomorphism for every $x\in M$. +\end{cor} +\begin{proof} +Since $M-x$ is connected and not compact, $H_n(M-x;\pi)=0$ and thus +$$H_n(M;\pi) \rtarr H_n(M,M-x;\pi)\iso \pi$$ +is a monomorphism for all coefficient groups $\pi$. In particular, by the universal +coefficient theorem, +$$H_n(M;\bZ)\ten \bZ_q \rtarr H_n(M,M-x;\bZ)\ten \bZ_q\iso \bZ_q$$ +is a monomorphism for all positive integers $q$. If $H_n(M;\bZ)\neq 0$, then +$H_n(M;\bZ)\iso \bZ$ with generator mapped to some multiple of a generator of +$H_n(M,M-x;\bZ)$. By the mod $q$ monomorphism, the coefficient must be $\pm 1$. +\end{proof} + +As an aside, the corollary leads to a striking example of the failure of the naturality +of the splitting in the universal coefficient theorem. Consider a connected, compact, +non-orientable $n$-manifold $M$. Let $x\in M$ and write $M_x$ for the pair $(M,M-x)$. +Since $M$ is $\bZ_2$-orientable, the middle vertical arrow in the following diagram is +an isomorphism between copies of $\bZ_2$: +$$\diagram +0 \rto & H_n(M)\ten \bZ_2 \rto \dto_0 & H_n(M;\bZ_2) \rto \dto^{\iso} +& \Tor_1^{\bZ}(H_{n-1}(M),\bZ_2) \rto \dto^0 & 0 \\ +0 \rto & H_n(M_x)\ten \bZ_2 \rto & H_n(M_x;\bZ_2) \rto +& \Tor_1^{\bZ}(H_{n-1}(M_x),\bZ_2) \rto & 0. \\ +\enddiagram$$ +Clearly $H_{n-1}(M,M-x)=0$, and the corollary gives that $H_n(M)=0$. Thus the left and +right vertical arrows are zero. If the splittings of the rows were natural, this would +imply that the middle vertical arrow is also zero. + +\section{The proof of the vanishing theorem} + +Let $M$ be an $n$-manifold, $n>0$. Take all homology groups with coefficients in a given +Abelian group $\pi$ in this section. We must prove the intuitively obvious statement that +$H_i(M)=0$ for $i>n$ and the much more subtle statement that $H_n(M)=0$ if $M$ is +connected and is not compact. The last statement is perhaps the technical heart of our +proof of the Poincar\'e duality theorem. + +We begin with the general observation that homology is ``compactly +supported''\index{compactly supported homology} in the +sense of the following result. + +\begin{lem} For any space $X$ and element $x\in H_q(X)$, there is a compact subspace +$K$ of $X$ and an element $k\in H_q(K)$ that maps to $x$. +\end{lem} +\begin{proof} +Let $\ga: Y\rtarr X$ be a CW approximation of $X$ and let $x=\ga_*(y)$. If $y$ is represented +by a cycle $z\in C_q(Y)$, then $z$, as a finite linear combination of $q$-cells, is an +element of $C_q(L)$ for some finite subcomplex $L$ of $Y$. Let $K=\ga(L)$ and let $k$ be +the image of the homology class represented by $z$. Then $K$ is compact and $k$ maps to $x$. +\end{proof} + +We need two lemmas about open subsets of $\bR^n$ to prove the vanishing theorem, the first +of which is just a special case. + +\begin{lem} If $U$ is open in $\bR^n$, then $H_i(U)=0$ for $i\geq n$. +\end{lem} +\begin{proof} +Let $s\in H_i(U)$, $i\geq n$. There is a compact subspace $K$ of $U$ and an element +$k\in H_i(K)$ that maps to $s$. We may decompose $\bR^n$ as a CW complex whose $n$-cells +are small $n$-cubes in such a way that there is a finite subcomplex $L$ of $\bR^n$ with +$K\subset L\subset U$. (To be precise, use a cubical grid with small enough mesh.) For $i>0$, +the connecting homomorphisms $\pa$ are isomorphisms in the commutative diagram +$$\diagram +H_{i+1}(\bR^n,L) \rto \dto_{\pa} & H_{i+1}(\bR^n,U) \dto^{\pa} \\ +H_i(L) \rto & H_i(U).\\ +\enddiagram$$ +Since $(\bR^n,L)$ has no relative $q$-cells for $q > n$, the groups on the left are zero for +$i\geq n$. Since $s$ is in the image of $H_i(L)$, $s=0$. +\end{proof} +\begin{lem} +Let $U$ be open in $\bR^n$. Suppose that $t\in H_n(\bR^n,U)$ maps to zero in $H_n(\bR^n,\bR^n-x)$ +for all $x\in \bR^n-U$. Then $t=0$. +\end{lem} +\begin{proof} +We prove the equivalent statement that if $s\in \tilde{H}_{n-1}(U)$ maps to zero in +$\tilde{H}_{n-1}(\bR^n-x)$ for all $x\in \bR^n-U$, then $s=0$. Choose a compact subspace +$K$ of $U$ such that $s$ is in the image of $\tilde{H}_{n-1}(K)$. Then $K$ is contained +in an open subset $V$ whose closure $\bar{V}$ is compact and contained in $U$, hence $s$ +is the image of an element $r\in\tilde{H}_{n-1}(V)$. We claim that $r$ maps to zero in +$\tilde{H}_{n-1}(U)$, so that $s=0$. Of course, $r$ maps to zero in +$\tilde{H}_{n-1}(\bR^n-x)$ if $x\not\!\!{\in}\,U$. Let $T$ be an open contractible subset of $\bR^n$ +such that $\bar{V}\subset T$ and $\bar{T}$ is compact. For example, $T$ could be a large +enough open cube. Let $L=T-(T\cap U)$. For each $x\in \bar{L}$, choose a closed cube $D$ that +contains $x$ and is disjoint from $V$. A finite set $\sset{D_1,\ldots\!,D_q}$ of these +cubes covers $\bar{L}$. Let $C_i=D_i\cap T$ and observe that $(\bR^n-D_i)\cap T = T-C_i$. +We see by induction on $p$ that $r$ maps to zero in $\tilde{H}_{n-1}(T-(C_1\cup\cdots\cup C_p))$ +for $0\leq p\leq q$. This is clear if $p=0$. For the inductive step, observe that +$$T-(C_1\cup\cdots\cup C_p) = (T-(C_1\cup\cdots\cup C_{p-1}))\cap (\bR^n-D_p)$$ +and that $H_n((T-(C_1\cup\cdots\cup C_{p-1}))\cup (\bR^n-D_p)) = 0$ by the previous lemma. +Therefore the map +$$\tilde{H}_{n-1}(T-(C_1\cup\cdots\cup C_p))\rtarr +\tilde{H}_{n-1}(T-(C_1\cup\cdots\cup C_{p-1}))\oplus \tilde{H}_{n-1}(\bR^n-D_p)$$ +in the Mayer-Vietoris sequence is a monomorphism. Since $r\in\tilde{H}_{n-1}(V)$ maps to +zero in the two right-hand terms, by the induction hypothesis and the contractibility of +$D_p$ to a point $x\not\!\!{\in}\,U$, it maps to zero in the left-hand term. Since +$$V\subset T-(C_1\cup\cdots\cup C_q)\subset T\cap U\subset U,$$ +this implies our claim that $r$ maps to zero in $\tilde{H}_{n-1}(U)$. +\end{proof} + +\begin{proof}[Proof of the vanishing theorem] +Let $s\in H_i(M)$. We must prove that $s=0$ if $i>n$ and if $i=n$ when $M$ is connected +and not compact. Choose a compact subspace $K$ of $M$ such that $s$ is in the image of +$H_i(K)$. Then $K$ is contained in some finite union $U_1\cup\cdots\cup U_q$ of +coordinate charts, and it suffices to prove that $H_i(U_1\cup\cdots\cup U_q)=0$ for the +specified values of $i$. Inductively, using that $H_i(U)=0$ for $i\geq n$ when $U$ is +an open subset of a coordinate chart, it suffices to prove that $H_i(U\cup V)=0$ for +the specified values of $i$ when $U$ is a coordinate chart and $V$ is an open subspace +of $M$ such that $H_i(V)=0$ for the specified values of $i$. We have the Mayer-Vietoris +sequence +$$H_i(U)\oplus H_i(V) \rtarr H_i(U\cup V) \rtarr \tilde{H}_{i-1}(U\cap V) \rtarr +\tilde{H}_{i-1}(U)\oplus \tilde{H}_{i-1}(V).$$ +If $i>n$, the vanishing of $H_i(U\cup V)$ follows immediately. Thus assume that $M$ is +connected and not compact and consider the case $i=n$. We have $H_n(U)=0$, $H_n(V)=0$, +and $\tilde{H}_{n-1}(U)=0$. It follows that $H_n(U\cup V)=0$ if and only if +$i_*: \tilde{H}_{n-1}(U\cap V)\rtarr \tilde{H}_{n-1}(V)$ is a monomorphism, where +$i: U\cap V\rtarr V$ is the inclusion. + +We claim first that $H_n(M)\rtarr H_n(M,M-y)$ is the zero homomorphism for any $y\in M$. +If $x\in M$ and $L$ is a path in $M$ connecting $x$ to $y$, then the diagram +$$\diagram +& & H_n(M,M-x) \\ +H_n(M) \rto & H_n(M,M-L) \urto^{\iso} \drto_{\iso} & \\ +& & H_n(M,M-y) \\ +\enddiagram$$ +shows that if $s\in H_n(M)$ maps to zero in $H_n(M,M-x)$, then it maps to zero in $H_n(M,M-y)$. +If $s$ is in the image of $H_n(K)$ where $K$ is compact, we may choose a point $x\in M-K$. +Then the map $K\rtarr M\rtarr (M,M-x)$ factors through $(M-x,M-x)$ and therefore $s$ maps to +zero in $H_n(M,M-x)$. This proves our claim. + +Now consider the following diagram, where $y\in U- U\cap V$: +$$\diagram +& & H_n(U\cup V) \rto \dlto & H_n(M) \dto^{0}\\ +H_n(V,U\cap V)\dto_{\pa} \rto & H_n(U\cup V, U\cap V) \dlto^{\pa} \rrto & & H_n(M,M-y) \\ +\tilde{H}_{n-1}(U\cap V) \dto_{i_*} & H_n(U,U\cap V) \lto^{\pa} \rrto \uto +& & H_n(U,U-y) \uto_{\iso}\\ +\tilde{H}_{n-1}(V). & & & \\ +\enddiagram$$ +Let $r\in \ker\,i_*$. Since $\tilde{H}_{n-1}(U)=0$, the bottom map $\pa$ is an epimorphism +and there exists $s\in H_n(U,U\cap V)$ such that $\pa(s)=r$. We claim that $s$ maps to zero +in $H_n(U,U-y)$ for every $y\in U-(U\cap V)$. By the previous lemma, this will imply that +$s=0$ and thus $r=0$, so that $i_*$ is indeed a monomorphism. Since $i_*(r)=0$, there exists +$t\in H_n(V,U\cap V)$ such that $\pa(t)=r$. Let $s'$ and $t'$ be the images of $s$ +and $t$ in $H_n(U\cup V,U\cap V)$. Then $\pa(s'-t')=0$, hence there exists $w\in H_n(U\cup V)$ +that maps to $s'-t'$. Since $w$ maps to zero in $H_n(M,M-y)$, so does $s'-t'$. Since the map +$(V,U\cap V)\rtarr (M,M-y)$ factors through $(M-y,M-y)$, $t$ and thus also $t'$ maps to zero +in $H_n(M,M-y)$. Therefore $s'$ maps to zero in $H_n(M,M-y)$ and thus $s$ maps to zero in +$H_n(U,U-y)$, as claimed. +\end{proof} + +\section{The proof of the Poincar\'e duality theorem} + +Let $M$ be an $R$-oriented $n$-manifold, not necessarily compact. Unless otherwise specified, +we take homology and cohomology with coefficients in a given $R$-module $\pi$ in this section. +Remember that homology +is a covariant functor with compact supports. Cohomology is a contravariant functor, and +it does not have compact supports. We would like to prove the Poincar\'e duality theorem +by inductive comparisons of Mayer-Vietoris sequences, and the opposite variance of +homology and cohomology makes it unclear how to proceed. To get around this, we introduce +a variant of cohomology that does have compact supports and has enough covariant functoriality +to allow us to proceed by comparisons of Mayer-Vietoris sequences. + +Consider the set $\sK$ of compact subspaces $K$ of $M$. This set is directed under inclusion; to +conform with our earlier discussion of colimits, we may view $\sK$ as a category whose objects +are the compact subspaces $K$ and whose maps are the inclusions between them. We define +$$H^q_c(M) = \colim H^q(M,M-K),$$ +where the colimit is taken with respect to the homomorphisms +$$H^q(M,M-K) \rtarr H^q(M,M-L)$$ +induced by the inclusions $(M,M-L)\subset (M,M-K)$ for $K\subset L$. This is the cohomology of +$M$ with compact supports.\index{cohomology with compact +supports}\index{compactly supported cohomology} Intuitively, thinking in +terms of singular cohomology, its elements +are represented by cocycles that vanish off some compact subspace. + +A map $f:M\rtarr N$ is said to be proper if $f^{-1}(L)$ is compact in $M$ when $L$ is compact +in $N$. This holds, for example, if $f$ is the inclusion of a closed subspace. For such $f$, +we obtain an induced homomorphism $f^*: H^*_c(N)\rtarr H^*_c(M)$ in an evident way. However, +we shall make no use of this contravariant functoriality. + +What we shall use is a kind of covariant functoriality that will allow us to compare long +exact sequences in homology and cohomology. Explicitly, for an open subspace $U$ of $M$, we +obtain a homomorphism $H^q_c(U)\rtarr H^q_c(M)$ by passage to colimits from the excision +isomorphisms +$$ H^q(U,U-K) \rtarr H^q(M,M-K)$$ +for compact subspaces $K$ of $U$. + +For each compact subspace $K$ of $M$, the $R$-orientation of $M$ determines a fundamental +class $z_K\in H_n(M,M-K;R)$. Taking the relative cap product with $z_K$, we obtain a duality +homomorphism +$$D_K: H^p(M,M-K) \rtarr H_{n-p}(M).$$ +If $K\subset L$, the following diagram commutes: +$$\diagram +H^p(M,M-K) \rrto \drto_{D_K} & & H^p(M,M-L) \dlto^{D_L}\\ +& H_{n-p}(M). & \\ +\enddiagram$$ +We may therefore pass to colimits to obtain a duality homomorphism +$$D: H^p_c(M) \rtarr H_{n-p}(M).$$ +If $U$ is open in $M$ and is given the induced $R$-orientation, then the following naturality +diagram commutes: +$$\diagram + H^p_c(U) \dto \rto^(0.43){D} & H_{n-p}(U) \dto \\ + H^p_c(M) \rto_(0.4){D} & H_{n-p}(M).\\ +\enddiagram$$ +If $M$ itself is compact, then $M$ is cofinal among the compact subspaces of $M$. Therefore +$H^p_c(M) = H^p(M)$, and the present duality map $D$ coincides with that of the Poincar\'e +duality theorem as originally stated. We shall prove a generalization to not necessarily +compact manifolds. + +\begin{thm}[Poincar\'e duality]\index{Poincare duality theorem@Poincar\'e duality theorem} +Let $M$ be an $R$-oriented $n$-manifold. Then \linebreak +$D: H^p_c(M)\rtarr H_{n-p}(M)$ is an isomorphism. +\end{thm} +\begin{proof} +We shall prove that $D: H^p_c(U)\rtarr H_{n-p}(U)$ is an isomorphism for every open +subspace $U$ of $M$. The proof proceeds in five steps. +\begin{proof}[Step 1] {\em The result holds for any coordinate chart $U$.}\\ +We may take $U=M=\bR^n$. The compact cubes $K$ are cofinal among the compact subspaces of $\bR^n$. +For such $K$ and for $x\in K$, +$$H^p(\bR^n,\bR^n-K)\iso H^p(\bR^n,\bR^n-x)\iso \tilde{H}^{p-1}(S^{n-1})\iso \tilde{H}^p(S^n).$$ +The maps of the colimit system defining $H^p_c(\bR^n)$ are clearly isomorphisms. By the definition +of the cap product, we see that $D: H^n(\bR^n,\bR^n-x)\rtarr H_0(\bR^n)$ is an isomorphism. +Therefore $D_K$ is an isomorphism for every compact cube $K$ and so +$D: H^n_c(\bR^n)\rtarr H_0(\bR^n)$ is an isomorphism. +\end{proof} +\begin{proof}[Step 2] {\em If the result holds for open subspaces $U$ and $V$ and their +intersection, then it holds for their union.}\\ +Let $W=U\cap V$ and $Z=U\cup V$. The compact subspaces of $Z$ that are unions of a compact +subspace $K$ of $U$ and a compact subspace $L$ of $V$ are cofinal among all of the compact +subspaces of $Z$. For such $K$ and $L$, we have the following commutative diagram with +exact rows. We let $J=K\cap L$ and $N=K\cup L$, and we write $U_K = (U,U-K)$, and so on, +to abbreviate notation. +\begin{small} +$$\diagram +\rto & H^p(Z_J) \rto \dto_{\iso}& H^p(Z_K)\oplus H^p(Z_L) \rto \dto^{\iso} +& H^p(Z_N) \rto \ddouble & H^{p+1}(Z_J) \rto \dto^{\iso} & \\ +\rto & H^p(W_J) \rto \dto_D & H^p(U_K)\oplus H^p(V_L) \rto \dto^{D\oplus D} +& H^p(Z_N) \rto \dto^D & H^{p+1}(W_J) \rto \dto^D & \\ +\rto & H_{n-p}(W) \rto & H_{n-p}(U)\oplus H_{n-p}(V) \rto & H_{n-p}(Z) \rto & H_{n-p-1}(W)\rto &\\ +\enddiagram$$ +\end{small} +The top row is the relative Mayer-Vietoris sequence of the triad $(Z;Z-K,Z-L)$. +The middle row results from the top row by excision isomorphisms. The bottom row is the +absolute Mayer-Vietoris sequence of the triad $(Z;U,V)$. The left two squares commute by +naturality. The right square commutes by a diagram chase from the definition of the +cap product. The entire diagram is natural with respect to pairs $(K,L)$. We obtain a +commutative diagram with exact rows on passage to colimits, and the conclusion follows +by the five lemma. +\end{proof} +\begin{proof}[Step 3] {\em If the result holds for each $U_i$ in a totally ordered set of +open subspaces $\sset{U_i}$, then it holds for the union $U$ of the $U_i$.}\\ +Any compact subspace $K$ of $U$ is contained in a finite union of the $U_i$ and therefore +in one of the $U_i$. Since homology is compactly supported, it follows that +$\colim H_{n-p}(U_i)\iso H_{n-p}(U)$. On the cohomology side, we have +\begin{eqnarray*} +\colim_i\,H^p_c(U_i) & = & \colim_i\colim_{\sset{K| K\subset U_i}} H^p(U_i,U_i-K) \\ +& \iso & \colim_{\sset{K\subset U}}\colim_{\sset{i|K\subset U_i}} H^p(U_i,U_i-K) \\ +& \iso & \colim_{\sset{K\subset U}} H^p(U,U-K) = H^p_c(U). +\end{eqnarray*} +Here the first isomorphism is an (algebraic) interchange of colimits isomorphism: both +composite colimits are isomorphic to $\colim H^p_c(U_i,U_i-K)$, where the colimit +runs over the pairs $(K,i)$ such that $K\subset U_i$. The second isomorphism holds +since $\colim_{\sset{i|K\subset U_i}} H^p(U_i,U_i-K)\iso H^p(U,U-K)$ because the +colimit is taken over a system of inverses of excision isomorphisms. The conclusion +follows since a colimit of isomorphisms is an isomorphism. +\end{proof} +\begin{proof}[Step 4] {\em The result holds if $U$ is an open subset of a coordinate +neighborhood.}\\ +We may take $M=\bR^n$. If $U$ is a convex subset of $\bR^n$, then $U$ is homeomorphic +to $\bR^n$ and Step 1 applies. Since the intersection of two convex sets is convex, +it follows by induction from Step 2 that the conclusion holds for any finite union of +convex open subsets of $\bR^n$. Any open subset $U$ of $\bR^n$ is the union of countably +many convex open subsets. By ordering them and letting $U_i$ be the union of the first $i$, +we see that the conclusion for $U$ follows from Step 3. +\end{proof} +\begin{proof}[Step 5] {\em The result holds for any open subset $U$ of $M$}.\\ +We may as well take $M=U$. By Step 3, we may apply Zorn's lemma to conclude that there is +a maximal open subset $V$ of $M$ for which the conclusion holds. If $V$ is not all of $M$, +say $x\not\in V$, we may choose a coordinate chart $U$ such that $x\in U$. +By Steps 2 and 4, the result holds for $U\cup V$, contradicting the maximality of $V$. +\end{proof} +This completes the proof of the Poincar\'e duality theorem. \end{proof} + +\section{The orientation cover} + +There is an orientation cover\index{orientation cover} of a manifold that helps illuminate the +notion of orientability. For the moment, we relax the requirement that the total +space of a cover be connected. Here we take homology with integer coefficients. + +\begin{prop} +Let $M$ be a connected $n$-manifold. Then there is a $2$-fold cover $p:\tilde{M}\rtarr M$ +such that $\tilde{M}$ is connected if and only if $M$ is not orientable.\index{orientable} +\end{prop} +\begin{proof} +Define $\tilde{M}$ to be the set of pairs $(x,\al)$, where $x\in M$ and where +$\al\in H_n(M,M-x)\iso \bZ$ is a generator. Define $p(x,\al)=x$. If $U\subset M$ is +open and $\be\in H_n(M,M-U)$ is a fundamental class of $M$ at $U$, define +$$\langle U,\be\rangle = \sset{(x,\al)|x\in U \tand \be \ \text{maps to}\ \al}.$$ +The sets $\langle U,\be\rangle$ form a base for a topology on $\tilde{M}$. In fact, if +$(x,\al)\in \langle U,\be\rangle \cap \langle V,\ga\rangle$, we can choose a coordinate +neighborhood $W\subset U\cap V$ such that $x\in W$. There is a unique class $\al'\in H_n(M,M-W)$ +that maps to $\al$, and both $\be$ and $\ga$ map to $\al'$. Therefore +$$\langle W,\al'\rangle \subset \langle U,\be\rangle \cap \langle V,\ga\rangle.$$ +Clearly $p$ maps $\langle U,\be\rangle$ homeomorphically onto $U$ and +$$p^{-1}(U) = \langle U,\be\rangle \cup \langle U,-\be\rangle.$$ +Therefore $\tilde{M}$ is an $n$-manifold and $p$ is a $2$-fold cover. Moreover, $\tilde{M}$ +is oriented. Indeed, if $U$ is a coordinate chart and $(x,\al)\in \langle U,\be\rangle$, +then the following maps all induce isomorphisms on passage to homology: +$$\diagram +(\tilde{M},\tilde{M}-\langle U,\be\rangle) \dto & (M,M-U) \dto \\ +(\tilde{M},\tilde{M}-(x,\al)) & (M,M-x) \\ +(\langle U,\be\rangle, \langle U,\be\rangle -(x,\al)) \uto \rto^(0.6)p_(0.6){\iso} & (U,U-x). \uto \\ +\enddiagram$$ +Via the diagram, $\be\in H_n(M,M-U)$ specifies an element +$\tilde{\be}\in H_n(\tilde{M},\tilde{M}-\langle U,\be\rangle)$, and $\tilde{\be}$ is +independent of the choice of $(x,\al)$. These classes are easily seen to specify an +orientation of $\tilde{M}$. Essentially by definition, an orientation of $M$ is a +cross section $s: M \rtarr \tilde{M}$: if $s(U) = \langle U,\be\rangle$, then these +$\be$ specify an orientation. Given one section $s$, changing the signs of the $\be$ +gives a second section $-s$ such that $\tilde{M}= \im(s)\amalg \im(-s)$, showing that +$\tilde{M}$ is not connected if $M$ is oriented. +\end{proof} + +The theory of covering spaces gives the following consequence. + +\begin{cor} If $M$ is simply connected, or if $\pi_1(M)$ contains no subgroup of +index $2$, then $M$ is orientable. If $M$ is orientable, then $M$ admits exactly +two orientations. +\end{cor} +\begin{proof} +If $M$ is not orientable, then $p_*(\pi_1(\tilde{M}))$ is a subgroup of $\pi_1(M)$ +of index $2$. This implies the first statement, and the second statement is clear. +\end{proof} + +We can use homology with coefficients in a commutative ring $R$ to construct an +analogous $R$-orientation cover.\index{Rorientation cover@$R$-orientation cover} It +depends on the units of $R$. For +example, if $R=\bZ_2$, then the $R$-orientation cover is the identity map of $M$ +since there is a unique unit in $R$. This reproves the obvious fact that any +manifold is $\bZ_2$-oriented. The evident ring homomorphism $\bZ\rtarr R$ induces +a natural homomorphism $H_*(X;\bZ)\rtarr H_*(X;R)$, and we see immediately that +an orientation of $M$ induces an $R$-orientation of $M$ for any $R$. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Prove: there is no homotopy equivalence +$f: \bC P^{2n}\rtarr \bC P^{2n}$ that reverses orientation +(induces multiplication by $-1$ on $H_{4n}(\bC P^{2n})$). +\end{enumerate} + +In the problems below, $M$ is assumed to be a compact connected +$n$-manifold (without boundary), where $n\geq 2$. +\begin{enumerate} +\item[2.] Prove that if $M$ is a Lie group, then $M$ is orientable. +\item[3.] Prove that if $M$ is orientable, then $H_{n-1}(M; \bZ)$ is a free Abelian group. +\item[4.] Prove that if $M$ is not orientable, then the torsion subgroup of $H_{n-1}(M; \bZ)$ is +cyclic of order $2$ and $H_n(M; \bZ_q)$ is zero if $q$ is odd and is cyclic +of order $2$ if $q$ is even. (Hint: use universal coefficients and the transfer +homomorphism of the orientation cover.) +\item[5.] Let $M$ be oriented with fundamental class $z$. Let $f: S^n\rtarr M$ be a +map such that $f_*(i_n) = qz$, where $i_n \in H_n(S^n; \bZ)$ is the fundamental +class and $q \neq 0$. +\begin{enumerate} +\item[(a)] Show that $f_*: H_*(S^n; \bZ_p) \rtarr H_*(M; \bZ_p)$ is an isomorphism +if $p$ is a prime that does not divide $q$. +\item[(b)] Show that multiplication by $q$ annihilates $H_i(M; \bZ)$ if +$1 \leq i \leq n-1$. +\end{enumerate} +\item[6.] +\begin{enumerate} +\item[(a)] Let $M$ be a compact $n$-manifold. Suppose that $M$ is +homotopy equivalent to $\SI Y$ for some connected based space $Y$. Deduce that $M$ +has the same integral homology groups as $S^n$. (Hint: use the vanishing of cup products +on $\tilde H^*(\SI Y)$ and Poincar\'e duality, treating the cases $M$ orientable +and $M$ non-orientable separately.) +\item[(b)] Deduce that $M$ is homotopy equivalent to $S^n$. Does it follow that $Y$ is homotopy +equivalent to $S^{n-1}$? +\end{enumerate} +\item[7.]* Essay: The singular cohomology $H^*(M;\bR)$ is isomorphic to the de Rham +cohomology of $M$. Why is this plausible? Sketch proof? +\end{enumerate} + +\clearpage + +\thispagestyle{empty} + +\chapter{The index of manifolds; manifolds with boundary} + +The Poincar\'e duality theorem imposes strong constraints on the Euler +characteristic of a manifold. It also leads to new invariants, most +notably the index. Moreover, there is a relative version of Poincar\'e +duality in the context of manifolds with boundary, and this leads to +necessary algebraic conditions on the cohomology of a manifold that must be +satisfied if it is to be a boundary. In particular, the index of a compact +oriented $4n$-manifold $M$ is zero if $M$ is a boundary. We shall later +outline the theory of cobordism, which leads to necessary {\em and sufficient} +algebraic conditions for a manifold to be a boundary. + +\section{The Euler characteristic of compact manifolds} + +The Euler characteristic\index{Euler characteristic!of a space} $\ch (X)$ of a space with +finitely generated homology is defined by +$$\ch (X) = \textstyle{\sum}_i (-1)^i \ \text{rank}\ H_i(X;\bZ).$$ +The universal coefficient theorem implies that +$$\ch (X) = \textstyle{\sum}_i (-1)^i \dim H_i(X;F)$$ +for {\em any} field of coefficients $F$. Examination of the relevant short +exact sequences shows that +$$\ch (X) = \textstyle{\sum}_i (-1)^i \ \text{rank}\ C_i(X;\bZ)$$ +for {\em any} decomposition of $X$ as a finite CW complex. The verifications +of these statements are immediate from earlier exercises. + +Now consider a compact oriented $n$-manifold. Recall that we take it for granted +that $M$ can be decomposed as a finite CW complex, so that each $H_i(M;\bZ)$ is +finitely generated. By the universal coefficient theorem and Poincar\'e duality, +we have +$$H_i(M;F)\iso H^i(M;F)\iso H_{n-i}(M;F)$$ +for any field $F$. We may take $F=\bZ_2$, and so dispense with the requirement +that $M$ be oriented. If $n$ is odd, the summands of $\ch(M)$ cancel in pairs, +and we obtain the following conclusion. + +\begin{prop} If $M$ is a compact manifold of odd dimension, then $\ch(M)=0$. +\end{prop} + +If $n=2m$ and $M$ is oriented, then +$$\ch(M) = \textstyle{\sum}_{i=0}^{m-1} (-1)^i 2 \dim H_i(M) + (-1)^m \dim H_m(M)$$ +for any field $F$ of coefficients. Let us take $F=\bQ$. Of course, we can replace +homology by cohomology in the definition and formulas for $\ch(M)$. The middle +dimensional cohomology group $H^m(M)$ plays a particularly important role. Recall +that we have the cup product pairing\index{cup product pairing} +$$\ph: H^m(M)\ten H^m(M) \rtarr \bQ$$ +specified by $\ph(\al,\be) = \langle\al\cup\be,z\rangle$. This pairing is nonsingular. +Since $\al\cup \be =(-1)^m\be\cup\al$, it is skew symmetric if $m$ is odd and is +symmetric if $m$ is even. When $m$ is odd, we obtain the following conclusion. + +\begin{prop} +If $M$ is a compact oriented $n$-manifold, where $n\equiv 2\ \text{mod}\ 4$, then +$\ch(M)$ is even. +\end{prop} +\begin{proof} It suffices to prove that $\dim H^{m}(M)$ is even, where $n=2m$, and this is +immediate from the following algebraic observation. +\end{proof} + +\begin{lem} +Let $F$ be a field of characteristic $\neq 2$, $V$ be a finite dimensional vector +space over $F$, and $\ph: V\times V \rtarr F$ be a nonsingular skew symmetric bilinear form. +Then $V$ has a basis $\sset{x_1,\ldots\!,x_r, y_1,\ldots\!,y_r}$ such that $\ph(x_i,y_i)=1$ for +$1\leq i\leq r$ and $\ph(z,w)=0$ for all other pairs of basis elements $(z,w)$. Therefore +the dimension of $V$ +is even. +\end{lem} +\begin{proof} +We proceed by induction on $\dim V$, and we may assume that $V\neq 0$. Since +$\ph(x,y)=-\ph(y,x)$, $\ph(x,x)=0$ for all +$x\in V$. Choose $x_1\neq 0$. Certainly there exists $y_1$ such that $\ph(x_1,y_1)=1$, +and $x_1$ and $y_1$ are then linearly independent. Define +$$W=\sset{x|\ph(x,x_1) = 0 \tand \ph(x,y_1)=0}\subset V.$$ +That is, $W$ is the kernel of the homomorphism $\ps: V\rtarr F\times F$ specified +by $\ps(x)= (\ph(x,x_1),\ph(x,y_1))$. Since +$\ps(x_1)=(0,1)$ and $\ps(y_1)=(-1,0)$, $\ps$ is an epimorphism. Thus $\dim W = \dim V -2$. +Since $\ph$ restricts to a nonsingular skew symmetric bilinear form on $W$, +the conclusion follows from the induction hypothesis. +\end{proof} + +\section{The index of compact oriented manifolds} + +To study manifolds of dimension $4k$, we consider an analogue for symmetric bilinear +forms of the previous algebraic lemma. Since we will need to take square roots, we +will work over $\bR$. + +\begin{lem} +Let $V$ be a finite dimensional real vector space and $\ph: V\times V \rtarr \bR$ be a +nonsingular symmetric bilinear form. Define $q(x)=\ph(x,x)$. Then $V$ has a basis +$\sset{x_1,\ldots\!,x_r, y_1,\ldots\!,y_s}$ such that $\ph(z,w)=0$ for all +pairs $(z,w)$ of distinct basis elements, $q(x_i)=1$ for $1\leq i\leq r$ +and $q(y_j)=-1$ for $1\leq j\leq s$. The number $r-s$ is an invariant of $\ph$, called the +signature\index{signature} of $\ph$. +\end{lem} +\begin{proof} +We proceed by induction on $\dim V$, and we may assume that $V\neq 0$. Clearly $q(rx)=r^2q(x)$. +Since we can take square roots in $\bR$, we can choose $x_1\in V$ such that $q(x_1)=\pm 1$. Define +$\ps: V\rtarr \bR$ by $\ps(x)=\ph(x,x_1)$ and let $W=\ker \ps$. Since $\ps(x_1)=\pm 1$, $\ps$ +is an epimorphism and $\dim W=\dim V-1$. Since $\ph$ restricts to a nonsingular symmetric bilinear +form on $W$, the existence of a basis as specified follows directly from the induction hypothesis. +Invariance means that the integer $r-s$ is independent of the choice of basis on which +$q$ takes values $\pm 1$, and we leave the verification to the reader. +\end{proof} + +\begin{defn} Let $M$ be a compact oriented $n$-manifold. If $n=4k$, define the index\index{index} +of $M$, denoted $I(M)$, to be the signature of the cup product form +$H^{2k}(M;\bR)\ten H^{2k}(M;\bR)\rtarr \bR$. If $n\,\not\!\equiv\,0 \ \text{mod}\ 4$, define +$I(M)=0$. +\end{defn} + +The Euler characteristic and index are related by the following congruence. + +\begin{prop} For any compact oriented $n$-manifold, $\ch(M)\equiv I(M)\ \text{mod}\ 2$. +\end{prop} +\begin{proof} If $n$ is odd, then $\ch(M)=0$ and $I(M)=0$. If $n\equiv 2\ \text{mod}\ 4$, +then $\ch(M)$ is even and $I(M)=0$. If $n=4k$, then $I(M) = r-s$, +where $r+s = \dim H^{2k}(M;\bR) \equiv \ch(M)\ \text{mod}\ 2$. +\end{proof} + +Observe that the index of $M$ changes sign if the orientation of $M$ is reversed. We +write $-M$ for $M$ with the reversed orientation, and then $I(-M)=-I(M)$. +We also have the following algebraic identities. Write $H^*(M)=H^*(M;\bR)$. + +\begin{lem} If $M$ and $M'$ are compact oriented $n$-manifolds, then +$$I(M\amalg M')=I(M)+I(M'),$$ +where $M\amalg M'$ is given the evident orientation induced from those of $M$ and $M'$. +\end{lem} +\begin{proof} +There is nothing to prove unless $n=4k$, in which case +$$H^{2k}(M\amalg M')=H^{2k}(M)\times H^{2k}(M').$$ +Clearly the cup product of an element of $H^*(M)$ with an element of $H^*(M')$ is zero, and +the cup product form on $H^{2k}(M\amalg M')$ is given by +$$\ph((x,x'),(y,y')) = \ph(x,y)+\ph(x',y')$$ +for $x,y\in H^{2k}(M)$ and $x',y'\in H^{2k}(M')$. The conclusion follows since the signature of +a sum of forms is the sum of the signatures. +\end{proof} + +\begin{lem} Let $M$ be a compact oriented $m$-manifold and $N$ be a compact oriented $n$-manifold. +Then +$$I(M\times N)=I(M)\cdot I(N),$$ +where $M\times N$ is given the orientation induced from those of $M$ and $N$. +\end{lem} +\begin{proof} +We must first make sense of the induced orientation on $M\times N$. For CW pairs $(X,A)$ and $(Y,B)$, +we have an identification of CW complexes +$$ (X\times Y)/(X\times B\cup A\times Y)\iso (X/A)\sma (Y/B)$$ +and therefore an isomorphism +$$ C_*(X\times Y,\, X\times B\cup A\times Y)\iso C_*(X,A)\ten C_*(Y,B).$$ +This implies a relative K\"{u}nneth theorem\index{Kunneth +theorem@K\"unneth theorem!relative} for arbitrary pairs $(X,A)$ and $(Y,B)$. For +subspaces $K\subset M$ and $L\subset N$, +$$(M\times N, M\times N-K\times L) = (M\times N, M\times (N-L) \cup (M-K)\times N).$$ +In particular, for points $x\in M$ and $y\in Y$, +$$(M\times N, M\times N-(x,y)) = (M\times N, M\times (N-y) \cup (M-x)\times N).$$ +Therefore fundamental classes $z_K$ of $M$ at $K$ and $z_L$ of $N$ at $L$ determine a +fundamental class $z_{K\times L}$ of $M\times N$ at $K\times L$. In particular, the image +under $H_m(M)\ten H_n(N)\rtarr H_{m+n}(M\times N)$ of the tensor product of fundamental +classes of $M$ and $N$ is a fundamental class of $M\times N$. + +Turning to the claimed product formula, we see that there is nothing to prove +unless $m+n=4k$, in which case +$$H^{2k}(M\times N)=\sum_{i+j=2k} H^i(M)\ten H^j(N).$$ +The cup product form is given by +$$\ph(x\ten y, x'\ten y') += (-1)^{(\deg y)(\deg x')+ mn}\langle x\cup x',z_M\rangle \langle y\cup y',z_N\rangle$$ +for $x, x'\in H^*(M)$ and $y,y'\in H^*(N)$. If $m$ and $n$ are odd, then the signature +of this form is zero. If $m$ and $n$ are even, then this form is the sum of the tensor +product of the cup product forms on the middle dimensional cohomology groups of $M$ and $N$ +and a form +whose signature is zero. Here, if $m$ and $n$ are congruent to 2 mod 4, the signature +is zero since the lemma of the previous section implies that the signature of the tensor +product of two skew symmetric forms is zero. When $m$ and $n$ are congruent to 0 mod +4, the conclusion holds since the signature of the tensor product of two symmetric forms +is the product of their signatures. We leave the detailed verifications of these algebraic +statements as exercises for the reader. +\end{proof} + +\section{Manifolds with boundary} + +Let $\bH^n=\sset{(x_1,\ldots\!,x_n)|x_n\geq 0}$ be the upper half-plane in $\bR^n$. Recall that an +$n$-manifold with boundary\index{manifold with boundary} is a Hausdorff space $M$ having a +countable basis of open sets +such that every point of $M$ has a neighborhood homeomorphic to an open subset of $\bH^n$. +A point $x$ is an interior point if it has a neighborhood homeomorphic to an open subset +of $\bH^n-\pa \bH^n\iso \bR^n$; otherwise it is a boundary point. It is a fact called +``invariance of domain''\index{invariance of domain} that if $U$ and $V$ are homeomorphic +subspaces of $\bR^n$ and +$U$ is open, then $V$ is open. Therefore, a homeomorphism of an open subspace of +$\bH^n$ onto an open subspace of $\bH^n$ carries boundary points to boundary points. + +We denote the boundary\index{boundary of a manifold} of an $n$-manifold $M$ by $\pa M$. Thus +$M$ is a manifold without boundary if $\pa M$ is empty; $M$ is said to +be closed\index{closed manifold} if, in addition, +it is compact. The space $\pa M$ is an $(n-1)$-manifold without boundary. + +It is a fundamental question in topology to determine which closed manifolds are boundaries. +The question makes sense with varying kinds of extra structure. For example, we can ask whether +or not a smooth (= differentiable) closed manifold is the boundary of a smooth manifold (with +the induced smooth structure). Numerical invariants in algebraic topology give criteria. One +such criterion is given by the following consequence of the Poincar\'e duality theorem. +Remember that $\ch(M)=0$ if $M$ is a closed manifold of odd dimension. + +\begin{prop} If $M=\pa W$, where $W$ is a compact $(2m+1)$-manifold, then $\ch(M)=2\ch (W)$. +\end{prop} +\begin{proof} +The product $W\times I$ is a $(2m+2)$-manifold with +$$\pa(W\times I) = (W\times \sset{0}) \cup (M\times I) \cup (W\times \sset{1}).$$ +Let $U=\pa(W\times I)-(W\times \sset{1})$ and $V=\pa(W\times I)-(W\times \sset{0})$. +Then $U$ and $V$ are open subsets of $\pa(W\times I)$. Clearly $U$ and $V$ +are both homotopy equivalent to $W$ and $U\cap V$ is homotopy equivalent to $M$. +We have the Mayer-Vietoris sequence +$$\diagram + H_{i+1}(U\cup V) \rto \ddouble & H_i(U\cap V)\rto \dto^{\iso} & H_i(U)\oplus H_i(V) +\rto \dto^{\iso} & H_i(U\cup V) \ddouble\\ + H_{i+1}(\pa(W\times I)) \rto & H_i(M)\rto & H_i(W)\oplus H_i(W) +\rto & H_i(\pa(W\times I)).\\ +\enddiagram$$ +Therefore $2\ch(W)=\ch(M)+\ch(\pa(W\times I))$. However, $\ch(\pa(W\times I))=0$ since +$\pa(W\times I)$ is a closed manifold of odd dimension. +\end{proof} + +\begin{cor} If $M=\pa W$ for a compact manifold $W$, then $\ch(M)$ is even. +\end{cor} + +For example, since $\ch(\bR P^{2m})=1$ and $\ch(\bC P^n)=n+1$, this criterion +shows that $\bR P^{2m}$ and $\bC P^{2m}$ cannot be boundaries. Notice that +we have proved that these are not boundaries of topological manifolds, let +alone of smooth ones. + +\section{Poincar\'e duality for manifolds with boundary} + +The index gives a more striking criterion: if a closed oriented $4k$-manifold $M$ is the +boundary of a (topological) manifold, then $I(M)=0$. To prove this, we must first obtain +a relative form of the Poincar\'e duality theorem applicable to manifolds with boundary. + +We let $M$ be an $n$-manifold with boundary, $n>0$, throughout this section, and we let +$R$ be a given commutative ring. We say that $M$ +is $R$-orientable\index{Rorientable@$R$-orientable} +(or orientable\index{orientable} if $R=\bZ$) +if its interior $\cir{M}=M-\pa M$ is $R$-orientable; similarly, an +$R$-orientation\index{Rorientation@$R$-orientation} of $M$ is an +$R$-orientation of its interior. To study these notions, we shall need the following +result, which is intuitively clear but is somewhat technical to prove. In the case of +smooth manifolds, it can be seen in terms of inward-pointing unit vectors of the normal +line bundle of the embedding $\pa M\rtarr M$. + +\begin{thm}[Topological collaring]\index{topological collar} There is an open neighborhood +$V$ of $\pa M$ in $M$ such that the identification $\pa M = \pa M\times \sset{0}$ extends +to a homeomorphism $V\iso \pa M\times [0,1)$. +\end{thm} + +It follows that the inclusion $\cir{M}\rtarr M$ is a homotopy equivalence and the +inclusion $\pa M\rtarr M$ is a cofibration. We take homology with coefficients +in $R$ in the next two results. + +\begin{prop} +An $R$-orientation of $M$ determines an $R$-orientation of $\pa M$. +\end{prop} +\begin{proof} +Consider a coordinate chart $U$ of a point $x\in \pa M$. If $\dim M= n$, then $U$ is +homeomorphic to an open half-disk in $\bH^n$. Let $V=\pa U = U\cap \pa M$ and let +$y\in \cir{U}=U-V$. We have the following chain of isomorphisms: +\begin{eqnarray*} +H_n(\cir{M},\cir{M}-\cir{U}) & \iso & H_n(\cir{M},\cir{M}-y) \\ +& \iso & H_n(M,M-y) \\ +& \iso & H_n(M,M-\cir{U})\\ +& \overto{\pa} & H_{n-1}(M-\cir{U},M-U) \\ +& \iso & H_{n-1}(M-\cir{U},(M-\cir{U})-x)\\ +& \iso & H_{n-1}(\pa M,\pa M-x)\\ +& \iso & H_{n-1}(\pa M,\pa M-V). +\end{eqnarray*} +The first and last isomorphisms are restrictions of the sort that enter into the +definition of an $R$-orientation, and the third isomorphism is similar. We see by +use of a small boundary collar that the inclusion $(\cir{M},\cir{M}-y) \rtarr (M,M-y)$ +is a homotopy equivalence, and that gives the second isomorphism. The connecting +homomorphism is that of the triple $(M,M-\cir{U},M-U)$ and is an isomorphism since +$H_*(M,M-U)\iso H_*(M,M)=0$. The isomorphism that follows comes from the observation that +the inclusion $(M-\cir{U})-x \rtarr M-U$ is a homotopy equivalence, and the next to last +isomorphism is given by excision of $\cir{M}-\cir{U}$. The conclusion is an easy consequence +of these isomorphisms. +\end{proof} + +\begin{prop} If $M$ is compact and $R$-oriented and $z_{\pa M}\in H_{n-1}(\pa M)$ is +the fundamental class determined by the induced $R$-orientation on $\pa M$, then there +is a unique element $z\in H_n(M,\pa M)$ such that $\pa z = z_{\pa M}$; $z$ is called +the $R$-fundamental class\index{Rfundamental class@$R$-fundamental class} determined +by the $R$-orientation of $M$. +\end{prop} +\begin{proof} +Since $\cir{M}$ is a non-compact manifold without boundary and $\cir{M}\rtarr M$ is a +homotopy equivalence, $H_n(M)\iso H_n(\cir{M})=0$ by the vanishing theorem. Therefore +$\pa: H_n(M,\pa M)\rtarr H_{n-1}(\pa M)$ +is a monomorphism. Let $V$ be a +boundary collar and let $N=M-V$. Then $N$ is a closed subspace and a deformation +retract of the $R$-oriented open manifold $\cir{M}$, and we have +$$H_n(\cir{M},\cir{M}-N)\iso H_n(M,M-\cir{M}) = H_n(M,\pa M).$$ +Since $M$ is compact, $N$ is a compact subspace of $\cir{M}$. Therefore the $R$-orientation +of $\cir{M}$ determines a fundamental class in $H_n(\cir{M},\cir{M}-N)$. Let $z$ be its +image in $H_n(M,\pa M)$. Then $z$ restricts to a generator of +$H_n(M,M-y)\iso H_n(\cir{M},\cir{M}-y)$ for every $y\in \cir{M}$. Via naturality diagrams and the +chain of isomorphisms in the previous proof, we see that $\pa z$ restricts to a +generator of $H_{n-1}(\pa M,\pa M-x)$ for all $x\in \pa M$ and is the fundamental +class determined by the $R$-orientation of $\pa M$. +\end{proof} + +\begin{thm}[Relative Poincar\'e duality]\index{Poincare duality theorem@Poincar\'e duality +theorem!relative} Let $M$ be a compact $R$-oriented $n$-\linebreak +manifold +with $R$-fundamental class $z\in H_n(M,\pa M;R)$. Then, with coefficients taken in +any $R$-module $\pi$, capping with $z$ specifies duality isomorphisms +$$ D: H^p(M,\pa M)\rtarr H_{n-p}(M) \ \ \tand \ \ D:H^p(M)\rtarr H_{n-p}(M,\pa M).$$ +\end{thm} +\begin{proof} +The following diagram commutes by inspection of definitions: +$$\diagram +H^{p-1}(\pa M) \rto \dto_D & H^p(M,\pa M) \rto \dto^D +& H^p(M) \rto \dto^D & H^p(\pa M) \dto^D\\ +H_{n-p}(\pa M) \rto & H_{n-p}(M) \rto +& H_{n-p}(M,\pa M) \rto & H_{n-p-1}(\pa M).\\ +\enddiagram$$ +Here $D$ for $\pa M$ is obtained by capping with $\pa z$ and is an isomorphism. +By the five lemma, it suffices to prove that $D: H^p(M)\rtarr H_{n-p}(M,\pa M)$ +is an isomorphism. To this end, let $N = M\cup_{\pa M} M$ be the ``double''\index{double +of a manifold} of +$M$ and let $M_1$ and $M_2$ be the two copies of $M$ in $N$. Clearly $N$ is a +compact manifold without boundary, and it is easy to see that $N$ inherits an +$R$-orientation from the orientation on $M_1$ and the negative of the orientation +on $M_2$. Of course, $\pa M = M_1\cap M_2$. If $U$ is the union of $M_1$ and a +boundary collar in $M_2$ and $V$ is the union of $M_2$ and a boundary collar in +$M_1$, then we have a Mayer-Vietoris sequence for the triad $(N;U,V)$. Using the +evident equivalences of $U$ with $M_1$, $V$ with $M_2$, and $U\cap V$ with $\pa M$, +this gives the exact sequence in the top row of the following commutative diagram. +The bottom row is the exact sequence of the pair $(N,\pa M)$, and the isomorphism +results from the homeomorphism $N/\pa M\iso (M_1/\pa M) \vee (M_2/\pa M)$; we +abbreviate $N_1=(M_1,\pa M)$ and $N_2=(M_2,\pa M)$: +$$\diagram +H^p(N) \rto \dto_D & H^p(M_1) \oplus H^p(M_2) \rto^{\ps} \dto^{D\oplus D} +& H^p(\pa M) \dto^D \rto^{\DE} & H^{p+1}(N) \dto^D \\ +H_{n-p}(N) \rto \ddouble & H_{n-p}(N_1)\oplus H_{n-p}(N_2) \rto \dto^{\iso} +& H_{n-p-1}(\pa M) \ddouble \rto & H_{n-p-1}(N) \ddouble \\ +H_{n-p}(N) \rto & H_{n-p}(N,\pa M) \rto +& H_{n-p-1}(\pa M) \rto & H_{n-p-1}(N). \\ +\enddiagram$$ +The top left square commutes by naturality. In the top middle square, we have +$\ps(x,y)=i_1^*(x)-i_2^*(y)$, where $i_1: \pa M\rtarr M_1$ and $i_2: \pa M\rtarr M_2$ +are the inclusions. Since $D$ for $M_2$ is the negative of $D$ for $M_1$ under the +identifications with $M$, the commutativity of this square follows from the relation +$D\com i^* = \pa\com D: H^p(M)\rtarr H_{n-p-1}(\pa M)$, $i: \pa M\rtarr M$, which holds +by inspection of definitions. For the top right square, $\DE$ is the the top composite +in the diagram +$$\diagram +H^p(\pa M)\rto^(0.3){\de} \dto_D & H^{p+1}(M_1,\pa M)\iso H^{p+1}(N,M_2)\dto^D \rto & H^{p+1}(N)\dto^D \\ +H_{n-p-1}(\pa M) \rto_{{i_1}_*} & H_{n-p-1}(M_1) \rto & H_{n-p-1}(N). +\enddiagram$$ +The right square commutes by naturality, and $D\com \de = {i_1}_*\com D$ by inspection +of definitions. By the five lemma, since the duality maps $D$ for $N$ and $\pa M$ are +isomorphisms, both maps $D$ between direct summands must be isomorphisms. The conclusion follows. +\end{proof} + +\section{The index of manifolds that are boundaries} + +We shall prove the following theorem. + +\begin{thm} If $M$ is the boundary of a compact oriented $(4k+1)$-manifold, then +$I(M)=0$. +\end{thm} + +We first give an algebraic criterion for the vanishing of the signature of a form +and then show that the cup product form on the middle dimensional cohomology of $M$ +satisfies the criterion. + +\begin{lem} Let $W$ be a $n$-dimensional subspace of a $2n$-dimensional real vector +space $V$. Let $\ph: V\times V\rtarr \bR$ be a nonsingular symmetric bilinear form +such that $\ph: W\times W\rtarr \bR$ is identically zero. Then the signature of $\ph$ +is zero. +\end{lem} +\begin{proof} +Let $r$ and $s$ be as in the definition of the signature. Then $r+s=2n$ and we must +show that $r=s$. We prove that $r\geq n$. Applied to the form $-\ph$, this will also +give that $s\geq n$, implying the conclusion. We proceed by induction on $n$. Let +$\sset{x_1,\ldots\!,x_n,z_1,\ldots\!,z_n}$ be a basis for $V$, where $\sset{x_1,\ldots\!,x_n}$ +is a basis for $W$. Define $\tha: V\rtarr \bR^n$ and $\ps: V\rtarr \bR^n$ by +$$\tha(x) = (\ph(x,x_1),\ldots\!,\ph(x,x_n)) \ \tand \ \ps(x) = (\ph(x,z_1),\ldots\!,\ph(x,z_n)).$$ +Since $\ph$ is nonsingular, $\ker{\tha}\cap\ker{\ps}=0$. Since $\ker{\tha}$ and $\ker{\ps}$ each +have dimension at least $n$, neither can have dimension more than $n$ and $\tha$ and $\ps$ must +both be epimorphisms. Choose $y_1$ such that $\tha(y_1)=(1,0,\ldots\!,0)$. Let +$q(x)=\ph(x,x)$ and note that $q(x)=0$ if $x\in W$. Since $q(x_1)=0$ and $\ph(x_1,y_1)=1$, +$q(ax_1+y_1) = 2a+q(y_1)$ for $a\in\bR$. Taking $a=(1-q(y_1))/2$, we find $q(ax_1+y_1)=1$. If +$n=1$, this gives $r\geq 1$ and completes the proof. If $n>1$, define $\om: V\rtarr \bR^2$ by +$\om(x)=(\ph(x,x_1),\ph(x,y_1))$. Since $\om(x_1)=(0,1)$ and $\om(y_1)=(1,q(y_1))$, $\om$ is +an epimorphism. Let $V'=\ker\om$ and let $W'\subset V'$ be the span of $\sset{x_2,\ldots\!,x_n}$. +The restriction of $\ph$ to $V'$ satisfies the hypothesis of the lemma, and the induction +hypothesis together with the construction just given imply that $r\geq n$. +\end{proof} + +Take homology and cohomology with coefficients in $\bR$. + +\begin{lem} Let $M=\pa W$, where $W$ is a compact oriented $(4k+1)$-manifold, +and let $i: M\rtarr W$ be the inclusion. Let +$\ph: H^{2k}(M)\ten H^{2k}(M)\rtarr \bR$ be the cup product form. Then the image +of $i^*: H^{2k}(W)\rtarr H^{2k}(M)$ is a subspace of half the dimension of $H^{2k}(M)$ +on which $\ph$ is identically zero. +\end{lem} +\begin{proof} +Let $z\in H_{4k+1}(W,M)$ be the fundamental class. For $\al,\be\in H^{2k}(W)$, +$$\ph(i^*(\al),i^*(\be))=\langle i^*(\al\cup\be),\pa z\rangle +=\langle \al\cup\be,i_*\pa z\rangle =0$$ +since $i_*\pa=0$ by the long exact sequence of the pair $(W,M)$. Thus $\ph$ is +identically zero on $\im i^*$. The commutative diagram with exact rows +$$\diagram +H^{2k}(W) \rto^{i^*} \dto_D & H^{2k}(M) \rto^{\de} \dto^D & H^{2k+1}(W,M) \dto^D\\ +H_{2k+1}(W,M) \rto_{\pa} & H_{2k}(M) \rto_{i_*} & H_{2k}(W) +\enddiagram$$ +implies that $H^{2k}(M)\iso \im i^*\oplus \im\de\iso \im i^*\oplus \im i_*$. Since +$i^*$ and $i_*$ are dual homomorphisms, $\im i^*$ and $\im i_*$ are dual vector spaces +and thus have the same dimension. +\end{proof} + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} + +Let $M$ be a compact connected $n$-manifold with boundary $\pa M$, where $n\geq 2$. +\begin{enumerate} +\item Prove: $\pa M$ is not a retract of $M$. +\item Prove: if $M$ is contractible, then $\pa M$ has the homology of a sphere. +\item Assume that $M$ is orientable. Let $n = 2m+1$ and let $K$ be the kernel of the +homomorphism $H_m(\pa M) \rtarr H_m(M)$ induced by the inclusion, where homology is taken +with coefficients in a field. Prove: $\dimÊÊ\,H_m(\pa M)Ê=Ê2\dimÊÊ\,K$. +\end{enumerate} + +Let $n = 3$ in the rest of the problems. + +\begin{enumerate} +\item[4.] Prove: if $M$ is orientable, $\pa M$ is empty, and $H_1(M; \bZ) = 0$, then $M$ has +the same homology groups as a $3$-sphere. +\item[5.] Prove: if $M$ is nonorientable and $\pa M$ is empty, then $H_1(M;\bZ)$ is infinite. +\end{enumerate} + +(Hint for the last three problems: use the standard classification of closed $2$-manifolds +and think about first homology groups.) + +\begin{enumerate} +\item[6.] Prove: if $M$ is orientable and $H_1(M;\bZ) = 0$, then $\pa M$ is a disjoint union +of $2$-spheres. +\item[7.] Prove: if $M$ is orientable, $\pa M \neq\ph$, and $\pa M$ contains no $2$-spheres, +then $H_1(M;\bZ)$ is infinite. +\item[8.] Prove: if $M$ is nonorientable and $\pa M$ contains no $2$-spheres and no projective +planes, then $H_1(M;\bZ)$ is infinite. +\end{enumerate} + +\chapter{Homology, cohomology, and $K(\pi,n)$s} + +We have given an axiomatic definition of ordinary homology and cohomology, and we have shown +how to realize the axioms by means of either cellular or singular chain and cochain complexes. +We here give a homotopical way of constructing ordinary theories that makes no use of chains, +whether cellular or singular. We also show how to construct cup and cap products homotopically. +This representation of homology and cohomology in terms of Eilenberg-Mac\,Lane spaces is the +starting point of the modern approach to homology and cohomology theory, and we shall indicate +how theories that do not satisfy the dimension axiom can be represented. We shall also describe +Postnikov systems, which give a way to approximate general (simple) spaces by weakly equivalent +spaces built up out of Eilenberg-Mac\,Lane spaces. This is conceptually dual to the way that CW +complexes allow the approximation of spaces by weakly equivalent spaces built up out of spheres. +Finally, we present the important notion of cohomology operations and +relate them to the cohomology of Eilenberg-Mac\,Lane spaces. + +\section{$K(\pi,n)$s and homology} + +Recall that a reduced homology theory on based CW complexes is a +sequence of functors +$\tilde{E}_q$ from the homotopy category of based CW complexes to the category of Abelian +groups. Each $\tilde{E}_q$ must satisfy the exactness and additivity axioms, and there must +be a natural suspension isomorphism. Up to isomorphism, ordinary reduced homology with +coefficients in $\pi$ is characterized as the unique such theory that satisfies the +dimension axiom: $\tilde{E}_0(S^0) = \pi$ and $\tilde{E}_q(S^0) = 0$ if $q\neq 0$. We +proceed to construct such a theory homotopically. + +For based spaces $X$ and $Y$, we let $[X,Y]$ denote the set of based homotopy classes of based +maps $X\rtarr Y$. Recall that we require Eilenberg-Mac\,Lane spaces $K(\pi,n)$ to have the +homotopy\index{Eilenberg-Mac\,Lane space} types of CW complexes and that, up to homotopy equivalence, there is a unique such +space for each $n$ and $\pi$. By a result of Milnor, if $X$ has the homotopy type of a CW +complex, then so does $\OM X$. By the Whitehead theorem, we therefore have a homotopy equivalence +$$\tilde{\si}: K(\pi,n)\rtarr \OM K(\pi,n+1).$$ +This map is the adjoint of a map +$$\si: \SI K(\pi,n) \rtarr K(\pi,n+1).$$ +We may take the smash product of the map $\si$ with a based CW complex $X$ and use the +suspension homomorphism on homotopy groups to obtain maps +\begin{eqnarray*} +\pi_{q+n}(X\sma K(\pi,n)) & \overto{\SI} & \pi_{q+n+1}(\SI(X\sma K(\pi,n))) \\ + & = & \pi_{q+n+1}(X\sma \SI K(\pi,n)) \overto{(\id\sma\si)_*} +\pi_{q+n+1}(X\sma K(\pi,n+1)). +\end{eqnarray*} + +\begin{thm} +For CW complexes $X$, Abelian groups $\pi$ and integers $n\geq 0$, there are natural +isomorphisms\index{homology theory!ordinary} +$$ \tilde{H}_q(X;\pi)\iso \colim_{n}\pi_{q+n}(X\sma K(\pi,n)).$$ +\end{thm} + +It suffices to verify the axioms, and the dimension axiom is clear. If $X=S^0$, +then $X\sma K(\pi,n)=K(\pi,n)$. Here the homotopy groups in the colimit system are +zero if $q\neq 0$, and, if $q=0$, the colimit runs over a sequence of isomorphisms +between copies of $\pi$. + +The verifications of the rest of the axioms are exercises in the use of the homotopy excision +and Freudenthal suspension theorems, and it is worthwhile to carry out these exercises in +greater generality. + +\begin{defn} A prespectrum\index{prespectrum} is a sequence of based spaces $T_n$, $n\geq 0$, and +based maps $\si: \SI T_n \rtarr T_{n+1}$. +\end{defn} + +The example at hand is the Eilenberg-Mac\,Lane prespectrum $\sset{K(\pi,n)}$. Another +example is the ``suspension prespectrum''\index{suspension prespectrum} $\sset{\SI^n X}$ of +a based space $X$; the required maps $\SI(\SI^nX) \rtarr \SI^{n+1}X$ are the evident identifications. When $X=S^0$, this +is called the sphere prespectrum.\index{sphere prespectrum} + +\begin{thm} Let $\sset{T_n}$ be a prespectrum such that $T_n$ is $(n-1)$-connected and +of the homotopy type of a CW complex for each $n$. Define\index{homology theory!reduced} +$$\tilde{E}_q(X) = \colim_{n}\pi_{q+n}(X\sma T_n),$$ +where the colimit is taken over the maps +$$ +\pi_{q+n}(X\sma T_n) \overto{\SI} \pi_{q+n+1}(\SI(X\sma T_n)) \iso + \pi_{q+n+1}(X\sma \SI T_n) \overto{\id\sma\si} +\pi_{q+n+1}(X\sma T_{n+1}). +$$ +Then the functors $\tilde{E}_q$ define a reduced homology theory on based CW complexes. +\end{thm} +\begin{proof} +Certainly the $\tilde{E}$ are well defined functors from the homotopy category of based +CW complexes to the category of Abelian groups. We must verify the exactness, additivity, +and suspension axioms. Without loss of generality, we may take the $T_n$ to be CW complexes +with one vertex and no other cells of dimension less than $n$. Then $X\sma T_n$ is a quotient +complex of $X\times T_n$, and it too has one vertex and no other cells of dimension less than $n$. +In particular, it is $(n-1)$-connected. + +If $A$ is a subcomplex of $X$, then the homotopy excision theorem implies that the quotient map +$$(X\sma T_n,A\sma T_n) \rtarr ((X\sma T_n)/(A\sma T_n),*)\iso ((X/A)\sma T_n,*)$$ +is a $(2n-1)$-equivalence. We may restrict to terms with $n>q-1$ in calculating $\tilde{E}_q(X)$, +and, for such $q$, the long exact sequence of homotopy groups of the pair $(X\sma T_n,A\sma T_n)$ +gives that the sequence +$$\pi_{q+n}(A\sma T_n) \rtarr \pi_{q+n}(X\sma T_n) \rtarr \pi_{q+n}((X/A)\sma T_n)$$ +is exact. Since passage to colimits preserves exact sequences, this proves the exactness +axiom. + +We need some preliminaries to prove the additivity axiom. + +\begin{defn} Define the weak product\index{weak product} $\prod^{w}_{\, _i} Y_i$ of a set of based +spaces $Y_i$ to be +the subspace of $\prod_i Y_i$ consisting of those points all but finitely many of whose coordinates +are basepoints. +\end{defn} + +\begin{lem} For a set of based spaces $\sset{Y_i}$, the canonical map +$$\textstyle{\sum}_i \pi_q(Y_i) \rtarr \pi_q(\textstyle{\prod}^w_{\, i} Y_i)$$ +is an isomorphism. +\end{lem} +\begin{proof} The homotopy groups of $\prod^w_{\, i} Y_i$ are the colimits of the homotopy +groups of the finite subproducts of the $Y_i$, and the conclusion follows. +\end{proof} + +\begin{lem} If $\sset{Y_i}$ is a set of based CW complexes, then $\prod^w_{\, i}Y_i$ +is a CW complex whose cells are the cells of the finite subproducts of the $Y_i$. +If each $Y_i$ has a single vertex and no $q$-cells for $qn$. The system can be displayed diagrammatically +as follows: +$$\diagram +& \vdots \dto & \\ +& X_{n+1} \dto^{p_{n+1}} \rto^(0.29){k^{n+3}} & K(\pi_{n+2}(X),n+3) \\ +X \urto^{\al_{n+1}} \ddrto^{\al_1} \rto^{\al_n} & X_n \rto^(0.27){k^{n+2}} \dto & K(\pi_{n+1}(X),n+2) \\ +& \vdots \dto & \\ +& X_1 \rto^(0.33){k^3} & K(\pi_{2}(X),3). & \\ +\enddiagram$$ +Our requirement that Eilenberg-Mac\,Lane spaces +have the homotopy types of CW complexes implies (by a result of Milnor) +that each $X_{n}$ has the homotopy type of a CW complex. The maps $\alpha _{n}$ +induce a weak equivalence $X \rightarrow \lim X_{n}$, but the inverse limit +generally will not have the homotopy type of a CW complex. The ``$k$-invariants'' $\sset{k^{n+2}}$ +\index{kinvariants@$k$-invariants} that specify the system are to be regarded as cohomology classes +\[ k^{n+2}\in H^{n+2}(X_{n};{\pi}_{n+1}(X)). \] +These classes together with the homotopy groups $\pi_{n}(X)$ specify the +weak homotopy type of $X$. We outline the proof of the following theorem. + +\begin{thm} +A simple space $X$ of the homotopy type of a CW complex has a +Postnikov system. +\end{thm} +\begin{proof} +Assume inductively that $\alpha _{n}: X \rightarrow X_{n}$ has been constructed. +A consequence of the homotopy excision theorem shows that the cofiber $C(\alpha _{n})$ +is $(n+1)$-connected and satisfies +\[ {\pi} _{n+2}(C(\alpha_{n}))={\pi} _{n+1}(X). \] +More precisely, the canonical map $\et: F(\alpha _{n}) \rightarrow \Omega C(\alpha _{n})$ +induces +an isomorphism on ${\pi} _{q}$ for $q\leq n+1$. We construct +\[ j: C(\alpha _{n}) \rightarrow K({\pi} _{n+1}(X),n+2) \] +by inductively attaching cells to $C(\alpha _{n})$ to kill its higher +homotopy groups. We take the composite of $j$ and the inclusion +$X_{n} \subset C(\alpha _{n})$ to be the $k$-invariant +$$k^{n+2}: X_n \rtarr K(\pi_{n+1}(X),n+2).$$ +By our definition of a Postnikov system, we must define $X_{n+1}$ to be the +homotopy fiber of $k^{n+2}$. Thus its points are pairs $(\omega ,x)$ consisting +of a path $\omega : I\rightarrow K({\pi}_{n+1}(X),n+2)$ and a point $x\in X_{n}$ +such that $\omega (0)=*$ and $\omega (1)=k^{n+2}(x)$. The map +$p_{n+1}: X_{n+1} \rightarrow X_{n}$ is given by +$p_{n+1}(\omega ,x)=x$, and the map $\alpha _{n+1}: X \rightarrow X_{n+1}$ +is given by $\alpha _{n+1}(x)=(\omega (x),\alpha_{n}(x))$, where +$\omega (x)(t) = j(x,1-t)$, $(x,1-t)$ being a point on the cone +$CX \subset C(\alpha _{n})$. Clearly $p_{n+1}\com\alpha _{n+1} = \alpha _{n}$. +It is evident that $\alpha _{n+1}$ induces an isomorphism on +${\pi}_{q}$ for $q\leq n$, and a diagram chase shows that this also holds +for $q=n+1$. +\end{proof} + +\section{Cohomology operations} + +Consider a ``represented functor''\index{represented functor} $k(X)=[X,Z]$ and another +contravariant functor +$k'$ from the homotopy category of based CW complexes to the category of sets. The +following simple observation actually applies to represented functors on arbitrary +categories. We shall use it to describe cohomology operations, but it also applies to +describe many other invariants in algebraic topology, such as the characteristic classes +of vector bundles. + +\begin{lem}[Yoneda]\index{Yoneda lemma} There is a canonical bijection between natural +transformations +$\PH: k\rtarr k'$ and elements $\ph\in k'(Z)$. +\end{lem} +\begin{proof} +Given $\PH$, we define $\ph$ to be $\PH(\id)$, where $\id\in k(Z)=[Z,Z]$ is the +identity map. Given $\ph$, we define $\PH: k(X)\rtarr k'(X)$ by the formula +$\PH(f)=f^*(\ph)$. Here $f$ is a map $X\rtarr Z$, and it induces +$f^*=k'(f):k'(Z)\rtarr k'(X)$. It is simple to check that these are inverse +bijections. +\end{proof} + +We are interested in the case when $k'$ is also represented, say $k'(X)=[X,Z']$. + +\begin{cor} There is a canonical bijection between natural transformations +$\PH: [-,Z]\rtarr [-,Z']$ and elements $\ph\in [Z,Z']$. +\end{cor} + +\begin{defn} Suppose given cohomology theories $\tilde{E}^*$ and $\tilde{F}^*$. A cohomology +operation\index{cohomology operation} of type $q$ and degree $n$ is a natural transformation +$\tilde{E}^q\rtarr \tilde{F}^{q+n}$. A stable cohomology +operation\index{cohomology operation!stable} of degree $n$ is a sequence +$\sset{\PH^q}$ of cohomology operations of type $q$ and degree $n$ such that the following +diagram commutes for each $q$ and each based space $X$: +$$\diagram +\tilde{E}^q(X)\rto^{\PH^q} \dto_{\SI} & \tilde{E}^{q+n}(X) \dto^{\SI} \\ +\tilde{E}^{q+1}(\SI X) \rto_(0.45){\PH^{q+1}} & \tilde{E}^{q+1+n}(\SI X). \\ +\enddiagram$$ +We generally abbreviate notation by setting $\PH^q=\PH$. +\end{defn} + +In general, cohomology operations are only natural transformations of set-valued functors. +However, stable operations are necessarily homomorphisms of cohomology groups, as the +reader is encouraged to check. + +\begin{thm} +Cohomology operations $\tilde{H}^q(-;\pi)\rtarr \tilde{H}^{q+n}(-;\rh)$ are in canonical +bijective correspondence with elements of $\tilde{H}^{q+n}(K(\pi,q);\rh)$. +\end{thm} +\begin{proof} +Translate to the represented level, apply the previous corollary, and translate back. +\end{proof} + +This seems very abstract, but it has very concrete consequences. To determine all cohomology +operations, we need only compute the cohomology of all Eilenberg-Mac\,Lane spaces. We have +described an explicit construction of these spaces as topological Abelian groups +in Chapter 16 \S5, and this construction leads to an inductive method of computation. We briefly +indicate a key example of how this works, without proofs. + +\begin{thm} For $n\geq 0$, there are stable cohomology operations +$$Sq^n: H^q(X;\bZ_2)\rtarr H^{q+n}(X;\bZ_2),$$ +called the Steenrod operations.\index{Steenrod operations} They satisfy the following properties. +\begin{enumerate} +\item[(i)] $Sq^0$ is the identity operation. +\item[(ii)] $Sq^n(x)=x^2$ if $n=\text{\em deg}\,x$ and $Sq^n(x)=0$ if $n> \text{\em deg}\,x$. +\item[(iii)] The Cartan formula\index{Cartan formula} holds: +$$Sq^n(xy)= \sum_{i+j=n}Sq^i(x)Sq^j(y).$$ +\end{enumerate} +\end{thm} + +In fact, the Steenrod operations are uniquely characterized by the stated properties. +There are also formulas, called the Adem relations,\index{Adem relations} describing $Sq^iSq^j$, +as a linear combination of operations $Sq^{i+j-k}Sq^k$, $2k\leq i$, when $0\text{\em dim}\,\xi$. +\item $w_1(\ga_1)\neq 0$, where $\ga_1$ is the universal line bundle over $\bR P^{\infty}$. +\item $w_i(\xi\oplus \epz)= w_i(\xi)$. +\item $w_i(\ze\oplus \xi)= \sum_{j=0}^i w_j(\ze)\cup w_{i-j}(\xi)$. +\end{enumerate} +Every mod $2$ characteristic class for $n$-plane bundles can be written uniquely as a polynomial +in the Stiefel-Whitney classes $\sset{w_1,\ldots\!,w_n}$. +\end{thm} + +\begin{thm} For $n\geq 1$, there are elements $w_i\in H^i(BO(n);\bZ_2)$, $i\geq 0$, called the +Stiefel-Whitney classes. They satisfy and are uniquely characterized by the following +axioms. +\begin{enumerate} +\item $w_0=1$ and $w_i = 0$ if $i>n$. +\item $w_1\neq 0$ when $n=1$. +\item $i_n^*(w_i)=w_i$. +\item $p_{m,n}^*(w_i) = \sum_{j=0}^i w_j\ten w_{i-j}$. +\end{enumerate} +The mod $2$ cohomology $H^*(BO(n);\bZ_2)$ is the polynomial algebra $\bZ_2[w_1,\ldots\!,w_n]$. +\end{thm} + +For the uniqueness, suppose given another collection of classes $w'_i$ for all $n\geq 1$ that +satisfy the stated properties. Since $BO(1)=\bR P^{\infty}$, $w_1=w'_1$ is the unique non-zero +element of $H^1(\bR P^{\infty};\bZ_2)$. Therefore $w_i=w'_i$ for all $i$ when $n=1$, and we +assume that this is true for all $mq-n$. Calculation of $w_i(\nu)$ from the Whitney duality +formula can lead to a contradiction if $q$ is too small. + +One calculation is immediate. Since the normal bundle of the standard embedding +$S^q\rtarr \bR^{q+1}$ is trivial, $w(S^q)=1$. A manifold is said to be +parallelizable\index{parallelizable manifold} if its tangent bundle is trivial. +For some manifolds $M$, we can show that $M$ is not parallelizable by showing that +one of its Stiefel-Whitney classes is non-zero, but this strategy fails for $M=S^q$. + +We describe some standard computations in the cohomology of projective spaces that give +less trivial examples. Write $\ze_q$ for the canonical line bundle\index{canonical line +bundle} over $\bR P^{q}$ in this +section. (We called it $\ga_1^{q+1}$ before.) The total space of $\ze_q$ consists of +pairs $(x,v)$, where $x$ is a line in $\bR^{q+1}$ +and $v$ is a point on that line. This is a subbundle of the trivial $(q+1)$-plane +bundle $\epz^{q+1}$, and we write $\ze_q^{\perp}$ for the complementary bundle whose +points are pairs $(x,w)$ such that $w$ is orthogonal to the line $x$. Thus +$$\ze_q\oplus \ze_q^{\perp}\iso\epz^{q+1}.$$ + +Write $H^*(\bR P^q;\bZ_2) =\bZ_2[\al]/(\al^{q+1})$, +$\deg\al =1$. Thus $\al=w_1(\ze_q)$. Since $\ze_q$ is a line bundle, $w_i(\ze_q)=0$ for +$i>1$. The formula $w(\ze_q)\cup w(\ze_q^{\perp})=1$ implies that +$$w(\ze_q^{\perp}) = 1+\al +\cdots + \al^{q}.$$ + +We can describe $\ta(\bR P^q)$ in terms of $\ze_q$. Consider a point $x\in S^q$ and write +$(x,v)$ for a typical vector in the tangent plane of $S^q$ at $x$. Then $x$ is orthogonal +to $v$ in $\bR^{q+1}$ and $(x,v)$ and $(-x,-v)$ have the same image in $\ta(\bR P^q)$. If +$L_x$ is the line through $x$, then this image point determines and is determined by the +linear map $f: L_x\rtarr L_x^{\perp}$ that sends $x$ to $v$. Starting from this, it is +easy to check that $\ta(\bR P^q)$ is isomorphic to the bundle $\Hom(\ze_q,\ze_q^{\perp})$. +As for any line bundle, we have $\Hom(\ze_q,\ze_q)\iso\epz$ since the identity homomorphisms +of the fibers specify a cross-section. Again, as for any bundle over a smooth manifold, a +choice of Euclidean metric determines an isomorphism $\Hom(\ze_q,\epz)\iso \ze_q$. These +facts give the following calculation of $\ta(\bR P^q)\oplus\epz$: +\begin{eqnarray*} +\ta(\bR P^q)\oplus\epz & \iso & \Hom(\ze_q,\ze_q^{\perp})\oplus\Hom(\ze_q,\ze_q) \\ +& \iso & \Hom(\ze_q,\ze_q^{\perp}\oplus \ze_q) \iso \Hom(\ze_q,\epz^{q+1}) \\ +& \iso & (q+1)\Hom(\ze_q,\epz)\iso (q+1)\ze_q. +\end{eqnarray*} +Therefore +$$w(\bR P^q) = w((q+1)\ze_q) = w(\ze_q)^{q+1} += (1+\al)^{q+1}=\sum_{0\leq i\leq q} + \left(\begin{array}{c}q+1\\i\end{array}\right) \al^i.$$ +Explicit computations are obtained by computing mod $2$ binomial coefficients. + +For example, $w(\bR P^q)=1$ if and only if $q=2^k-1$ for some $k$ (as the reader should +check) and therefore $\bR P^q$ can be parallelizable only if $q$ is of this form. If $\bR^{q+1}$ +admits a bilinear product without zero divisors, then it is not hard to prove that +$\ta(\bR P^{q})\iso \Hom(\ze_q,\ze_q^{\perp})$ admits $q$ linearly independent cross-sections +and is therefore trivial. We conclude that $\bR^{q+1}$ can admit such a product only if $q+1=2^k$ +for some $k$. The real numbers, complex numbers, quaternions, and Cayley numbers show that there +is such a product for $q+1=1$, $2$, $4$, and $8$. As we shall explain in the next chapter, these +are in fact the only $q$ for which $\bR^{q+1}$ admits such a product. + +While the calculation of $w(\bR P^q)$ just given is quite special, there is a remarkable general +recipe, called the ``Wu formula,'' for the computation of $w(M)$ in terms of Poincar\'e duality +and the Steenrod operations in $H^*(M;\bZ_2)$. In analogy with $w(M)$, we define the total +Steenrod square of an element $x$ by $Sq(x)=\sum_i Sq^i(x)$.\index{total Steenrod operation} + +\begin{thm}[Wu formula]\index{Wu formula} Let $M$ be a smooth closed $n$-manifold with +fundamental class +$z\in H_n(M;\bZ_2)$. Then the total Stiefel-Whitney class $w(M)$ is equal to $Sq(v)$, where +$v=\sum v_i\in H^{**}(M;\bZ_2)$ is the unique cohomology class such that +$$\langle v\cup x,z\rangle = \langle Sq(x),z \rangle $$ +for all $x\in H^*(M;\bZ_2)$. Thus, for $k\geq 0$, $v_k\cup x = Sq^k(x)$ for all +$x\in H^{n-k}(M;\bZ_2)$, and +$$w_k(M)=\sum_{i+j=k}Sq^i(v_j).$$ +\end{thm} + +Here the existence and uniqueness of $v$ is an easy exercise from the Poincar\'e duality +theorem. The basic reason that such a formula holds is that the Stiefel-Whitney classes +can be defined in terms of the Steenrod operations, as we shall see shortly. The Wu formula +implies that the Stiefel-Whitney classes are homotopy invariant: if $f:M\rtarr M'$ is a +homotopy equivalence between smooth closed $n$-manifolds, then +$f^*: H^*(M';\bZ_2)\rtarr H^*(M;\bZ_2)$ satisfies $f^*(w(M'))=w(M)$. In fact, the conclusion +holds for any map $f$, not necessarily a homotopy equivalence, that induces an isomorphism in +mod $2$ cohomology. Since the tangent bundle of $M$ depends on its smooth structure, this +is rather surprising. + +\section{Characteristic numbers of manifolds} + +Characteristic classes determine important numerical invariants of manifolds, called their +characteristic numbers. + +\begin{defn} Let $M$ be a smooth closed $R$-oriented $n$-manifold with fundamental class +$z\in H_n(M;R)$. For a characteristic class $c$ of degree $n$, define the tangential +characteristic number\index{characteristic class}\index{characteristic number!tangential} +\index{characteristic number!normal} $c[M]\in R$ by $c[M] = \langle c(\ta(M)),z \rangle$. +Similarly, define the normal characteristic number $c[\nu(M)]$ by +$c[\nu(M)] = \langle c(\nu(M)),z \rangle$, where $\nu(M)$ is the normal bundle associated +to an embedding of $M$ in $\bR^q$ for $q$ sufficiently large. (These numbers are well defined +because any two embeddings of $M$ in $\bR^q$ for large $q$ are isotopic and have equivalent +normal bundles.) +\end{defn} + +In particular, if $r_i$ are integers such that $\sum ir_i=n$, then the monomial +$w_1^{r_1}\cdots w_n^{r_n}$ is a characteristic class of degree $n$, and all mod $2$ +characteristic classes of degree $n$ are linear combinations of these. Different +manifolds can have the same Stiefel-Whitney numbers.\index{Stiefel-Whitney numbers} In fact, +we have the following observation. + +\begin{lem} If $M$ is the boundary of a smooth compact $(n+1)$-manifold $W$, then +all tangential Stiefel-Whitney numbers of $M$ are zero. +\end{lem} +\begin{proof} +Using a smooth tubular neighborhood, we see that there is an inward-pointing normal +vector field along $M$ that spans a trivial bundle $\epz$ such that +$$\ta(W)|_M\iso \ta(M)\oplus \epz.$$ +Therefore, if $i:M\rtarr W$ is the inclusion, then $i^*(w_j(W))=w_j(M)$. Let $f$ be +a polynomial in the $w_j$ of degree $n$. Recall that the fundamental class of $M$ +is $\pa z$, where $z\in H_{n+1}(W,M)$ is the fundamental class of the pair $(W,M)$. We have +$$\langle f(M),\pa z \rangle += \langle i^*f(W),\pa z \rangle += \langle f(W), i_*\pa z \rangle = 0$$ +since $i_*\pa = 0$ by the long exact homology sequence of the pair. +\end{proof} + +\begin{lem} +All tangential Stiefel-Whitney numbers\index{Stiefel-Whitney numbers!tangential} of a +smooth closed manifold $M$ are zero if +and only if all normal Stiefel-Whitney numbers\index{Stiefel-Whitney numbers!normal} of +$M$ are zero. +\end{lem} +\begin{proof} The Whitney duality formula implies that every $w_i(M)$ is a polynomial +in the $w_i(\nu(M))$ and every $w_i(\nu(M))$ is a polynomial in the $w_i(M)$. +\end{proof} + +We shall explain the following amazing result of Thom in the last chapter. + +\begin{thm}[Thom] If $M$ is a smooth closed $n$-manifold all of whose normal +Stiefel-Whitney numbers are zero, then $M$ is the boundary of a smooth +$(n+1)$-manifold. +\end{thm} + +Thus we need only compute the Stiefel-Whitney numbers of $M$ to determine whether +or not it is a boundary. By Wu's formula, the computation only requires knowledge +of the mod $2$ cohomology of $M$, with its Steenrod operations. In practice, it might +be fiendishly difficult to actually construct a manifold with +boundary $M$ geometrically. + +\section{Thom spaces and the Thom isomorphism theorem} + +There are several ways to construct the Stiefel-Whitney classes. The most illuminating +one depends on a simple, but fundamentally important, construction on vector bundles, +namely their ``Thom spaces.'' This construction will also be at the heart of the proof of +Thom's theorem in the last chapter. + +\begin{defn} Let $\xi: E\rtarr B$ be an $n$-plane bundle. Apply one-point compactification to each +fiber of $\xi$ to obtain a new bundle $Sph(E)$\index{Sph(E)@$Sph(E)$} over $B$ whose fibers are +spheres $S^n$ with +given basepoints, namely the points at $\infty$. These basepoints specify a cross-section +$B\rtarr Sph(E)$. Define the Thom space\index{Thom space} $T\xi$ to be the quotient space +$T(\xi)= Sph(E)/B$. That is, $T(\xi)$ is obtained from $E$ by applying fiberwise one-point +compactification and then identifying all of the points at $\infty$ to a single basepoint +(denoted $\infty$). Observe that this construction is functorial with respect to maps of +vector bundles. +\end{defn} + +\begin{rem} If we give the bundle $\xi$ a Euclidean metric and let $D(E)$ and $S(E)$ +denote its unit disk bundle and unit sphere bundle, then there is an evident +homeomorphism between $T\xi$ and the quotient space $D(E)/S(E)$. In turn, $D(E)/S(E)$ +is homotopy equivalent to the cofiber of the inclusion $S(E)\rtarr D(E)$ and therefore +to the cofiber of the projection $S(E)\rtarr B$. +\end{rem} + +If the bundle $\xi$ is trivial, so that $E=B\times \bR^n$, then $ Sph(E)=B\times S^n$. +Quotienting out $B$ amounts to the same thing as giving $B$ a disjoint basepoint and then +forming the smash product $B_+\sma S^n$. That is, in this case the Thom complex is $\SI^nB_+$. +Therefore, for any cohomology theory $k^*$, +$$k^q(B)=\tilde{k}^q(B_+) \iso \tilde{k}^{n+q}(T\xi).$$ +There is a conceptual way of realizing this isomorphism. For any $n$-plane bundle $\xi: E\rtarr B$, +we have a projection $\xi: Sph(E)\rtarr B$ and a quotient map $\pi: Sph(E)\rtarr T\xi$. +We can compose their product with the diagonal map of $Sph(E)$ to obtain a composite map +$$ Sph(E)\rtarr Sph(E)\times Sph(E) \rtarr B\times T\xi.$$ +This sends all points at $\infty$ to points of $B\times \sset{\infty}$. Therefore it factors through +a map +$$ \DE: T\xi\rtarr B_+\sma T\xi,$$ +which is called the ``Thom diagonal.''\index{Thom diagonal} For a commutative ring $R$, we can +use $\DE$ to define a cup product +$$ H^p(B;R)\ten \tilde{H}^q(T\xi;R) \rtarr \tilde{H}^{p+q}(T\xi;R).$$ +When the bundle $\xi$ is trivial, we let $\mu\in \tilde{H}^n(B_+\sma S^n;R)$ be the suspension of +the identity element $1\in H^0(B;R)$, and we find that $x\rtarr x\cup \mu$ specifies the +suspension isomorphism $H^q(B;R)\iso \tilde{H}^{n+q}(B_+\sma S^n;R) = \tilde{H}^{n+q}(T\xi;R)$. + +Now consider a general bundle $\xi$. On neighborhoods $U$ of $B$ over which $\xi$ is trivial, +we have $H^q(U;R)\iso \tilde{H}^{n+q}(T(\xi|_U);R)$. The isomorphism depends on the trivialization +$\ph_U: U\times \bR^n\rtarr \xi^{-1}(U)$. It is natural to ask if these isomorphisms patch +together to give a global isomorphism $H^q(B_+)\rtarr \tilde{H}^{n+q}(T\xi)$. This should look +very similar to the problem of patching local fundamental classes to obtain a global one; that +is, it looks like a question of orientation. This leads to the following definition and theorem. +For a point $b\in B$, let $S^n_b$ be the one-point compactification of the fiber $\xi^{-1}(b)$; +since $S^n_b$ is the Thom space of $\xi|_b$, we have a canonical map $i_b: S^n_b\rtarr T\xi$. + +\begin{defn} Let $\xi: E\rtarr B$ be an $n$-plane bundle. +An $R$-orientation,\index{Rorientation@$R$-orientation} or Thom class,\index{Thom class} of +$\xi$ is an element $\mu\in \tilde{H}^n(T\xi;R)$ such that, for every point $b\in B$, +$i_b^*(\mu)$ is a generator of the free $R$-module $\tilde{H}^n(S^n_b)$. +\end{defn} + +We leave it as an instructive exercise to verify that an $R$-orientation of a closed $n$-manifold +$M$ determines and is determined by an $R$-orientation of its tangent bundle $\ta(M)$. + +\begin{thm}[Thom isomorphism theorem]\index{Thom isomorphism} Let $\mu\in \tilde{H}^n(T\xi;R)$ +be a Thom class for an $n$-plane bundle $\xi: E\rtarr B$. Define +$$\PH: H^q(B;R)\rtarr \tilde{H}^{n+q}(T\xi;R)$$ +by $\PH (x)=x\cup \mu$. Then $\PH$ is an isomorphism. +\end{thm} +\begin{proof}[Sketch Proof] When $R$ is a field, this can be proved by an inductive Mayer-Vietoris +sequence argument. To exploit inverse images of open subsets of $B$, it is convenient to observe +that, by easy homotopy and excision arguments, +$$\tilde{H}^*(T\xi)\iso H^*(Sph(E),B)\iso H^*(Sph(E),Sph(E)_0)\iso H^*(E,E_0),$$ +where $E_0$ and $Sph(E)_0$ are the subspaces of $E$ and $Sph(E)$ obtained by deleting $\sset{0}$ +from each fiber. Use of a field ensures that the cohomology of the relevant direct limits is the +inverse limit of the cohomologies. An +alternative argument that works for general $R$ can be obtained by first showing that one can +assume that $B$ is a CW complex, by replacing $\xi$ by its pullback along a CW approximation of $B$, +and then proceeding by induction over the restrictions of $\xi$ to the skeleta of $B$; one point +is that the restriction of $\xi$ to any cell is trivial and another is that the cohomology +of $B$ is the inverse limit of the cohomologies of its skeleta. However, much the best proof +from the point of view of anyone seriously interested in algebraic topology is to apply the +Serre spectral sequence of the bundle $Sph(E)$. The Serre spectral sequence\index{Serre spectral +sequence} is a device for +computing the cohomology of the total space $E$ of a fibration from the cohomologies of its base +$B$ and fiber $F$. It measures the cohomological deviation of $H^*(E)$ from $H^*(B)\ten H^*(F)$. +In the present situation, the existence of a Thom class ensures that there is no deviation for +the sphere bundle $Sph(E)\rtarr B$, so that +$$H^*(Sph(E);R)\iso H^*(B;R)\ten H^*(S^n;R).$$ +The section given by the points at $\infty$ induces an isomorphism of $H^*(B;R)\ten H^0(S^n;R)$ +with $H^*(B;R)$, and the quotient map $Sph(E)\rtarr T\xi$ induces an isomorphism of +$\tilde{H}^*(T\xi;R)$ with $H^*(B;R)\ten H^n(S^n;R)$. +\end{proof} + +Just as in orientation theory for manifolds, the question of orientability depends on the +structure of the units of the ring $R$, and this leads to the following conclusion. + +\begin{prop} Every vector bundle admits a unique $\bZ_2$-orientation. +\end{prop} + +This can be proved along with the Thom isomorphism theorem by a Mayer-Vietoris argument. + +\section{The construction of the Stiefel-Whitney classes} + +We indicate two constructions of the Stiefel-Whitney classes. Each has distinct advantages over +the other. First, taking the characteristic class point of view, we define the Stiefel-Whitney +classes\index{Stiefel-Whitney classes} in terms of the Steenrod operations by setting +$$w_i(\xi) = \PH^{-1}Sq^i\PH(1) = \PH^{-1}Sq^i\mu.$$ +Naturality is obvious. Axiom 1 is immediate from the relations $Sq^0=\id$ and +$Sq^i(x)=0$ if $i> \deg\,x$. For axiom 2, we use the following observation. + +\begin{lem} There is a homotopy equivalence $j: \bR P^{\infty}\rtarr T\ga_1$. +\end{lem} +\begin{proof} +$T\ga_1$ is homeomorphic to $D(\ga_1)/S(\ga_1)$. Here $S(\ga_1)$ is the infinite sphere +$S^{\infty}$, which is the universal cover of $\bR P^{\infty}$ and is therefore +contractible. The zero section $\bR P^{\infty}\rtarr D(\ga_1)$ and the quotient map +$D(\ga_1)\rtarr T\ga_1$ are homotopy equivalences, and their composite is the required +homotopy equivalence $j$. +\end{proof} + +Since $Sq^1(x)=x^2$ if $\deg\,x=1$, the lemma implies that $Sq^1$ is non-zero on the Thom class +of $\ga_1$, verifying axiom 2. For axiom 3, we easily check that +$T(\xi\oplus\epz)\iso \SI T(\xi)$ for any vector bundle $\xi$ and that the Thom class of +$\xi\oplus\epz$ is the suspension of the Thom class of $\xi$. Thus axiom 3 follows from the +stability of the Steenrod operations. For axiom 4, we easily check that, for any vector bundles +$\ze$ and $\xi$, $T(\ze\times \xi)\iso T\ze\sma T\xi$ and the Thom class of $\ze\times \xi$ is the +tensor product of the Thom classes of $\ze$ and $\xi$. Interpreting the Cartan formula for the +Steenrod operations externally in the cohomology of products and therefore of smash products, +we see that it implies axiom 4. That is, the properties that axiomatize the Steenrod operations +directly imply the properties that axiomatize the Stiefel-Whitney classes. + +We next take the classifying space point of view. As we shall explain in \S8, +passage from topological groups to their classifying spaces is a product-preserving +functor, at least up to homotopy. We may embed $(\bZ_2)^n = O(1)^n$ in $O(n)$ as the +subgroup of diagonal matrices. The classifying space $BO(1)$ is $\bR P^{\infty}$, +and we obtain a map +$$\om: (\bR P^{\infty})^n \htp B(O(1)^n) \rtarr BO(n) $$ +upon passage to classifying spaces. The symmetric group $\SI_n$ is contained in $O(n)$ +as the subgroup of permutation matrices, and the diagonal subgroup $O(1)^n$ is closed +under conjugation by symmetric matrices. Application of the classifying space functor +to conjugation by permutation matrices induces the corresponding permutation of the factors +of $BO(1)^n$, and it induces the identity map on $BO(n)$. Indeed, up to homotopy, inner +conjugation by an element of $G$ induces the identity map on $BG$ for any topological +group $G$. + +By the K\"unneth theorem, we see that +$$H^*((\bR P^{\infty})^n;\bZ_2) += \ten_{i=1}^n H^*(\bR P^{\infty};\bZ_2) =\bZ_2[\al_1,\ldots\!,\al_n],$$ +where the generators $\al_i$ are of degree one. The symmetric group $\SI_n$ acts on this +cohomology ring by permuting the variables $\al_i$. The subring +$H^*((\bR P^{\infty})^n;\bZ_2)^{\SI_n}$ of elements invariant under +the action is the polynomial algebra on the elementary symmetric functions +$\si_i$, $1\leq i\leq n$, in the variables $\al_i$. Here +$$\si_i = \textstyle{\sum} \al_{j_1}\cdots\al_{j_i},\ \ 1\leq j_1 < \cdots < j_n,$$ +has degree $i$. The induced map $\om^*: H^*(BO(n);\bZ_2)\rtarr H^*((\bR P^{\infty})^n;\bZ_2)$ +takes values in $H^*((\bR P^{\infty})^n;\bZ_2)^{\SI_n}$. We shall give a general reason why +this is so in \S8. The resulting map +$$\om^*: H^*(BO(n);\bZ_2)\rtarr H^*((\bR P^{\infty})^n;\bZ_2)^{\SI_n}$$ +is a ring homomorphism between polynomial algebras on generators of the same degrees. It +turns out to be a monomorphism and therefore an isomorphism. We redefine the Stiefel-Whitney +classes by letting $w_i$ be the unique element such that $\om^*(w_i)=\si_i$ for $1\leq i\leq n$ +and defining $w_0=1$ and $w_i=0$ for $i>n$. Then axioms 1 and 2 for the Stiefel-Whitney +classes are obvious, and we derive axioms 3 and 4 from algebraic properties of elementary +symmetric functions. + +One advantage of this approach is that, since we know the Steenrod +operations on $H^*(\bR P^{\infty};\bZ_2)$ and can read them off on $H^*((\bR P^{\infty})^n;\bZ_2)$ +by the Cartan formula, it leads to a purely algebraic calculation of the Steenrod +operations in $H^*(BO(n);\bZ_2)$. Explicitly, the following ``Wu formula''\index{Wu formula} holds: +$$ Sq^i(w_j) = \sum_{t=0}^i\left(\begin{array}{c}j+t-i-1\\t\end{array}\right) w_{i-t}w_{j+t}.$$ + +\section{Chern, Pontryagin, and Euler classes} + +The theory of the previous sections extends appropriately to complex vector bundles +and to oriented real vector bundles. The proof of the classification theorem for complex +$n$-plane bundles works in exactly the same way as for real $n$-plane bundles, using +complex Grassmann varieties. For oriented real $n$-plane bundles, we use the Grassmann +varieties\index{Grassmann variety!of oriented $n$-planes} of oriented $n$-planes, +the points of which are planes $x$ together with a chosen +orientation. In fact, the fundamental groups of the real Grassmann varieties are $\bZ_2$, +and their universal covers are their orientation covers. These covers are the oriented +Grassmann varieties $\tilde{G}_n(\bR^q)$. We write $BU(n) = G_n(\bC^{\infty})$\index{BUn@$BU(n)$} +and $BSO(n) = \tilde{G}_n(\bR^{\infty})$,\index{BSOn@$BSO(n)$} and we construct universal +complex $n$-plane bundles\index{universal n-plane bundle@universal $n$-plane bundle!complex} +\index{universal n-plane bundle@universal $n$-plane bundle!oriented} +$\ga_n: EU_n\rtarr BU(n)$ and oriented $n$-plane bundles $\tilde{\ga}_n: \tilde{E}_n\rtarr BSO(n)$ +as in the first section. Let $\sE U_n(B)$\index{EUkn(-)@$\sE U_n(B)$} denote the set of equivalence +classes of complex $n$-plane +bundles over $B$ and let $\tilde{\sE}_n(B)$\index{EanBa@$\tilde{\sE}_n(B)$} denote the set of +equivalence classes of oriented +real $n$-plane bundles over $B$; it is required that bundle maps $(g,f)$ be orientation preserving, +in the sense that the induced map of Thom spaces carries the orientation of the target bundle to the +orientation of the source bundle. The universal bundle $\tilde{\ga_n}$ has a canonical orientation +which determines an orientation on $f^*\tilde{E}_n$ for any map $f: B\rtarr BSO(n)$. + +\begin{thm}\index{classification theorem!for complex $n$-plane bundles} The natural +transformation $\PH: [-,BU(n)]\rtarr \sE U_n(-)$ obtained by sending the +homotopy class of a map $f: B\rtarr BU(n)$ to the equivalence class of the $n$-plane +bundle $f^*EU_n$ is a natural isomorphism of functors. +\end{thm} + +\begin{thm}\index{classification theorem!for oriented $n$-plane bundles} The natural +transformation $\PH: [-,BSO(n)]\rtarr \tilde{\sE}_n(-)$ obtained by +sending the homotopy class of a map $f: B\rtarr BSO(n)$ to the equivalence class of the +oriented $n$-plane bundle $f^*\tilde{E}_n$ is a natural isomorphism of functors. +\end{thm} + +The definition of characteristic classes for complex $n$-plane bundles and for oriented +real $n$-plane bundles in a cohomology theory $k^*$ is the same as for real $n$-plane bundles, +and the Yoneda lemma applies. + +\begin{lem} Evaluation on $\ga_n$ specifies a canonical bijection between characteristic +classes of complex $n$-plane bundles and elements of $k^*(BU(n))$. +\end{lem} + +\begin{lem} Evaluation on $\tilde{\ga}_n$ specifies a canonical bijection between characteristic +classes of oriented $n$-plane bundles and elements of $k^*(BSO(n))$. +\end{lem} + +Clearly we have a $2$-fold cover $\pi_n: BSO(n)\rtarr BO(n)$. The mod $2$ characteristic +classes for oriented $n$-plane bundles are as one might expect from this. Continue to write +$w_i$ for $\pi^*(w_i)\in H^i(BSO(n);\bZ_2)$; here $w_1=0$ since $BSO(n)$ is simply connected. + +\begin{thm} $H^*(BSO(n);\bZ_2) \iso \bZ_2[w_2,\ldots\!,w_n]$. +\end{thm} + +If we regard a complex $n$-plane bundle as a real $2n$-plane bundle, then the complex structure +induces a canonical orientation. By the Yoneda lemma, the resulting natural transformation +$r: \sE U_n(-)\rtarr \tilde{\sE}_n(-)$ is represented by a map $r: BU(n)\rtarr BSO(2n)$. Explicitly, ignoring its complex structure, we may identify +$\bC^{\infty}$ with $\bR^{\infty}\oplus\bR^{\infty}\iso \bR^{\infty}$ and so regard a complex +$n$-plane in $\bC^{\infty}$ as +an oriented $2n$-plane in $\bR^{\infty}$. Similarly, we may complexify real bundles fiberwise +and so obtain a natural transformation $c: \sE_n(-)\rtarr \sE U_n(-)$. It is represented by a +map $c: BO(n)\rtarr BU(n)$. Explicitly, identifying $\bC^{\infty}$ with +$\bR^{\infty}\ten_{\bR}{\bC}$, we may complexify an $n$-plane in $\bR^{\infty}$ to obtain an +$n$-plane in $\bC^{\infty}$. + +The Thom space\index{Thom space!of a complex bundle} of a complex or oriented real vector bundle +is the Thom space of its underlying real vector bundle. We obtain characteristic classes in +cohomology with any coefficients by +applying cohomology operations to Thom classes, but it is rarely the case that the resulting +characteristic classes generate all characteristic classes: the cases $H^*(BO(n);\bZ_2)$ and +$H^*(BSO(n);\bZ_2)$ are exceptional. Characteristic classes constructed in this fashion satisfy +homotopy invariance properties that fail for general characteristic classes. + +In the complex case, with integral coefficients, we have a parallel to our second +approach to Stiefel-Whitney classes that leads to a description of $H^*(BU(n);\bZ)$ in +terms of Chern classes. We may embed $(S^1)^n = U(1)^n$ in $U(n)$ as the +subgroup of diagonal matrices. The classifying space $BU(1)$ is $\bC P^{\infty}$, +and we obtain a map +$$\om: (\bC P^{\infty})^n \htp B(U(1)^n) \rtarr BU(n) $$ +upon passage to classifying spaces. The symmetric group $\SI_n$ is contained in $U(n)$ +as the subgroup of permutation matrices, and the diagonal subgroup $U(1)^n$ is closed +under conjugation by symmetric matrices. Application of the classifying space functor +to conjugation by permutation matrices induces the corresponding permutation of the factors +of $BU(1)^n$, and it induces the identity map on $BU(n)$. + +By the K\"unneth theorem, we see that +$$H^*((\bC P^{\infty})^n;\bZ) += \ten_{i=1}^n H^*(\bC P^{\infty};\bZ) =\bZ[\be_1,\ldots\!,\be_n],$$ +where the generators $\be_i$ are of degree two. The symmetric group $\SI_n$ acts on this +cohomology ring by permuting the variables $\be_i$. The subring +$H^*((\bC P^{\infty})^n;\bZ)^{\SI_n}$ of elements invariant under +the action is the polynomial algebra on the elementary symmetric functions +$\si_i$, $1\leq i\leq n$, in the variables $\be_i$. Here +$$\si_i = \textstyle{\sum} \be_{j_1}\cdots\be_{j_i},\ \ 1\leq j_1 < \cdots < j_n,$$ +has degree $2i$. The induced map $\om^*: H^*(BU(n);\bZ)\rtarr H^*((\bC P^{\infty})^n;\bZ)$ +takes values in $H^*((\bC P^{\infty})^n;\bZ)^{\SI_n}$. The resulting map +$$\om^*: H^*(BU(n);\bZ)\rtarr H^*((\bC P^{\infty})^n;\bZ)^{\SI_n}$$ +is a ring homomorphism between polynomial algebras on generators of the same degrees. It +turns out to be a monomorphism and thus an isomorphism when tensored with any field, and it is +therefore an isomorphism. We define the Chern classes by letting $c_i$, $1\leq i\leq n$, be the +unique element such that $\om^*(c_i)=\si_i$. + +\begin{thm} For $n\geq 1$, there are elements $c_i\in H^{2i}(BU(n);\bZ)$, $i\geq 0$, called the +Chern classes.\index{Chern classes} They satisfy and are uniquely characterized by the following +axioms. +\begin{enumerate} +\item $c_0=1$ and $c_i = 0$ if $i>n$. +\item $c_1$ is the canonical generator of $H^2(BU(1);\bZ)$ when $n=1$. +\item $i_n^*(c_i)=c_i$. +\item $p_{m,n}^*(c_i) = \sum_{j=0}^i c_j\ten c_{i-j}$. +\end{enumerate} +The integral cohomology $H^*(BU(n);\bZ)$ is the polynomial algebra $\bZ[c_1,\ldots\!,c_n]$. +\end{thm} + +Here we take axiom 1 as a definition and we interpret axiom 2 as meaning that $c_1$ +corresponds to the identity map of $\bC P^{\infty}$ under the canonical identification of +$[\bC P^{\infty},\bC P^{\infty}]$ with $H^2(\bC P^{\infty};\bZ)$. Axioms 3 and 4 can +be read off from algebraic properties of elementary symmetric functions. The theorem admits +an immediate interpretation in terms of characteristic classes. Observe that, since $H^*(BU(n);\bZ)$ +is a free Abelian group, the theorem remains true precisely as stated with $\bZ$ replaced by any +other commutative ring of coefficients $R$. We continue to write $c_i$ for the image of $c_i$ +in $H^*(BU(n);R)$ under the homomorphism induced by the unit $\bZ\rtarr R$ of the ring $R$. + +The reader deserves to be warned about a basic inconsistency in the literature. + +\begin{rem} With the discussion above, $c_1(\ga_1^{n+1})$ is the canonical generator of +$H^2(\bC P^n;\bZ)$, where $\ga_1^{n+1}$ is the canonical line bundle +\index{canonical line bundle} of lines in $\bC^{n+1}$ +and points on the line. This is the standard convention in algebraic topology. In algebraic +geometry, it is more usual to define Chern classes so that the first Chern class of the dual +of $\ga_1^{n+1}$ is the canonical generator of $H^2(\bC P^n;\bZ)$. With this convention, the +$n$th Chern class would be $(-1)^nc_n$. It is often unclear in the literature which convention +is being followed. +\end{rem} + +Turning to oriented real vector bundles, we define the Pontryagin and Euler classes as +follows, taking cohomology with coefficients in any commutative ring $R$. + +\begin{defn} Define the Pontryagin classes\index{Pontryagin classes} $p_i\in H^{4i}(BO(n);R)$ by +$$p_i = (-1)^ic^*(c_{2i}),$$ +$c^*: H^{4i}(BU(n);R)\rtarr H^{4i}(BO(n);R)$; also write $p_i$ for +$\pi_n^*(p_i)\in H^{4i}(BSO(n);R)$. +\end{defn} + +\begin{defn} Define the Euler class\index{Euler class} $e(\xi)\in H^n(B;R)$ of an $R$-oriented +$n$-plane bundle +$\xi$ over the base space $B$ by $e(\xi)=\PH^{-1}\mu^2$, where $\mu\in H^n(T\xi;R)$ is the Thom +class. Giving the universal oriented $n$-plane bundle over $BSO(n)$ the $R$-orientation +induced by its integral orientation, this defines the Euler class $e\in H^n(BSO(n);R)$. +\end{defn} + +If $n$ is odd, then $2\mu^2=0$ and thus $2e=0$. If $R=\bZ_2$, then $Sq^n(\mu)=\mu^2$ and +thus $e=w_n$. The name ``Euler class'' is justified by the following classical result, +which well illustrates the kind of information that characteristic numbers can +encode.\footnote{See Corollary 11.12 of Milnor and Stasheff {\em Characteristic Classes} +for a proof.} + +\begin{thm} If $M$ is a smooth closed oriented manifold, then the characteristic number +$e[M]=\langle e(\ta(M)),z\rangle\in \bZ$ is the Euler characteristic\index{Euler characteristic} +of $M$. +\end{thm} + +The evident inclusion $T^n \iso SO(2)^n\rtarr SO(2n)$ is a maximal torus, and it induces +a map $BT^n\rtarr BSO(2n)$. A calculation shows that $e$ restricts to the $n$th +elementary symmetric polynomial $\be_1\cdots\be_n$. The cited inclusion factors through +the homomorphism $U(n)\rtarr SO(2n)$, hence $BT^n\rtarr BSO(2n)$ factors through +$r: BU(n)\rtarr BSO(2n)$. This implies another basic fact about the Euler class. + +\begin{prop} $r^*: H^*(BSO(2n);\bZ)\rtarr H^*(BU(n);\bZ)$ sends $e$ to $c_n$. +\end{prop} + +The presence of $2$-torsion makes the description of the integral cohomology rings of $BO(n)$ +and $BSO(n)$ quite complicated, and these rings are almost never used in applications. +Rather, one uses the mod $2$ cohomology rings and the following description of the cohomology +rings that result by elimination of $2$-torsion. + +\begin{thm} Take coefficients in a ring $R$ in which $2$ is a unit. Then +$$H^*(BO(2n)) \iso H^*(BO(2n+1))\iso H^*(BSO(2n+1)) \iso R[p_1,\ldots\!,p_n]$$ +and +$$H^*(BSO(2n))\iso R[p_1,\ldots\!,p_{n-1},e], \, \, \text{with}\, \, e^2=p_n.$$ +\end{thm} + +\section{A glimpse at the general theory} + +We should place the theory of vector bundles in a more general context. We have +written $BO(n)$, $BU(n)$, and $BSO(n)$ for certain ``classifying spaces'' in this +chapter, but we defined a classifying space $BG$ for any topological group +$G$ in Chapter 16 \S5. In fact, the spaces here are homotopy equivalent to the spaces of +the same name that we defined there, and we here explain why. + +Consider bundles $\xi: Y\rtarr B$ with fiber $G$. For spaces $U$ in a numerable open cover +$\sO$ of $B$, there are homeomorphisms $\ph: U\times G\rtarr p^{-1}(U)$ such +that $p\com \ph= \pi_1$. We say that $Y$ is a principal $G$-bundle +\index{principal G-bundle@principal $G$-bundle} if $Y$ has a free +right action by $G$, $B$ is the orbit space $Y/G$, $\xi$ is the quotient map, and the +$\ph$ are maps of right $G$-spaces. We say that $\xi: Y\rtarr B$ is a universal +principal $G$-bundle\index{universal principal G-bundle@universal principal $G$-bundle} +if $Y$ is a contractible space. In particular, for any topological group $G$ +whose identity element is a nondegenerate basepoint, such as any Lie group $G$, the map +$p: EG\rtarr BG$ constructed in Chapter 16 \S5 is a universal principal $G$-bundle. The +classification +theorem below implies that the base spaces of any two universal principal $G$-bundles are +homotopy equivalent, and it is usual to write $BG$ for any space\index{classifying space} +in this homotopy type. Observe that the long exact sequence of homotopy groups of a universal +principal $G$-bundle gives isomorphisms $\pi_q(BG)\iso \pi_{q-1}(G)$ for $q\geq 1$. + +We have implicitly constructed other examples of universal principal $G$-bundles when +$G$ is $O(n)$, $U(n)$, or $SO(n)$. To see this, consider $V_n(\bR^q)$. +Write $\bR^q=\bR^n\times \bR^{q-n}$ and note that this fixes embeddings of $O(n)$ and +$O(q-n)$ in the orthogonal group $O(q)$. Of course, $O(q)$ acts on vectors in $\bR^q$ +and thus on $n$-frames. Consider the fixed $n$-frame $x_0=\sset{e_1,\ldots\!,e_n}$. Any other +$n$-frame can be obtained from this one by the action of an element of $O(q)$, and +the isotropy group of $x_0$ is $O(q-n)$. Thus the action of $O(q)$ is transitive, and +evaluation on $x_0$ induces a homeomorphism $O(q)/O(q-n) \rtarr V_n(\bR^q)$ of $O(q)$-spaces. +The action of $O(n)\subset O(q)$ is free, and passage to orbits gives a homeomorphism +$O(q)/O(n)\times O(q-n) \rtarr G_n(\bR^q)$. It is intuitively clear and not hard to prove +that the colimit over $q$ of the inclusions $O(q-n)\rtarr O(q)$ is a homotopy equivalence +and that this implies the contractibility of $V_n(\bR^{\infty})$. We deduce that +$V_n(\bR^{\infty})$ is a universal principal $O(n)$-bundle. We have analogous universal +principal $U(n)$-bundles and $SO(n)$-bundles. + +There is a classification theorem\index{classification theorem!for principal $G$-bundles} for +principal $G$-bundles. Let $\sP G(B)$\index{PG(B)@$\sP G(B)$} denote the set +of equivalence classes of principal $G$-bundles over $B$, where two principal $G$-bundles +over $B$ are equivalent if there is a $G$-homeomorphism over $B$ between them. +Via pullback of bundles, this is a contravariant set-valued functor on the homotopy category +of spaces. + +\begin{thm} Let $\ga: Y\rtarr Y/G$ be any universal principal $G$-bundle. The natural +transformation $\PH: [-,Y/G]\rtarr \sP G(-)$ obtained by sending the +homotopy class of a map $f: B\rtarr Y/G$ to the equivalence class of the principal +$G$-bundle $f^*Y$ is a natural isomorphism of functors. +\end{thm} + +Now let $F$ be any space on which $G$ acts effectively from the left. Here an action +is effective\index{effective group action} if $gf=f$ for every $f\in F$ implies $g=e$. For a principal +$G$-bundle $Y$, let $G$ act on $Y\times F$ by $g(y,f)=(yg^{-1},gf)$ and let $Y\times_G F$ be the +orbit space $(Y\times F)/G$. With the correct formal definition of a fiber bundle +with group $G$ and fiber $F$, every such fiber bundle $p: E \rtarr B$ is equivalent to +one of the form $Y\times_G F\rtarr Y/G\iso B$ for some principal $G$-bundle $Y$ over $B$; +moreover $Y$ is uniquely determined up to equivalence. + +In fact, the ``associated principal +$G$-bundle''\index{associated principal $G$-bundle} $Y$ can be constructed +as the function space of all maps $\ps:F\rtarr E$ such that $\ps$ is an admissible +homeomorphism onto some fiber $F_b=p^{-1}(b)$. Here admissibility means that the composite +of $\ps$ with the homeomorphism $F_b\rtarr F$ determined by a coordinate chart +$\ph: U\times F\overto{\iso} p^{-1}(U)$, $b\in U$, coincides with action by some element +of $G$. The left action of $G$ on $F$ induces a right action of $G$ on $Y$; this action +is free because the given action on $F$ is effective. The projection $Y\rtarr B$ +sends $\ps$ to $b$ when $\ps: F\overto{\iso} F_b$, and it factors through a homeomorphism +$Y/G\rtarr B$. $Y$ inherits local triviality from $p$, and the evaluation map $Y\times F\rtarr E$ +induces an equivalence of bundles $Y\times_G F\rtarr E$. + +We conclude that, for any $F$, $\sP G(B)$ +is naturally isomorphic to the set of equivalence classes of bundles with group $G$ and fiber +$F$ over $B$. Fiber bundles with group $O(n)$ and fiber $\bR^n$ are real $n$-plane bundles, +fiber bundles with group $U(n)$ and fiber $\bC^n$ are complex $n$-plane bundles, and fiber +bundles with group $SO(n)$ and fiber $\bR^n$ are oriented real $n$-plane bundles. Thus the +classification theorems of the previous sections could all be rederived as special cases +of the general classification theorem for principal $G$-bundles stated in this section. + +In our discussion of Stiefel-Whitney and Chern classes, we used that passage to +classifying spaces is a product-preserving functor, at least up to homotopy. +For the functoriality, if $f: G\rtarr H$ is a homomorphism of topological groups, then +consideration of the way bundles are constructed by gluing together coordinate charts shows +that a principal $G$-bundle $\xi: Y\rtarr B$ naturally gives rise to a principal $H$-bundle +$f_*Y\rtarr B$. This construction is represented on the classifying space level by a map +$Bf: BG\rtarr BH$. + +In fact, if $EG\rtarr BG$ and $EH\rtarr BH$ are universal principal +bundles, then any map $\tilde{f}: EG\rtarr EH$ such that $\tilde{f}(xg)=\tilde{f}(x)f(g)$ +for all $x\in EG$ and $g\in G$ induces a map in the homotopy class $Bf$ on passage to orbits. +For example, if $f: G\rtarr G$ is given by conjugation by $\ga\in G$, $f(g) = \ga^{-1}g\ga$, +then $\tilde{f}(x) = x\ga$ satisfies this equivariance property and therefore $Bf$ is homotopic +to the identity. This explains why inner conjugations induce the identity map on passage to +classifying spaces, as we used in our discussion of Stiefel-Whitney and Chern classes. + +If $EG\rtarr BG$ and $EG'\rtarr BG'$ are universal principal $G$ and $G'$ bundles, then +$EG\times EG'$ is a contractible space with a free action by $G\times G'$. The orbit +space is $BG\times BG'$, and this shows that $BG\times BG'$ is a choice for the +classifying space $B(G\times G')$ and is therefore homotopy equivalent to any other choice. + +The explicit construction of $BG$ given in Chapter 16 \S5 is functorial in $G$ on the point-set +level and not just up to homotopy, and it is product preserving in the strong sense that +the projections induce a homeomorphism $B(H\times G)\iso BH\times BG$. + +\vspace{.1in} + +\begin{center} +PROBLEMS +\end{center} +\begin{enumerate} +\item Verify that $w(\bR P^q)=1$ if and only if $q=2^k-1$ for some $k$. +\item Prove that $\bR P^{2^k}$ cannot immerse in $\bR^{2^{k+1}-2}$. (By the Whitney embedding +theorem, any smooth closed $n$-manifold immerses in $\bR^{2n-1}$, so this is a best possible +non-immersion result.) +\item Prove that all tangential Stiefel-Whitney numbers of $\bR P^{q}$ are zero if and only +if $q$ is odd. +\item* Try to construct a smooth compact manifold whose boundary is $\bR P^{3}$. +\item Prove that a smooth closed $n$-manifold $M$ is $R$-orientable if and only its tangent +bundle is $R$-orientable. +\end{enumerate} + +\chapter{An introduction to $K$-theory} + +The first generalized cohomology theory to be discovered was $K$-theory, and it plays a +vital role in the connection of algebraic topology to analysis and algebraic geometry. +The fact that it is a generalized cohomology theory is a consequence of the Bott +periodicity theorem, which is one of the most important and influential theorems in all of +topology. We give some basic information about $K$-theory and, following Adams and +Atiyah, we explain how the Adams operations in $K$-theory allow a quick solution to the +``Hopf invariant one problem.'' One implication is the purely algebraic theorem that the +only possible dimensions +of a real (not necessarily associative) division algebra are 1, 2, 4, and 8. We shall only +discuss complex $K$-theory, although there is a precisely analogous construction of real +$K$-theory $KO$. From the point of view of algebraic topology, real $K$-theory is a +substantially more powerful invariant, but complex $K$-theory is usually more relevant to +applications in other fields. + +\section{The definition of $K$-theory} + +Except where otherwise noted, we work with complex vector bundles throughout this chapter. +Dimension will mean complex dimension and line bundles will mean complex line bundles. +We consider the set $Vect(X)$\index{Vect(X)@$Vect(X)$} of equivalence classes of vector bundles +over a space $X$. We assume unless otherwise specified that $X$ is compact. We remind the reader +that vector bundles can have different dimension over different components of $X$. The set +$Vect(X)$ forms an Abelian monoid (= semi-group) under Whitney sum, and it forms a semi-ring +with multiplication given by the (internal) tensor product of vector bundles over $X$. + +There is a standard construction, called the Grothendieck construction,\index{Grothendieck +construction} +of an Abelian group $G(M)$ associated to an Abelian monoid $M$: one takes the quotient of +the free Abelian group generated by the elements of $M$ by the subgroup generated by the +set of elements of the form $m+n-m\oplus n$, where $\oplus$ is the sum in $M$. The evident +morphism of Abelian monoids $i: M\rtarr G(M)$ is universal: for any homomorphism of monoids +$f: M\rtarr G$, where $G$ is an Abelian group, there is a unique homomorphism of groups +$\tilde{f}: G(M)\rtarr G$ such that $\tilde{f}\com i=f$. If $M$ is a semi-ring, then its +multiplication induces a multiplication on $G(M)$ such that $G(M)$ is a ring, called the +Grothendieck ring\index{Grothendieck ring} of $M$. If the semi-ring $M$ is commutative, then +the ring $G(M)$ is commutative. + +\begin{defn} The $K$-theory\index{K-theory@$K$-theory} of $X$, denoted $K(X)$,\index{K(X)@$K(X)$} +is the Grothendieck ring of the +semi-ring $Vect(X)$. An element of $K(X)$ is called a virtual bundle\index{virtual bundle} over $X$. +We write $[\xi]$ for the element of $K(X)$ determined by a vector bundle $\xi$. +\end{defn} + +Since $\epz$ is the identity element for the product in $K(X)$, it is standard to write +$q=[\epz^q]$, where $\epz^q$ is the $q$-dimensional trivial bundle. For vector bundles +over a based space $X$, we have the function $d: Vect(X)\rtarr \bZ$ that sends a vector +bundle to the dimension of its restriction to the component of the basepoint $*$. Since +$d$ is a homomorphism of semi-rings, it induces a dimension function\index{dimension function} +$d: K(X)\rtarr \bZ$, which is a homomorphism of rings. Since $d$ is an isomorphism +when $X$ is a point, $d$ can be identified with the induced map $K(X)\rtarr K(*)$. + +\begin{defn} The reduced $K$-theory\index{K-theory@$K$-theory!reduced} +$\tilde{K}(X)$\index{K(X)a@$\tilde K(X)$} of a based +space $X$ is the kernel +of $d: K(X)\rtarr \bZ$. It is an ideal of $K(X)$ and thus a ring without identity. +Clearly $K(X)\iso \tilde{K}(X)\times \bZ$. +\end{defn} + +We have a homotopical interpretation of these definitions, and it is for this that we +need $X$ to be compact. By the classification +theorem, we know that $\sE U_n(X)$ is naturally isomorphic to $[X_+,BU(n)]$; we have +adjoined a disjoint basepoint because we are thinking cohomologically and want the +brackets to denote based homotopy classes of maps. We have maps $i_n: BU(n)\rtarr BU(n+1)$. +With our construction of classifying spaces via Grassmannians, these maps are inclusions, +and we define $BU$ to be the colimit of the $BU(n)$, with the topology of the union. + +We say that bundles $\ze$ and $\xi$ are stably equivalent\index{stably equivalent bundles} if, +for a sufficiently large $q$, +the bundles $\ze\oplus \epz^{q-m}$ and $\xi\oplus \epz^{q-n}$ are equivalent, where +$m=d(\ze)$ and $n=d(\xi)$. Let $\sE U(X)$\index{EU(X)@$\sE U(X)$} be the set of stable +equivalence classes of vector +bundles over $X$. If $X$ is connected, or if we restrict attention to vector bundles that are +$n$-plane bundles for some $n$, then $\sE U$ is isomorphic to $\colim \sE U_n(X)$, where the +colimit is taken over the maps $\sE U_n(X)\rtarr \sE U_{n+1}(X)$ obtained by sending a bundle +$\xi$ to $\xi\oplus \epz$. Since a map from a compact space $X$ into $BU$ has image in one of the +$BU(n)$, and similarly for homotopies, we see that in this case $[X_+,BU]\iso \colim [X_+,BU(n)]$ +and therefore +$$\sE U(X)\iso [X_+,BU].$$ + +A deeper use of compactness gives the following basic fact. + +\begin{prop} If $\xi:E\rtarr X$ is a vector bundle over $X$, then there is a +bundle $\et$ over $X$ such that $\xi\oplus \et$ is equivalent to $\epz^q$ for some $q$. +\end{prop} +\begin{proof}[Sketch proof] +The space $\GA E$ of sections of $E$ is a vector space under fiberwise addition +and scalar multiplication. Using a partition of unity argument, one can show that there +is a finite dimensional vector subspace $V$ of $\GA(E)$ such that the map $g: X\times V\rtarr E$ +specified by $g(x,s)=s(x)$ is an epimorphism of bundles over $X$. The resulting short exact +sequence of vector bundles, like any other short exact sequence of vector bundles, splits as a +direct sum, and the conclusion follows. +\end{proof} + +\begin{cor} Every virtual bundle over $X$ can be written in the form $[\xi] - q$ for some +bundle $\xi$ and non-negative integer $q$. +\end{cor} +\begin{proof} +Given a virtual bundle $[\om] -[\ze]$, where $\om$ and $\ze$ are bundles, choose $\et$ such that +$\ze\oplus \et \iso \epz^q$ and let $\xi = \om\oplus \et$. Then $[\om] -[\ze] = [\xi] - q$ in $K(X)$. +\end{proof} + +\begin{cor} +There is a natural isomorphism $\sE U(X)\rtarr \tilde{K}(X)$. +\end{cor} +\begin{proof} +Writing $\sset{\xi}$ for the stable equivalence class of a bundle $\xi$, the required +isomorphism is given by the correspondence $\sset{\xi} \leftrightarrow [\xi] - d(\xi)$. +\end{proof} + +\begin{cor} Give $\bZ$ the discrete topology. For compact spaces $X$, there is a +natural isomorphism +$$K(X)\iso [X_+,BU\times \bZ].$$ +For nondegenerately based compact spaces $X$, there is a natural isomorphism +$$ \tilde{K}(X)\iso [X,BU\times \bZ].$$ +\end{cor} +\begin{proof} +When $X$ is connected, the first isomorphism sends $[\xi]-q$ to $(f,n-q)$, where $\xi$ is +an $n$-plane bundle with classifying map $f: X \rtarr BU(n)\subset BU$. The isomorphism +for non-connected spaces follows since both functors send disjoint unions to Cartesian +products. The second isomorphism follows from the first since $d: K(X)\rtarr \bZ$ can be +identified with the map $[X_+,BU\times \bZ]\rtarr [S^0,BU\times \bZ]$ induced by the +cofibration $S^0\rtarr X_+$, and the latter has kernel $[X,BU\times \bZ]$ since $X_+/S^0=X$. +\end{proof} + +For general, non-compact, spaces $X$, it is best to define $K$-theory to mean represented +$K$-theory. Here we implicitly apply CW approximation, or else use the definition in the +following form. + +\begin{defn}\index{K-theory@$K$-theory!represented} For a space $X$ of the homotopy type +of a CW complex, define +$$ K(X) = [X_+,BU\times \bZ].$$ +For a nondegenerately based space of the homotopy type of a CW complex, define +$$ \tilde{K}(X) = [X,BU\times \bZ].$$ +\end{defn} + +When $X$ is compact, we know that $K(X)$ is a ring. It is natural to expect this to remain +true for general $X$. That this is the case is a direct consequence of the following result, +which the reader should regard as an aside. + +\begin{prop} +The space $BU\times \bZ$ is a ring space\index{ring space} up to homotopy. That is, there are +additive and +multiplicative $H$-space structures on $BU\times \bZ$ such that the associativity, +commutativity, and distributivity diagrams required of a ring commute up to homotopy. +\end{prop} +\begin{proof}[Indications of proof] +By passage to colimits over $m$ and $n$, the maps $p_{m,n}: BU(m)\times BU(n) \rtarr BU(m+n)$ +induce an ``addition'' $\oplus: BU\times BU\rtarr BU$. In fact, we +can define $BU$ in terms of planes in any copy of $\bC^{\infty}$, and the explicit maps +$p_{m,n}$ of Chapter 23 \S2 pass to colimits to give +$$G_{\infty}(\bC^{\infty})\times G_{\infty}(\bC^{\infty}) +\rtarr G_{\infty}(\bC^{\infty}\oplus\bC^{\infty});$$ +use of an isomorphism $\bC^{\infty}\oplus\bC^{\infty}\iso \bC^{\infty}$ gives the required +map $\oplus$, which is well defined, associative, and commutative up to homotopy; the +zero-dimensional plane provides a convenient basepoint $0$ with which to check that we have a zero +element up to homotopy. Using ordinary addition on $\bZ$, we obtain the additive $H$-space +structure on $BU\times \bZ$. Tensor products of universal bundles give rise to classifying maps +$q_{m,n}: BU(m)\times BU(n)\rtarr BU(mn)$. These do not pass to colimits so readily, since one +must take into account the bilinearity of the tensor product, for example the relation +$(\ga_m\oplus\epz)\ten \ga_n \iso (\ga_m\ten\ga_n)\oplus \ga_n$, and we merely affirm that, by +fairly elaborate arguments, one can pass to colimits to obtain a product on $BU\times \bZ$. +It actually factors through the smash product with respect to the basepoint $0$, since that +acts as zero for the tensor product, and it restricts to an $H$-space structure on +$BO\times \sset{1}$ with basepoint $(0,1)$. +\end{proof} + +The study of ring spaces such as this is a relatively new, and quite deep, part of algebraic +topology. However, the reader should feel reasonably comfortable with the additive +$H$-space structure on $BU$. + +\section{The Bott periodicity theorem} + +There are various ways to state, and various ways to prove, this basic result. We describe +several versions and implications. One starting point is the following calculation. +We have a canonical line bundle $\ga_1^2$ over $S^2\iso \bC P^1$; its points are pairs +$(L,x)$, where $L$ is a line in $\bC^2$ and $x$ is a point on that line. We let +$H=\Hom(\ga_1^2,\epz)$ denote its dual. + +\begin{thm} $K(S^2)$ is generated as a ring by $[H]$ subject +to the single relation $([H]-1)^2=0$. Therefore, as Abelian groups, +$K(S^2)$ is free on the basis $\sset{1,[H]}$ and $\tilde{K}(S^2)$ +is free on the basis $\sset{1-[H]}$. +\end{thm} +\begin{proof}[Indication of proof] +We think of $S^2$ as the one-point compactification of $\bC$ decomposed as the +union of the unit disk $D$ and the complement $D'$ of the interior of $D$, so that +$D\cap D'=S^1$. Any $n$-plane bundle over $S^2$ restricts to a trivial bundle +over $D$ and $D'$, and these trivial bundles restrict to the same bundle over $S^1$. Conversely, +an isomorphism $f$ from the trivial bundle over $S^1$ to itself gives a way to glue together the +trivial bundles over $D$ and $D'$ to reconstruct a bundle over $S^2$. Say that two such +``clutching functions''\index{clutching function} $f$ are equivalent if the bundles +they give rise to are equivalent. +A careful analysis of the form of the possible clutching functions $f$ leads to a canonical +example in each equivalence class and thus to the required calculation. +\end{proof} + +For any pair of spaces $X$ and $Y$, we have a K\"unneth-type ring homomorphism\index{Kunneth +map@K\"unneth map} +$$\al: K(X)\ten K(Y)\rtarr K(X\times Y)$$ +specified by $\al(x\ten y) = \pi_1^*(x)\pi_2^*(y)$. + +\begin{thm}[Bott periodicity]\index{Bott periodicity} For compact spaces $X$, +$$\al: K(X)\ten K(S^2) \rtarr K(X\times S^2)$$ +is an isomorphism. +\end{thm} +\begin{proof}[Indication of proof] +The restrictions to $X\times D$ and $X\times D'$ of a bundle over $X\times S^2$ are +equivalent to pullbacks of bundles over $X$, and their further restrictions to $S^1$ +are equivalent. Conversely, bundles $\ze$ and $\xi$ over $X$ together with an +equivalence $f$ between the restrictions to $X\times S^1$ of the pullbacks of +$\ze$ and $\xi$ to $X\times D$ and $X\times D'$ determine a bundle over $X\times S^2$. +Again, a careful analysis, which is similar to that in the special case when $X=pt$, +of the equivalence classes of the possible clutching data $(\ze,f,\xi)$ +leads to the conclusion. +\end{proof} + +The following useful observation applies to any representable functor, not just $K$-theory. + +\begin{lem} For nondegenerately based spaces $X$ and $Y$, the +projections of $X\times Y$ on $X$ and on $Y$ and the quotient map $X\times Y\rtarr X\sma Y$ +induce a natural isomorphism +$$\tilde K(X\sma Y)\oplus \tilde K(X) \oplus \tilde K(Y) \iso \tilde K(X\times Y),$$ +and $\tilde K(X\sma Y)$ is the kernel of the map +$\tilde K(X\times Y)\rtarr \tilde K(X)\oplus \tilde K(Y)$ +induced by the inclusions of $X$ and $Y$ in $X\times Y$. +\end{lem} +\begin{proof} +The inclusion $X\wed Y\rtarr X\times Y$ is a cofibration with quotient $X\sma Y$, and $X$ and +$Y$ are retracts of $X\times Y$ via the inclusions and projections. +\end{proof} + +It follows easily that the K\"unneth map\index{Kunneth +map@K\"unneth map} $\al: K(X)\ten K(Y)\rtarr K(X\times Y)$ induces a +reduced K\"unneth map $\be: \tilde K(X)\ten \tilde K(Y)\rtarr \tilde K(X\sma Y)$. We have +a splitting +$$ \tilde K(X)\ten \tilde K(Y) \oplus \tilde K(X) \oplus \tilde K(Y) \oplus \bZ \iso K(X)\ten K(Y)$$ +that is compatible with the splitting of the lemma. Therefore the following reduced form of the +Bott periodicity theorem is equivalent to the unreduced form that we have already stated. + +\begin{thm}[Bott periodicity]\index{Bott periodicity} For nondegenerately based compact spaces $X$, +$$\be: \tilde K(X)\ten \tilde K(S^2) \rtarr \tilde K(X\sma S^2) = \tilde K(\SI^2 X)$$ +is an isomorphism. +\end{thm} + +Write $b=1-[H]\in\tilde K(S^2)$. Since $\tilde K(S^2)\iso \bZ$ with generator $b$, the theorem +implies that multiplication by the ``Bott element'' $b$ specifies an isomorphism +$$[X,BU\times \bZ]\iso \tilde K(X) \rtarr \tilde K(\SI^2 X)\iso [X,\OM^2(BU\times \bZ)]$$ +for nondegenerately based compact spaces $X$. Here the addition in the source and target is derived +from the natural additive $H$-space structure on $BU\times \bZ$ on the left and the displayed +double loop space on the right. If we had this isomorphism for general non-compact +spaces $X$, we could apply it with $X=BU\times \bZ$ and see that it is induced by a homotopy +equivalence of $H$-spaces +$$\be: BU\times \bZ \rtarr \OM^2(BU\times\bZ).$$ +In fact, one can deduce such a homotopy equivalence from the Bott periodicity theorem as just +stated, but there are more direct proofs. On the right, the double loop space obviously depends +only on the basepoint component $BU=BU\times\sset{0}$. Since $\pi_2(BU)=\bZ$, a little argument +with $H$-spaces shows that $\OM^2(BU\times \bZ)$ is equivalent as an $H$-space to +$(\OM^2_0 BU)\times \bZ$, where $\OM^2_0 BU$ denotes the component of the basepoint in +$\OM^2 BU$. Using the identity function on the factor $\bZ$, we see that what is +needed is an equivalence of $H$-spaces $\be: BU\rtarr \OM^2_0 BU$. In fact, it is easily deduced +from the form of Bott periodicity that, up to homotopy, $\be$ must be the adjoint of the composite +$$\xymatrix{ +\SI^2 BU = BU\sma S^2 \ar[r]^-{\id\sma b} & BU\sma BU \ar[r]^-{\ten} & BU.}$$ + +The infinite unitary group $U$ is defined to be the union of the unitary groups $U(n)$, where +$U(n)$ is embedded in $U(n+1)$ as matrices with last row and column zero except for $1$ on the +diagonal. Then $\OM BU$ is homotopy equivalent as an $H$-space to $U$. Since $\pi_1(U)=\bZ$ and +the universal cover of $U$ is the infinite special unitary group $SU$, $\OM U$ is equivalent as +an $H$-space to $(\OM SU)\times \bZ$. Therefore $\be$ may be viewed as a map +$BU\rtarr \OM SU$. Bott's original proof of the Bott periodicity theorem used the Grassmannian +model for $BU$ to write down an explicit map $\be$ in the required homotopy class and then used +Morse theory to prove that $\be$ is a homotopy equivalence. + +Bott's map $\be$ can also be proved to be a homotopy equivalence using only +basic algebraic topology. Since $BU$ and $\OM SU$ are simply connected spaces of the homotopy types +of CW complexes, a relative version of the Hurewicz theorem called the Whitehead +theorem\index{Whitehead theorem} shows that +$\be$ will be a weak equivalence and therefore a homotopy equivalence if it induces an isomorphism +on integral homology. Since $H^*(BU(n))=\bZ[c_1,\ldots\!,c_n]$, $H^*(BU)\iso \bZ[c_i|i\geq 1]$. The +$H$-space structure on $BU$ is induced by the maps $p_{m,n}$, and we find that the map +$\ps: H^*(BU)\rtarr H^*(BU\times BU)\iso H^*(BU)\ten H^*(BU)$ +induced by the product is given by $\ps(c_k)=\sum_{i+j=k}c_i\ten c_j$. A purely algebraic +dualization argument proves that, as a ring, +$$H_*(BU)\iso \bZ[\ga_i|i\geq 1],$$ +where $\ga_i$ is the image of a generator of $H_{2i}(\bC P^{\infty})$ under the map +induced by the inclusion of $\bC P^{\infty}=BU(1)$ in $BU$. One can calculate $H_*(\OM SU)$ +and see that it too is a polynomial algebra with an explicitly given generator in each +even degree. A direct inspection of the map $\be$ shows that it carries generators to generators. + +In any case, it should now be clear that we have a periodic $\OM$-prespectrum and therefore +a generalized cohomology theory represented by it. + +\begin{defn} The $K$-theory $\OM$-prespectrum $KU$\index{KU@$KU$} has spaces +$KU_{2i} = BU\times \bZ$ and +$KU_{2i+1}=U$ for all $i\geq 0$. The structure maps are given by the canonical homotopy +equivalence $U\htp \OM BU = \OM(BU\times \bZ)$ and the Bott equivalence $BU\times \bZ\htp \OM U$. +\end{defn} + +We have a resulting reduced cohomology theory\index{K-theory@$K$-theory!periodic} on based +spaces such that +$\tilde K^{2i}(X) = \tilde K(X)$ and $\tilde K^{2i+1}(X) = \tilde K(\SI X)$ +for all integers $i$. This theory has products that are induced by tensor products +of bundles over compact spaces and that are induced by suitable maps +$\ph: KU_i\sma KU_j\rtarr KU_{i+j}$ in general, just as for the cup product in +ordinary cohomology. It is standard to view this simply as a $\bZ_2$-graded +theory with groups $\tilde K^0(X)$ and $\tilde K^1(X)$. + +\section{The splitting principle and the Thom isomorphism} + +Returning to our bundle theoretic construction of $K$-theory, with $X$ compact, we describe +briefly some important generalizations of the Bott periodicity theorem. The reader should recall the +Thom isomorphism theorem in ordinary cohomology from Chapter 23 \S5. We let $\xi: E\rtarr X$ be an +$n$-plane bundle over $X$, fixed throughout this section. (We shall use the letters $E$ and $\xi$ +more or less interchangeably.) Results for general vector bundles over non-connected spaces $X$ +can be deduced by applying the results to follow to one component of $X$ at a time. + +\begin{defn} Let $E_0$ be the zero section of $E$. Define +the projective bundle\index{projective bundle} $\pi: P(E)\rtarr X$ by letting the non-zero +complex numbers +act on $E-E_0$ by scalar multiplication on fibers and taking the orbit space under this action. +Equivalently, the fiber $\pi^{-1}(x)\subset P(E)$ is the complex projective space of lines +through the origin in the fiber $\xi^{-1}(x)\subset E$. +Define the canonical line bundle $L(E)$ over $P(E)$ to be the subbundle of the pullback +$\pi^*E$ of $\xi$ along $\pi$ whose points are the pairs consisting of a line in a fiber of $E$ +and a point on that line. Let $Q(E)$ be the quotient bundle $\pi^*E/L(E)$ and let $H(E)$ denote +the dual of $L(E)$. +\end{defn} + +Observe that $P(\epz^2)=X\times \bC P^1$ is the trivial bundle over $X$ with fiber +$\bC P^1\iso S^2$. The first version of Bott periodicity generalizes, with essentially +the same proof by analysis of clutching data, to the following version. Regard $K(P(E))$ +as a $K(X)$-algebra via $\pi^*: K(X)\rtarr K(P(E))$. + +\begin{thm}[Bott periodicity]\index{Bott periodicity} Let $L$ be a line bundle over $X$ +and let $H=H(L\oplus \epz)$. Then the $K(X)$-algebra $K(P(L\oplus\epz))$ is generated by the +single element $[H]$ subject to the single relation $([H]-1)([L][H]-1)=0$. +\end{thm} + +There is a further generalization to arbitrary bundles $E$. To place it in context, we shall +first explain a cohomological analogue that expresses a different approach to the Chern classes +than the one that we sketched before. It will be based on a generalization to projective bundles +of the calculation of $H^*(\bC P^n)$. The proofs of both results are intertwined with the proof +of the following ``splitting principle,'' which allows the deduction of explicit formulas about +general bundles from formulas about sums of line bundles. + +\begin{thm}[Splitting principle]\index{splitting principle} +There is a compact space $F(E)$ and a map $p: F(E)\rtarr X$ such that $p^*E$ is a +sum of line bundles over $F(E)$ and both $p^*: H^*(X;\bZ)\rtarr H^*(F(E);\bZ)$ and +$p^*: K(X)\rtarr K(F(E))$ are monomorphisms. +\end{thm} + +This is an easy inductive consequence of the following result, which we shall refer +to as the ``splitting lemma.'' + +\begin{lem}[Splitting lemma]\index{splitting lemma} +Both $\pi^*: H^*(X;\bZ)\rtarr H^*(P(E);\bZ)$ and +$\pi^*: K(X)\rtarr K(P(E))$ are monomorphisms. +\end{lem} + +\begin{proof}[Proof of the splitting principle] +The pullback $\pi^*E$ splits as the sum $L(E)\oplus Q(E)$. (The splitting is canonically +determined by a choice of a Hermitian metric on $E$.) Applying this construction +to the bundle $Q(E)$ over $P(E)$, we obtain a map +$\pi: P(Q(E))\rtarr P(E)$ with similar properties. We obtain the desired map +$p: F(E)\rtarr X$ by so reapplying the projective bundle construction $n$ times. +Explicitly, using a Hermitian metric on $E$, we find that the fiber $F(E)_x$ is the +space of splittings of the fiber $E_x$ as a sum of $n$ lines, +and the points of the bundle $p^*E$ are $n$-tuples of vectors in given lines. +The splitting lemma implies the desired monomorphisms on cohomology and $K$-theory. +\end{proof} + +\begin{thm} +Let $x=c_1(L(E))\in H^2(P(E);\bZ)$. Then $H^*(P(E);\bZ)$ is the free $H^*(X;\bZ)$-module +on the basis $\sset{1,x,\ldots\!,x^{n-1}}$, and the Chern classes\index{Chern classes} of +$\xi$ are characterized +by $c_0(\xi)=1$ and the formula +$$\sum_{k=0}^n(-1)^kc_k(E)x^{n-k}=0.$$ +\end{thm} +\begin{proof}[Sketch proof] +This is another case where the Serre spectral sequence shows that the bundle behaves +cohomologically as if it were trivial and the K\"unneth theorem applied. This gives +the structure of $H^*(P(E))$ as an $H^*(X)$-module. In particular, it implies the +splitting lemma and thus the splitting principle in ordinary cohomology. It also implies +that there must be some description of $x^n$ as a linear combination of the $x^k$ for $k1$. The definition of $ch$ implies that the component $ch_n$ of +$ch$ in degree $2n$ is $c_n/(n-1)!$ plus terms decomposable in terms of the $c_i$ for +$i 1$. The exterior powers\index{exterior powers} of +bundles satisfy the relation +$$\la^k(\xi\oplus \et)= \oplus_{i+j=k}\la^i(\xi)\ten \la^j(\et).$$ +It follows formally that the $\la^k$ extend to operations $K(X)\rtarr K(X)$. Indeed, +form the group $G$ of power series with constant coefficient $1$ in the ring $K(X)[[t]]$ +of formal power series in the variable $t$. We define a function from (equivalence +classes of) vector bundles to this Abelian group by setting +$$\LA(\xi)=1 + \la^1(\xi)t +\cdots + \la^k(\xi)t^k +\cdots.$$ +Visibly, this is a morphism of monoids, +$$\LA(\xi\oplus\et) = \LA(\xi)\LA(\et).$$ +It therefore extend to a homomorphism of groups $\LA: K(X)\rtarr G$, and we let $\la^k(x)$ +be the coefficient of $t^k$ in $\LA(x)$. + +We define the $\ps^k$ as suitable polynomials in the $\la^k$. Recall that the subring of +symmetric polynomials in the polynomial algebra $\bZ[x_1,\ldots\!,x_n]$ is the polynomial +algebra $\bZ[\si_1,\ldots\!,\si_n]$, where $\si_i=x_1x_2\cdots x_i+\cdots$ is the +$i$th elementary symmetric function. We may write the power sum $\pi_k=x_1^k+\cdots+x_n^k$ +as a polynomial +$$\pi_k = Q_k(\si_1,\ldots\!,\si_k)$$ +in the first $k$ elementary symmetric functions. Provided $n\geq k$, $Q_k$ does not +depend on $n$. We define +$$\ps^k(x) = Q_k(\la^1(x),\ldots\!, \la^k(x)).$$ +For example, $\pi_2=\si_1^2-2\si_2$, hence $\ps^2(x)=x^2-2\la^2(x)$. The naturality of +the $\ps^k$ is clear from the naturality of the $\la^k$. + +If $\xi$ is a line bundle, then $\la^1(\xi)=\xi$ and $\la^k(\xi)=0$ for $k\geq 2$. +Clearly $\si^k_1 = \pi_k + \text{other terms}$ and $\pi_k$ does not occur as a +summand of any other monomial in the $\si_i$. Therefore $Q_k \equiv \si_1^k$ modulo +terms in the ideal generated by the $\si_i$ for $i>1$. This immediately implies +property 4. Moreover, if $\xi_1,\ldots\!,\xi_n$ are line bundles, then +\begin{eqnarray*} +\LA (\xi_1\oplus \cdots \oplus \xi_n) & = & (1+\xi_1t)\cdots(1+\xi_nt) \\ + & = & 1+\si_1(\xi_1,\ldots\!,\xi_n)t+\si_2(\xi_1,\ldots\!,\xi_n)t^2 + \cdots. +\end{eqnarray*} +This implies the generalization of property 4 to sums of line bundles: +\begin{enumerate} +\item[$4'$] $\ps^k(\xi_1\oplus\cdots\oplus \xi_n)= \pi_k(\xi_1,\ldots\!, \xi_n)$ for +line bundles $\xi_i$. +\end{enumerate} +Now, if $x$ and $y$ are sums of line bundles, the following formulas are immediate: +$$ \ps^k(x+y) = \ps^k(x)+\ps^k(y), \ \ \ps^k(xy) = \ps^k(x)\ps^k(y),\ \ +\ps^k\ps^{\ell}(x)=\ps^{k\ell}(x) $$ +$$\text{and}\ \ \ps^p(x)\equiv x^p\ \text{mod}\ p \ \ \text{for a prime}\ p. $$ +For arbitrary bundles, these formulas follow directly from the splitting principle and +naturality, and they then follow formally for arbitrary virtual bundles. This completes +the proof of all properties except 5. We have that $\tilde{K}(S^2)$ is generated by +$1-[H]$, where $(1-[H])^2=0$. +Clearly $\ps^k(1-[H]) = 1-[H]^k$. By induction on $k$, $1-[H]^k=k(1-[H])$. +Since $S^{2n}=S^2\sma\cdots\sma S^2$ and $\tilde{K}(S^{2n})$ is generated by the $k$-fold +external tensor power $(1-[H])\ten\cdots\ten(1-[H])$, property 5 follows +from the fact that $\ps^k$ preserves products. + +\begin{rem} By the splitting principle, it is clear that the $\ps^k$ are the unique +natural and additive operations with the specified behavior on line bundles. +\end{rem} + +Two further properties of the $\ps^k$ should be mentioned. The first is a direct +consequence of the multiplicativity of the $\ps^k$ and their behavior on spheres. + +\begin{prop} +The following diagram does not commute for based spaces $X$, where $\be$ is the periodicity +isomorphism: +$$\diagram +\tilde K(X)\dto_{\ps^k} \rto^(0.43){\be} & \tilde K(\SI^2 X) \dto^{\ps^k}\\ +\tilde K(X) \rto_(0.43){\be} & \tilde K(\SI^2 X).\\ +\enddiagram$$ +Rather, $\ps^k\be=k\be \ps^k$. +\end{prop} + +Therefore the $\ps^k$ do not give stable operations on the $\bZ$-graded theory $K^*$. + +\begin{prop} +Define $\ps^k_H$ on $H^{even}(X;\bZ)$ by letting $\ps^k_H(x) = k^rx$ for $x\in H^{2r}(X;\bZ)$. +Then the following diagram commutes: +$$\diagram +K(X)\dto_{\ps^k} \rto^(0.35){ch} & H^{even}(X;\bQ)\dto^{\ps^k_H}\\ +K(X) \rto_(0.35){ch} & H^{even}(X;\bQ).\\ +\enddiagram$$ +\end{prop} +\begin{proof} +It suffices to prove this on vector bundles $E$. By the splitting principle in $K$-theory +and cohomology, we may assume that $E$ is a sum of line bundles. By additivity, we may +then assume that $E$ is a line bundle. Here $\ps^k(E)= E^k$ and $c_1(E^k) = kc_1(E)$. +The conclusion follows readily from the definition of $ch$ in terms of $e^t$. +\end{proof} + +\begin{rem} The observant reader will have noticed that, by analogy with the definition +of the Stiefel-Whitney classes, we can define characteristic +classes\index{characteristic classes!in $K$-theory} in $K$-theory +by use of the Adams operations and the Thom isomorphism, setting +$\rh^k(E) = \PH^{-1}\ps^k\PH(1)$ for $n$-plane bundles $E$. +\end{rem} + +\section{The Hopf invariant one problem and its applications} + +We give one of the most beautiful and impressive illustrations of the philosophy +described in the first chapter. We define a numerical invariant, called the ``Hopf invariant,'' +of maps $f: S^{2n-1}\rtarr S^n$ and show that it can only rarely take the value one. We then +indicate several problems whose solution can be reduced to the question of when such maps +$f$ take the value one. Adams' original solution to the Hopf invariant one problem used secondary +cohomology operations in ordinary cohomology and was a critical starting point of modern algebraic +topology. The later realization that a problem that required secondary operations in ordinary +cohomology could be solved much more simply using primary operations in $K$-theory had a +profound impact on the further development of the subject. + +Take cohomology with integer coefficients unless otherwise specified. + +\begin{defn} Let $X$ be the cofiber of a based map $f: S^{2n-1}\rtarr S^n$, where $n\geq 2$. +Then $X$ is a CW complex with a single vertex, a single $n$-cell $i$, and a single $2n$-cell $j$. +The differential in the cellular chain complex of $X$ is zero for obvious dimensional +reasons, hence $\tilde H^*(X)$ is free Abelian on generators $x=[i]$ and $y=[j]$. +Define an integer $h(f)$, the Hopf invariant\index{Hopf invariant} of $f$, by $x^2 = h(f) y$. +We usually regard $h(f)$ as defined only up to sign (thus ignoring problems of orientations of +cells). Note that $h(f)$ depends only on the homotopy class of $f$. +\end{defn} + +If $n$ is odd, then $2x^2 = 0$ and thus $x^2=0$. We assume from now on that $n$ is even. +Although not essential to the main point of this section, we record the following basic +properties of the Hopf invariant. + +\begin{prop} The Hopf invariant enjoys the following properties. +\begin{enumerate} +\item If $g: S^{2n-1}\rtarr S^{2n-1}$ has degree $d$, then $h(f\com g) = dh(f)$. +\item If $e: S^n\rtarr S^n$ has degree $d$, then $h(e\com f)=d^2h(f)$. +\item The Hopf invariant defines a homomorphism $\pi_{2n-1}(S^n)\rtarr \bZ$. +\item There is a map $f: S^{2n-1}\rtarr S^n$ such that $h(f)=2$. +\end{enumerate} +\end{prop} +\begin{proof} +We leave the first three statements to the reader. For property 4, let +$\pi: D^n\rtarr D^n/S^{n-1}\iso S^n$ be the quotient map and define +$$f: S^{2n-1}\iso (D^n\times S^{n-1})\cup (S^{n-1}\times D^n)\rtarr S^n$$ +by $f(x,y)= \pi(x)$ and $f(y,x)=\pi(x)$ for $x\in D^n$ and $y\in S^{n-1}$. +We leave it to the reader to verify that $h(f)=2$. +\end{proof} + +We have adopted the standard definition of $h(f)$, but we could just as well have +defined it in terms of $K$-theory. To see this, consider the cofiber sequence +$$ S^{2n-1} \overto{f} S^n\overto{i} X \overto{\pi} S^{2n} \overto{\SI f} S^{n+1}.$$ +Obviously $i^*: H^n(X)\rtarr H^n(S^n)$ and $\pi^*: H^{2n}(S^{2n})\rtarr H^{2n}(X)$ +are isomorphisms. We have the commutative diagram with exact rows +$$\diagram +0 \rto & \tilde K(S^{2n}) \dto_{ch} \rto^{\pi^*} & \tilde K(X) \dto^{ch} \rto^{i^*} +& \tilde K(S^n) \dto^{ch}\rto & 0\\ +0 \rto & \tilde H^{**}(S^{2n};\bQ) \rto_{\pi^*} & \tilde H^{**}(X;\bQ) \rto_{i^*} +& \tilde H^{**}(S^n;\bQ) \rto & 0.\\ +\enddiagram$$ +Here the top row is exact since $\tilde K^1(S^n)=0$ and $\tilde K^1(S^{2n})=0$. The vertical +arrows are monomorphisms since they are rational isomorphisms. By a lemma in the previous +section, generators $i_n$ of $\tilde K(S^n)$ and $i_{2n}$ of $\tilde K(S^{2n})$ map under +$ch$ to generators of $H^n(S^n)$ and $H^{2n}(S^{2n})$. Choose $a\in \tilde K(X)$ such that +$i^*(a) = i_n$ and let $b=\pi^*(i_{2n})$. Then $\tilde K(X)$ is the free Abelian group on +the basis $\sset{a,b}$. Since $i_n^2=0$, we have $a^2=h'(f)b$ for some integer $h'(f)$. +The diagram implies that, up to sign, $ch(b)= y$ and $ch(a) = x+ qy$ for some rational +number $q$. Since $ch$ is a ring homomorphism and since $y^2=0$ and $xy=0$, we conclude +that $h'(f)=h(f)$. + +\begin{thm} If $h(f)=\pm 1$, then $n = 2$, $4$, or $8$. +\end{thm} +\begin{proof} +Write $n=2m$. Since $\ps^k(i_{2n})=k^{2m} i_{2n}$ and $\ps^k(i_n) = k^m i_n$, we have +$$\ps^k(b)=k^{2m} b \ \ \tand \ \ \ps^k(a) = k^m a + \mu_k b$$ +for some integer $\mu_k$. Since $\ps^2(a)\equiv a^2\ \text{mod}\ 2$, $h(f)=\pm 1$ implies +that $\mu_2$ is odd. Now, for any odd $k$, +\begin{eqnarray*} +\ps^k\ps^2(a) & = & \ps^k(2^m a + \mu_2 b) \\ +& = & k^m2^ma +(2^m\mu_k + k^{2m}\mu_2) b +\end{eqnarray*} +while +\begin{eqnarray*} +\ps^2\ps^k(a) & = & \ps^2(k^m a + \mu_k b) \\ +& = & 2^mk^ma + (k^m\mu_2 + 2^{2m} \mu_k) b. +\end{eqnarray*} +Since these must be equal, we find upon equating the coefficients of $b$ that +$$2^m(2^m-1)\mu_k = k^m(k^m-1)\mu_2.$$ +If $\mu_2$ is odd, this implies that $2^m$ divides $k^m-1$. Already with $k=3$, an +elementary number theoretic argument shows that this implies $m=1$, $2$, or $4$. +\end{proof} + +This allows us to determine which spheres can admit an $H$-space structure. Recall +from a problem in Chapter 18 that $S^{2m}$ cannot be an $H$-space. Clearly $S^n$ +is an $H$-space for $n=0$, $1$, $3$, and $7$: view $S^n$ as the unit sphere in the +space of real numbers, complex numbers, quaternions, or Cayley numbers. + +\begin{thm} +If $S^{n-1}$ is an $H$-space,\index{Hspace@$H$-space} then $n=1$, $2$, $4$, or $8$. +\end{thm} + +The strategy of proof is clear: given an $H$-space structure on $S^{n-1}$, we construct +from it a map $f: S^{2n-1}\rtarr S^n$ of Hopf invariant one. The following construction +and lemma do this and more. + +\begin{con}[Hopf construction]\index{Hopf construction} Let +$\ph: S^{n-1}\times S^{n-1}\rtarr S^{n-1}$ be a map. +Let $CX=(X\times I)/(X\times\sset{1})$ be the unreduced cone functor and note that we have +canonical homeomorphisms of pairs +$$(D^n,S^{n-1}) \iso(CS^{n-1},S^{n-1})$$ +and +\begin{eqnarray*} +(D^{2n},S^{2n-1}) & \iso & (D^n\times D^n,(D^n\times S^{n-1})\cup (S^{n-1}\times D^n))\\ + & \iso & (CS^{n-1}\times CS^{n-1},(CS^{n-1}\times S^{n-1})\cup (S^{n-1}\times CS^{n-1})). +\end{eqnarray*} +Take $S^n$ to be the unreduced suspension of $S^{n-1}$, with the upper and lower hemispheres +$D^n_+$ and $D^n_-$ corresponding to the points with suspension coordinate $1/2\leq t\leq 1$ +and $0\leq t\leq 1/2$, respectively. Define +$$f: S^{2n-1}\iso (CS^{n-1}\times S^{n-1})\cup (S^{n-1}\times CS^{n-1}) \rtarr S^n$$ +as follows. Let $x,y\in S^{n-1}$ and $t\in I$. On $CS^{n-1}\times S^{n-1}$, $f$ is the composite +$$CS^{n-1}\times S^{n-1} \overto{\al} C(S^{n-1}\times S^{n-1}) \overto{C \ph} C S^{n-1} +\overto{\be} D^n_-,$$ +where $\al([x,t],y)=[(x,y),t]$ and $\be([x,t])=[x,(1-t)/2]$. On $S^{n-1}\times CS^{n-1}$, +$f$ is the composite +$$S^{n-1}\times CS^{n-1} \overto{\al'} C(S^{n-1}\times S^{n-1}) \overto{C \ph} C S^{n-1} +\overto{\be'} D^n_+,$$ +where $\al'(x,[y,t])=[(x,y),t]$ and $\be'([x,t])=[x,(1+t)/2]$. The map $f$, or +rather the resulting $2$-cell complex $X=S^n\cup_f D^{2n}$, is called the Hopf construction +on $\ph$. +\end{con} + +Giving $S^{n-1}$ a basepoint, we obtain inclusions of $S^{n-1}$ onto the first and second +copies of $S^{n-1}$ in $S^{n-1}\times S^{n-1}$. The bidegree\index{bidegree of a map} of a map +$\ph: S^{n-1}\times S^{n-1}\rtarr S^{n-1}$ is the pair of integers given by the two +resulting composite maps $S^{n-1}\rtarr S^{n-1}$. Thus $\ph$ gives $S^{n-1}$ an $H$-space +structure if its bidegree is $(1,1)$. + +\begin{lem} +If the bidegree of $\ph: S^{n-1}\times S^{n-1}\rtarr S^{n-1}$ is $(d_1,d_2)$, then the Hopf +invariant of the Hopf construction on $\ph$ is $\pm d_1d_2$. +\end{lem} +\begin{proof} +Making free use of the homeomorphisms of pairs specified in the construction, we see that the +diagonal map of $X$, its top cell $j$, evident quotient maps, and projections $\pi_i$ onto +first and second coordinates give rise to a commutative diagram in which the maps marked +$\htp$ are homotopy equivalences and those marked $\iso$ are homeomorphisms: +$$\diagram +X \rto^{\DE} \dto & X\sma X \dto^{\htp} \\ +X/S^n \rto^{\DE} & X/D^n_+ \sma X/D^n_- \\ +S^{2n}\iso D^{2n}/S^{2n-1} \drto_{\iso} \rto^(0.3){\DE} \uto_j^{\iso} +& (D^n\times D^n)/(S^{n-1}\times D^n) \sma (D^n\times D^n)/(D^n\times S^{n-1}) + \uto_{j\sma j} \dto_{\htp}^{\pi_1\sma\pi_2} \\ + & D^n/S^{n-1} \sma D^n/S^{n-1}\iso S^n\sma S^n. \\ +\enddiagram$$ +The cup square of $x\in H^n(X)$ is the image under $\DE^*$ of the external product of $x$ with +itself. The maps on the left induce isomorphisms on $H^{2n}$. The inclusions of $D^n$ +in the $i$th factor of $D^n\times D^n$ induce homotopy inverses +$$\io_1: D^n/S^{n-1}\rtarr (D^n\times D^n)/(S^{n-1}\times D^n)$$ +and +$$\io_2: D^n/S^{n-1} \rtarr (D^n\times D^n)/(D^n\times S^{n-1})$$ +to the projections $\pi_i$ in the diagram, and it suffices to prove that, up to sign, the +composites +$$j\com \io_1: D^n/S^{n-1}\rtarr X/D^n_+ \tand j\com\io_2: D^n/S^{n-1}\rtarr X/D^n_-$$ +induce multiplication by $d_1$ and by $d_2$ on $H^n$. However, by construction, these maps +factor as composites +$$D^n/S^{n-1}\overto{\ga_1}S^n/D^n_+\rtarr X/D^n_+ \tand +D^n/S^{n-1}\overto{\ga_2}S^n/D^n_-\rtarr X/D^n_-,$$ +where, up to signs and identifications of spheres, $\ga_1$ and $\ga_2$ are the suspensions +of the restrictions of $\ph$ to the two copies of $S^{n-1}$ in $S^{n-1}\times S^{n-1}$. +\end{proof} + +The determination of which spheres are $H$-spaces has the following implications. + +\begin{thm}\index{products on $\bR^n$} +Let $\om: \bR^n\times \bR^n\rtarr \bR^n$ be a map with a two-sided identity element +$e\neq 0$ and no zero divisors. Then $n=1$, $2$, $4$, or $8$. +\end{thm} +\begin{proof} +The product restricts to give $\bR^n-\sset{0}$ an $H$-space structure. Since $S^{n-1}$ +is homotopy equivalent to $\bR^n-\sset{0}$, it inherits an $H$-space structure. +Explicitly, we may assume that $e\in S^{n-1}$, by rescaling the metric, and we give +$S^{n-1}$ the product $\ph: S^{n-1}\times S^{n-1}\rtarr S^{n-1}$ specified by +$\ph(x,y)=\om(x,y)/|\om(x,y)|$. +\end{proof} + +Note that $\om$ need not be bilinear, just continuous. Also, it need not have a strict +unit; all that is required is that $e$ be a two-sided unit up to homotopy for the +restriction of $\om$ to $\bR^n-\sset{0}$. + +\begin{thm} +If $S^{n}$ is parallelizable,\index{parallelizable spheres} then $n=0$, $1$, $3$, or $7$. +\end{thm} +\begin{proof} +Exclude the trivial case $n=0$ and suppose that $S^{n}$ is parallelizable, so that its +tangent bundle $\ta$ is trivial. We will show that $S^{n}$ is an $H$-space. Define +a map $\mu: \ta \rtarr S^{n}$ as follows. Think of the tangent plane $\ta_x$ as +affinely embedded in $\bR^{n+1}$ with origin at $x$. We have a parallel translate of +this plane to an affine plane with origin at $-x$. Define $\mu$ by sending a tangent +vector $y\in \ta_x$ to the intersection with $S^{n}$ of the line from $x$ to the +translate of $y$. Composing with a trivialization $S^{n}\times\bR^n\iso \ta$, this +gives a map $\mu: S^{n}\times\bR^n\rtarr S^n$. Let $S^n_{\infty}$ be the one-point +compactification of $\bR^n$. Extend $\mu$ to a map $\ph: S^n\times S^n_{\infty}\rtarr S^n$ +by letting $\ph(x,\infty)=x$; $\ph$ is continuous since $\mu(x,y)$ approaches $x$ as +$y$ approaches $\infty$. By construction, $\infty$ is a right unit for this product. +For a fixed $x$, $y\rtarr \ph(x,y)$ is a degree one homeomorphism +$S^n_{\infty}\rtarr S^n_{\infty}$. The conclusion follows. +\end{proof} + +\chapter{An introduction to cobordism} + +Cobordism theories were introduced shortly after $K$-theory, and their use pervades +modern algebraic topology. We shall describe the cobordism of smooth closed manifolds, +but this is in fact a particularly elementary example. Other examples include smooth +closed manifolds with extra structure on their stable normal bundles: orientation, complex +structure, Spin structure, or symplectic structure for example. All of these except the +symplectic case have been computed completely. The complex case is particularly important +since complex cobordism and theories constructed from it have been of central importance in +algebraic topology for the last few decades, quite apart from their geometric origins +in the classification of manifolds. The area is pervaded by insights from algebraic +topology that are quite mysterious geometrically. For example, the complex cobordism groups +turn out to be concentrated in even degrees: every smooth closed manifold of odd dimension with +a complex structure on its stable normal bundle is the boundary of a compact manifold (with +compatible bundle information). However, there is no geometric understanding of why this +should be the case. The analogue with ``complex'' replaced by ``symplectic'' is false. + +\section{The cobordism groups of smooth closed manifolds} + +We consider the problem of classifying smooth closed $n$-manifolds $M$. One's first +thought is to try to classify them up to diffeomorphism, but that problem is in principle +unsolvable. Thom's discovery that one can classify such manifolds up to the weaker +equivalence relation of ``cobordism''\index{cobordism} is one of the most beautiful advances of +twentieth +century mathematics. We say that two smooth closed $n$-manifolds $M$ and $N$ are +cobordant\index{cobordant manifolds} +if there is a smooth compact manifold $W$ whose boundary is the disjoint union of $M$ and $N$, +$\pa W = M\amalg N$. We write $\sN_n$\index{Naa@$\sN_n$} for the set of cobordism classes of +smooth closed $n$-manifolds. It is convenient to allow the empty set $\emptyset$ as an $n$-manifold +for every $n$. Disjoint union gives an addition on the set $\sN_n$. This operation +is clearly associative and commutative and it has $\emptyset$ as a zero element. Since +$$\pa(M\times I) =M\amalg M,$$ +$M\amalg M$ is cobordant to $\emptyset$. Thus $M=-M$ and $\sN_n$ is a vector space over $\bZ_2$. +Cartesian product of manifolds defines a multiplication $\sN_m\times \sN_n\rtarr \sN_{m+n}$. +This operation is bilinear, associative, and commutative, and the zero dimensional manifold with a +single point provides an identity element. We conclude that $\sN_*$ is a graded $\bZ_2$-algebra. + +\begin{thm}[Thom]\index{Thom cobordism theorem} $\sN_*$ is a polynomial algebra over +$\bZ_2$ on generators $u_i$ of dimension +$i$ for $i > 1$ and not of the form $2^r-1$. +\end{thm} + +As already stated in our discussion of Stiefel-Whitney numbers, it follows from the proof of +the theorem that a manifold is a boundary if and only if its normal Stiefel-Whitney numbers +are zero. We can restate this as follows.\index{Stiefel-Whitney numbers} +\index{Stiefel-Whitney numbers!tangential}\index{Stiefel-Whitney numbers!normal} + +\begin{thm} Two smooth closed $n$-manifolds are cobordant if and only if their normal +Stiefel-Whitney numbers, or equivalently their tangential Stiefel-Whitney numbers, are equal. +\end{thm} + +Explicit generators $u_i$ are known. Write $[M]$ for the cobordism class of a manifold $M$. +Then we can take $u_{2i}=[\bR P^{2i}]$. We have seen that the Stiefel-Whitney numbers of +$\bR P^{2i-1}$ are zero, so we need different generators in odd dimensions. For $mq$, where $\ga_q^r$ is +the restriction of the universal bundle $\ga_q$ to the compact manifold $G_q(\bR^r)$. +By an implication of Sard's theorem known as the transversality\index{transversality} theorem, +we can deform the +restriction of $g$ to $g^{-1}(T\ga_q^r-\sset{\infty})=g^{-1}(E(\ga_q^r))$ so as to obtain a +homotopic map that is smooth and transverse to the zero section. This use of transversality +is the crux of the proof of the theorem. It follows that the inverse image +$g^{-1}(G_q(\bR^r))$ is a smooth closed $n$-manifold embedded in $\bR^{n+q}=S^{n+q}-\sset{\infty}$. +It is intuitively plausible that homotopic maps $g_i: S^{n+q}\rtarr TO(q)$, $i=0,\, 1$, give rise +to cobordant $n$-manifolds by this construction. Indeed, with the $g_i$ smooth and transverse to +the zero section, we can approximate a homotopy between them by a homotopy $h$ which is smooth on +$h^{-1}(T(\ga_q^r)-\sset{\infty})$ and transverse to the zero section. Then +$h^{-1}(G_q(\bR^{r}))$ is a manifold whose boundary +is $g_0^{-1}(G_q(\bR^r))\amalg g_1^{-1}(G_q(\bR^r))$. +It is easy to verify that the resulting function $\be: \pi_{n+q}(TO(q))\rtarr \sN_n$ is a +homomorphism. + +If we start with a manifold $M$ embedded in $\bR^{n+q}$ and construct the classifying +map $f$ for its normal bundle to be the Gauss map described in our sketch proof of +the classification theorem in Chapter 23 \S1, then the composite $Tf\com t$ is smooth and +transverse to the zero section, and the inverse image of the zero section is exactly $M$. +This proves that $\be$ is an epimorphism. To complete the proof, it suffices to show that +$\be$ is a monomorphism. It will follow formally that $\al$ is well defined and inverse +to $\be$. + +Thus suppose given $g: S^{n+q}\rtarr T\ga_q^r$ such that $g^{-1}(E(\ga_q^r))$ +is smooth and transverse to the zero section and suppose that $M=g^{-1}(G_q(\bR^r))$ is +a boundary, say $M=\pa W$. The inclusion of $M$ in $S^{n+q}$ extends to a embedding of $W$ +in $D^{n+q+1}$, by the Whitney embedding theorem for manifolds with boundary (assuming as +always that $q$ is sufficiently large). We may assume that $U=g^{-1}(T\ga_q^r-\sset{\infty})$ +is a tubular neighborhood and that $g: U \rtarr E(\ga_q^r)$ is a map of vector bundles. +A relative version of the tubular neighborhood theorem then shows that $U$ can be extended to a +tubular neighborhood $V$ of $W$ in $D^{n+q+1}$ and that $g$ extends to a map of vector bundles +$h: V\rtarr E(\ga_q^r)$. We can then extend $h$ to a map $D^{n+q+1}\rtarr T(\ga_q^r)$ by mapping +$D^{n+q+1}-V$ to $\infty$. This extension of $g$ to the disk implies that $g$ is null homotopic. + +We must still define the ring structure on $\pi_*(TO)$ and prove that we have an isomorphism +of rings and therefore of $\bZ_2$-algebras. Recall that we have maps +$p_{m,n}: BO(m)\times BO(n)\rtarr BO(m+n)$ +such that $p_{m,n}^*(\ga_{m+n})=\ga_m\times \ga_n$. The Thom space $T(\ga_m\times\ga_n)$ is +canonically homeomorphic to the smash product $TO(m)\sma TO(n)$, and the bundle map +$\ga_m\times \ga_n \rtarr \ga_{m+n}$ induces a map $\ph_{m,n}: TO(m)\sma TO(n)\rtarr TO(m+n)$. +If we have maps $f: S^{m+q}\rtarr TO(m)$ and $g: S^{n+q}\rtarr TO(n)$, then we can compose +their smash product with $\ph_{m,n}$ to obtain a composite map +$$ S^{m+n+q+r}\iso S^{m+q}\sma S^{n+r} \overto{f\sma g} TO(m)\sma TO(n) +\overto{\ph_{m,n}} TO(m+n).$$ +We can relate the maps $\ph_{m,n}$ to the maps $\si_n$. In fact, $TO$ is a commutative and +associative ring prespectrum in the sense of the following definition. + +\begin{defn} Let $T$ be a prespectrum. Then $T$ is a ring prespectrum\index{ring prespectrum} +\index{prespectrum!ring} if there are maps +$\et: S^0 \rtarr T_0$ and $\ph_{m,n}: T_m\sma T_n\rtarr T_{m+n}$ such that the +following diagrams are homotopy commutative: +$$\diagram +T_m\sma\SI T_n \ddouble \rto^{\id\sma\si_n} & T_m\sma T_{n+1} \drto^{\ph_{m,n+1}} & \\ +\SI(T_m\sma T_n) \dto_{(-1)^n} \rto^(0.56){\SI\ph_{m,n}}& \SI T_{m+n} \rto^(0.44){\si_{m+n}} & T_{m+n+1} \\ +(\SI T_m)\sma T_n \rto_(0.5){\si_m\sma \id} & T_{m+1}\sma T_n \urto_{\ph_{m+1,n}} & \\ +\enddiagram$$ + +\vspace{.1in} + +$$\diagram +S^0\sma T_n \rto^{\et\sma\id} \drto_{\iso} +& T_0\sma T_n \dto^{\ph_{0,n}} \\ +& T_n\\ +\enddiagram +\ \ \ \ \text{and} \ \ \ \ +\diagram +T_n\sma T_0 \dto_{\ph_{n,0}} & T_n\sma S^0; \lto_{\id\sma \et} \dlto^{\iso}\\ +T_{n} & \\ +\enddiagram$$ +$T$ is associative if the following diagrams are homotopy commutative: +$$\diagram +T_m\sma T_n\sma T_p \dto_{\id\sma\ph_{n,p}}\rto^(0.53){\ph_{m,n}\sma\id} +& T_{m+n}\sma T_p \dto^{\ph_{m+n,p}} \\ +T_m\sma T_{n+p} \rto_{\ph_{m,n+p}} & T_{m+n+p}; \\ +\enddiagram$$ +$T$ is commutative if there are equivalences $(-1)^{mn}: T_{m+n}\rtarr T_{m+n}$ that suspend +to $(-1)^{mn}$ on $\SI T_{m+n}$ and if the following diagrams are homotopy commutative: +$$\diagram +T_m\sma T_n \dto_{\ph_{m,n}}\rto^{t} & T_n\sma T_m \dto^{\ph_{n,m}} \\ +T_{m+n} \rto_{(-1)^{mn}} & T_{m+n}.\\ +\enddiagram$$ +When $T$ is an $\OM$-prespectrum, we can restate this as $\ph_{m,n}\htp (-1)^{mn} \ph_{n,m}t$. +\end{defn} + +For example, the Eilenberg-Mac\,Lane $\OM$-prespectrum of a commutative ring $R$ is an +associative and commutative ring prespectrum by the arguments in Chapter 22 \S3. It is +denoted $HR$ or sometimes, by abuse, $K(R,0)$. Similarly, the $K$-theory $\OM$-prespectrum +is an associative and commutative ring prespectrum. The sphere prespectrum, whose $n$th space +is $S^n$, is another example. For $TO$, the required maps $(-1)^{mn}: TO(m+n)\rtarr TO(m+n)$ +are obtained by passage to Thom complexes from a map $\ga_{m+n}\rtarr \ga_{m+n}$ of universal +bundles given on the domains of coordinate charts by the evident interchange isomorphism +$\bR^{m+n}\rtarr \bR^{m+n}$. The following lemma is immediate by passage to colimits. + +\begin{lem} +If $T$ is an associative ring prespectrum, then $\pi_*(T)$ is a graded ring. If $T$ is +commutative, then $\pi_*(T)$ is commutative in the graded sense. +\end{lem} + +Returning to the case at hand, we show that the maps $\al$ for varying $n$ transport +products of manifolds to products in $\pi_*(TO)$. Thus let $M$ be an $m$-manifold embedded in +$\bR^{m+q}$ with tubular neighborhood $U\iso E(\nu_M)$ and $N$ be an +$n$-manifold embedded in $\bR^{n+r}$ with tubular neighborhood $V\iso E(\nu_N)$. Then $M\times N$ +is embedded in $\bR^{m+q+n+r}$ with tubular neighborhood $U\times V\iso E(\nu_{M\times N})$. +Identifying +$S^{m+q+n+r}$ with $S^{m+q}\sma S^{n+r}$, we find that the Pontryagin-Thom construction +for $M\times N$ is the smash product of the Pontryagin-Thom constructions for $M$ and $N$. That is, +the left square in the following diagram commutes. The right square commutes up to homotopy by the +definition of $\ph_{q,r}$. +$$\diagram +S^{m+q}\sma S^{n+r} \rto^{t\sma t} \ddouble & T\nu_m\sma T\nu_N \dto^{\iso} \rto +& TO(q)\sma TO(r) \dto^{\ph_{q,r}} \\ +S^{m+q+n+r} \rto_{t} & T(\nu_{M\times N}) \rto & TO(q+r).\\ +\enddiagram$$ +This implies the claimed multiplicativity of the maps $\al$. + +\section{Prespectra and the algebra $H_*(TO;\bZ_2)$} + +Calculation of the homotopy groups $\pi_*(TO)$ proceeds by first computing the +homology groups $H_*(TO;\bZ_2)$ and then showing that the stable Hurewicz homomorphism +maps $\pi_*(TO)$ monomorphically onto an identifiable part of $H_*(TO;\bZ_2)$. +We explain the calculation of homology groups in this section and the next, connect the +calculation with Stiefel-Whitney numbers in \S5, and describe how to complete the +desired calculation of homotopy groups in \S6. + +We must first define the homology groups of prespectra and the stable Hurewicz homomorphism. +Just as we defined the homotopy groups of a prespectrum $T$ by the formula +$$\pi_n(T)=\colim \pi_{n+q}(T_q),$$ +we define the homology and cohomology groups\index{prespectrum!homology groups of} +\index{prespectrum!cohomology groups of} of $T$ with respect to a +homology theory $k_*$ and cohomology theory $k^*$ on spaces by the formulas +$$k_n(T)=\colim \tilde{k}_{n+q}(T_q),$$ +where the colimit is taken over the maps +$$ \tilde{k}_{n+q}(T_q) \overto{\SI_*} \tilde{k}_{n+q+1}(\SI T_q) +\overto{{\si_q}_*} \tilde{k}_{n+q+1}(T_{q+1}),$$ +and +$$k^n(T) = \lim \tilde{k}^{n+q}(T_q),$$ +where the limit is taken over the maps +$$\tilde{k}^{n+q+1}(T_{q+1})\overto{\si^*_q} \tilde{k}^{n+q+1}(\SI T_q) +\overto{\SI^{-1}} \tilde{k}^{n+q}(T_q).$$ +In fact, this definition of cohomology is inappropriate in general, differing from +the appropriate definition by a ${\lim}^1$ error term. However, the definition is +correct when $k^*$ is ordinary cohomology with coefficients in a field $R$ and each +$\tilde{H}^{n+q}(T_q;R)$ is a finite dimensional vector space over $R$. This is the +only case that we will need in the work of this chapter. In this case, it is clear +that $H^n(T;R)$ is the vector space dual of $H_n(T;R)$, a fact that we shall use +repeatedly. + +Observe that there is no cup product in $H^*(T;R)$: the maps in the +limit system factor through the reduced cohomologies of suspensions, in which +cup products are identically zero (see Problem 5 at the end of Chapter 19). +However, if $T$ is an associative and commutative ring prespectrum, then the +homology groups $H_*(T;R)$ form a graded commutative $R$-algebra. + +The Hurewicz homomorphisms $\pi_{n+q}(T_q)\rtarr \tilde{H}_{n+q}(T_q;Z)$ pass to +colimits to give the stable Hurewicz homomorphism\index{Hurewicz homomorphism!stable} +$$h: \pi_n(T)\rtarr H_n(T;\bZ).$$ +We may compose this with the map $H_n(T;\bZ)\rtarr H_n(T;R)$ induced by the unit of +a ring $R$, and we continue to denote the composite by $h$. If $T$ is an associative +and commutative ring prespectrum, then $h: \pi_*(T)\rtarr H_*(T;R)$ is a map of graded +commutative rings. + +We shall write $H_*$ and $H^*$ for homology and cohomology with coefficients in $\bZ_2$ +throughout \S\S3--6, and we tacitly assume that all homology and cohomology groups +in sight are finite dimensional $\bZ_2$-vector spaces. Recall that we have Thom isomorphisms +$$\PH_q: H^n(BO(q))\rtarr \tilde{H}^{n+q}(TO(q))$$ +obtained by cupping with the Thom class $\mu_q\in \tilde{H}^q(TO(q))$. +Naturality of the Thom diagonal applied to the map of bundles $\ga_q\oplus\epz \rtarr \ga_{q+1}$ +gives the commutative diagram +$$\diagram +\SI TO(q) \rto^(0.4){\DE} \dto_{\si_q} & BO(q)_+\sma \SI TO(q) \dto^{i_q\sma \si_q}\\ +TO(q+1) \rto_(0.35){\DE} & BO(q+1)_+\sma TO(q+1).\\ +\enddiagram$$ +This implies that the following diagram is commutative: +$$\diagram +H^n(BO(q+1))\rrto^{i_q^*} \dto_{\PH_{q+1}} & & H^n(BO(q)) \dto^{\PH_q}\\ +\tilde{H}^{n+q+1}(TO(q+1))\rto_{\si^*_q} & \tilde{H}^{n+q+1}(\SI TO(q)) +\rto_{\SI^{-1}} & \tilde{H}^{n+q}(TO(q)).\\ +\enddiagram$$ +We therefore obtain a ``stable Thom isomorphism''\index{Thom isomorphism!stable} +$$\PH: H^n(BO)\rtarr H^n(TO)$$ +on passage to limits. We have dual homology Thom isomorphisms +$$\PH_n: \tilde{H}_{n+q}(TO(q))\rtarr H_n(BO(q))$$ +that pass to colimits to give a stable Thom isomorphism +$$\PH: H_n(T) \rtarr H_n(BO).$$ + +Naturality of the Thom diagonal applied to the map of bundles $\ga_q\oplus\ga_r \rtarr \ga_{q+r}$ +gives the commutative diagram +$$\diagram +TO(q)\sma TO(r) \ddto_{\ph_{q,r}} \rto^(0.33){\DE\sma\DE} +& BO(q)_+\sma TO(q)\sma BO(r)_+ \sma TO(r) \dto^{\id\sma t\sma \id}\\ +& (BO(q)\times BO(r))_+\sma TO(q)\sma TO(r) \dto^{(p_{q,r})_+\sma \ph_{q,r}} \\ +TO(q+r) \rto_(0.38){\DE} & BO(q+r)_+\sma TO(q+r). \\ +\enddiagram$$ +As we observed for $BU$ in the previous chapter, the maps $p_{q,r}$ pass to colimits to give +$BO$ an $H$-space structure, and it follows that $H_*(BO)$ is a $\bZ_2$-algebra. On passage +to homology and colimits, these diagrams imply the following conclusion. + +\begin{prop} The Thom isomorphism $\PH: H_*(TO)\rtarr H_*(BO)$ is an isomorphism of +$\bZ_2$-algebras. +\end{prop} + +The description of the $H^*(BO(n))$ and the maps $i_q^*$ in Chapter 23 \S2 implies that +$$H^*(BO)=\bZ_2[w_i|i\geq 1]$$ +as an algebra. However, we are more interested in its ``coalgebra''\index{coalgebra} structure, +which is given by the vector space dual +$$\ps: H^*(BO)\rtarr H^*(BO)\ten H^*(BO)$$ +of its product in homology. It is clear from the description of the $p_{q,r}^*$ that +$$\ps(w_k)=\sum_{i+j=k} w_i\ten w_j.$$ +From here, determination of $H_*(BO)$ and therefore $H_*(TO)$ as an algebra is a purely algebraic, +but non-trivial, problem in dualization. Let $i: \bR P^{\infty}=BO(1)\rtarr BO$ be the inclusion. +Let $x_i\in H_i(\bR P^{\infty})$ be the unique non-zero element and let $b_i=i_*(x_i)$. +Then the solution of our dualization problem takes the following form. + +\begin{thm} $H_*(BO)$ is the polynomial algebra $\bZ_2[b_i|i\geq 1]$. +\end{thm} + +Let $a_i\in H_i(TO)$ be the element characterized by $\PH(a_i) = b_i$. + +\begin{cor} +$H_*(TO)$ is the polynomial algebra $\bZ_2[a_i|i\geq 1]$. +\end{cor} + +Using the compatibility of the Thom isomorphisms for $BO(1)$ and $BO$, we see that the +$a_i$ come from $H_*(TO(1))$. Remember that elements of $H_{i+1}(TO(1))$ map to elements +of $H_i(TO)$ in the colimit; in particular, the non-zero element of $H_1(TO(1))$ maps to +the identity element $1\in H_0(TO)$. Recall from Chapter 23 \S6 that we have a homotopy equivalence +$j: \bR P^{\infty}\rtarr TO(1)$. + +\begin{cor} For $i\geq 0$, $j_*(x_{i+1})$ maps to $a_i$ in $H_*(TO)$, where $a_0=1$. +\end{cor} + +\section{The Steenrod algebra and its coaction on $H_*(TO)$} + +Since the Steenrod operations are stable and natural, they pass to limits to define +natural operations\index{prespectrum!Steenrod operations of} +$Sq^i: H^n(T)\rtarr H^{n+i}(T)$ for $i\geq 0$ and prespectra $T$. Here +$Sq^0=\id$, but it is not true that $Sq^i(x)=0$ for $i>\deg\,x$. For example, we have the +``stable Thom class''\index{Thom class!stable} $\PH(1)=\mu\in H^0(TO)$, and it is immediate +from the definition of the +Stiefel-Whitney classes that $\PH(w_i)=Sq^i(\mu)$. Of course, $Sq^i(1)=0$ for +$i>0$, so that $\PH$ does not commute with Steenrod operations. The homology and +cohomology of $TO$ are built up from $\pi_*(TO)$ and Steenrod operations. We need +to make this statement algebraically precise to determine $\pi_*(TO)$, and we need +to assemble the Steenrod operations into an algebra to do this. + +\begin{defn} The mod $2$ Steenrod algebra\index{Steenrod algebra} $A$ is the quotient +of the free associative +$\bZ_2$-algebra generated by elements $Sq^i$, $i\geq 1$, by the ideal generated by the +Adem relations (which are stated in Chapter 22 \S5). +\end{defn} + +The following lemmas should be clear. + +\begin{lem} For spaces $X$, $H^*(X)$ has a natural $A$-module structure. +\end{lem} + +\begin{lem} For prespectra $T$, $H^*(T)$ has a natural $A$-module structure. +\end{lem} + +The elements of $A$ are stable mod $2$ cohomology operations, and our description of the cohomology +of $K(\bZ_2,q)$s in Chapter 22 \S5 implies that $A$ is in fact the algebra of all stable mod $2$ cohomology +operations, with multiplication given by composition. Passage to limits over $q$ leads to the +following lemma. Alternatively, with the more formal general definitions of the next section, +it will become yet another application of the Yoneda lemma. Recall +that $H\bZ_2$ denotes the Eilenberg-Mac\,Lane $\OM$-prespectrum $\sset{K(\bZ_2,q)}$. + +\begin{lem} As a vector space, $A$ is isomorphic to $H^*(H\bZ_2)$. +\end{lem} + +We shall see how to describe the composition in $A$ homotopically in the next section. +What is more important at the moment is that the lemma allows us to read off a basis for $A$. + +\begin{thm} $A$ has a basis consisting of the operations $Sq^I = Sq^{i_1}\cdots Sq^{i_j}$, +where $I$ runs over the sequences $\sset{i_1,\ldots\!,i_j}$ of positive integers such that +$i_{r}\geq 2 i_{r+1}$ for $1\leq r < j$. +\end{thm} + +What is still more important to us is that $A$ not only has the composition product +$A\ten A\rtarr A$, it also has a coproduct $\ps: A\rtarr A\ten A$. Giving $A\ten A$ +its natural structure as an algebra, $\ps$ is the unique map of algebras specified +on generators by $\ps(Sq^k) = \sum_{i+j=k} Sq^i\ten Sq^j$. The fact that $\ps$ is a +well defined map of algebras is a formal consequence of the Cartan formula. Algebraic +structures like this, with compatible products and coproducts, are called +``Hopf algebras.''\index{Hopf algebra} + +We write $A_*$ for the vector space dual of $A$, and we give it the dual basis to +the basis just specified on $A$. While $A_*$ is again a Hopf algebra, we are +only interested in its algebra structure at the moment. In contrast with $A$, the algebra +$A_*$ is commutative, as is apparent from the form of the coproduct on the generators of $A$. +Recall that $H\bZ_2$ is an associative and commutative ring prespectrum, so that $H_*(H\bZ_2)$ +is a commutative $\bZ_2$-algebra. The definition of the product on $H\bZ_2$ (in Chapter 22 \S3) and +the Cartan formula directly imply the following observation. + +\begin{lem} $A_*$ is isomorphic as an algebra to $H_*(H\bZ_2)$. +\end{lem} + +We need an explicit description of this algebra. In principle, this is a matter of pure +algebra from the results already stated, but the algebraic work is non-trivial. + +\begin{thm} For $r\geq 1$, define $I_r=(2^{r-1}, 2^{r-2},\ldots\!, 2, 1)$ and define $\xi_r$ +to be the basis element of $A_*$ dual to $Sq^{I_r}$. Then $A_*$ is the polynomial algebra +$\bZ_2[\xi_r|r\geq 1]$. +\end{thm} + +We need a bit of space level motivation for the particular relevance of the elements $\xi_r$. +We left the computation of the Steenrod operations in $H^*(\bR P^{\infty})$ as an exercise, +and the reader should follow up by proving the following result. + +\begin{lem} In $H^*(\bR P^{\infty})=\bZ_2[\al]$, $Sq^{I_r}(\al)=\al^{2^r}$ for $r\geq 1$ +and $Sq^{I}(\al)=0$ for all other basis elements $Sq^I$ of $A$. +\end{lem} + +The $A$-module structure maps +$$A\ten H^*(X)\rtarr H^*(X) \ \ \tand \ \ A\ten H^*(T)\rtarr H^*(T)$$ +for spaces $X$ and prespectra $T$ dualize to give ``$A_*$-comodule''\index{comodule} structure maps +$$\ga: H_*(X)\rtarr A_*\ten H_*(X) \ \ \tand \ \ \ga: H_*(T)\rtarr A_*\ten H_*(T).$$ +We remind the reader that we are implicitly assuming that all homology and cohomology groups +in sight are finitely generated $\bZ_2$-vector spaces, although these ``coactions'' can in fact be +defined without this assumption. + +Formally, the notion of a comodule $N$ over a coalgebra $C$ +is defined by reversing the direction of arrows in a diagrammatic definition of a module over +an algebra. For example, for any vector space $V$, $C\ten V$ is a comodule with action +$$\ps\ten\id: C\ten V\rtarr C\ten C\ten V.$$ +Note that, dualizing the unit of an algebra, a $\bZ_2$-coalgebra is +required to have a counit $\epz: C\rtarr \bZ_2$. We understand all of these algebraic structures +to be graded, and we say that a coalgebra is connected if $C_i=0$ +for $i<0$ and $\epz: C_0\rtarr \bZ_2$ is an isomorphism. When considering the Hurewicz homomorphism +of $\pi_*(TO)$, we shall need the following observation. + +\begin{lem} Let $C$ be a connected coalgebra and $V$ be a vector space. +An element $y\in C\ten V$ satisfies $(\ps\ten\id)(y) = 1\ten y$ if and +only if $y\in C_0\ten V\iso V$. +\end{lem} + +If $V$ is a $C$-comodule with coaction $\nu: V\rtarr C\ten V$, +then $\nu$ is a morphism of $C$-comodules. Therefore the coaction maps $\ga$ above are maps of +$A_*$-comodules for any space $X$ or prespectrum $T$. We also need the following observation, +which is implied by the Cartan formula. + +\begin{lem} If $T$ is an associative ring prespectrum, then $\ga: H_*(T)\rtarr A_*\ten H_*(T)$ +is a homomorphism of algebras. +\end{lem} + +The lemma above on Steenrod operations in $H^*(\bR P^{\infty})$ dualizes as follows. + +\begin{lem} Write the coaction $\ga: H_*(\bR P^{\infty})\rtarr A_*\ten H_*(\bR P^{\infty})$ +in the form $\ga(x_i) = \sum_j a_{i,j}\ten x_j$. Then +$$ a_{i,1}= \left\{ \begin{array}{ll} +\xi_r & \mbox{if $i=2^r$ for some $r\geq 1$}\\ +0 & \mbox{otherwise.} +\end{array} \right. $$ +\end{lem} + +Note that $a_{i,i}=1$, dualizing $Sq^0(\al^i)=\al^i$. + +Armed with this information, we return to the study of the algebra $H_*(TO)$. +We know that it is isomorphic to $H_*(BO)$, but the crux of the matter is to +redescribe it in terms of $A_*$. + +\begin{thm} Let $N_*$ be the algebra defined abstractly by +$$N_*=\bZ_2[u_i|i>1 \tand i\neq 2^r-1],$$ +where $\deg u_i = i$. Define a homomorphism of algebras $f: H_*(TO)\rtarr N_*$ by +$$ f(a_i)= \left\{ \begin{array}{ll} +u_i & \mbox{if $i$ is not of the form $2^r-1$}\\ +0 & \mbox{if $i=2^r-1$.} +\end{array} \right. $$ +Then the composite +$$g: H_*(TO)\overto{\ga} A_*\ten H_*(TO) \overto{\id\ten f} A_*\ten N_*$$ +is an isomorphism of both $A$-comodules and $\bZ_2$-algebras. +\end{thm} +\begin{proof} It is clear from things already stated that $g$ is a map of both $A$-comodules +and $\bZ_2$-algebras. We must prove that it is an isomorphism. Its source and target are both +polynomial algebras with one generator of degree $i$ for each $i\geq 1$, hence it suffices to +show that $g$ takes generators to generators. Recall that $a_i=j_*(x_{i+1})$. This allows +us to compute $\ga(a_i)$. Modulo terms that are decomposable in the algebra $A_*\ten H_*(TO)$, +we find +$$ \ga(a_i)\equiv \left\{ \begin{array}{ll} +1\ten a_i & \mbox{if $i$ is not of the form $2^r-1$}\\ +\xi_r\ten 1 + 1\ten a_{2^r-1} & \mbox{if $i=2^r-1$.} +\end{array} \right. $$ +Applying $\id\ten f$ to these elements, we obtain $1\ten u_i$ in the first case and +$\xi_r\ten 1$ in the second case. +\end{proof} + +Now consider the Hurewicz homomorphism $h: \pi_*(T)\rtarr H_*(T)$ of a prespectrum $T$. +We have the following observation, which is a direct consequence of the definition of +the Hurewicz homomorphism and the fact that $Sq^i = 0$ for $i>0$ in the cohomology of spheres. + +\begin{lem} For $x\in\pi_*(T)$, $\ga(h(x))=1\ten h(x)$. +\end{lem} + +Therefore, identifying $N_*$ as the subalgebra $\bZ_2\ten N_*$ of $A_*\ten N_*$, we see that +$g\com h$ maps $\pi_*(TO)$ to $N_*$. We shall prove the following result in \S6 +and so complete the proof of Thom's theorem. + +\begin{thm} $h: \pi_*(TO)\rtarr H_*(TO)$ is a monomorphism and $g\com h$ maps $\pi_*(TO)$ +isomorphically onto $N_*$. +\end{thm} + +\section{The relationship to Stiefel-Whitney numbers} + +We shall prove that a smooth closed $n$-manifold $M$ is a boundary if and only if all +of its normal Stiefel-Whitney numbers\index{Stiefel-Whitney numbers!normal} are zero. Polynomials +in the Stiefel-Whitney +classes are elements of $H^*(BO)$. We have seen that the normal Stiefel-Whitney numbers +of a boundary are zero, and it follows that cobordant manifolds have the same normal +Stiefel-Whitney numbers. The assignment of Stiefel-Whitney numbers to +corbordism classes of $n$-manifolds specifies a homomorphism +$$\#: H^n(BO)\ten \sN_n \rtarr \bZ_2.$$ +We claim that the following diagram is commutative: +$$\diagram +H^n(BO)\ten \sN_n \rto^(0.45){\id\ten\al} \dto_{\#} & H^n(BO)\ten \pi_n(TO) \rto^{\id\ten h} +& H^n(BO)\ten H_n(TO) \dto^{\id\ten \PH} \\ +\bZ_2 & & H^n(BO)\ten H_n(BO). \llto_{\langle \, , \, \rangle}\\ +\enddiagram$$ +To say that all normal Stiefel-Whitney numbers of $M$ are zero is to say that $w\#[M]=0$ +for all $w\in H^n(BO)$. Granted the commutativity of the diagram, this is the same as to say that +$\langle w,(\PH\com h\com \al)([M])\rangle = 0$ for all $w\in H^n(BO)$. Since +$\langle \, , \, \rangle$ is the evaluation pairing of dual vector spaces, this implies that +$(\PH\com h\com \al)([M])=0$. Since $\PH$ and $\al$ are isomorphisms and $h$ is a monomorphism, +this implies that $[M]=0$ and thus that $M$ is a boundary. + +Thus we need only prove that the diagram is commutative. Embed $M$ in $\bR^{n+q}$ with normal +bundle $\nu$ and let $f: M\rtarr BO(q)$ classify $\nu$. Then $\al([M])$ is +represented by the composite $S^{n+q}\overto{t} T\nu\overto{Tf} TO(q)$. In homology, we have +the commutative diagram +$$\diagram +\tilde{H}_{n+q}(S^{n+q}) \rto^{t_*} +& \tilde{H}_{n+q}(T\nu) \rto^{(Tf)_*} \dto^{\PH} & \tilde{H}_{n+q}(TO(q)) \dto^{\PH} \\ +& H_n(M) \rto_{f_*} & H_n(BO(q)).\\ +\enddiagram$$ +Let $i_{n+q}\in \tilde{H}_{n+q}(S^{n+q})$ be the fundamental class. By the diagram and the +definitions of $\al$ and the Hurewicz homomorphism, +$$ (f_*\com \PH\com t_*)(i_{n+q}) = +(\PH\com (Tf)_*\com t_*)(i_{n+q}) = (\PH\com h\com \al)([M]) \in H_n(BO(q)).$$ +Let $z=(\PH\com t_*)(i_{n+q})\in H_n(M)$. We claim that $z$ is the fundamental class. +Granting the claim, it follows immediately that, for $w\in H^n(BO(q))$, +\begin{eqnarray*} +w\# [M] = \langle w(\nu), z\rangle & = & \langle (f^*w(\ga_q)),(\PH\com t_*)(i_{n+q}) \rangle \\ +& = & \langle w(\ga_q), (f_*\com \PH\com t_*)(i_{n+q})\rangle \\ +& = & \langle w(\ga_q), (\PH\com h\com \al)([M])\rangle. +\end{eqnarray*} + +Thus we are reduced to proving the claim. It suffices to show +that $z$ maps to a generator of $H_n(M,M-x)$ for each $x\in M$. Since we must deal with pairs, +it is convenient to use the homeomorphism between $T\nu$ and the quotient $D(\nu)/S(\nu)$ +of the unit disk bundle by the unit sphere bundle. Recall that we have a relative cap +product +$$\cap: H^q(D(\nu),S(\nu))\ten H_{i+q}(D(\nu),S(\nu))\rtarr H_i(D(\nu)).$$ +Letting $p:D(\nu)\rtarr M$ be the projection, which of course is a homotopy equivalence, we +find that the homology Thom isomorphism +$$\PH: H_{i+q}(D(\nu),S(\nu))\rtarr H_i(M)$$ +is given by the explicit formula +$$ \PH(a) = p_*(\mu \cap a).$$ +Let $x\in U\subset M$, where $U\iso \bR^n$. Let $D(U)$ and $S(U)$ be the inverse images in +$U$ of the unit disk and unit sphere in $\bR^n$ and let $V=D(U)-S(U)$. Since $D(U)$ is +contractible, $\nu|_{D(U)}$ is trivial and thus isomorphic to $D(U)\times D^q$. Write +$$\pa(D(U)\times D^q) = (D(U)\times S^{q-1})\cup (S(U)\times D^q)$$ +and observe that we obtain a homotopy equivalence +$$t: S^{n+q} \rtarr (D(U)\times D^q)/\pa (D(U)\times D^q)\iso S^{n+q}$$ +by letting $t$ be the quotient map on the restriction of the tubular neighborhood of $\nu$ +to $D(\nu|_{D(U)})$ and letting $t$ send the complement of this restriction to the basepoint. +Interpreting $t: S^{n+q}\rtarr D(\nu)/S(\nu)$ similarly, we obtain the following commutative +diagram: +\begin{small} +$$\diagram +\tilde{H}_{n+q}(S^{n+q}) \rto^(0.3){t_*}_(0.3){\iso} \ddto_{t_*} +& H_{n+q}(D(U)\times D^q,\pa(D(U)\times D^q)) \rto^(0.63){\PH}_(0.63){\iso} \dto +& H_n(D(U),S(U)) \dto^{\iso} \\ +& H_{n+q}(D(\nu),S(\nu)\cup D(\nu|_{M-V})) +\rto^(0.6){\PH} & H_n(M,M-V) \dto^{\iso} \\ +H_{n+q}(D(\nu),S(\nu))\urto \rto_(0.55){\PH} & H_n(M) \urto \rto & H_n(M,M-x).\\ +\enddiagram$$ +\end{small} +The unlabeled arrows are induced by inclusions, and the right vertical arrows are +excision isomorphisms. The maps $\PH$ are of the general form $\PH(a)=p_*(\mu\cap a)$. +For the top map $\PH$, $\mu\in H_{n+q}(D(\nu|_{D(U)}),S(\nu|_{D(U)}))\iso H_{n+q}(S^{n+q})$, +and, up to evident isomorphisms, $\PH$ is just the inverse of the suspension isomorphism +$\tilde{H}_n(S^n) \rtarr \tilde{H}_{n+q}(S^{n+q})$. The diagram shows that $z$ maps to +a generator of $H_n(M,M-x)$, as claimed. + +\section{Spectra and the computation of $\pi_*(TO) =\pi_*(MO)$} + +We must still prove that $h:\pi_*(TO)\rtarr H_*(TO)$ is a monomorphism and +that $g\com h$ maps $\pi_*(TO)$ isomorphically onto $N_*$. Write $N$ for +the dual vector space of $N_*$. (Of course, $N$ is a coalgebra, but that +is not important for this part of our work.) Remember that the Steenrod +algebra $A$ is dual to $A_*$ and that $A\iso H^*(H\bZ_2)$. The dual of +$g:H_*(TO)\rtarr A_*\ten N_*$ is an isomorphism of $A$-modules (and of +coalgebras) $g^*: A\ten N\rtarr H^*(TO)$. Thus, if we choose a basis $\sset{y_i}$ +for $N$, where $\deg\,y_i = n_i$ say, then $H^*(TO)$ is the free graded $A$-module +on the basis $\sset{y_i}$. + +At this point, we engage in a conceptual thought exercise. We think of prespectra +as ``stable objects''\index{stable objects} that have associated homotopy, homology, and +cohomology groups. Imagine that we have a good category of stable objects, analogous to the +category of based spaces, that is equipped with all of the constructions that we +have on based spaces: wedges (= coproducts), colimits, products, limits, suspensions, +loops, homotopies, cofiber sequences, fiber sequences, smash products, function +objects, and so forth. Let us call the stable objects in our imagined category +``spectra''\index{spectrum} and call the category of such objects $\sS$.\index{S@$\sS$} +We have in mind an analogy with the notions of presheaf and sheaf. + +Whatever spectra are, there must be a way of constructing a spectrum from a +prespectrum without changing its homotopy, homology, and cohomology groups. +In turn, a based space $X$ determines the prespectrum $\SI^{\infty} X=\sset{\SI^nX}$. +The homology and cohomology groups of $\SI^{\infty} X$ are the (reduced) homology and cohomology +groups of $X$; the homotopy groups of $\SI^{\infty} X$ are the stable homotopy groups of $X$. + +Because homotopy groups, homology groups, and cohomology groups on based spaces satisfy the +weak equivalence axiom, the real domain of definition of these invariants is the category +$\bar{h}\sT$ that is obtained from the homotopy category $h\sT$ of based spaces by adjoining +inverses to the weak equivalences. This category is equivalent to the homotopy +category $h\sC$ of based CW complexes. Explicitly, the morphisms from $X$ to $Y$ in +$\bar{h}\sT$ can be defined to be the based homotopy classes of maps $\GA X\rtarr \GA Y$, +where $\GA X$ and $\GA Y$ are CW approximations of $X$ and $Y$. Composition is defined +in the evident way. + +Continuing our thought exercise, we can form the homotopy category $h\sS$ of spectra and +can define homotopy groups in terms of homotopy classes of maps from sphere spectra to +spectra. Reflection on the periodic nature of $K$-theory suggests that we should define +sphere spectra of negative dimension and define homotopy groups $\pi_q(X)$ for all integers $q$. +We say that a map of spectra is a weak equivalence if it induces an isomorphism on homotopy +groups. We can form the ``stable category''\index{stable category} $\bar{h}\sS$ from $h\sS$ +exactly as we formed the +category $\bar{h}\sT$ from $h\sT$. That is, we develop a theory of CW spectra using sphere +spectra as the domains of attaching maps. The Whitehead and cellular approximation theorems +hold, and every spectrum $X$ admits a CW approximation $\GA X\rtarr X$. We define the set +$[X,Y]$ of morphisms $X\rtarr Y$ in $\bar{h}\sS$ to be the set of homotopy classes of maps +$\GA X\rtarr \GA Y$. This is a {\em stable} category in the sense that the functor +$\SI: \bar{h}\sS \rtarr \bar{h}\sS$ is an equivalence of categories. More explicitly, the +natural maps $X\rtarr \OM\SI X$ and $\SI\OM X\rtarr X$ are isomorphisms in $\bar{h}\sS$. + +In particular, up to isomorphism, +every object in the category $\bar{h}\sS$ is a suspension, hence a double suspension. This +implies that each $[X,Y]$ is an Abelian group and composition is bilinear. Moreover, for +any map $f: X\rtarr Y$, the canonical map $Ff\rtarr \OM Cf$ and its adjoint $\SI Ff\rtarr Cf$ +(see Chapter 8 \S7) are also isomorphisms in $\bar{h}\sS$, so that cofiber sequences and +fiber sequences are equivalent. Therefore cofiber sequences give rise to long exact sequences +of homotopy groups. + +The homotopy groups of wedges and products of spectra are given by +$$\pi_*(\textstyle{\bigvee}_i\, X_i) = \textstyle{\sum}_i\, \pi_*(X_i) +\tand \pi_*(\textstyle{\prod}_i\, X_i)=\textstyle{\prod}_i\, \pi_*(X_i).$$ +Therefore, if only finitely many $\pi_q(X_i)$ are non-zero for each $q$, then the natural +map $\bigvee_i\, X_i\rtarr \prod_i\, X_i$ is an isomorphism. + +We have homology groups and cohomology groups defined on $\bar{h}\sS$. A spectrum $E$ +represents a homology theory\index{homology theory!on spectra} $E_*$ and a cohomology +theory\index{cohomology theory!on spectra} $E^*$ specified in terms +of smash products and function spectra by +$$E_q(X) =\pi_q(X\sma E) \ \tand \ E^q(X) = \pi_{-q}F(X,E) \iso [X,\SI^qE].$$ +Verifications of the exactness, suspension, additivity, and weak equivalence axioms are +immediate from the properties of the category $\bar{h}\sS$. Moreover, +every homology or cohomology theory on $\bar{h}\sS$ is so represented by some spectrum $E$. + +As will become clear later, $\OM$-prespectra are more like spectra than general prespectra, +and we continue to write $H\pi$ for the ``Eilenberg-Mac\,Lane spectrum'' +\index{Eilenberg-Mac\,Lane spectrum} that represents +ordinary cohomology with coefficients in $\pi$. Its only non-zero homotopy group is +$\pi_0(H\pi)=\pi$, and the Hurewicz homomorphism maps this group isomorphically onto +$H_0(H\pi;\bZ)$. When $\pi=\bZ_2$, the natural map $H_0(H\bZ_2;\bZ)\rtarr H_0(H\bZ_2;\bZ_2)$ +is also an isomorphism. + +Returning to our motivating example, we write $MO$\index{MO@$MO$} for the +``Thom spectrum''\index{Thom spectrum} +that arises from the Thom prespectrum $TO$. The reader may sympathize +with a student who claimed that +$MO$ stands for ``Mythical Object.''\index{Mythical Object} + +We may choose a map $\bar{y}_i: MO \rtarr \SI^{n_i}H\bZ_2$ that represents the +element $y_i$. Define $K(N_*)$ to be the wedge of a copy of $\SI^{n_i}H\bZ_2$ for +each basis element $y_i$ and note that $K(N_*)$ is isomorphic in $\bar{h}\sS$ to +the product of a copy of $\SI^{n_i}H\bZ_2$ for each $y_i$. We think of $K(N_*)$ as a +``generalized Eilenberg-Mac\,Lane spectrum.'' It satisfies $\pi_*(K(N_*))\iso N_*$ +(as Abelian groups and so as $\bZ_2$-vector spaces), and the mod $2$ Hurewicz +homomorphism $h: \pi_*(K(N_*))\rtarr H_*(K(N_*))$ is a monomorphism. Using the +$\bar{y}_i$ as coordinates, we obtain a map +$$\om: MO\rtarr \textstyle{\prod}_i\, \SI^{n_i} H\bZ_2 \htp K(N_*).$$ + +The induced map $\om^*$ on mod $2$ cohomology is an isomorphism of $A$-modules: $H^*(MO)$ +and $H^*(K(N_*))$ are free $A$-modules, and we have defined $\om$ +so that $\om^*$ sends basis elements to basis elements. Therefore the induced map on +homology groups is an isomorphism. Here we are using mod $2$ homology, but it +can be deduced from the fact that both $\pi_*(MO)$ and $\pi_*(K(N_*))$ +are $\bZ_2$-vector spaces that $\om$ induces an isomorphism on integral homology groups. +Therefore the integral homology groups of $C\om$ are zero. By the Hurewicz theorem in +$\bar{h}\sS$, the homotopy groups of $C\om$ are also zero. Therefore $\om$ induces +an isomorphism of homotopy groups. That is, $\om$ is an isomorphism in $\bar{h}\sS$. +Therefore $\pi_*(MO)\iso N_*$ and the Hurewicz homomorphism $h:\pi_*(MO)\rtarr H_*(MO)$ +is a monomorphism. It follows that $g\com h:\pi_*(MO)\rtarr N_*$ is an isomorphism since +it is a monomorphism between vector spaces of the same finite dimension in each degree. + +\section{An introduction to the stable category} + +To give content to the argument just sketched, we should construct a good category of spectra. +In fact, no such category was available when Thom first proved his theorem in 1960. With +motivation from the introduction of $K$-theory and cobordism, a good stable category was +constructed by Boardman (unpublished) around 1964 and an exposition of his category was +given by Adams soon after. However, these early constructions were far more primitive than +our outline suggests. While they gave a satisfactory stable category, the underlying category +of spectra did not have products, limits, and function objects, and its smash product was +not associative, commutative, or unital. In fact, a fully satisfactory category of spectra +was not constructed until 1995. + +We give a few definitions to indicate what is involved. + +\begin{defn} +A spectrum\index{spectrum} $E$ is a prespectrum +such that the adjoints $\tilde{\si}: E_n\rtarr \OM E_{n+1}$ of the structure maps +$\si: \SI E_n \rtarr E_{n+1}$ are {\em homeomorphisms}. A map $f: T\rtarr T'$ of prespectra +is a sequence of maps $f_n: T_n\rtarr T'_n$ such that $\si'_n\com \SI f_n = f_{n+1}\com \si_n$ +for all $n$. A map $f:E\rtarr E'$ of spectra is a map between $E$ and $E'$ regarded as +prespectra. +\end{defn} + +We have a forgetful functor from the category $\sS$\index{S@$\sS$} of spectra to the +category $\sP$\index{P@$\sP$} of +prespectra. It has a left adjoint $L:\sP\rtarr \sS$. In $\sP$, we define wedges, colimits, +products, and limits spacewise. For example, $(T\wed T')_n = T_n\wed T'_n$, with the +evident structure maps. We define wedges and colimits of spectra by first performing the +construction on the prespectrum level and then applying the functor $L$. If we start with +spectra and construct products or limits spacewise, then the result is again a spectrum; +that is, limits of spectra are the limits of their underlying prespectra. Thus the category +$\sS$ is complete and cocomplete. + +Similarly, we define the smash product $T\sma X$ and function prespectrum $F(X,T)$ of a +based space $X$ and a prespectrum $T$ spacewise. For a spectrum $E$, we define $E\sma X$ +by applying $L$ to the prespectrum level construction; the prespectrum $F(X,E)$ is already +a spectrum. We now have cylinders $E\sma I_+$ and thus can define homotopies between maps +of spectra. Similarly we have cones $CE=E\sma I$ (where $I$ has basepoint $1$), suspensions +$\SI E=E\sma S^1$, path spectra $F(I,E)$ (where $I$ has basepoint $0$), and loop spectra +$\OM E =F(S^1,E)$. The development of cofiber and fiber sequences proceeds exactly as for +based spaces. + +The left adjoint $L$ can easily be described explicitly on those prespectra $T$ whose +adjoint structure maps $\tilde{\si}_n: T_n\rtarr \OM T_{n+1}$ are inclusions: +we define $(LT)_n$ to be the union of the expanding sequence +$$T_n \overto{\tilde{\si}_n} \OM T_{n+1} \overto{\OM\tilde{\si}_{n+1}} \OM^2 T_{n+2} \rtarr \cdots.$$ +We then have +$$\OM (LT)_{n+1} =\OM(\bigcup \OM^qT_{n+1+q}) \iso \bigcup \OM^{q+1}T_{n+q+1} \iso (LT)_n.$$ + +We have an evident map of prespectra $\la: T\rtarr LT$, and a comparison of colimits shows +(by a cofinality argument) that $\la$ induces isomorphisms on homotopy and homology groups. +The essential point is that homotopy and homology commute with colimits. It is not true +that cohomology converts colimits to limits in general, because of ${\lim}^1$ error terms, and +this is one reason that our definition of the cohomology of prespectra via limits is +inappropriate except under restrictions that guarantee the vanishing of ${\lim}^1$ terms. +Observe that there is no problem in the case of $\OM$-prespectra, for which $\la$ is a +spacewise weak equivalence. + +For a based space $X$, we define the suspension spectrum\index{suspension spectrum} +$\SI^{\infty}X$ by applying $L$ to the suspension prespectrum $\SI^{\infty} X =\sset{\SI^nX}$. +The inclusion condition is satisfied in this case. We define $QX=\cup \OM^q\SI^q X$,\index{QX@$QX$} +and we find that the $n$th space of $\SI^{\infty} X$ is $Q\SI^n X$. It should be apparent that +the homotopy groups of the space $QX$ are the stable homotopy groups of $X$. + +The adjoint structure maps of the Thom prespectrum $TO$ are also inclusions, and our mythical +object is $MO=L TO$.\index{MO@$MO$} + +In general, for a prespectrum $T$, we can apply an iterated mapping cylinder construction to +define a spacewise equivalent prespectrum $KT$ whose adjoint structure maps are inclusions. +The prespectrum level homotopy, homology, and cohomology groups of $KT$ are isomorphic to +those of $T$. Thus, if we have a prespectrum $T$ whose invariants we are interested in, such as +an Eilenberg-Mac\,Lane $\OM$-prespectrum or the $K$-theory $\OM$-prespectrum, then we can +construct a spectrum $LKT$ that has the same invariants. + +For a based space $X$ and $q\geq 0$, we construct a prespectrum $\SI^{\infty}_qX$ whose +$n$th space is a point for $n0$. The definition is appropriate since +$\SI S^q \iso S^{q+1}$ for all integers $q$. We can now define homotopy groups in the +obvious way. For example, the homotopy groups of the $K$-theory spectrum are $\bZ$ for every +even integer and zero for every odd integer. + +From here, we can go on to define CW spectra in very much the same way that we defined +CW complexes, and we can fill in the rest of the outline in the previous section. The real +work involves the smash product of spectra, but this does not belong in our rapid course. +While there is a good deal of foundational work involved, there is also considerable payoff +in explicit concrete calculations, as the computation of $\pi_*(MO)$ well illustrates. + +With the hope that this glimpse into the world of stable homotopy theory has whetted the +reader's appetite for more, we will end at this starting point. + +\clearpage + +\thispagestyle{empty} + +\chapter*{Suggestions for further reading} + +\setcounter{section}{0} + +Rather than attempt a complete bibliography, I will give a number of basic references. +I will begin with historical references and textbooks. I will then give references for +specific topics, more or less in the order in which topics appear in the text. Where +material has been collected in one or another book, I have often referred to such books +rather than to original articles. However, the importance and quality of exposition of +some of the original sources often make them still to be preferred today. The subject in +its earlier days was blessed with some of the finest expositors of mathematics, for example +Steenrod, Serre, Milnor, and Adams. Some of the references are intended to give historical +perspective, some are classical papers in the subject, some are follow-ups to material in +the text, and some give an idea of the current state of the subject. In fact, +many major parts of algebraic topology are nowhere mentioned in any of the existing +textbooks, although several were well established by the mid-1970s. I will indicate +particularly accessible references for some of them; the reader can find more of the +original references in the sources given. + +\section{A classic book and historical references} + +The axioms for homology and cohomology theories were set out in the classic: + +\vspace{1mm} + +\noindent +{\em S. Eilenberg and N. Steenrod. Foundations of algebraic topology.} +Princeton University Press. 1952. + +\vspace{1.3mm} + +I believe the only historical monograph on the subject is: + +\vspace{1mm} + +\noindent +{\em J. Dieudonn\'e. A history of algebraic and differential topology, 1900--1960.} +Birk\-h\"auser. 1989. + +\vspace{1.3mm} + +A large collection of historical essays will appear soon: + +\vspace{1mm} + +\noindent +{\em I.M. James, editor. The history of topology.} Elsevier Science. To appear. + +\vspace{1.3mm} + +Among the contributions, I will advertise one of my own, available on the web: + +\vspace{1mm} + +\noindent +{\em J.P. May. Stable algebraic topology, 1945--1966.} http://hopf.math.purdue.edu + +\section{Textbooks in algebraic topology and homotopy theory} + +These are ordered roughly chronologically (although this is obscured by the fact that +the most recent editions or versions are cited). I have included only those texts that +I have looked at myself, that are at least at the level of the more elementary chapters +here, and that offer significant individuality of treatment. There are many other textbooks in +algebraic topology. + +\vspace{1mm} + +Two classic early textbooks: + +\vspace{1.3mm} + +\noindent +{\em P.J. Hilton and S. Wylie. Homology theory.} Cambridge University Press. 1960. + +\vspace{1mm} + +\noindent +{\em E. Spanier. Algebraic topology.} McGraw-Hill. 1966. + +\vspace{1.3mm} + +An idiosyncratic pre-homology level book giving much material about groupoids: + +\vspace{1mm} + +\noindent +{\em R. Brown. Topology. A geometric account of general topology, homotopy types, +and the fundamental groupoid.} Second edition. Ellis Horwood. 1988. + +\vspace{1.3mm} + +A homotopical introduction close to the spirit of this book: + +\vspace{1mm} + +\noindent +{\em B. Gray. Homotopy theory, an introduction to algebraic topology.} Academic Press. 1975. + +\vspace{1.3mm} + +The standard current textbooks in basic algebraic topology: + +\vspace{1mm} + +\noindent +{\em M.J. Greenberg and J. R. Harper. Algebraic topology, a first course.} +Benjamin/\linebreak +Cummings. 1981. + +\vspace{1mm} + +\noindent +{\em W.S. Massey. A basic course in algebraic topology.} Springer-Verlag. 1991. + +\vspace{1mm} + +\noindent +{\em A. Dold. Lectures on algebraic topology.} Reprint of the 1972 edition. +Springer-Verlag. 1995. + +\vspace{1mm} + +\noindent +{\em J.W. Vick. Homology theory; an introduction to algebraic topology.} +Second edition. Springer-Verlag. 1994. + +\vspace{1mm} + +\noindent +{\em J.R. Munkres. Elements of algebraic topology.} Addison Wesley. 1984. + +\vspace{1mm} + +\noindent +{\em J.J. Rotman. An introduction to algebraic topology.} Springer-Verlag. 1986. + +\vspace{1mm} + +\noindent +{\em G.E. Bredon. Topology and geometry.} Springer-Verlag. 1993. + +\vspace{1.3mm} + +Sadly, the following are still the only more advanced textbooks in the subject: + +\vspace{1mm} + +\noindent +{\em R.M. Switzer. Algebraic topology. Homotopy and homology.} Springer-Verlag. 1975. + +\vspace{1mm} + +\noindent +{\em G.\!W. Whitehead. Elements of homotopy theory.} Springer-Verlag. 1978. + +\section{Books on CW complexes} + +Two books giving more detailed studies of CW complexes than are found in textbooks +(the second giving a little of the theory of compactly generated spaces): + +\vspace{1mm} + +\noindent +{\em A.T. Lundell and S. Weingram The topology of CW complexes.} +Van Nostrand Reinhold. 1969. + +\vspace{1mm} + +\noindent +{\em R. Fritsch and R.A. Piccinini. Cellular structures in topology.} +Cambridge University Press. 1990. + +\section{Differential forms and Morse theory} + +Two introductions to algebraic topology starting from de Rham cohomology: + +\vspace{1mm} + +\noindent +{\em R. Bott and L.\!W. Tu. Differential forms in algebraic topology.} Springer-Verlag. 1982. + +\vspace{1mm} + +\noindent +{\em I. Madsen and J. Tornehave. From calculus to cohomology. de Rham cohomology and +characteristic classes.} Cambridge University Press. 1997. + +\vspace{1.3mm} + +The classic reference on Morse theory, with an exposition of the Bott periodicity theorem: + +\vspace{1mm} + +\noindent +{\em J. Milnor. Morse theory.} Annals of Math. Studies No. 51. Princeton University Press. 1963. + +\vspace{1.3mm} + +A modern use of Morse theory for the analytic construction of homology: + +\vspace{1mm} + +\noindent +{\em M. Schwarz. Morse homology.} Progress in Math. Vol. 111. Birkh\"auser. 1993. + +%R. Bott. An application of the Morse theory to the topology of Lie-groups. +%Bull. Soc. Math. France 84(1956), 251-281. +%R. Bott. The stable homotopy of the classical groups. Annals of Math. 70(1959), 313-337. +%R. Bott. Quelques remarques sur les th\'eor\`emes de periodicit\'e de topology. Bull. Soc. +%Math. France 87(1959), 293-310. +%M.F. Atiyah and R. Bott. On the periodicity theorem for complex vector bundles. +%Acta Math. 112(1964), 229-247. + +\section{Equivariant algebraic topology} + +Two good basic references on equivariant algebraic topology, classically +called the theory of transformation groups (see also \S\S16, 21 below): + +\vspace{1mm} + +\noindent +{\em G. Bredon. Introduction to compact transformation groups.} Academic Press. 1972. + +\vspace{1mm} + +\noindent +{\em T. tom Dieck. Transformation groups.} Walter de Gruyter. 1987. + +\vspace{1.3mm} + +A more advanced book, a precursor to much recent work in the area: + +\vspace{1mm} + +\noindent +{\em T. tom Dieck. Transformation groups and representation theory.} +Lecture Notes in Mathematics Vol. 766. Springer-Verlag. 1979. + +\section{Category theory and homological algebra} + +A revision of the following classic on basic category theory is in preparation: + +\vspace{1mm} + +\noindent +{\em S. Mac\,Lane. Categories for the working mathematician.} Springer-Verlag. 1971. + +\vspace{1.3mm} + +Two classical treatments and a good modern treatment of homological algebra: + +\vspace{1mm} + +\noindent +{\em H. Cartan and S. Eilenberg. Homological algebra.} Princeton University Press. 1956. + +\vspace{1mm} + +\noindent +{\em S. MacLane. Homology.} Springer-Verlag. 1963. + +\vspace{1mm} + +\noindent +{\em C.A. Weibel. An introduction to homological algebra.} Cambridge University Press. 1994. + +\section{Simplicial sets in algebraic topology} + +Two older treatments and a comprehensive modern treatment: + +\vspace{1mm} + +\noindent +{\em P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory.} Springer-Verlag. 1967. + +\vspace{1mm} + +\noindent +{\em J.P. May. Simplicial objects in algebraic topology.} D. Van Nostrand 1967; +reprinted by the University of Chicago Press 1982 and 1992. + +\vspace{1mm} + +\noindent +{\em P.G. Goerss and J.F. Jardine. Simplicial homotopy theory.} Birkh\"auser. To appear. + +\section{The Serre spectral sequence and Serre class theory} + +Two classic papers of Serre: + +\vspace{1mm} + +\noindent +{\em J.-P. Serre. Homologie singuli\'ere des espaces fibr\'es. Applications.} Annals +of Math. (2)54(1951), 425--505. + +\vspace{1mm} + +\noindent +{\em J.-P. Serre. Groupes d'homotopie et classes de groupes ab\'eliens.} Annals of +Math. (2)58(1953), 198--232. + +\vspace{1.3mm} + +A nice exposition of some basic homotopy theory and of Serre's work: + +\vspace{1mm} + +\noindent +{\em S.-T. Hu. Homotopy theory.} Academic Press. 1959. + +\vspace{1.3mm} + +Many of the textbooks cited in \S2 also treat the Serre spectral sequence. + +\section{The Eilenberg-Moore spectral sequence} + +There are other important spectral sequences in the context of fibrations, +mainly due to Eilenberg and Moore. Three references: + +\vspace{1mm} + +\noindent +{\em S. Eilenberg and J.C. Moore. Homology and fibrations, I.} Comm. Math. Helv. +40(1966), 199--236. + +\vspace{1mm} + +\noindent +{\em L. Smith. Homological algebra and the Eilenberg-Moore spectral sequences.} +Trans. Amer. Math. Soc. 129(1967), 58--93. + +\vspace{1mm} + +\noindent +{\em V.K.A.M. Gugenheim and J.P. May. On the theory and applications of differential +torsion products.} Memoirs Amer. Math. Soc. No. 142. 1974. + +\vspace{1.3mm} + +There is a useful guidebook to spectral sequences: + +\vspace{1mm} + +\noindent +{\em J. McCleary. User's guide to spectral sequences.} Publish or Perish. 1985. + +\section{Cohomology operations} + +A compendium of the work of Steenrod and others on the construction and analysis +of the Steenrod operations: + +\vspace{1mm} + +\noindent +{\em N.E. Steenrod and D.B.A. Epstein. Cohomology operations.} Annals of Math. Studies No. 50. +Princeton University Press. 1962. + +\vspace{1.3mm} + +A classic paper that first formalized cohomology operations, among other things: + +\vspace{1mm} + +\noindent +{\em J.-P. Serre. Cohomologie modulo $2$ des complexes d'Eilenberg-Mac\,Lane.} +Comm. Math. Helv. 27(1953), 198--232. + +\vspace{1.3mm} + +A general treatment of Steenrod-like operations: + +\vspace{1mm} + +\noindent +{\em J.P. May. A general algebraic approach to Steenrod operations.} In Lecture Notes +in Mathematics Vol. 168, 153--231. Springer-Verlag. 1970. + +\vspace{1.3mm} + +A nice book on mod $2$ Steenrod operations and the Adams spectral sequence: + +\vspace{1mm} + +\noindent +{\em R. Mosher and M. Tangora. Cohomology operations and applications in homotopy theory.} +Harper and Row. 1968. + +\section{Vector bundles} + +A classic and a more recent standard treatment that includes $K$-theory: + +\vspace{1mm} + +\noindent +{\em N.E. Steenrod. Topology of fibre bundles.} Princeton University Press. +1951. Fifth printing, 1965. + +\vspace{1mm} + +\noindent +{\em D. Husemoller. Fibre bundles.} Springer-Verlag. 1966. Third edition, 1994. + +\vspace{1.3mm} + +A general treatment of classification theorems for bundles and fibrations: + +\vspace{1mm} + +\noindent +{\em J.P. May. Classifying spaces and fibrations.} Memoirs Amer. Math. Soc. No. 155. 1975. + +\section{Characteristic classes} + +The classic introduction to characteristic classes: + +\vspace{1mm} + +\noindent +{\em J. Milnor and J.D. Stasheff. Characteristic classes.} Annals of Math. Studies No. 76. +Princeton University Press. 1974. + +\vspace{1.3mm} + +A good reference for the basic calculations of characteristic classes: + +\vspace{1mm} + +\noindent +{\em A. Borel. Topology of Lie groups and characteristic classes.} Bull. Amer. Math. Soc. +61(1955), 297--432. + +\vspace{1.3mm} + +Two proofs of the Bott periodicity theorem that only use standard techniques of algebraic +topology, starting from characteristic class calculations: + +\vspace{1mm} + +\noindent +{\em H. Cartan et al. P\'eriodicit\'e des groupes d'homotopie stables des groupes +classiques, d'apr\`es Bott.} S\'eminaire Henri Cartan, 1959/60. Ecole Normale Sup\'erieure. Paris. + +\vspace{1mm} + +\noindent +{\em E. Dyer and R.K. Lashof. A topological proof of the Bott periodicity theorems.} +Ann. Mat. Pure Appl. (4)54(1961), 231--254. + +\section{$K$-theory} + +%M.F. Atiyah and F. Hirzebruch. Vector bundles and homogeneous spaces, in Differential +%Geometry. Amer. Math. Soc. Proc. Symp. Pure Math 3(1961), 7--38. + +Two classical lecture notes on $K$-theory: + +\vspace{1mm} + +\noindent +{\em R. Bott. Lectures on $K(X)$.} W.A. Benjamin. 1969. + +\vspace{1mm} + +This includes a reprint of perhaps the most accessible proof of the complex +case of the Bott periodicity theorem, namely: + +\vspace{1mm} + +\noindent +{\em M.F. Atiyah and R. Bott. On the periodicity theorem for complex vector bundles.} +Acta Math. 112(1994), 229--247. + +\vspace{1.3mm} + +\noindent +{\em M.F. Atiyah. $K$-theory.} Notes by D.W. Anderson. Second Edition. +Addison-Wesley. 1967. + +\vspace{1mm} + +This includes reprints of two classic papers of Atiyah, one that relates Adams +operations in $K$-theory to Steenrod operations in cohomology and another that +sheds insight on the relationship between real and complex $K$-theory: + +\vspace{1mm} + +\noindent +{\em M.F. Atiyah. Power operations in $K$-theory.} Quart. J. Math. (Oxford) (2)17(1966), +165--193. + +\vspace{1mm} + +\noindent +{\em M.F. Atiyah. $K$-theory and reality.} Quart. J. Math. (Oxford) (2)17(1966), 367--386. + +\vspace{1.3mm} + +Another classic paper that greatly illuminates real $K$-theory: + +\vspace{1mm} + +\noindent +{\em M.F. Atiyah, R. Bott, and A. Shapiro. Clifford algebras.} Topology +3(1964), suppl. 1, 3--38. + +\vspace{1.3mm} + +A more recent book on $K$-theory: + +\noindent +{\em M. Karoubi. $K$-theory.} Springer-Verlag. 1978. + +\vspace{1.3mm} + +Some basic papers of Adams and Adams and Atiyah giving applications of $K$-theory: + +\vspace{1mm} + +\noindent +{\em J.F. Adams. Vector fields on spheres.} Annals of Math. 75(1962), 603--632. + +\vspace{1mm} + +\noindent +{\em J.F. Adams. On the groups $J(X)$ I, II, III, and IV.} Topology 2(1963), 181--195; +3(1965), 137-171 and 193--222; 5(1966), 21--71. + +\vspace{1mm} + +\noindent +{\em J.F. Adams and M.F. Atiyah. $K$-theory and the Hopf invariant.} Quart. J. Math. (Oxford) +(2)17(1966), 31--38. + +\section{Hopf algebras; the Steenrod algebra, Adams spectral sequence} + +The basic source for the structure theory of (connected) Hopf algebras: + +\vspace{1mm} + +\noindent +{\em J. Milnor and J.C. Moore. On the structure of Hopf algebras.} Annals of Math. 81(1965), +211--264. + +\vspace{1.3mm} + +The classic analysis of the structure of the Steenrod algebra as a Hopf algebra: + +\vspace{1mm} + +\noindent +{\em J. Milnor. The Steenrod algebra and its dual.} Annals of Math. 67(1958), 150--171. + +\vspace{1.3mm} + +Two classic papers of Adams; the first constructs the Adams spectral sequence +relating the Steenrod algebra to stable homotopy groups and the second uses +secondary cohomology operations to solve the Hopf invariant one problem: + +\vspace{1mm} + +\noindent +{\em J.F. Adams. On the structure and applications of the Steenrod algebra.} +Comm. Math. Helv. 32(1958), 180--214. + +\vspace{1mm} + +\noindent +{\em J.F. Adams. On the non-existence of elements of Hopf invariant one.} +Annals of Math. 72(1960), 20--104. + +\section{Cobordism} + +The beautiful classic paper of Thom is still highly recommended: + +\vspace{1mm} + +\noindent +{\em R. Thom. Quelques propri\'et\'es globals des vari\'et\'es diff\'erentiables.} +Comm. Math. Helv. 28(1954), 17--86. + +\vspace{1.3mm} + +Thom computed unoriented cobordism. Oriented and complex cobordism +came later. In simplest form, the calculations use the Adams spectral +sequence: + +\vspace{1mm} + +\noindent +{\em J. Milnor. On the cobordism ring $\Omega^*$ and a complex analogue.} Amer. J. +Math. 82(1960), 505--521. + +\vspace{1mm} + +\noindent +{\em C.T.C. Wall. A characterization of simple modules over the Steenrod algebra +mod $2$.} Topology 1(1962), 249--254. + +\vspace{1mm} + +\noindent +{\em A. Liulevicius. A proof of Thom's theorem.} Comm. Math. Helv. 37(1962), 121--131. + +\vspace{1mm} + +\noindent +{\em A. Liulevicius. Notes on homotopy of Thom spectra.} Amer. J. Math. 86(1964), 1--16. + +\vspace{1.3mm} + +A very useful compendium of calculations of cobordism groups: + +\vspace{1mm} + +\noindent +{\em R. Stong. Notes on cobordism theory.} Princeton University Press. 1968. + +\section{Generalized homology theory and stable homotopy theory} + +Two classical references, the second of which also gives detailed information about complex +cobordism that is of fundamental importance to the subject. + +\vspace{1mm} + +\noindent +{\em G.W. Whitehead. Generalized homology theories.} Trans. Amer. Math. Soc. 102(1962), 227--283. + +\vspace{1mm} + +\noindent +{\em J.F. Adams. Stable homotopy and generalised homology.} Chicago Lectures in Mathematics. +University of Chicago Press. 1974. Reprinted in 1995. + +\vspace{1.3mm} + +An often overlooked but interesting book on the subject: + +\vspace{1mm} + +\noindent +{\em H.R. Margolis. Spectra and the Steenrod algebra. Modules over the Steenrod +algebra and the stable homotopy category.} North-Holland. 1983. + +\vspace{1.3mm} + +Foundations for equivariant stable homotopy theory are established in: + +\vspace{1mm} + +\noindent +{\em L.G. Lewis, Jr., J.P. May, and M.Steinberger (with contributions by +J.E. McClure). Equivariant stable homotopy theory.} Lecture Notes in +Mathematics Vol. 1213. Springer-Verlag. 1986. + +\section{Quillen model categories} + +In the introduction, I alluded to axiomatic treatments of ``homotopy theory.'' +Here are the original and two more recent references: + +\vspace{1mm} + +\noindent +{\em D.G. Quillen. Homotopical algebra.} Lecture Notes in Mathematics +Vol. 43. Springer-Verlag. 1967. + +\vspace{1mm} + +\noindent +{\em W.G. Dwyer and J. Spalinski. Homotopy theories and model categories}. +In A handbook of algebraic topology, edited by I.M. James. North-Holland. 1995. + +\vspace{1.3mm} + +The cited ``{\em Handbook}'' (over 1300 pages) contains an uneven but very interesting +collection of expository articles on a wide variety of topics in algebraic topology. + +\vspace{1.3mm} + +\noindent +{\em M. Hovey. Model categories.} Amer. Math. Soc. Surveys and Monographs No. 63. 1998. + +\section{Localization and completion; rational homotopy theory} + +Since the early 1970s, it has been standard practice in algebraic topology to localize +and complete topological spaces, and not just their algebraic invariants, at sets of primes +and then to study the subject one prime at a time, or rationally. Two of the basic original +references are: + +\vspace{1mm} + +\noindent +{\em D. Sullivan. The genetics of homotopy theory and the Adams conjecture.} +Annals of Math. 100(1974), 1--79. + +\vspace{1mm} + +\noindent +{\em A.K. Bousfield and D.M. Kan. Homotopy limits, completions, and localizations.} +Lecture Notes in Mathematics Vol. 304. Springer-Verlag. 1972. + +\vspace{1.3mm} + +A more accessible introduction to localization and a readable recent +paper on completion are: + +\vspace{1mm} + +\noindent +{\em P. Hilton, G. Mislin, and J. Roitberg. Localization of nilpotent groups +and spaces.} North-Holland. 1975. + +\vspace{1mm} + +\noindent +{\em F. Morel. Quelques remarques sur la cohomologie modulo $p$ continue des +pro-$p$-espaces et les resultats de J. Lannes concernent les espaces fonctionnel +Hom$(BV,X)$.} Ann. Sci. Ecole Norm. Sup. (4)26(1993), 309--360. + +\vspace{1.3mm} + +When spaces are rationalized, there is a completely algebraic description of the +result. The main original reference and a more accessible source are: + +\vspace{1mm} + +\noindent +{\em D. Sullivan. Infinitesimal computations in topology.} Publ. Math. +IHES 47(1978), 269--332. + +\vspace{1mm} + +\noindent +{\em A.K. Bousfield and V.K.A.M. Gugenheim. On PL de Rham theory and rational homotopy +type.} Memoirs Amer. Math. Soc. No. 179. 1976. + +\section{Infinite loop space theory} + +Another area well established by the mid-1970s. The following book is a +delightful read, with capsule introductions of many topics other than infinite +loop space theory, a very pleasant starting place for learning modern +algebraic topology: + +\vspace{1mm} + +\noindent +{\em J.F. Adams. Infinite loop spaces.} Annals of Math. Studies No. 90. Princeton +University Press. 1978. + +\vspace{1.3mm} + +The following survey article is less easy going, but gives an indication of +the applications to high dimensional geometric topology and to algebraic $K$-theory: + +\vspace{1mm} + +\noindent +{\em J.P. May. Infinite loop space theory.} Bull. Amer. Math. Soc. 83(1977), +456--494. + +\vspace{1.3mm} + +Five monographs, each containing a good deal of expository material, +that give a variety of theoretical and calculational developments and applications +in this area: + +\vspace{1mm} + +\noindent +{\em J.P. May. The geometry of iterated loop spaces.} Lecture Notes in Mathematics +Vol. 271. Springer-Verlag. 1972. + +\vspace{1mm} + +\noindent +{\em J.M. Boardman and R.M. Vogt. Homotopy invariant algebraic structures on topological +spaces.} Lecture Notes in Mathematics Vol. 347. Springer-Verlag. 1973. + +\vspace{1mm} + +\noindent +{\em F.R. Cohen, T.J. Lada, and J.P. May. The homology of iterated loop spaces.} +Lecture Notes in Mathematics Vol. 533. Springer-Verlag. 1976. + +\vspace{1mm} + +\noindent +{\em J.P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). +$E_{\infty}$ ring spaces and $E_{\infty}$ ring spectra.} Lecture Notes in +Mathematics Vol. 577. Springer-Verlag. 1977. + +\vspace{1mm} + +\noindent +{\em R. Bruner, J.P. May, J.E. McClure, and M. Steinberger. $H_{\infty}$ ring +spectra and their applications.} Lecture Notes in Mathematics Vol. 1176. +Springer-Verlag. 1986. + +\section{Complex cobordism and stable homotopy theory} + +Adams' book cited in \S16 gives a spectral sequence for the computation of stable +homotopy groups in terms of generalized cohomology theories. Starting from complex cobordism +and related theories, its use has been central to two waves of major developments in stable +homotopy theory. A good exposition for the first wave: + +\vspace{1mm} + +\noindent +{\em D.C. Ravenel. Complex cobordism and stable homotopy groups of spheres.} Academic +Press. 1986. + +\vspace{1.3mm} + +The essential original paper and a very nice survey article on the second wave: + +\vspace{1mm} + +\noindent +{\em E. Devinatz, M.J. Hopkins, and J.H. Smith. Nilpotence and stable homotopy theory.} +Annals of Math. 128(1988), 207--242. + +\vspace{1mm} + +\noindent +{\em M.J. Hopkins. Global methods in homotopy theory.} In Proceedings of the 1985 LMS +Symposium on homotopy theory, edited by J.D.S. Jones and E. Rees. +London Mathematical Society. 1987. + +\vspace{1.3mm} + +The cited {\em Proceedings} contain good introductory survey articles on several other +topics in algebraic topology. A larger scale exposition of the second wave is: + +\vspace{1mm} + +\noindent +{\em D.C. Ravenel. Nilpotence and periodicity in stable homotopy theory.} +Annals of Math. Studies No. 128. Princeton University Press. 1992. + +\section{Follow-ups to this book} + +There is a leap from the level of this introductory book to that of the most +recent work in the subject. One recent book that helps fill the gap is: + +\vspace{1mm} + +{\em P. Selick. Introduction to homotopy theory.} Fields Institute Monographs No. 9. +American Mathematical Society. 1997. + +\vspace{1.3mm} + +There is a recent expository book for the reader who would like to jump +right in and see the current state of algebraic topology; although it focuses on +equivariant theory, it contains introductions and discussions of many non-equivariant +topics: + +\vspace{1mm} + +\noindent +{\em J.P. May et al. Equivariant homotopy and cohomology theory.} +NSF-CBMS Regional Conference Monograph. 1996. + +\vspace{1.3mm} + +For the reader of the last section of this book whose appetite has been whetted for +more stable homotopy theory, there is an expository article that motivates and explains +the properties that a satisfactory category of spectra should have: + +\vspace{1mm} + +\noindent +{\em J.P. May. Stable algebraic topology and stable topological algebra.} +Bulletin London Math. Soc. 30(1998), 225--234. + +\vspace{1.3mm} + +The following monograph gives such a category, with many applications; more +readable accounts appear in the {\em Handbook} cited in \S17 and in the book just +cited: + +\vspace{1mm} + +\noindent +{\em A. Elmendorf, I. Kriz, M.A. Mandell, and J.P. May, with an appendix by M. Cole. +Rings, modules, and algebras in stable homotopy theory.} Amer. Math. Soc. Surveys and +Monographs No. 47. 1997. + +%\input{ConciseRevised.ind} + +\end{document} diff --git a/resources/MayConcise/lacromay.sty b/resources/MayConcise/lacromay.sty new file mode 100644 index 0000000..faf2e6d --- /dev/null +++ b/resources/MayConcise/lacromay.sty @@ -0,0 +1,263 @@ +% LACROMAY.STY - Extra Math Definitions and Symbols +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{lacromay}[1998/07/22 v1.0 + Extra Math Definitions and Symbols] +%\RequirePackage{amssymb}[1995/01/01] +%% Change \lhd, \rhd to use the amssymb symbols +\renewcommand{\lhd}{\vartriangleleft} +\renewcommand{\rhd}{\vartriangleright} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\catcode`\ =9 +\endlinechar=-1 % Make things readable. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Setup to use Ralph Smith Formal Script font: +\DeclareFontFamily{OMS}{rsfs}{\skewchar\font'60} +\DeclareFontShape{OMS}{rsfs}{m}{n}{<-5>rsfs5 <5-7>rsfs7 <7->rsfs10 }{} +\DeclareSymbolFont{rsfs}{OMS}{rsfs}{m}{n} +\DeclareSymbolFontAlphabet{\scr}{rsfs} + +\let\overto\xrightarrow +\def\circle{\mathaccent"7017} + +%Kate's macros +\newcommand{\chara}{\operatorname{char}} +\newcommand{\degree}{\operatorname{deg}} +\newcommand{\Kernel}{\operatorname{Ker}} +\newcommand{\image}{\operatorname{Im}} +\newcommand{\Cokernel}{\operatorname{Coker}} + +% script letters small s then capital letter +\newcommand{\sA}{\scr{A}} +\newcommand{\sB}{\scr{B}} +\newcommand{\sC}{\scr{C}} +\newcommand{\sD}{\scr{D}} +\newcommand{\sE}{\scr{E}} +\newcommand{\sF}{\scr{F}} +\newcommand{\sG}{\scr{G}} +\newcommand{\sH}{\scr{H}} +\newcommand{\sI}{\scr{I}} +\newcommand{\sJ}{\scr{J}} +\newcommand{\sK}{\scr{K}} +\newcommand{\sL}{\scr{L}} +\newcommand{\sM}{\scr{M}} +\newcommand{\sN}{\scr{N}} +\newcommand{\sO}{\scr{O}} +\newcommand{\sP}{\scr{P}} +\newcommand{\sQ}{\scr{Q}} +\newcommand{\sR}{\scr{R}} +\newcommand{\sS}{\scr{S}} +\newcommand{\sT}{\scr{T}} +\newcommand{\sU}{\scr{U}} +\newcommand{\sV}{\scr{V}} +\newcommand{\sW}{\scr{W}} +\newcommand{\sX}{\scr{X}} +\newcommand{\sY}{\scr{Y}} +\newcommand{\sZ}{\scr{Z}} + +% Font used for operads small o then capital letter +% in case I change my mind, give the font its own name +\let\opsymbfont\mathcal + +\newcommand{\oA}{{\opsymbfont{A}}} +\newcommand{\oB}{{\opsymbfont{B}}} +\newcommand{\oC}{{\opsymbfont{C}}} +\newcommand{\oD}{{\opsymbfont{D}}} +\newcommand{\oE}{{\opsymbfont{E}}} +\newcommand{\oF}{{\opsymbfont{F}}} +\newcommand{\oG}{{\opsymbfont{G}}} +\newcommand{\oH}{{\opsymbfont{H}}} +\newcommand{\oI}{{\opsymbfont{I}}} +\newcommand{\oJ}{{\opsymbfont{J}}} +\newcommand{\oK}{{\opsymbfont{K}}} +\newcommand{\oL}{{\opsymbfont{L}}} +\newcommand{\oM}{{\opsymbfont{M}}} +\newcommand{\oN}{{\opsymbfont{N}}} +\newcommand{\oO}{{\opsymbfont{O}}} +\newcommand{\oP}{{\opsymbfont{P}}} +\newcommand{\oQ}{{\opsymbfont{Q}}} +\newcommand{\oR}{{\opsymbfont{R}}} +\newcommand{\oS}{{\opsymbfont{S}}} +\newcommand{\oT}{{\opsymbfont{T}}} +\newcommand{\oU}{{\opsymbfont{U}}} +\newcommand{\oV}{{\opsymbfont{V}}} +\newcommand{\oW}{{\opsymbfont{W}}} +\newcommand{\oX}{{\opsymbfont{X}}} +\newcommand{\oY}{{\opsymbfont{Y}}} +\newcommand{\oZ}{{\opsymbfont{Z}}} + +\DeclareMathAlphabet{\eus}{U}{eus}{m}{n} +%\SetMathAlphabet{\eus}{bold}{U}{eus}{b}{n} + +% Font used for categories small a then capital letter +% would use small c but too many conflicts with xypic +% in case I change my mind, give the font its own name +\let\catsymbfont\eus + +\newcommand{\aA}{{\catsymbfont{A}}} +\newcommand{\aB}{{\catsymbfont{B}}} +\newcommand{\aC}{{\catsymbfont{C}}} +\newcommand{\aD}{{\catsymbfont{D}}} +\newcommand{\aE}{{\catsymbfont{E}}} +\newcommand{\aF}{{\catsymbfont{F}}} +\newcommand{\aG}{{\catsymbfont{G}}} +\newcommand{\aH}{{\catsymbfont{H}}} +\newcommand{\aI}{{\catsymbfont{I}}} +\newcommand{\aJ}{{\catsymbfont{J}}} +\newcommand{\aK}{{\catsymbfont{K}}} +\newcommand{\aL}{{\catsymbfont{L}}} +\newcommand{\aM}{{\catsymbfont{M}}} +\newcommand{\aN}{{\catsymbfont{N}}} +\newcommand{\aO}{{\catsymbfont{O}}} +\newcommand{\aP}{{\catsymbfont{P}}} +\newcommand{\aQ}{{\catsymbfont{Q}}} +\newcommand{\aR}{{\catsymbfont{R}}} +\newcommand{\aS}{{\catsymbfont{S}}} +\newcommand{\aT}{{\catsymbfont{T}}} +\newcommand{\aU}{{\catsymbfont{U}}} +\newcommand{\aV}{{\catsymbfont{V}}} +\newcommand{\aW}{{\catsymbfont{W}}} +\newcommand{\aX}{{\catsymbfont{X}}} +\newcommand{\aY}{{\catsymbfont{Y}}} +\newcommand{\aZ}{{\catsymbfont{Z}}} + +% blackboard bold letters b then capital letter +%% Change \Bbb to \mathbb (for consistency with other LaTeX2e math font +%% names): +%\def\mathbb#1{\protect\text{$\protect\mathbb{#1}$}} + +% blackboard bold letters b then capital letter +%\def\mathbb#1{\protect\text{$\protect\Bbb{#1}$}} +\newcommand{\bA}{\mathbb{A}} +\newcommand{\bB}{\mathbb{B}} +\newcommand{\bC}{\mathbb{C}} +\newcommand{\bD}{\mathbb{D}} +\newcommand{\bE}{\mathbb{E}} +\newcommand{\bF}{\mathbb{F}} +\newcommand{\bG}{\mathbb{G}} +\newcommand{\bH}{\mathbb{H}} +\newcommand{\bI}{\mathbb{I}} +\newcommand{\bJ}{\mathbb{J}} +\newcommand{\bK}{\mathbb{K}} +\newcommand{\bL}{\mathbb{L}} +\newcommand{\bM}{\mathbb{M}} +\newcommand{\bN}{\mathbb{N}} +\newcommand{\bO}{\mathbb{O}} +\newcommand{\bP}{\mathbb{P}} +\newcommand{\bQ}{\mathbb{Q}} +\newcommand{\bR}{\mathbb{R}} +\newcommand{\bS}{\mathbb{S}} +\newcommand{\bT}{\mathbb{T}} +\newcommand{\bU}{\mathbb{U}} +\newcommand{\bV}{\mathbb{V}} +\newcommand{\bW}{\mathbb{W}} +\newcommand{\bX}{\mathbb{X}} +\newcommand{\bY}{\mathbb{Y}} +\newcommand{\bZ}{\mathbb{Z}} + +% Greek letters (first two letters, in small or cap; add z for variants) +\newcommand{\al}{\alpha} +\newcommand{\be}{\beta} +\newcommand{\ga}{\gamma} +\newcommand{\de}{\delta} +\newcommand{\pa}{\partial} %pretend its Greek +%\newcommand{\ep}{\epsilon} +\newcommand{\epz}{\varepsilon} +\newcommand{\ph}{\phi} +\newcommand{\phz}{\varphi} +\newcommand{\et}{\eta} +%\newcommand{\xi}{\xi} +\newcommand{\io}{\iota} +\newcommand{\ka}{\kappa} +\newcommand{\la}{\lambda} +%\newcommand{\mu}{\mu} +%\newcommand{\nu}{\nu} +\newcommand{\tha}{\theta} +\newcommand{\thz}{\vartheta} +%\newcommand{\pi}{\pi} +\newcommand{\rh}{\rho} +\newcommand{\si}{\sigma} +\newcommand{\ta}{\tau} +\newcommand{\ch}{\chi} +\newcommand{\ps}{\psi} +\newcommand{\ze}{\zeta} +\newcommand{\om}{\omega} +\newcommand{\GA}{\Gamma} +\newcommand{\LA}{\Lambda} +\newcommand{\DE}{\Delta} +\newcommand{\SI}{\Sigma} +\newcommand{\THA}{\Theta} +\newcommand{\OM}{\Omega} +\newcommand{\XI}{\Xi} +\newcommand{\UP}{\Upsilon} +\newcommand{\PI}{\Pi} +\newcommand{\PS}{\Psi} +\newcommand{\PH}{\Phi} + +% preserve old meaning of \ep when outside of math mode +%\let\old@ep=\ep +%\def\ep{\ifmmode\epsilon\else\old@ep\fi} +% symbols --- three letter commands +\newcommand{\com}{\circ} % composition of functions +\newcommand{\iso}{\cong} % preferred isomorphism symbol +\newcommand{\htp}{\simeq} % homotopy symbol +\newcommand{\ten}{\otimes} % tensor product +\newcommand{\add}{\oplus} % direct sum +\newcommand{\thp}{\ltimes} % twisted half-smash product +\newcommand{\sma}{\wedge} % smash product +\newcommand{\wed}{\vee} % wedge sum + +\newcommand{\ef}{\text{$E_\infty\ $}} +\newcommand{\af}{\text{$A_\infty\ $}} + +\newcommand{\ul}{\underline} + +%\gdef\overto#1{{\buildrel{#1}\over\longrightarrow}} +\newcommand{\overfrom}[1]{\xleftarrow{#1}} + +\newcommand{\tand}{\text{\ \ and \ \ }} %``and'' between formulas in display + +\newcommand{\ip}[1]{\text{$\left\langle#1\right\rangle$}} % inner product +\newcommand{\rtarr}{\longrightarrow} +\newcommand{\ltarr}{\longleftarrow} +\newcommand{\from}{\longleftarrow} +\newcommand{\monoto}{\lhook\joinrel\relbar\joinrel\rightarrow} +\newcommand{\epito}{\relbar\joinrel\twoheadrightarrow} + +% operators +\def\quickop#1{\expandafter\newcommand\csname #1\endcsname{\operatorname{#1}}} +\quickop{Hom} \quickop{End} \quickop{Aut} \quickop{Tel} \quickop{Mic} +\quickop{Ext} \quickop{Tor} \quickop{Id} \quickop{Coker} \quickop{Ker} +\quickop{Lim} \quickop{Colim} \quickop{Holim} \quickop{Hocolim} +\quickop{id} \quickop{tel} \quickop{mic} \quickop{coker} +\quickop{colim} \quickop{holim} \quickop{hocolim} \quickop{im} + +% \limit --- lim sub right arrow +\let\limit=\varinjlim +% \colimit --- lim sub left arrow +\let\colimit=\varprojlim + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% SETS - the macro \set and \sset +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% \sset, or ``singleton set'' denotes a set of the form \{ x \}. +% An optional argument is the subscript. This might typically used +% for giving an indexing set. +\newtoks\sset@tok +\newcommand{\sset}[1]{\sset@tok={#1}\futurelet\sset@temp\sset@action} +\def\sset@witharg[#1]{\text{$\left\{\the\sset@tok\right\}_{#1}$}} +\def\sset@withoutarg{\text{$\left\{\the\sset@tok\right\}$}} +\def\sset@action{\ifx\sset@temp[%] +\let\sset@next=\sset@witharg\else\let\sset@next=\sset@withoutarg\fi\sset@next} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% End readability. +\catcode`\ =10 \endlinechar=`\^^M +\endinput % of macromay.sty + + + + + + diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index 359dd72..5e76081 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -738,31 +738,55 @@ open axiom2∙10∙3 ### Theorem 2.11.1 ``` --- theorem2∙11∙1 : {A B : Set} --- → (eqv @ (f , f-eqv) : A ≃ B) --- → (a a' : A) --- → (a ≡ a') ≃ (f a ≡ f a') --- theorem2∙11∙1 (f , f-eqv) a a' = --- let --- open ≡-Reasoning --- mkQinv g α β = isequiv-to-qinv f-eqv --- inv : (f a ≡ f a') → a ≡ a' --- inv p = (sym (β a)) ∙ (ap g p) ∙ (β a') --- backward : (p : f a ≡ f a') → (ap f ∘ inv) p ≡ id p --- backward q = begin --- ap f ((sym (β a)) ∙ (ap g q) ∙ (β a')) ≡⟨ lemma2∙2∙2.i (sym (β a)) (ap g q ∙ β a') ⟩ --- ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩ --- ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩ --- id q ∎ --- forward : (p : a ≡ a') → (inv ∘ ap f) p ≡ id p --- forward p = begin --- (sym (β a)) ∙ (ap g (ap f p)) ∙ (β a') ≡⟨ ap (λ p → (sym (β a)) ∙ p ∙ (β a')) (lemma2∙2∙2.iii f g p) ⟩ --- (sym (β a)) ∙ (ap (g ∘ f) p) ∙ (β a') ≡⟨ {! !} ⟩ --- (sym (β a)) ∙ (ap id p) ∙ (β a') ≡⟨ {! !} ⟩ --- id p ∎ --- eqv = mkQinv inv backward forward --- in --- ap f , qinv-to-isequiv eqv +theorem2∙11∙1 : {A B : Set} + → (eqv @ (f , f-eqv) : A ≃ B) + → (a a' : A) + → (a ≡ a') ≃ (f a ≡ f a') +theorem2∙11∙1 (f , f-eqv) a a' = + let + open ≡-Reasoning + mkQinv g α β = isequiv-to-qinv f-eqv + inv : (f a ≡ f a') → a ≡ a' + inv p = (sym (β a)) ∙ (ap g p) ∙ (β a') + backward : (p : f a ≡ f a') → (ap f ∘ inv) p ≡ id p + backward q = begin + ap f ((sym (β a)) ∙ (ap g q) ∙ (β a')) ≡⟨ lemma2∙2∙2.i (sym (β a)) (ap g q ∙ β a') ⟩ + ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩ + ap f (sym (β a)) ∙ ap f ((ap g q) ∙ (β a')) ≡⟨ {! !} ⟩ + id q ∎ + forward : (p : a ≡ a') → (inv ∘ ap f) p ≡ id p + forward p = begin + (sym (β a)) ∙ (ap g (ap f p)) ∙ (β a') ≡⟨ ap (λ p → (sym (β a)) ∙ p ∙ (β a')) (lemma2∙2∙2.iii f g p) ⟩ + (sym (β a)) ∙ (ap (g ∘ f) p) ∙ (β a') ≡⟨ {! !} ⟩ + -- (sym (β a)) ∙ (ap id p) ∙ (β a') ≡⟨ {! !} ⟩ + id p ∎ + eqv = mkQinv inv backward forward + in + ap f , qinv-to-isequiv eqv +``` + +### Theorem 2.11.2 + +``` +-- module theorem2∙11∙2 where +-- i : {A : Set} {a x1 x2 : A} +-- → (p : x1 ≡ x2) +-- → (q : a ≡ x1) +-- → transport (λ y → a ≡ y) p q ≡ q ∙ p +-- i {A} {a} {x1} {x2} p q = +-- J (λ x3 x4 p1 → (q1 : a ≡ x3) → transport (λ y → a ≡ y) p1 q1 ≡ q1 ∙ p1) +-- (λ x3 q1 → J (λ x5 x6 q2 → transport (λ y → a ≡ y) refl q1 ≡ q1 ∙ refl) (λ x4 → {! refl !}) a x3 q1) +-- x1 x2 p q +``` + +### Theorem 2.11.3 + +``` +theorem2∙11∙3 : {A B : Set} → {f g : A → B} → {a a' : A} + → (p : a ≡ a') + → (q : f a ≡ g a) + → transport (λ x → f x ≡ g x) p q ≡ sym (ap f p) ∙ q ∙ (ap g p) +theorem2∙11∙3 p q = {! !} ``` ## 2.12 Coproducts diff --git a/src/HottBook/Chapter6.lagda.md b/src/HottBook/Chapter6.lagda.md index 3a0e4e3..280eb94 100644 --- a/src/HottBook/Chapter6.lagda.md +++ b/src/HottBook/Chapter6.lagda.md @@ -3,6 +3,7 @@ module HottBook.Chapter6 where open import HottBook.Chapter1 open import HottBook.Chapter2 +open import HottBook.Chapter2Lemma221 ``` # 6 Higher inductive types @@ -10,12 +11,14 @@ open import HottBook.Chapter2 ### Definition 6.2.2 (Dependent paths) ``` -dep-path : {A : Set} +definition6∙2∙2 : {A : Set} → (P : A → Set) → {x y : A} → (p : x ≡ y) → (u : P x) → (v : P y) → Set -dep-path P p u v = transport P p u ≡ v +definition6∙2∙2 P p u v = transport P p u ≡ v + +syntax definition6∙2∙2 P p u v = u ≡[ P , p ] v ``` Circle definition @@ -27,28 +30,34 @@ postulate loop : base ≡ base S¹-elim : (P : S¹ → Set) → (p-base : P base) - → (p-loop : dep-path P loop p-base p-base) + → (p-loop : p-base ≡[ P , loop ] p-base) → (x : S¹) → P x ``` ### Lemma 6.2.5 ``` -lemma6∙2∙5 : {A : Set} - → (a : A) - → (p : a ≡ a) - → S¹ → A +lemma6∙2∙5 : {A : Set} → (a : A) → (p : a ≡ a) → S¹ → A lemma6∙2∙5 {A} a p circ = S¹-elim P p-base p-loop circ where P : S¹ → Set P _ = A + p-base : P base p-base = a - p-loop : transport P loop a ≡ a - p-loop = - let wtf = lemma2∙3∙8 (λ x → {! !}) loop in - {! !} + p-loop : a ≡[ P , loop ] a + p-loop = transportconst A loop a ∙ p +``` + +### Lemma 6.2.8 + +``` +lemma6∙2∙8 : {A : Set} {f g : S¹ → A} + → (p : f base ≡ g base) + → (q : (ap f loop) ≡[ (λ x → x ≡ x) , p ] (ap g loop)) + → (x : S¹) → f x ≡ g x +lemma6∙2∙8 {A} {f} {g} p q = S¹-elim (λ x → f x ≡ g x) p {! !} ``` ## 6.3 The interval

R$3Pzl1Z=f`FrG8TD3Odj`Zq8`R$vtRP&VbLdC-Q|x z9vqcuBfd%*znNQYl3^g3naH>ZpRC^zqi9%m`@)>5B*y24-TV~L`*otrhdW^rEc~I3 zwnEBnN;9=t<&;#A)X3!M|FO@eBc|ZLMC=9l{XG&WiQnfOt)Hw@5y=XkAY5S}p?n@o ziPR9h)0SB#_1d-xq}D=EfYRz;*l>b_x8htOkcer$6S73BCl*$%iP8&)Uqt%2~^8|>!1l(E#W@5;FG2)71Lub%4{LV%7U(I~HZCo~PPyzlG zrNVBAohV@YIb|$fr7Bh7HL!SB7Lz(n^!;hu z2jYbPBV;>km^>29_DjYP-2Lf6)Ev&b#IX*z)agD_eV?brJrD0RA!Ubig;oTc%u*-6 zxMwvOs0llH!2~?pq(Vzh>KVqpu=JaI^8KeZBW?_W5g(W}`?=R{?4N8xJ7O5PwOtfQ^7@UJGzj%M|q#sCr@Vm-CYPd*b8nR>_={*j92|w4uiJ z$+wVbgB|iRXUkP?v8r7jGm;)PC+YmPvohQS2Qu28mfPIK!)>|Bs?|Lf$f&22KXZ1* z$v#Qo?A0Z5`arEct!O10i<~iwS_Y_M@G-}wM^u$%2aC^s($aMZ>Zk9@(?3#Z8UM3L zU#x%x3D4^e_Q; zETv?R^?j<*#j}FI-aR^nHTfi}zHVUQ;!};?yM3V;5PX$ZxKpv7QD$rvc_4x+l}jPq zAA)9XQ4m|5Xo%>Jh_Vx`d9o&HN?fzcgN+ZE0A&E30fe!A0aK*R zRCNxa9Kfjgs?OhZF$o2aO%om`6W4C`l6wDw2BX;)Z7L&Jvs~lr0q6-3>jZyGmTy!I zvofiF8oHyWbf^(9g*B)hscpyDUVxwA{a-M(I!n8i|=$~nJC_PXG`_NgZ`A@6cA*;R#4DQL>Nca_*cnbE6Lhi4y4uTD*a?6{(35P9vQXGr7#WDmc3a)vLGlUJz{XevG-wc~rK!J#IWkV^mD^w5M)*g7TMwGr{k z@^^n<6f57}rVgR7g0_(av5%yb4XW`Nxl;y4?I`lIzV(CLN$RGX^Y|*tpbW3#w~{Qj z3M5K(&FWU(UMFv*&_OUTLwK@Dplz&JftJ{H-zK^TN620)Oq&q!A&+BplPWE)2mEpd zUVo0;l4DB6`Vep%W?|x}3U7{6&oB-$!ZmJR%|$pc3x}jXZMoj0iLV+5Q4WI-_)H4x z6F=N~7OI<|4{|g!;Q#^6t-LSHgbx_D3e!gy!CU<>D<8B81)DbYSYv&mm5>b*`u@Wj z$haCPQ9cZ77PORGrsnF?=^!I=99CyK%wRops5E~uY75uJM1x|*pkuL&W_Ddu7v)r5 zzt^rqJfGljeusMaP-`bHzkST*l*>x3>WtF8CfQnqM5U5xyN=w4;l(wU+DK~yQ9_}9 zdSK)i0r08OQrRlggKNHv2~nx-+Q+IJD|S#>zw>}~`)URiHk7|QXsDPu}^I|8L`QtGoC zg-+#UJYqu_R%YmGH=>PTqWY@668Ez_Lx^Y*$e`Uj_&h zQrFO~r5#6NO#g)eXyW`{3C2U_uO7IUqUPxINtyd)2Ia~xaG{EryODYlaND|uVcm9X z9Fz@iKbSabIzjMpwI|gzo zs8u_#S-v#}dqTnu3kvP(A|xCvGHPYWZb6J5)O_0fIeNQV1gW+l`lT{XNfSYDgMOJF zsoD!sJONsdRj_QK@vz4#T&YbQ%Gd5J-sJh`U0tz*4{w4tEQ2>_4FoarnlskFLbc9V@PN!B)@1j#&5d!uRonLf4Lq+!m^P+A-N=v^UKr!!dqt7fzluWIAx zKvjYmlJsmeP4vW)WpxzfFIfCOjt}}(&JS3(XXGvmPpa)Pmv27&>*k`n>X~k>0j1~1 zb>|}9@9{4HI2|0+e@gn;|C^+bnVsqXIRK;*iN#?5cQuQ|6h_OKJdwJc6NCd67}-ya z76oq$FN6RR;}6Z|%Qf*@sJzU>#M5aNHn?+rQ&B}-tVnU5nA9HThj%0}=l7r=@Pih1 z`zzA>BkSku_4c*BzuFuBppR;oEac|?>O9wm4*m39Hbe+IckLFtn-x5V5Aq`eQHcc^VK`7b*XSYnI*B!)^R2uAG;h^YihBVVg* z#Z2zQ9;n%c4E5MXc)c&PlnXZ-`Ghmbu5%;x(L+~_iX7S#se;F>3hE4sXOShGe*bjJ z@br;4m^Q%TT&&WyxeG~izCFRJ34~KjHpP5kRAPl*0HTeJm~wh`Q!DuQv+&{KCh;!7 zZFlQ*zU+qqA+iOaftN(s*6hR7wf@W+_i?-QRm@^)`}CC=%gwK#cY9my6-GuMEnp(0 z=e8|pS@3&>mCt_LJVF0f<^1GF%au4m)UeNhFMA%JEhF)t)+F0}yk3lJ=55#wkIL8Rid+-VZj^aeCF`_%f9FhU9 zOf>hB%VpWYBdUc(a#>8K4n;!KLmlIUPhHS~WC?dEfJdOokP(yD_0))r<_1R*Sk#~i zq_dt(kQGabJNL$>EYr*q!10-&G7d^ILQqCfoRaQT_H#aiof3x>`B~6<%o4>LN0cS)op%Cy5K*u6T8C6b#TPetMn+-0S%c(dL7%mI+1tuqtt6!~*v zSFP;8o=vdg*s<97k>Xu!e>iIUgyG3QF<5&^6PP!iiQXA-EY8uY;p#NxL`9EKl*eFv zP{&zya-Xof*Xt`O_&|?wrccf7uG1oHx;0fZ6GF7J1Sm>F3iKLe89PH=79h-pQ_Th_ zHDQS=p&Qk$s`S#Un>od$X?EdrRcbfe7@ zCZ)4JD<$eCm4fI?OKE2eny8JFmyhJ3!=L zEP}X;4wj+fXJlwmKc~piy3psTVUP}h2+F2VI6@>YL*4{ZQ?gJ!HZUjm8MX&Y{PhBG zGg)bHjQLikLKVXzCZV;t!cKfdwc|(0P=tn#?x|XooOH6|#Z*yCiz^c=CX6UeSF(Eb z8*Q?8ZMi%0Ts-jSC+?y{vwjljKuPZcL04116|WJUDpwG(R1O80vRXQ;6LpvuXodHD zqC}6&8_sR#HL)jarf&s9$*e07swtJR5vJ6n3w4ftSAUAnd_wf0!Legsie$vm^HbH} z1518pJQBBz>??QXtE_I7*TTame9%5-0TRJ~#s`#F-7fB!^GweIx*fPZDhU&@AOP+= zyS;z{T~wjM?SpkYheMkl7&aGKOaueT(u)L{DjpEPjby_y|63-W4#jK=Mfs3{n4n%Y z$Vt*f-TIVMKhsGyQ2L}2ce~p984Rx-R8#g8B(}Iz)^4%wGNMmMjXv-MMFRu;ZaL{X zYX7_mBVgy6X#8v5ta&VaRgOO&W|Wjv!8odR0UGYOl_=j!UZ>hJgp7pUAN7+=_+(e* zOoe3c@+Mp+wV!Ct4?cuZtBt6qk5Y}#IloPuguhfQFUa}>iU+TjhbM7~^r$@IAcCYb zqOz05{eI?)U8yNPb+e8V#{yciR0KCw2A|Pa0C(#>w0K;K#xLH1cS&u+i&c8C zuw@niBFXd2@f(-9BBmmyaBXPnlY+vmrRLM?Jn19Xv__Sq8B2SHG206_zuclWd1;7~ z;Ki`yE;Gp9_Hp%7&bt8->v)PJ9W6oO9@75D5$*$9&d&+-ZjT-6og;#dt0QIRnlGMD zA{DU&Sxc6zKD;qxqUqL31d7%9y5G`jzE&@Q^^I8Oib%-*6E&Y1JnRMOtNZ+MQ1N@7 z7Z2ZkCnl23$uksHo-|{+^B~w1RDC`PyY%i0m7`lh+-QnFXQ0eI#n`8cx=*-n3Bm9IO@PG;z(r z0DR%wIbURq#K~v!V~FcelQDL_DF1wz_H;fIJdgFS@U7BDqWL#noZ?Hm+Nym@xV-#? z)oE+_tAr|EgqL+)WtGDL(7$@H6S9*tti6REOfM@rgLCstC1- z!b+NAl*SNc!ySWI@wc)xN>I_|MmR6Gm8=bvuChLR4X1J>eF^90@BTM!byiThu_bjG zmQ_j5Q6a1Nj1)tL--$|r2KMx_6w5*8(uRZReTAcNJ%o(W|yO@BW=I%;7za!um$pm4o6`* z$AFXL8(OP7>~^G$iB<@{3v}Noj_&f6{G#515~(uMihK0{gYEL+roRppCxsVV>Z!^f z;enpz%9MOg>*%PQUq@o)>V3&n92xp*l6w~2`1F@=niEXyK4P_~Qd8M~jNJ6@=qZ=H zE$M-y5~zdW;uJGgL}Ei|$6kgMgar>RwowT_Ki-3@p#GTx+}R7-<>6ahF?%>1!m;b44xGTRj&wWG@i73Xk*N-*8N-ksT&tq&f*JqW`#+Ea0D6CtR#+BwY zmrUObfIEIx>e&;uzWNXWW3AM$YT>T2>kfb=^zF+b(CRp!NJps*@r3kDSVzE&rRoPS ziNzu=B-_ed8G(Qr?^L_YrW&FWp^pXz!^f}Z_E$P>yjckVG3fM%QBilP=FPRI<^j{x zJhXr}^?5oPCwJesKJkDYOmf?X6~)_~J6Nfc$OlvRL}WA$OAx?xoLS9$HVczSc<>Ndv#4-IqO+SzDfr`RLbSdGkPb9zsivyK!*|?4!!Nz#W)}*Mb9l`De zE*~9E2eRJ$ZrY26Uc*{*&e961Hox$`KMZHKSCrci14dM% zrPF1cN*%aMG1j(viMVR;gxD`6=k#eJoTy56H|1y`*4{J>T;NzE$RG*3P8ho?7h7AY z9OLTMvmsFHlG|EsN!l^5-qKU0M>}AWPC6?$A9V}@bSezGEKB>zI zkSI5G+?|0(dh9xPC^A}sro~(@#I@%3kS43_JpR?G8PKI(j6zyo?wL(oF{i~6AcXRz zvH2ptnqfM3yuSLI-Ifu>IqBrilXV{OP)HH$QEPruSP@R-Bs|f*tnYG<-7}`;u0i$W zS7Y^oUTR03Obd{|L_NelWDN9|Hv$n>XGZYAS%N|v+&OYyk>S__jU~UQ402j|tTj2S zf*~=9izb;+u-39!Dia{S!qYQDmR0;1f<8lHQA9;)cC)nKnE`A5ox}wCFY7i8fpcWF zHHsY8TitR_Ew%gbV<)O}gU@>v(&oEaO|PbRpSQ^%ShJa~5oD{ZoQBQw&QntT&Fa51 z#hHMPgv%;&N4%K5>v*eo4Hsh#v5gtEG5oYM_;~pdw_<611-HVP4Fz^gX%Iv7sYbvd z$5T|~RyJuN&s$ZZ9Uc}vDMSrUZ6hmk$BBk9lQ>^o{LFW46W?Se?x~>4`tcdaxurp? zyJy_+!S1-2CqdD%lK<~wTRhE*6YMosNPPFXj9m7mlWjuxO3^XS<|i^FHtoQA?5Kaw zD*hRhbg9-VMY~io=YCOMk9_G-dJ<~nK%I@%s(N-Ky+2;e)t_vRDjU4ZY#$Lf>$O~8^f_9gqT@|CI+U>ycX|(A)sSV8DYL{D zO*R7W^%Q@Cli7?Y|8+gOtLdraIzv;ROje)5qNCR}^jvBDTtYg&vP$L6jdF~HY>Qmd z4H`6jb6jT2jC;I&kHKd_@dOSFsKvP^KFiOy+GYZSFbO2o6%=q(Z}BkQRZbIRhIZ;j zylWbSc}Ew^jjha*wR0o7vo`~93oYSko+DW3w3)>!hoNJ)u`{QAdK{h`REQtnZ8ZZo zIgb&;te2ZOfb(}X5j87y{QA@%K8wR*hwva=d?Q`*o3ewP8JYu4XWa7J2Uq}_d^o9i z8=;Jl$yT{-uiYqObswMu9SQ`di_Kx~U!e4kDhM3gW{l=g6no8jlRBD=gIQz9gEd*@ z9feVjR+SRRCkX8~t<~N~=J2MptQm3*>~}JRSWLPU@m9;io~~4U4JzU|Yh&SqWjgc` z6q^%LPCt^{;c0PV{&MuNh$+7B=}1kyS|y9flo4E9nc=i%P@&4k*x&c7*IPlC>uLptSvIWG;Zakc&E$ zb4D|MS;{Q6+l^gxV%Qud0nyF9K9nE3j>0#KV_)C|1)#hY4WYK3fkJ5!3v0a^hKJp# zt7lct@ZcyIo%@+|3*-Aa_$6lJ2Ko;<85_fYm6LIB(ElI09M5C|c5D3W_urRjq!`-6 zZv-u$xzKJbult%5ulVwy3?a@V2&$D|KZk>OexT%Koy9CfiAVz2(oU!lN&H>9seL?f z4}`m1ZgP`+#>Ea5>Fgy_O5sPI8JKSkv%vu8dM78Ex*UN z)I@|C2!p|Q^Wspu3o?QyueW&n=OBa=9Br@QPQgB%%6+kE=%wJCO(iHNh(B~8tbLfc)y0QHsR7NiAp}pLsUD!lR<@Z63KiSANf*np>Ln^UcA|f(&~u2!Wl7jC~u~t z7&NoXg@gssa7Q{H*;gT7MxJEU1KdRw^|>&{R;2ToipEQCl-eSUrQ$6KCe3uSD!0XC zplIXVmJ{zOy4l$Ngf6PunO!=NF@C)?G(EH$XN?%|RZ<*&_1>qImwhmg)O$iWF^W|4 z>L+pE3LwvOq$8i&&I;Po!j%Z-X0p!qjp8mg(C3%}-icv#I_vx-HM;7S?SG)%Jl{fMg&N|WIv6|R13|@ohhxAm z{U+-@sm2H@*oO;SZ4wW&C=L~kQmDKP&Ggbx*1Fhur)oWF<=R>;3)2gtf^?|yFpEv zg-u&RD%a1i0_Lv77_Ry`nOmPffBmWWK|4Rr&iBi@?Be9i1N&vcZbjGp_D`B46(~ml z-&V1$@RFY+VFhEnJt!Z@rE-f(q!+f!d=d+&s$|!E_$yGPlnL<_QNRreD48S!mm5TZv-XKm2?7-FienFWn>&J?& zdfo<3i>dvIHBpu~1*_sKdcbM?9++l28&b2wi=!sOK}LmLVIe#O*S+8(@-gZFPhkPR z6Nu75gSwAHe{{pXlBAYpx6;FgwYfZy9PuCy^gBHl7LELxds+d(pE^v86x^lYIMcU_ zN;_}7JtX%+sCT{s^Nc*gFg0^NCm(cdMlrIwZacACOHy{;Q-Vm+Rvp8)m#_>a9?h7}v!J|(MMDwKgWu5ZHaehcJSRq$C zVN}sw{y`JBT;_t_W|ESWVf(%A_!A`HF94eq*VGO@uD+H(-A4+f;*yLlAc9c~$YOlO z)^%)Pa3rhKayT3ff3~)pM@kjsO2LScf*;gE7Zs!@h8(Y^n<|Xlf)yAJ(@h&T)~6=| z6W#VEPT{N!HzEldi(>-9H%PhUiVhkSFLGL3Uy5tNpRQCxsu8kJ_rVq2QnJOS;+g)E zw7`;}8mPc>R62958SSWopM&g9Ww!>`wSPek*|Xf-bf*cgadcl_YvHZ>*}_FEsZ@(E zjpm8+O-#f(;8F;zQZjxaFsu~uUNTqu7rj85lA!RU9tceYly(U;J zx%iqNb;J4GvOwf_&8Pt~oy7XI6qcMRi6hKTqq;LdAEJi`)IG3}Hw??ctB`VgEsHPi zG*8x9m00*U93<9l#J_Mb3pAjaKhdl`DVy9{#rLUBHjjBr!1qyWh_U7hQ}$W1PO3;K z{XGWl#B?5?x;He#E;Iw2qYlMxB#VCrRD15-LL;aW@-MSwcE@uC?egQt+>P)bxxd&m z#VF8sBTgfFH*kSlLiYP${Up=5MqaxO5MYU8AGRc2>b{^wBFz*7#*_dcqDOb$>cL5f zgZ|qZ|4xcz9+ZiG$_9$F%|h3W>~1k1l9{f4N?~Qof?JNH!)QBIqPo8(HlOh-n82gc zb3_k+k*OklS_;Z%=Mos6Dt3)yQr?VLu=E>Q*v;?+>?)=EDS-#TbPf%LlN=vlzNX1T zHWq~)#yO`;Uc-+aDr61cxQumK0s*X3?MFt*;u(H>ckCiA<3Q&OCNZ(T$ ze>u{oo1z)XNR@mKgx!>hxMhDEbeutg zU?JCX%clbhrIfzqx+;FncD)9?pTXW5CD87H1+Co)?7}ez_Gek)_n^Zc(PeWc{F2Zg%4Tm<8i##$GKAdSp!YL~Uj6nJDt{m&yR z{cNYidEpnjA)bYFaa7bQv(MnnIcgl8ZH<10jVnfXEcYpPKyd0_(bNh~xOAmj40naP z5VlIwg_L=QQf*mW<3Sb^&^kAbTrmdsYz$$McW|m6v`)@;C-(Cr&EZ5w%%oO(N}vz# zY9QE3Iuj2+pcMFm`R~ThK*}-o4$HJ(EX@VGl{IzL;&G8v{|S0kCX|DfKPAbwH?#&vizwJ_m5xN#aLc=pgkui_M z5%;dBJj(uqZ0=W5g4W>?Xq$#kjqm0{{sSeHlJ7BvzgmH)zE2hsfoY4voH930wTNhI za5#PqI^N@iGaT$Wf<5}+tG=x+)=c&CsPlaLWEF}NDA^mM!FcGHx3C=ZoXKY&d2$Is zHP7satg)87Mb*7K4A@o#ar3<$rQ(%NSI@NIgwsm zBUxL^460gq$=Tg7WTi*g17)0xVcGwrzH- zj%`~V+qP}nwryKqY}Wc=b?WT1ImlR3O#l6w$uV^5h~|IKsc9(j z6)cEY6}4NpI0p29t45%FS7E-u>24XXYuVET-qAjpE-p7S(UV39RMv2~|1hQOl5G%g zx4hn!MCA^l5mYu9IVER4s>dal-fP>M0HE~;4(op5 zZL8wD55h&VkP?br~<3PzsN$k(2%+>3dcWTe5g*0^;MGYyBr_1`Z~v<~kh zTGRT`8hI+Q55M3>s?iHw96e06a!QTX3`#mwWiJB-NK+gx78@W#8r=Jzw~Pu*TcaON z_z-gm&#ma}ungC$7au5BTaHbVMK84^K@&ie9Z^kig8w34u39o`(Y1fJU0@4R3tu!3 zRT2-%9LtQR8es{{JQJ#xvKp?)5?Z3x@}{DX|98F&-RVcL#vvrDSC z3uDm+qu-NE&N@s<;e%Iv4`=d+Jpa#+Pr$7?=AqLM1zgHNxy@RMvIP1MO~5;88dAzk<8qNZx%<(mtw}Lt zn@p!vLo98bDA!JLr^YQQ1g4|Ox>Ie;HUHZY>qj;!2X{hK(EtP$WtQhXvr;jMlG>W& z;wPwroFmCyo50kF5O-yGfc|>kPEqUl64dGKkWbQQjj2A6ZgPeSXpMUl@R%H3G|w2)b`9}8?M)hFzC{PYYWWLVguCpNV7HpD(=8b0KI=E zNk%`Ur-zTY(0&n9IfEp)N$#DH;-$D$=#6Jt!HuTrWwuiT_inVTr5=2y`rG?T3vg&k z1p1nt@5{PvAI&y~B}5!;4s)Whh!L9ViCQ~z%mpDGtz>`!N7G)CNxR>W@AHxsw*~mC zI4G4cTH#rUF=SbV*3cjLa~-;eoxn0OXmpv3$r$sX>v3Lp&C1?N+_K1b%1f^-i>ep3 zUJ_04s!E=lu?{r|7*(3M7)#roScD{2H6bPDRsw@6DY3X2VjKqKLI~`x#IZ~-^S%Aj zWFc(d^Wny?$(E8j5dX4P#vvVaHhJM*F741gL>tef9@R*EsC~yX%C$c&I#D^BSwv%8 zE>^<2pTji#J<)MrHB}O!UC!7jL~c#CI{oY>>!{Q=x6NMSCYnag6KfsM^`^OLI(*+G#fDjN#>cwEXPjJ+7B6XOMKRQjk`3K3k0J8FhAY`E?7edpDkEi^RARTZ4^gJSlt0NLoH3cQ;wH40GI3{3pIm$UHkk7j*u9jc`L zxT#d)c;)GqEiM`f^R==ZpPW(AG|!K;i}f$_5Kk3LJ%f2a_`g?v`+BoYW|b|V%;dfU zS02+|5vt%{AUjbAY}zlnOVpWq+8r&hI=87G>Tj)*uV|>a8 zdKTp7FXs0DM#Z(qYvPaWj>BGag*VW#QuFPZe~}2BC*0Slq#(%1Uu zDtP@Xb``06Z|2}-w&C#Jbuc3q{nVWTeo?Sb-NB^G)Y5HTnaRKK+Y%dFGv`?V)F_^R zOoZC)AY$ox{U7ytOw*iSsprz7-hoNo6qZ=RKS#1rL9yG=L7A|&P?0lZ!c{F;?)p7g zH+}Xr7vvp3qeVO-X2n;%X=!gj&MjEa zV406{QB7PN+FEh&A}D3@r01n241H| zpq@N}!S|pbDK_r3piuN?LQSF|B@)Ff%|0_tL=VNa%2jS*`m#%58^C%xMih0JcEMfV z-gt4UORyy@q~R+<5+Wxj6oPXT2o zVUw=30K8=zkY>M=L@(?{hdqz7hyA>@`GM31yL&|+n_2-YL#@bjigMhQ5z~Kg%Oa$0m^s6{`z*oRJFd3d#?T$zvR1~+DhYCbC;~}nU zCnhGMqfapt*2CidC3*ie5gh$LBl~522W@?OyH!JVdW61DT2zRx&~hHvh;?}gVhk(5 zzI@dGm{#|Xr?*)|p|vC=`r*D&LcO2Sfpt+_Scrd>y8RlYiyS1B&5W|w+ai?X&L?;I zlS`bR7AC!@y#4D##V`d;%QUb0k`$>QK7yF|wLz$E!^5_jJjYp;tZTO-j(tj_aPl>o%*kqNYr7-$BypZ7oWrMlqW#S%MdTK zSPvM31AWIhE^uqJ<51xyxE}tXAe}0XN!WL&+xrM)S%Q?$q}@%N<|X$4GSE?B4wwcs z(P3itp>+h5M`_&N!Ko7o;$PDmj62ofuO^>SSt8oO4FQ%e7RPgph{?^=nb*;x#S0So zJ?9cfK-zcTVJH#sD3WEComAHEmV_D4%!xcU)oIIf1*HUlAPqkfAUb%SjneH5hYzW# zgU%F}y!0rrvwt!F$KH?S=Ele)E!aRCMenf38I-%{RKfrQKH(O^)zfLTrbd$oWw(aY z<18Mlqq%eT@&kUA80ttSd0IXpMlpnPDF+1{Wkfi0gu`IzTE@<-)NOAFJ(i8UJR<9A zN_NGa(&ih$fcww|QX}SS*n&g1IVPvUS9l?N!PlUiZJU_xL_8Q#OM-lqL`{u-Ynit` z3qyjO{jmI+Eo+IIH|N|&wXoDj&Sbg(=(@@FvKE0%fxfZsCV>Q$u}z4!WbfkrD2Se# z5xwA;70O`((ltjeEqeLrF6TSQGAY7_Q_NZ6V8k0L3uSO|un+PRtt%CD@xs!(rh^n6 zq?iz^w1IJ$w&&-_=aa~L8R6OIvJO#w$;CPgZL*w6j5;kF-;3Bpl7-sW`uJMhhCd?m zPv3Yuz;$e#Xxt_^NU1K>!Rfp&aphb9r{wZDUVlBt<5C3f?@7!JTTooa?X#&FQwlTk z$ffb^u=K!OpYy;hO^Azn8#UF|iS8lzE8*0$?Z>YL>_B+b4`6p$m=sxKPM7*T>#@b? z){LXf5- zZka>GKNTqQ(tYYE;bZm5)N})prbl}hwW<;;x^C}|sddot-Ibe>9>kwQ2_9z6)1a0; z$PSB+PUoWMifyttXYS|nlUy%ys_mwrc{N+9rJE_l$xU66pS+cEO7`s*M|N0tmSAme zQFKz-yw6*;`5PN>%X}|o_XGt=YBslC+JSMdSGU1l2d1&%Ch?g1~E#Yt^8JPw~t{b;$r64#+nhk zftZ7Ut3z3jrCR7CmWK3YXOIF*6N0tuLz#FqQC<+?!3J!=CSM#lhURJ-k)aYERbk`s zeXDEdAwvYm*ZDg2W>a<;ju%rklL- z6eL9UM#m}N;`_KM=bNMX+csrkzvCcyQxyGq89ECO5sXt9o=)Con; z;^Hv-)3Fqt>@$f5IE>ETf#nvBO}GHfxPBJF#R1aU-=)NH~WIIP_r zjndahx(q(qL+(Lt1H=OOi~tz3jIOTGO2kyo`o_Q#wYK9LVb%K+jJv4bMZpPGXsHXn zb7+`^CTQzJ`LDUahww27!#x)TvuTQl>E(vcO^+}{K5m78B<)tApqNHc?1rIvKx5aX zqkHyIA{w$ao3f}2dX`sFOXBU0D%1!+N0B(coho zy`b5|cFP68ads7{+7$>!?l;pLyRfyDQUEdlsn5jYBCZGHdNOf2lP}7)J0UjAUyQww zw=_@>ViMCr5D+=|&8|kj=rqO~V5te%iI^4bja^yJk|y)o8Aa7)EYuM#5=~uY+QeRb z(YGl&2P0TCFdeL#X5Ul!3UPNoeyK#Qv>}NDs!CtEE|%P3RFEKO#cDh(?^3$`h!~6O zOTMz+SLpU;3gAcKc1AhmlW2WsD{vm8yH`&j)Smw7JD8NvB&={2ycAy`9xYSg^wP0& zTWp!KK?vR{W21M)fY8xFyXzfbqmmQSY#D7c`oE)CY#ECinv2zbF-T9Mk7tE?1QRJz zjfY!42D-oScSmD+L)WaUZFMu!t9m|YsCx{F!f!x*G(l;L?Y@j}?&j4Maf|AK&cd~z zY!t!vLgg@LYQ|@6+UL^~$>Ey#RkFv_zUJoVbL_c2?7@B23L zs^M}eT_=PEF60K3d0l^uCe@@1Mzq}H<}@QK2MT5|g|vb7)(*U+t_)g|=WZv$AT>eR zp6$d}@Ts-KnU#R%DYy%+=LanplnfIkRgH*2;TNU(B#@uClz~b<1?}0CkssG8GDSa% zg>&Slnm*F1ohD0)lJpRko$O`VB;i^N7HAO~;00>ZoIg4J+_a*MgyW@FmRb}Eq+kn8 z7OxJDMfQQ57g=CsD@(dKQb3L8Ap%K_uv15p0n0(l2KSmNnAo?SXdE(gYxa;xu7?`5 zsNa5pNI-x_#5cg={hZ-!iz3L!dLxQR+8zsTN&zirbkMT$A;D`9)R8yf0^%8Tx?aj7 zd?sNfjieG|U*Ik`kOHRynCG5HaRECmh4C-6MqVHF=nGH+#K)W@eHOyQJbo+Q55%&a z;^cC1@wQxv6r%SFd(jgko!fj#*mP}BG=q~NcKx9*8#VSH;V8K#6AfKa=YXdBvrYAE zqCNG_TB#E3ZiK*1gT_=!Yy1d4)p@svL6*U5rj)3~_o9oFe9B2c;92_Mzv8PyIS&%4 zx?bRj56RL?Y93dqKtB_=$h<>~rSym98>H2S`wR#&%6?z~JgcXV9B7XEu>$^*Fo#U6 zDVcA|GOF<cq)t%i6}WlO_#%*pT}QRE^B0xKMhp)f9)$n>3>}P z!2G#8Bpv$oLBP?!3#h)G1Yq?@w)+l|Nuo2SzaI(^ao^~O1-be9OzO}Gl#!>^I2)c+ z-kx2)-vbciNk;-@B=As)KWKm-w&SWN_$$@B3|&Afxm~59ocI(*vIl~U^=CUv2o%pK292EtZ z7Yf|2f-5HKQ3>}lz>-~p(sfQc6Vy~ITtYQ={?>nJvLo{$I?l;5Ni5+a{f#BU0H45~ zSgp8nIgwSUAQ~yl9<_*eSNbL19#F<26`Ao#9azO1pCzxzKA`oNnGS3qJ!*&`M>n}K zUkNMdMi##>DeleYyvLL>+M+>cP_Wy_915f))Pg=u>wK!(P z$pqwTj?D7{c`E0=NITekuHF)MN~v#K)6_U8I4|RMdf1M`B>Xy=!IX1*6^xFnwjExT zHl4*WG(nxbw2PN$Cl_1)=Mw-Oe4SbdT+%@nJr3853~-JBrS5+$spjKXi4x860?=}m zt7zA*Os+9RcR`|emEECuZcXOlBnCHqPM^63Y3%c0wl_ateyhQ%v?X)$zO$%Mq~vY@ z6ts(vsL<`*7Kg=MubrsAV#9|U^Xa{qwWBXFyYV%n2mWz&q^dern668ipY`Yro%FK4 zMx5vruMJ>y3znpVlq?ZddazNgZKf94K`bpBd&{bU3X+`5iY0V0UB}?Sh0gehTe*U^PiFjXgW5gLWXB~oGZod1-*6P`6<|iFK$*g2#1gps- z5sv_HBMry^@|SA>6%1B!WNa&@8=K~)MoY{!K`Sg@k$wyu`>R`;I z$*|TX&0zv6U{Y1BmNt%wYhJ3yZEWKOH;WanQ8}p@o|3Y$G#ks8ta%=oaTa+4k*8j; z;IVSamA`wR)BW&7s+{*}tNO(XGbXS+tgxuttjuN`qR7?eb*}y_-_qd<(iMHm(8lVo zn8YM=sOX{tYS6WyNIgYI3;5vMo(GW4=sMcSQ9+z({Fzu-%D;mHL#@o3dt)cRB57)9 z(CmsFM#Ozz9?nsg@vXnNG!g1wuuFT!lG*nEMQFy=rMMa(JmMv2}<}et_*TA=I zSm~uwqh?x+C7|b&+K!xyy-{}C5H*))k8_t8E$h;e%6s}|r6znNw<}n~_?=$@dlAVV zz;tp2xRCcMnM+z!9EH%oY_ry2mrdc&cN4e4YH+{20DKYN+=D;d;PO2~HxSj)Jnm-l zO>{$B@!Pd#tayb2)q@-?phr?tKAWS1;bRu3+6);wGz?7Bv$a>@E*!8Kg9+oE5=Qx>_W-~p8f3u7wSZ|0HrKuO&$L`~2W zfWGx@A_<5P0;=1d0!hNj{4S)q07C8bkB=g4r&O0iTrI=ev#_Ua*j2! zPKDV&YC|-C#NA@&CNULp7z~ z8ZKp$JD`jh*0Eyfse|t1fI5`jH9n}B-%#}J>myUwVmV5iHbAp)w%cd>a7F)osxI`R zqRZS~_~0+z;=pjU4Xs1HXmKoq2v{pSw1R>k!zA8(R*pW}L*G||0~=FU`#~27!smU! zK2;QJIowQE^Cl$uxv8tCP3(o>F|~A4UXdQC*O>NFRBUf4yB&t4BNU_`86`d9n$=11 zCDXZ|vL1*HRdl8)?M&R7m3UcMYoIuNY~OS!R*Jh2vsav&CVz&hk5DVnw%oXx<(yNP z2!={^_dBoMhxz`7Hf>cx=nh`XT0u`{z8Ah^=q90$HEmdd2m7=J(->1(IFGFJv0{zQ z6Q+~7n>}g@$xk_3W=77PpBAm|&;zhdR>Jq*!4g@2y(Wm;s6gq)g%w`W2YI(BF75l2 zn+a?0w0v+zVdP2XK~t#R4-c?q$%~EIl|5C#`*%BBn|g%9G1b2(KaCtl7_bDzX^H1? z_}|1^HSG((jJ0evg@q}YGNz^gJosrt50cJP1QbH4p4T+`e=6B6bYcj9s) z-aSWm;19eYT{=w)GPZMw{JWKVeg}56pimH*cIOr;7JX_B`r8U(mF>b`r#Nj#H)>n3 zI@auHS>S3~mTE@Ban65|p+XxWuq-oA@4&sN%EfV_Imn36BYKYO_blh}nOU~v!$RP= z)?c14N&(>VeEIU~oRM6Frpk0n0rggqUbtG4TE8tOX{=G~zf(DwDX9iosk=70;sjI9 zLW`nq1~Lyj58>wCmgr;l7(ZXezkXNTD6^A~Y_<^4H0G#Fv@x!qqqx9n4;i^SEl zx5jbRvLlYfIRVVJo*sb5m-m1Agd*m@xwA?g=?^%i&6TT-h>Q0k0&1%*Myb$q56e(R zB2JZ|Rp8{3p^hA$*}i*5J;&?1wPp?^1a&lhNSpii@Wx?kdbLWa!~`c=R<(NOcUp4! z3fD`iu~7gPI4<|I>TWpfrOq{}8ll6^-sHY~BvlufuAd5^yL)lM>;&syZumVA(ex=5 zVSjpm&r^(Ch9IB-f`n*j|Zm=aRjj1|reqqPQs1mKB zvJmanLC_Al45<^%EiAeT>{U0f&dE#Ws#|ClJGbm8kWYt&g%_+AsT`a8u}x70M=wp% z2Jh3D#R(&sW8dO9CQO}M7?J<*(~j8nd%&+LL_(QN?KvRfhD9(Zh_DLOkvE@yeBkj^y6|o(EODHq#O~eZ1()lz zw@}|jTe;KF#7)2@?00*ciKRr4ujRt93+6&xU;gTsOi=H!84e0eim#yE#2dWJF{(#T zL>~iq=5CdVW$4o5TQyoH5 zD!=b|n2z3f^ckEA$Aq8Hi=jf2Bc@=sv^NtKcxa08G)+El^{E#H>2w}~asZq4_lb!g z&Z1KBerTCk>1^f+S%2B{63-~gsq#o+Y&Yiw&!-!KKYnW{2B2tkGYDmP@xoBC1E&hp zym_ImRv&+;@(Xe)(l05}MDd=YCgqEDMP^?;ZiS~&8(x0Bl7!3yE|$N{&`;Mz;_oky zI5#@KxnF?u#yY)5ZT?eyOqVGlh{#x1W!k>J{v9Y1h40BV7*+SWlqx61CmDPfq`gME zz_n2nk15sC4w!c$YZ9SscExNO8Iu-zd7aGNI}dI@1=cOcAS9@TTFO;+J0yzcv~Ijj z_(VXwCyd5rONSyqV23xqF;Hv4bc-QQQul!4q3hV`52PTSLfz(2)3Q5VU139C!39tG z@ui6!8dMqGh1(p=LOj26$M8L0tP@COvUmhQ;E<^u(l>_z$MJ$;`=;F8d4QOs;FD&5Zw>ZU|zYTa`YNvcM z0J-csOuI|Y92iLi3Izq0(22d`iIDGnyu5QSx*Q}%yKZbd)F&-Sad$&F5EA<(fGcHp-;4I(9IdvO4M2_yGJdEdG}N`?$pStnpK*7RyO^npk1kX ztr(2FvNfxYw}z-d?rlyXCv_W?-MRot%1P?-iieVD?g0Ujp*rR;qcE1PI%9d-^|idV zEBn^W=R|y?Yw*E(x$L&LQ{JHiq;>e8s(N!8et+k=@8U$gD2Epe{2&L&#k~)5XAUF7 z)wihud=a=YcJ;UeQSoU~>6{+d2^&64$fjgyP2!&AG#W0LDmiHcGgr}nC=_8NVN$%C zN8O99Qct{#(iwwE9e+$?Yl{VGta(Wd&t$p{(sdduoZ7|&eD_&s26wsudm)kW_=f)t z%vN4zmf}__3Y&&kZ}B?Q`wyxMQZaTir+6#Obk;I(k$Dxvpyn)*Jm;s9xAK7tE3Q`D zhFMl7-xFI4n8}GhTu>-&(R;=9`Z~pkocn=pxE*{Kb8Gv$=un#x|Kts{SJM?ap48M} zjl#XDf~s9`*Ug0P&lnvW9ac&6s86&P%Z$iy+lTuyPJsq+B?F*kzARLrX2T^=!tzH` zIG?n-?V>2CP~dQQKsq#4Sf7YTr+hUfK`rp|<@;y;QL`W=kj_+I8RNwvv-`ApmW@M` zEm*Er%D&YlXz=!vi@sy2g7TkmW_Jdk`(CaoU{SL^XITpr^Vv0{f+$$jPV`ZT1(r@| z1c62dD94vZ^Y=w)8Ahwz8sx1;f%@&GDpWDDc{H{8{;r$q80SLYG|Y9KU{=M9DQ#!z z`b=YZO7GWZ7^KZ=VY!4k1li3bu0?V?Wz}BI9+!H^bmK-L|nAMrz`~(er!Xe#x&cF+5;YPt^ZU*#BpD;gN{f^FF zHZ2+Y{4Z-ax6FKhb|b`pOtyQuT}CzJ_xLM7eFIv#+hS!d%gZdL+x5nL1r3TI-Y&na z{YD+Pn>?q2d4Bwki)Q8w)9c?hOoJ;9L|T$c6I>u#DBf1hm@e{2w^wQhwE@|mWk;J# zV17Ph^@n>wI+2FpP$$QPCwL|v)>wo`SpqyObDG2I(*p3O5&kH3ezUMiG6!in4a*!E zIt^#>&+9Rg;TW-ck^uh;6ysA-^(HeNqNxdlk+_ z;rjX8YIL;k^&K}~jWRKpR-RJAIG1#G|G9n%@P|cjju=x0iK~O-!aVYSS^o}Xq~Q^| zn;d|eoY-Wrp9$yf>|EN5v1qNi>R>IBcrHqfOFGX>idE&@L@AVFATEMqRbF56Yh$|V zuIMQOY3S1f#Gt`|M>jHv#tJ|m3$)^R5HG9gt^R)a?Mjr(yM2zf)8cUzU~tU+iKiMX zZR;J^vYQ}vvzfj$5ukWtfaK-tsuXVYGJ7q3Hhy@P`Gz*?Y*bDmWF}(P<}ejYfSmK2 z)0uA$;bP||_sHBVs8bROv)+S>liE>P^FU-Av09D}7Wv0s@5_LWQtpmInqpsuhPFfV z;#NaQJ>68$At{?uL}PE9&`pU3rwrglg+IXTwoIkgq;LzLJDMAF){%wL#!p8V${msY z>q@A=0KRDKt@}m+IzSP_u$)Osf)agMFW4G_Yw2U5=jD&|V}<|gbT3RSD+Q;iNq|Ix zeG|M!tU1>|uAP=x^#h#`-Q)PW6GX2&a6u_zx4XJ@2^JRYTLKuTKyq2*$CPe0Qcc6N z6Nk$!->Usv1i0{ysEfr_@~{{iiznw*R$~>Jp_V5jPLns4eLwbXxAhHz)iOsQ@mXj2 zEVFtnbPaf3q_@(LQIviCnB?{eY5T}zWH~T#ju?Xtf}>9_HaKe~G#n!XMvWQ$CQ@nD zl_Wj4(DK^zPf{aZ7m>9PJ1KNVN{u3%1x$NI>e(nlE97~&eHFCZ$z5*Xgkaw7E=)>q|vmNIs>r4TFv9Xx_;wYyzR~=zOvWC zM_k|W0r!iUG#U?s7Ca#>i7Q=8%+_NZxlG3m-LnXi(XV3kp0^<{O=*r&GmSh=h^>lq zT|6sia4Zx~ov@KSwwarA&Q;||%o)xY|NGd_!joKVkK*ctj zO^9GhPcWzcuB|prngW7X;FT2vZ3S(I%YTy+mhpH%XMESB1Y6#n1Jbz3#ZaMJD?F*QC;4m`; zIw+l1z(ZM2?t{K_-EkC`Uaqe`3!Ka0XS19M`Nh2{LSmt(q zXOY;qnJNX-+!C41(>O?3b+)#cmJ~bn6nMZ+j*|Vv(0DF9bDToWMHznHlJxJFc)k~+ zBxMoL;x!HYq@@_PFu_K1=IdY`7Un>;b>X;&8R`|}0cTJCuw!dXz73`J3ds3C%83o3 z>7H;X3nNud1^7{ly1~mxm|=sexiKcB$8&=z!Q%eVGee$}?1l>ryCGkK|tJ`mv%boC66!Pq|mg}D~7d>U60olW1;2>2==7!stJ8s!a!=X+o zO}`SH(QFF=ZjC_N^A_l3`%4{)@G~aMeAF8bbgd!9ZTYhJk8*|02Ra?646#3x1_EiO zYaf6=Pih0Pc?WP?KbvZX4m{KxoR88AKiC|o+|F1U7jNM80ZAOAFO99?zkElChe@> z&h$wvri@Mq-`N~aq^3!25>0>|>5lIm95<;ph!Eiz?ZU=jeOyAZa9Sx+H&y}B@Np;U zP^gbk`pZ;>iHD7QzZdIeJ-BrWq3r(oR9Gj$9GUR8~AN2*$;xo_TGO#;m?i z#lX-IKMtd?_r!wQWX#yl?iwXoic10$#sc%G93_u=qx+by?H4kL?N=;?_>s6U4vuY& z4lAD=nDHKu6t9WZ_joO8j2AH^H-xv4TOWzMzY`bH{?$xA11xz9QQg@3!{fNR7RrBH z!nRgsqV*gK6~rC$TiZb{Z>6Q7mEHNJ1&%Edm~G#t{g>k+aCoLjI8QQ(C!Lke7gf=?gO}Q}j@~ z8+T$Q)-T*!8j26r52K}gK9O*&HFyf#nI%e6B#wykq*e$v?ImW~y!DeVGSS8nTMVG%NZ ziX200$k9;{gt$z;=lj>PV84BZRKF$59W$xMG~S$x{QRqwE?D-eXT=>sa@i_Gv$~9C!pU z_Hp23Q5=JH8weS775_Og2e)P3|3B0hS!7|$P9Ku-PAdJoB&4WC~c2R${%-Zhz zJI8|M=4g&%=w3|;Qa=hwDE+oREq|+HG)swF%gg3`HGaQy94NgYb2BKq0QW(SA9T4W zXB0g_)=Mr+7jjPr>yGYnM9G?of}HotTBjXWd}AXZv`={;=1E_J$N}ipd}la9!I-oP zQmVm@JK>OI!2=`K4+_b@>6^Tnz3l2*4`Td140~F1)ZjHTxjU;~1l?PdZHKzprJRDg z5@N1fTHNB{>Wp2atDbZ!M_t~;hk906<*NwZZckZ;AM{mIm*62V?Hd6LsjEuyyOx@u zPm$*e;xzPUKjz>BOby~&VypjE_N1yNTc;K*E{ie53vqmMI!}Utqn)R!OrvD(Xd`D$T$TKMd;*C}Lm)dEj9F{FJz`k;!+@k-C! zRejk@*KUdan(}mK^g8<5b0@Zjrj2Ki_o2(3WeTJUUX2+rJ~6Pu9^z zqkI}mZA~4htiE3Mlb#C%UNUn4<|jy8BAIyBMP7(sZgs9y@)oajIZx{3KJWP&9S~)! zRxUHfiw;KOv2sSE8l{1%3keu+9NQ@HUrAB`vUPbS%k$6LY^;3?zhix_ERRxVq3_LX zxN{;)JY0EfKOP>Et7?7d8owg_(^$y3&QjZFD0-YrR-`<)TX%(-uBv;#TqZTk&(V^i zIH8teJ3{!xV+Pb}9GPCUEfiPBQ`@|G?Km`Cpy6;2_! zeFZ;>%UeC^Eyg=tF{4&Vpe)_51V&uj%=2XVp00^xcEq{?W>b)m^DHm(*|(U0+Y;%{ z&6Yd$^(z}NlN*|R(qky+hdS zCz{{UVsWvoqcM_e}PNjau_&#VCZl3fJW)RZ)$@bt_tDS4o7?N@^?ra`Bku}}&~snb#z4W8<?78ywDx1d-Q@@>AmgQTej#j)K??7 zdc@rA#g&EhAa#fWo~35+`Q=Pr;sH+8Yj~Wc(8_S`>k+h7lGcdfU)O6E`3cHTHj$Be z_cOxo45L-AA7lNY{o(|%6{u?d&^va=EVKTb_wQ6Q{dtr2s?e^PXKR_+qiLWTeZ=X0 z7kiXjs4V!ga0(IXAOFwR(@*k*R0#xCJAn<5SB0Is#NB)gg|hW-rz1JD{n7k5D?j5* zJ5?FGUxqwSRzJFDhJ8v^(;5rpec8~J>>C?l{Iz42eID10SrbEQG#an62`!xyfjn9v z0i)L343Z}pxie5Vj1~dTiAgEk#1`YG@Z&G#CGDj=%jU16%>)G&Sj6*#<>zIu!E*_> zcO>%bqZx+XKPWEA6=ENE<80QYl((X-{AOAB1`kC|Vq4WG(|^T#z)7wnM_p9O{~U57 z5k{%}=1pmj#`Ef+K>?Lf%b`0<4w$1a-h3Dxn@l9Wl+A)M;Ba~v%ULqVE0ewg1c2;J{~kM*CXxxc4eBhRe9 zG^gno6M;!F&t-8d_f>zm>2IhpV-moT41SN&4x1`n>(bef$yxiLX+v{gV73zAXD zZrVL7HtuhIqYv_o+2QFhR_vPRDH)DHVLi!ToWat7R!e&Yzu?XIpzMWA@&cLj$R1#r zM<0KaL_=9lK&A99P67qanzuj`BoI4k+q^;I>X^B{u|agl1SJKrQPrO`+6hw-ed%J> z=3bWJ5Nxdm1m**MD9+Gc@7ZMk2wx$E^Iq>LN*W^`4dT8GA=s+3RCOyd%4-(x^afvO zEAv5&F^OV>hrs8B4=EU`b~(Pok~>{j;m+DsDs;(0M(`3Lp|)6KUNvTdi-~N<=>FeZ zMM+R^QW#yoT%~3L$BH{6WwD;sV_)_&s~n4!Ce$cfr*Ksd(9g$>UHJ}zLb(TGk~87m zYGdL}fR$1n#jxPzCTs5-M>ZK;K~3RRI<^viTrPTL*}UU<4?BRSh9XjaEw44tA9gG zD-iMxdde)ZxtW5dE1PE>75H%hL+Vc z^_Ya@b7hy7At5^9GJ<|{?5Y59T4WpP=)#812?=WMl&nV-JirOX{fgycB4U)^pmRII zrqAmkTLW+Eej0*HS7qY4;Yjgj{+q)bk%W`&G~PQGlH7BuD?XtluV_e199M!FWUw9; zKu?$AjCKrN!cJQC%bP3QzSo8PV7YMytwDmblfGYa+rt+nNJ;A3BZ6m050adGyRjw?OUUD{B5S407<=^$x= z-LV7IwnOb7x40Y74I}a?;jq1ke^@^{OQ{XfiqD1f;-5uac6*QAhi!+W`$s%~z20h` zV)Ky}XOtn&MA-@vU8*7LB095KlNvecylaf{SReoTH@x56l{^c6vpUv?!6G-AuWJ0l zeKSGu)kQ&x2cu>S`BwSel9YNm@3Y?V zsB3Zwn&E42I?TIc9gad`@@4!=NyfrB;*x*;!`v3&!My}K=|*Zo2JV?!D1E79;j-b9BYl!7Bq4=s!0!a_ zd0P=dco|?P&N($HZbI(&Z#e8THQ{7p0|y^+_(+FyIAl_!?AM3|Cjd3g#{(!?LTe_} zQ6grynZK}MRIl-qHLC~19rigB@#JnX3siqS?|3-Cp*DAL$i0=pvpV~4(xT6?NS=q9 z{8J9AyRY2fj|OfiHp1kaXdzl+1vh^>Paj(hb#Er~2V-~(A3+)|;32Oilni#z+G&67 z#Miwk`}j;i;bCJpvQU3ecxD_soZ$Gg(Qv{VYw*vSt1ys7%qrD{I)6M~a`PdcT&EZB z+1Y@S&B42Fvs!7gV007KCWBQ3N|t0pGXv^keJT`g7W7Os(*0>kMpN**gZX@)=H2f> z7m*gGm3$54b0MK}rZ-rsBWCX!wHkC!oP+s*rh+5)ZG5gPH`KCAHb5SvCZ&4=l|^mKF@%g6G~%xJjA`zdgoH95wNb}Z0`i)<5Mp((vC z%iqPTD$3!^zG%XBk2iQVgHpX!^OhNSBm10+k?Rf@p{`=s_Y*AuzXhn$qdd)TO69sy zrVexFh<*DSMBFr*d!R>$phk2{$#n-$6iB|VMeoXXn?VYE5Zi0c#pT<3Iovv0*i;U? za`D*j9@qOlA+sZ_ToA|{C+Kt<44mF$TH@jy_&XrOG-F_I!=Vqhd!R`O%km;4oLjhUS8Hfo zqtc$vT2#BwFDPW-7P)D@PSFHD@dOg_CLaoVki;H``ga3HcF`(iJ0>+xpIR(b4>sOf z)6{=TYcSm*eEHS5K#?(-;259D@1)j3J(ILJ_FJKmEJAHu-7X4%Mrs37^ER9twMoI- z*p%UVGK7Xy`EshGL|b*-#%$U1aH_8vHx2Ic#&iKIR-|q;u4O6+nl{@0;=Z8I47Z`q zBh+Fs%Ml~$PUZC)Y=R$JKx{k+09#KimJq*f}i; z0$@qBx@_CFZQHhO+qP}nwr$(C+2!rWorrmuzqmIe^PK&wwz9k5dp;c5xXu6eApK9a zP9}EN|FCt=Xlqpww;}k>)ukU_P#YLmIKv%1!H2^@5CEs@*MHZWnaPa@0flm(wUs$j zR1~YeO;@x1)yJ}XJ6Ei{QY*RS`Sw;Mi})>10{c?S<^2hk`yKx6<@tX2zNoUhrieW6 z&sh3gLlP&62J~Oz@I1gDUi!RxL!&qdO8!Vnz7&zHDsldkhw}6O@@`!+i~#Gm@bEtN z<~J&`B7sp5qqI+dG3OpwqYpQWhqbF6re`pu~07(H7$gZ=xM9+ikX!0 zX53D^GQx5(q~!8!L1Q*IS6oj#jh~5U^6K7aN!zNjI4yE06jn?7Q*{?5hrE*^Zqm9h zt(h3H0|7(^A7*Xd2Y6zOa83risU;)*^s`aoz`zp=eXq%|wGEV2&L)TO;l8}&6vIvH zl7DMdkqIZKl3sq~g%pB#&X=M#sXPR2HlvcusueC0qX`V((a=PZ8LgCmIHIuVg~TJK z*};T%18H{8Nh)JI&2Ut7^jd7PypqBL=36qEB^5amIU>~8PBhUEPcC&go;_2@w(3-` zJ%W9L`dbtHLJ72mPD*X|Q%)O^x$aB1XOxD+`aNmRn#7G#l|gH&mi%{@J>IWx>~ELO z$n}Y`N6}VlXCyNSfZu`V38+C5pWMfGOlb7CSc*1hWkz?si;2@SoU5*(+Te+JLXz6VSKA>XxH9suW_BGWMg)|uLgt5%|59m(7B0)kxA~Wem zZORkij?HU0xYz2osj*A|!^gh{tn@*O$DlkkQgt5^U`oPgE=!DhK(GgHkA;1W0wS%` zHo)n-^H{LSAIPLo0w~NGm?FD0V7*oeNOg!RFnnZ9u`R~FVB5@*gpyEMJhcqZ>=xwl zlrDnpK4%lF-SQDI?DXjY3D?8WT!Teuu&}{nqREb>tm*{$hrTElt{XYd$1(!Vvz2CA zhPl&Wr*IEh6(Z6Q^FOR}*(&+bc}b*hB&7@8p_}O=$a&q)-lGsF%`R~sy_W~oBhph_ zUHGH%5*oBnm@)=zQ>Q71gnCsIB?8H?>W#oq%nZ~H-WOkor83~&(mdcb%mDMMc@6X@ zP+ca$5X2KTEHnin1JZi{-UIB-2<`U+SGX6mx;)=DEpd;6ndmlK4=1B-M-Hxv=ynX|ZSIjUl5<{z#kZXlM+G@5<;u*+4#mzCszJYW0a#C~-jG zkI=!_Q~-6UAL(jJp!Wow_an#jC3hLeR%!jALnIBj9MVtdlk+6m8@lR-?v*9CC8~lS zHZwf(c*JKMgg6ewzu-M}=rRobxpGXxLLc*%} z<%13?9-fG#@UQew$7mK80lJGF7fVL7;x#FMc#Bj2al?ucq3)8?p zril_;Q?1zFfHu<8$ay2tD%C+Zj?s$9yV<){;&xsi9O@@eyV*VH)O1+!pLLm)us1)6&L#)Mbz>k-HT zzlROJT>~_bNY1_*MhFb&Dmc328%@)%owPyR`~o8{;)YT12fm9RAMGK|4gG2VVrlGG zSr1`UirS!O6jZ zU<##C^AO*b5H2w>VRob{O_87Lq`^tu2Z)%7c8B>fgf;s7v=rM<_D`scLS453erDDa zd#_GmaFzhs_M^86jGzRF*f1)FX^l0NBFDjyI}(R6#gO>zm=(Gf^4?jca5&iL13g6$ zyoX^^JNbDdAHTBdX=l0D`mE$AGV3AVKRG)D1yMK0-gQV@z983ucisGowQ|F9Qon7l zS2%VU2I?g_mM9h_FQ$i~wfYV@QSxeON{N1>kOn^rmfkj zQCC9NG{Ev4dr9?jEuYS|QI?fjfyd}2c8#}q8YXQmzV${zEp2U2yYYVQ;lq#3gSHE` zgwl=G`C1&NX_^`$6&D)&`VMIwZ;Tba_$hlmd6&R7yhP5YGF&XEG3; zrkZwVg$W$!AcoO(kZqB9cMKpy#IB{c8(FvTl{>Z54d@60`n5`eZ%VRh8exrBd%GB> zorf|+j-Jns0LmlQcYp?Q5OmBLKcZn9PoKZ&&`baOZGLQ0^=TVHph@*QsoTbEs_xCUIFAr|){gEZv88903(|D+3+5?yk zQb2IReR1|=5=`h~M6aY1oaG14`%Iz(-dN?00DijbK~eW?R3@FpVm3=)&li~~il-%> zY~~@7NQ)d&AF}oQ$dVU!3V2#&-{0nEOiA~n&GfxKtyDAzX?f<;z2(=6F=pP6@+>r= z%v<%#vJ*ul89s5B=G5GA%;gEvO2azZW6)UqHIoSxnoX!GpDPc8=4eYO^v;$5UF{NS z4+3r$013~gz2bxDdV!^o4@#2^wlgYL1wR)a=U74yQn!nbWAc{+3?u zodo#uo&Nf@`$|Gkus9$pqn{Q<`>;Rjt>u5iQV2N;T9}=}Gn^N}WBOs+eW}iJeY=*Y zl|9XU+WS1`-v&G2+d4IdFV;tZz^0bfWa#NYRI0|DOC!>BdKIwbEyZF{w^3(pJ=yFi zmglP!a&ecD<f*qv(St0)fE&0m`Jy)$N@w%B$WQOZRUHdL9x4N zt(OU@qFrP1PjD%B@Gep!)#s8vADx#{Z!k0MH`jJx3>sK;<}nWfC*AJiH@5|nu#7&o zx}22|_xZ%uzVfY1Vn!q~b3;0;ff)&j1lYqDjZ=T!NIsl8vxO_N-^X!AhTZWF8^D0* zT0T*5X3c?h@z0)jW)}S%=5C(tEb5@ZiMgb;Xy7f1ym6hwzLLwq4Wr zRiQqdgElLHydEUAKHN_)u1Lm`0jjjKyEmY{PjOS5W}q2AMdXIlQs`Q+ zs=93`#mRM$RNT2pfPi^F<{#ldc3qr;B2e-bGus@QqZulwq&fTiB#yV(By)R(GgVZ; z{FD)&vJ%sOuM^eZ#qDUJyxhDq5a5&a$6@10;m;ZJy`p!LwiP;cTB=TUL!iay6jG! zh#B;y;u3ndB3`eKOxPnAnRG?d;7KgDA+KOOtFE;!J}$5vP|9xHys^txjViA-<8{0s z0dtd5Q=i@e<=wla4r-7dMjhg;9p(B}1}9cxw% z>eZ7f%G;eew@2B3ro36eZ@OFFFJU#l#XP^R&za9Izjrl?yXjLJ&Xe2SzHN&Z45;VN zK*J=!^M}tfK3;Hx+~9g$@aMR_p5HevifvHDmeO2BAPJb|u(2rAz}jSJwdYJE!9H%o zb}>2NFaEc4Uhllz5Z41=AEsV{Losvb`Iy-yv7R?ZpXVLBJEtmNSl1+2?8otB@g71S ztfx0~Y28Jps;9K)oW1TpMS^f>nVY8Pi%W9b-N@yRX8z18^bGm4=WyNJh!tN#okc31 zka7nWx0}s6R@>RGppVGDetmzt_ka~v?}7I-dI=by(QpTNhkGxoXumum^rYQt+=174 zSa@5+-3G}Q7I(}DC!H`&%nJs`hXQ%(M5Tq>CZ`0S&$tcOS{t&~^lfY(r#@GP*Y;_-C0Xt= z940?2cTlAhrd1u1ExOAzSX#SvZUdCEP}GqpH18Am0q(XF_L;C~GM9p8F^`j*&sWS4 z++3FyIoQeWxGe-~rW3lQ4wqUcDVwr(vzI32u1yOV5xGq;(3Z;|Q%wG?K}ur#Y)xnW zqBfa!Yc?2chwkR=h9<5HY8XtX_?#Cz9`P0%gohE^5Son&qzL5YDHG_Yx>X58_NU7p zC1el;C_hqDyT?lp`2>tl@p$J=qlkEe(wpb;SXwB|wD5bD!W$;fdjKeyk7*^i>53-g z-EN(YG7F6ZQ*BZ>YF-y9foxw%J_Ga>J?@8-QZ;I|6tFJ#rOfzRZ>0lmou(GRebi%l z6~XM(vQ`hRb@7nIWM~Fl)wmEhDoyoUH$Rz&KvI3juhN14HnxVqRo>fi-jZakM?b_6 zA>@P)(&J+SnGMiWA+6hnN4AXEt(_VP9UgZ7?c9rUu0M4UP$AwEvv_ucFXlGezFeaRNsYMVDM#qhj13;-L)F_AcWbh29~~<&#r+p z5Opn|@ew{of@qV4Dd+ISOeAcWtd@I2k4#Ef=;9~T8Rs>MagY^%I;^li@bPuJR6~Fl z4P-916d_4N`Sw+kNh`eucDp zTBq2{J?H^O?>=YuMOu$ek~$_|e}> zCcwkU{;@&uG`=LJrI8l@TYc$QDE(178O;^K0d_2im1cVJ{!pXx6anR zl2(YKmRGpt482gkg+@(zoAAbFwHbiK{rs!yr<8eb>Bg+Mj0;kAXpCbsej99jGt<(8RmH?!id z2rV^OuRqP4h)0@c4rmB`D~1RwK;$)pb*MPeUg|V|cD{DB==FU=NaTqyay81y8YF1* zR0s@R$k`gEX(yuX$6yaRD1n*QEzB`H*!~#P?)hP=Xr25%=ge9PZ$;B$P47b%#(DzE zT0;nj6FMz*4d75dAJhZ5;`3#Otp-+8cHDV9KF{M;K2GyZmWuNIlwm5b<|A;6A?j zDh2h_2r4cPTHhxW1Ky^^g#7#J6H5F|w$=qbCN{J1Vu&vzO4PaWUSCn`1Qv^Z&PRCW zI*d86dNVwWTDHsIgIhDu%T%r&+Jz8$%Jq4;= z$0>Zm5Ka|`kHxyuyDgdY1|#jbZ+b4r;BJh}OKMW7G5rpN^uI3XP8cf(ey?y&W_2wRVwCDz#CX>aukY@@P z3=mxYqe$WIIR6O8?Pg~~Ii%;r<VbiFAEd5!vz z-6Z;y2PVo7Iwy#{OmNv&Huv43aF|DfPa(b*{0GGxYN4TtSN(KnlcI7&703e$29YUX zGpzk3M`YPws#yPzHaQL9e!w-yo67oj>q@EVnax4gBAKeFU~Sb{54$grpU zF>Fpi79beKAJZ^I)>X-s?wRq16&@p`-DjqK>RZ&2${nPuf{q%@nX#CPaHlb7i>?fp zIC&_5irHJ=&B7eq2hQhrOv?@yjqo+k3OAgZ zcbqq&<}SBRBze;G${cjJWhI^o1a7o#e_voLa$e8l6j`51E#!6p6Ii#5&L!Nd30=Ut z_!o2Rb@M@cgNRPfg~&q|vgag2SvqAFr8NK4L7X&(XQdQ1j<{$8>it1jo&DT$s3UM# z;3#`Oi&*immtp3}bmRe^$3pFtD3vVDx|BxfDPmvRx_mA@;kWR;TIah}yfpkA;ucXJ zn~X4H`IvtAP7!P&mSu7GkOH-FY}JN^s}=GZR>0?3FY*4hz2`$gH z1SXI#(5z0;91n$3Y6FVgw^TK`2q}>3gPmt^-&r5D7Qm||*Va+c#;7Ux9BGv9AbJmk2h_Ej^e`v`v8fRO84;xpU-AT$1bwl(ra6MM=2uV7EuByCt-ZBI5`dBqVMu*6jEPR>k4EioN$A>Por0 z37GYhgq4)IM*P>Ub-0L6pZfkb`+jmD_yJ2M;yX}I7=gbN2a$z znEEQ)3>3oqXYmkJ)E5H12Du3fTQDF?gutw;Q~z08_OP^>LD9vKaeX+#I?qsqOof~9 zOR_aZQv#%J{~x!gF|%?Cwq{bDwcJF71lIq=T4&~2APb7}2tJmeU* zZW*4Qn~i(7e!ebj`SgWf5^XFBcMGkNo&C z!HIbSIZ?Dd^|!Z~#)E!VkJbZHJPjC#8a>$(X|nJb)6TU@&oU8jY;Ij@KOH^H5>27G z$h*hzIs;abJcF8s+kldqQRD>DDJ?oJ(}3-Cp+DY25qo=cE?%a+QV2mQw=&j(Ax{4A zos*0Jqg^qKunSr9i12U)IpjJ}{orh|5xX_tHIj)$wm8VUXft<>3H?Dz;zLvR=ZXg&X^&Q+IDR zd{#LHuMdkXfP12c0#C*~gSj@ykAplEeky)SV*XKmp?_&D0;t&2U&Gi<0LG`G)0Jcv z)8;b`kx0|D^K~3^aV&db&4<+U@CzlcLQaxTCP|YZLy7)y@df-dx>oE=bW1319v)6& zLVUx@FxZzpejqqAkf3%=q#x;IPCxVE^Kjou2*9gNK29CfdNDvk@ndy|nMEUhV`wy{ z5|o4TNjcTUixqjG!HIqOMnJ?-P1h7}U2%b<)hXX)ewAR_5=@~2OoAc>Bpq_=(%#;K zR&aI-jJsNL(R69mVfUefz zwmw;kjfndq-a;eNaq+uhAEaaElz=_=r>iFrMSeF< z%Nt}MxKu_p2HuK}+*(6XzX*Xfw;SjdvlEj!T&H~B^L4NTgoc2rPvTA=HUmd(EC?Dk zpYHZOj%&7nWW;5c@%y{hgtDLkwVl<59teIM5jWN4pEfq)#4385M?m^JVwd>RyFAfv z6~`Fg7|x?^E>)0>F7O;B)vSGeUX)XAEbImLb8ECCo>7;w^5da zVbn=+tm2@C%z|5YfE30hNS2NpWraVPisi2Xas5ts{k`)g<=xcC8sMiK#|Ni6u||7$obvl_S$; zHWJf1dy8;bP2_3ih>vm*-YW;$G>hC#T5SBdO7FC9=nsZInc8`AkAGtlwq`IhP<9+C z#usv-(R_v`TS(nT%WrPQ%&s_wNGp}hVUZ6r7%Po)l2<@ZSq>4V!c!_`q#;A*#5RX8 zhawr7JgfvQ^n?_*>q)|J?7|EOPuz}$=tM9+%!s>aF7PsP2>}5`+x~n+wj-{wUOTqP z^j?YC<{4Y8d$Kg=e$&klC$`{b zys#B28I*MR4Z)(nF+ZjJN;9m8ERi722x>hQ_{Zd^EDh`uQm8YGAr`Vd(4Ak4p?8zT zjXPKkM&3D;>&Rar^U!In`F}PxCWzH3aP>8X0o@`gU)nqDiNKW=(;v$-ak;(HGVPgz z(v~XL2ip>uL@c5;5eECo+5l%l(}zPvP%>nsN+?D*B4<}2qZ7cNj)a^iS9KpK(htj5fHtA4OrXGl;hRgwTk3teKz7z zxw2qPVLv6{bNATqS#$_1n)Ef=#dtKSP|k4zGcA`|$t1L^Pz|9Wx`~nl2f5;C(TAC)YC1`cA$&lN?}q)9GQ&%6FO{Z>%w^8(e<&zbFK{yQg5f z4^)L$xUrWklfKG*fP)tvQT1c+rpvC8CM8R}JCEzhqtkBRTV=2`I;Y9xkHgW*_oY*A zwj7cDFydv56b~0t9H9+oB}-&>oa@-5)je^RVri4-t9I7-&tUv8V)hYHW8ZTy6F=A2))4b&?l5%!6E0TH{RxOf#FUt&5WceFgkGVJ$cm>qD z6JEFDFY>cwPF9%V9;GkvE7?$#<10%9;eE9YoF2-Ihsr4}lK7J4h|%xITofYn-Yqpl znX`p9EYVffAvo5=i}eh8Oqj~mLGyx2L>_&65` zj_bDnB#I(^Sk%hRV+)no#*=__+3*18GZ9SJypas7$VKfkVL5AINxffBDtqp?wtQOn zpK}?aYrBq_m0LV^ciyP?Y%x4^GP+y z`@&z&i~((%tB7a3j#wRJ;0}$R>MSo)<&qij0`%hwmbRZdJz1?`qFyBGX5s)d`azgp zrYHMIe4fXxk^eh#@q+d7%=GQ;^KrRy@#dHMXpCx?BIM@z;+-f;V-DPZQ9VouGXGYW z+uH?R5a7Fgq#-4e7mXzNEzFmg3oams?^}pR1iWbHo#Pvpdcf9FXjahDT`V`r{d0dw zX8pBm8`+CkMEwaQ|931j)NL_XbX@vsI43qlJy&a6a7eOSp8(RYZcB~T0} zyr}lz?wR|m6ql1)8ZjYyZg1hR27)NWL7*hJ0i-xV5YC;JrnW*PJ8pDMeJt1tJxwe0 z=RixLSBBVUX!qkj zELFB5mOw`i$|7a%`tSYskTrV?dsk`27V*W<8(sQsrH!$<%3`j$!=^@>CM1dJ5yYWE zBI(f*ZC|uaasCeafh?3K*-~k577aS874>A}K2!hD6q=dE^^h8!cp}~pgHB!|R7CWV z?;eubu`AGLFkiU z%1-9QTh~*x5dYTt?v#{;2MbckeN-ar4WK+vw(8`lr`?Xq>BeAxsYKltNUM0_gZH~L zVy}H0GOz7DUJ?ihMTBNRcDFq26Ng0H%FUYd*x2>O4-oMR#yq_JYMR@T5sAe4gTG#; zP=eLoLso{YcoQkB{iG*p8wBek=y2*bL2%3&xAL^9&_&%s>vB&yEK^C ze^I)qpsH`r8iS)0R-34Ma$;&G#O{0Fpa7-7o-##eOUY+JC^IlkFXkzIsvb*^HVeg5 zc-J^H4G02?S*s=d#x!cVW#Q}QGo$aP*Da+!7Tu}48Cjq$Yfhx=s7lg2mzjX#1_C#= z%rmI%kL}EWB>VDVu;Ve`F#FKJ2{{w9oWuCLb7Gcqc2ZxOpxg}?CJpIzx`~6PsadOa z?CQP~bF_i3k9pB_`KTW8NZ_w(i;r-1B6qbLVaG703rYbU`MFH9hje9zU|rUr95C*)F9NwczUSF&N5tfx|^r=?eu z6EmSk(5g0{LLgB36h4Nta$DJaAd9?=QI{4j#<*p!NZ+EJqsd91?uY`dT~8hV4O`u8 z63vZt+rZUwUOj4iqZikl-)&e?wb-!PTLlq+ilgP%d9pu8QoxMeKd=~baGA{9f}BLx zah`*r!{m!Vvq7^Ou(c56GZ&20tr$?bc?kz^g{XuBTbndO585S^P-s6S0)|D_nw6Wo zQ6f5L7{$F&z%1gq;l4Dt^R$U^RDi_Bb(>G0Y=s)w0n`jR7gxj&pcEn0v&QC`p_H>3 zx`y6?Bql#aJ>EKy#TO_RtGJ6JQdK}{AhTr%?izpxBmetG0b(Ir77l^3AV!6xCA-6` zJ@0P#;k5Pmq$K}lF7b?8)1vgLUKm^^!6sRveCZpV)uNhPk zB{Ivh@qEa!>xW5&C!BG>?3zs>))1}qu>&G`2aXIxpHH{4Bm+E3!4U;_g>^*U?qiL zyaFtETrBX_3eZ52qEdM(pl}IZ*X$dsJ4vvP@*Y;~8w=?&RFmx2H~C5p-G8}yDm%Am zP!F2IcgJ#k&fYftCrT?Yd{c^Nll-%ieVE-Dl+8Bd=q6TpTF*v)w;9!dbQNi18BMy# zIDm95ws(Tq$cI}DL1kPr%($@}CaTb5G2eVH_HjMD%5#U`rG9+VWG{x*7{D+?|L7NT z&tGhudayBnK6gI@zna$Cyeo*}?O zysPxEalN{qsEpRbhB(ahgXKAkghq`-HfgOB0cI;?SliY-;N21ULxs(W@-4Q*4R-Ud z9^j%*=duJsFGGik5WvA{Q!_eQ@Pz)UKTKls{GzMsFBnP;Jse>5#^@y%bGD>(`ssQ7(n?iZ zt-dLWAXyE&nX)E(?zU_1S%W+JYP`)Hl%fknd#FV9JHp?sQRo3YgrXpwnUM;0;3%MI zBNNFGF2>P*D;e{jB)5KKIu&rHRB$C&IkoMpsSWYxDH>;b#M-Yu1|&E8cjOofWJ8LR zrkP^K9TJTkaPupNA;9nN^8*CEufqtoL4pe0N;uKxItZ_bMj3(A;#I-5eVM47%p$NM zh6tmvHyXo5yZUQ=%kJZ=gGMkC;c??kNd{t6Xjx%woeu3AF4VpnAFF2P=}2a#(|X0O zTLEjRghtvkZn!WcbC@PUeP*$ishjWwbS=J%MX+&uO!8Adww7yg2y)!KbRJL)*g_w# zo1`R;#11BhFBd7yjtXB#mxl<87c{BS-I_QDKC=#3Vk5wjR>v9@qyt%n$<$kOD-hT? z;k<8BKiRBDA0QSC%U1;%mfad6nv&_n zq}e<%Ei7|9M(P7K%K$Bf{?KmCf}!+*05Udue5cY%n2c+Z_**@8t(Fhn_Pt?DwmCAA zI0AKhQjJd)C1R&w1At6#+}+yzoOf{zbhw6k_^&Ts*H(fhhG284$U+>613(zLsla>~ z(pJUuRIe6RJmEe>2Ix~5aS0kE^!Aifk4cU)rit^8cEOQf^hE(oLa;e;42kab=v-^!hPYQ#`vw~>&cC+{~$GJTCL1l^28T)3JLZJTdY2h@6%R)0&Oc) z$`-03@?g(XyY30B1LZ;=&6O6y<4B26m|PrkTuLVQ&07rYBPraGI|+y5;pW3ZISogT zgQD|uEUE|;KM%9pAyF8$(ih9v5u0ZLnW8%2&QQ0^OWCkmVvId)Q07Bp&O8{4tQHmu z5bMZ|U7c?ibFC=7p(@Fmpkz}HOZ@uMQA@5u3Xz(56#q2|nxp?ELCjqj{h1aLz-7`i z`3}7H4J%n2?9Q&{DVtO*sfgV=R+k0j3tUqV$91Lh(cEY7yx3JPMfDpgl1p;@-}|l{ zI<5C3tQrqE;0(yEfb!Nm9PU@f-uLw~XLd=5@pG12Fq4zAyiO?+a=vi`c=9c)@{urt z=2lavrG|xQH!>79+Yi*{vQE(k59|J`gynCih2Moj%bn>N*KzppFfGnY=XS#;imMe< zLL7X^ga|~~qZ>HX=a9-SR&32SD#SGs*TwHvHUdX#?hBsaxicDiC0ngDMjw|@D$y;s z&cb?2Y#yZ;doDE;kVN*$EloP zWiqB0E~XYk6&WuIYOhgI)zgZ!;$L!)?8ONwyV2Gt$_}I(TpSBYKOm1bbp10F{bsv>lpSaXgn$@`Vt7<$QG_jgCRxcMQnEm5}}9TA}B2MtC_Nu@?t6d zeSU&wWP8EP#S$PkV1&pV-gt%_0vs2PomkRf_tsWJE5qa)IWV_ceCJyG>mmsbJJKSH zVAsqWhjGnRR*K5c_p1YRxw?b6Y!@`Ht9pa`Kn6ZrA*Dw?F;`}ekojld-DQ@6nzT}v zbg`8c>lkXiVGJQ1S2~p3u%%>6&=Dij-aiui8FE#9OC_0VPxsx5s%p#YPcMSd^ zQL1juvBj3>L9?(?%Ye|ADj+yHTvXZcD^+q*-Lav5k18S)O%Y3_h-((mYo!kZ+k<^l za)mO4Brt8a>os;@;iFi3>mNozcncyavUQT9s5Xwx7EA$?$M5xia+fSE^vpM3btdJi z7v}}j22TXnI6`r+d;{%!(3b=I-Q zYM@!ruF#|O`cy_Vs|Qoen9$jusknywmemX3k2H<$b-yjHaMyDxnX+ecstlL<lnV;u_{hsy(g-0=u!)yiZ|SUblaWEp{qWyJ&|&1bKRekcOLlA z=&Z|T2UpDSjG_Js_r794>2CF`M`h?Vay!|yDKnpkQ+wmwqNeo6QL)Z8^<`_r@j)DW zkS_GJnpr{w`S`qj5M{kz@XOfw*^U_!TF6QrgY) z73BK7$e#)7ZxmAlZ$vRfB;zVy|EdGga4o=J!|4)%3H&MT@x}g_^8iAFLY>yB0|1BY zulU(?O35q6+|Q``P*F!WvZ-y z7R20c->qiWuJlUFE#69sshWHl#;G36BsXqi-Q3%|5hHm_e#FNx!xEx zxS45Q8R2C^#xW;~a^)gqLQcD&c~-K#68q*_0XXIbPPlkT$GnGO&v0(s2L9OjO2Gkb z+3BdSMsxHim?-Q2v39e4y$S71(v24syDThzr>DdI7#1@bE&6aD#=3?8{QIY!%f0uo zh(_U#I>E(^BB&AqN_)peaR#PNHE;=rG!*nYg^6Eev&+9Wr=bHnn?L6M5RI6nJ_F2X zxOCcTrDTod+lsm~3b24fx6)Dt8c1g?ZPu|xL+NmElt^ZSWb3fJNI_ao%0%?5Su4X} zrE*S{e#Fb-tgm2s>)`ZHBp?c6z%F)#JRp=N3>N|1Wvc$+M}$fqhWVoZH(Hy9Ho%e-Nsc-WuMd8@tefJUT*s&I6idKwApG)$gU^r-StxKiQV1NYWWE8)4PtH;= z8_Cfl#=GtPd1#al?mg#ju-ZGRx6@YDdQq=)a+0u7g;cKV6>h|Q+ie0ktYC&A0voa? z`T{gWHoD4F$4f-2m0w8q4&|+a8aH`R%;fP(NQN6w)5KQ6I1V3h>W=oz##r@=jL0qY z2&Csx<)m$imicR$T3O%sX`i-YThV{ZtC;cW@$C#PA-TEfL@lhHO&sY&tqq(_giVa> zj7{jIO>E7a&GDI8S=s-8rR@fLB9WTyVOEVf+Z0xZoT=r|0Ct`F4>rC#Sl_-u;46Lh zG~&R3_Fq@UE@cuGw-~c~C;on@H|2_A<=ZUhk1+_@z+W)3pf5j%k4LJXE4r_{v$DKy zuJ3y@0J0u-A=S;LuCt`XDAw`5Ibu}!@wz>p?;inhAA~{npE}R4p)S2#{&kRm4Zw1aL~@+q z(Rw~td@xt;2B`HH6a%Cq*{L2jlUI$>vG2Kx7A3*S+Sp?>KPYAaEF1JCa%aV(fCl;~ z36pIKO3Z%3;>;R{<>23W>I!)pwS6mze+R+%;_*IV!VE45c*nrpBYscr$ob2@-+Y7f zXlj#8(H`2miT|pA^&apQ3+{$#U>7K0xNDU~C>?|BPrXKfZG?-JWU?{ReGmUmx`E;? z1S`au1C77a5Z4dU4n<=gCD9i}$?qfexp?5bA16Gx!jof|9g-bj=@NJ=5hTDg0#Q&J zPzVHOsGI0Tpd0u>XEj^sV1+A1^jo*Em-G`mqPs&Q0T)x{uoK9gbP(8KT|8vtzX-_; zmf~H$>0{19x;J|azHCAFj1^70Llbd*g`pVh*N3z8l}#6B_1yvcc)L*0mc z^G0_bE9goOvJN#LxB&BsD*`mZlgM6SzC+247uVT*sfowz1m@Bk3dMJG{TlH56`q=p z`L;1SVkaRW+01*!zTkWKUVBjYov?jLwO#S7cxX|3agHWn{9;s@%N$Ms94RRhvUbN% z3baxF$=1e(%yKyc`$JhFx1{Ai0wB)0P$-Z98^jRJO(&VaT-Kx;+_FDN)sA_V_CDK*$2_0+9r%q zY93IsOaJZGH+!@lHpS3@7VWiJ+>GG*_IBxWfOQ?7BZTwjkZnjOeFWXir7em;_Jpv7 z=;(los0X0l5dV(`y*6^}I1|_6GOU$~-w%C*o&shZkao_(eql~yYg$nkoEwofJX6Rq zjIj0BN75&gxzF26IAlLMqCV3%-*z1Q;>;WT3!4|1#Il;IEpVJRKut09ygAI+ZoHu+ zni?Smo-^T;gFO-JBE~LRGMu`2rigjX(`KHmI#J_X_<-7>s3u~yMv=lfQHXwq;j|(| zaGe;^R!D@^%*xGOrA;$!pT{JgaSP6i<$zk)NU=fC)w;zxV`^a)^Cq@e-Kxek_|HiE zlzu~H?E3=`Q*+1X$X;*eeVr!%C7WX2j-;gl-QuLG&n}6>`+zx-EkbC_QEhX*OL9~L zx4qSKV!1I9vJR6fl`vHcV&30}-E(81jBV`K0vum`nQ)FvgAJWsL!qKE=ud@9YNCZ+pNgjIWnP4V?4VpD#y$j+Z3c(6>E9ARqq z@!7^O*~xaP1Z~1P#6#Jp&)nBFcdrYHvlSGu@_nLNjCwBTqfyrwnIMO8f`iRk7=&SJ zqJecZ{BX|-u?fr$a&!h~`So}G=#6en8 zpeXwmNL?8#1J(nR5uewIZzl6W8VDfUUSi&SPFAc?^Mx<*gk#dW#Gyg>{gDkZQvuHu zx*a!-1av?)dE$7%yvWz+-soEE0I@<~hy#%u{S2?+O4TMKd5WSOepRB`e6|ZnYLTR$y9L`>?i%OO zcRZJK*s{g3$qGiICaBFD*t}9~{=+5qR=E2c0p6Eup+^w!PFVaNGG7sm;uzl}sIFJW=J!!1z6l`WR3F2Q+_ zLskydCsG?-T4PCP2=${$qqPLgVB9o+mtv5~afRX%HhtCyX63tCv!c3TDasCkgPW4j zqXm{oz4S5-TH3k!gW|UR$hQFpn(DzhmwtdKe-O))JqkGQu?E9tppgQxdtu>tldn!;_- z6sLseR3x2+N(-U{BKZ-RtcM!e*R5|J)I1@ykWV@l-Qsl=Zi&+Kd@P3l|jcN~T40{boM<0aR zsG-!t18>Xpb4Fx@ag{7b!wn|YjegQ~MK>F$Onx0QlPxrF?WLkl6&Z=`HHbZzh-GNC zGkO>c!>kqh!J7;dF<8fzq~U}>VeltO0@$w$wU0u0mXvIYzC(~eSoW^?x)KfzNk`t7 zE+Jp?B~A7J?qMC`7}9bdCINR$22pE9P0+f;9vzBhtQpQpNx8?#wAYL5>aoAS)0gQv zI6brDeL1u71awzZ?-SN=_%*NrduUh5>T)m1$*%>WFT^WCEL$VNrN{+qxXYO@Q|wPs z)_gThRC#_R>(~cod40gd9uxn_3EUNR4GQQCB*n^M;1K6H?n;l`d-49J4*a5a%o?Vv zk?w0qRDZz@%$z4aZ6PO3%&NB%`T7m0KDRuzu6C0zHVl|s0|0GiFM|O+DV!r2OHU=a z6wq$UFFm5DkfVrRf%#(D`B}uE1S!yEd?XENQ`#z3y69U#x-pU3e zdA5}0Rc=PHN0Qhy5d9Hz@DOE;YF4a5yJF-npHf6b%G~rZ?`H^#MA;bc?C98M0O9+I zv0d6qBc`3RAayTYK2J*Dp3@eq=_DM~7T_^S)(!1JyQdzT9^!@e^A*9;1lY-X--Jvy z(K&Gizs7QsbbdlsfKN!;5)1sP&yt0)s>{%}QUm4bC^Q3ZxSw<^(r<;Fq#`q)Bpe}& zU#8&Gw9{NXkRh`&SA^u6Q6O|yKssnBE7nnC9cf?qUvLnC zuMLT|IBOe1#bgiV+JHD$!suP?Ly4H2U)LBl5`mcRy-zZ_LGk*e{z+wrgYD%lc#10~ z`C}rfl#MZbX{1^MYrAxwIELB*(J{3j#frf`h%wgqG;>-Be3>^FNcm%73s)%*kt1~T zhIBTYf+^uz-Cz>~EsfmDY9$?Y4*oCWWDrzPL<}q2J%jvi-nhRg7X2_;4LJ{&_;t8i z!F#)%OMEbZ;o|JANSw({>A(pxB|#L*$na&hZN1mQc>F)c&Z)f;F6y#LDoMqv*iOZ^ z?WAJcwrv|Hwr$%!u~R3u?drGhx}WZg?^o=-#+qvmH`(BPMdgo~`fQFkfnOL|q7CXn z;Nz7QZL7C3LjC#65wtF|LC+YsZ36o~YJCBMP8Ng7-gv$aP2QL2(-MH~z!@^lQ#CZ1 ziwiM@ml-Wpsk7bMxWC6%#UfUW4`qj>0~6u=;kNaF{b>K&}0Le@Rc zI!Vw2{~F{U)4#;jcY?M~eMN!CEi}^3B$zlp1zxtQYNk=Da~ayIs@9GoAv_kIej;Ri z_&M_x&x**LMl&K5$Sc>ajLS`Pf9j;g&&HKy5ecPhybP?fWvkjMbAHgjjW1fNsSWWYZkjMzI_^^lvNvsk6_)!TTih1|teK8F6yK4iD!OhN@NBlhCW4*UbR z`A(O*&!vyow2Zb zXE3zx7yb-x;}pZph#p-H>bx$7$L_j8pSDi|6n^{5;SUxhgG7|ta>8Iq)MJ?aCspLC zqlYkV19CS3+aP+k?N)0u!T^_rA#0A6p^n~`(E)I-6iur9{YAS~4k~rDO=VIhBCtyu zuK0MH$P848aHQJJ)tuw3AI3%S`n5ggFB{?LeN3e_Bb+o1G|fN;vhCl~uZNz+k%ZAs z3GtYl>szc^HI>=(_AFFyH7agd4uY&OHUCtt_A)6zo}pED4`4y8w+ks{xY4CAMoBMj_fB$&--)eqOo_wM})f=BS9b03=O$dqJ!GEqOsO5 zA6McJ?-Xj%&$F5(wRhPqfNR0)6N}YRjUt@vvE(}_qU|*IuU|ckbMG1L@_xV(1*dse zu}hii;k@;`DQ5~S)=_G4X~rvMMS|kL7AYL6jbN~WjklL=WLg$G>_Qt>ESwEE$xe?l zNEy#raBa2nz&Nxi=}6gthSb;@ulHMCz+G)Y-)ZZ|iWf)4tlaA7j5)zLH!8UxtT6kztDps8ua@c|nZ8cC#;MQ_dSx<2= zsc99)2)|X9cEK&@m+!Rxj;2I|j3USaR}N zvNq1P6jam}|Jn@f2Z&tkp;D=KbVJ;Yi}0?8@oxi)@h@xU*{{P-dA81VD^fH!_)V9G zDoBlouO%Y{%-x@5pfPjX)>s>Y!8aNXv$iE@6B#RWwjs8#4yJ$R5EtOV7=D->Xyuns zuJ~fFtuZ^la~8c;o~LGXSHF|ED*c2YwBIyX@zKI*LU~1UON?65TQMJDI3<&T=MP8)2YS*!bqqq;UTkLy-M$zPlw?1hRh7fP3OsJcP=r=B(q-&kDPw(^ z%Q5izY|$_h?>XasQzQV+D$c-j)2^gZcfko3<=*_gVKkC(h`dYcFhdB0yTfR3P)9CW%W5zk%4N`m|;7EBe%j4f!_mV^Z z3lYTtP4oW`L2>?%5EK{t|E1-+(vwc0YftI})>m}84OgI>?3G!)3=XV^WTxy<4aBew zRIgc!hTMS(yd8rC26JajR~KVe+Mp^|^wQ)gCu5Id7=xGhfIqo@zx_nQJTh>5y{CG6 zlze+z*~7|5GWbHp(<_h;j=Edoun2A zO(Rcm%1m-bI_s6vQnsiNgRJ4~4quv;5h|hl^S{S{XC58H=ZlIL+^t9+;r(w92Ojy~ z4}mpU?sDp7^U&tKpU3OF)duGw20g;VMk10T?OY9cNRlO^A*6GhV-_FdWKC&`rbk+P z+zelqo+G!tbXhE#I+IkdXnjfQ8QR*v>bjWFaiIB6F#W&iSM)V$O|@|RWdsY?maDdh z%a>yqQdqu92G+yOOj9xUu63YX^EW&Dat#KwX=?lW@?A@@c*yS_&Gwi3y>5>F^XAM5ZSh)_ zK1|2g1{MjS#If;@A2lyrbp4jk@mn2rn$tR%!U;A)v3*u%sz|7I=!2YlFVr#I5ZL!d8Ft= zOvjqDz?gJSnY$?i3tHdQw?<^jRtN9nl_ika%1lv?=-;Z%c{NXN;#&W0tv-M~(iaJx zE&lCKui^tfFicZmY4N|j>ZX+TI)mz|VMoH`HH+h2_`QWa(R)*|yZY0srgGJU)9~tC znxC!%8{OswK&3JfhHs+jBT>e07lm$eMjAjIY?w&V7fZ**R2O^VVr@%$jTAHqae^{#n9r$6Kb zkA(QCQeK%Ebpr7n5nLDb-ZD>k6lT6GI=UbfF{VkWO4E6zopo4h4d2QtX7+3XYJ9Pq zD*Be*9+~s>t!>j&Utu}SyKZo>kuL@qG$ZDhYAjPetL6+!vsl2{Lytud3Wfc+7xX|l zfRvQce#eF$jDp@@5Fy=uqQbuGOhxcF%O4Sk-|*@;`%JMB9E$O?_W&cQJGa~^U zCfQA7;2EGS7M`b23K(;xU{$miJpf)yw79>9b)QNsf@kI_gS~8Pf0rG52^@oPVtZ)S ziE**EVV+HQyb-T)jH~Ym@1jl<4g(q)I^EIyg-u|{QVM5K&R9m31dzzcTDl4Gp@CP6 zC_NT+dH?)XYu;|@P-`_IuNX=ee^WX{5;x-ty*ky=dm(JXk?tQ_Q4kXa|DVKmRUow! zYBJ_Iy8c$Y6tSed%-&R@~bWdmdx8b#~6x?#dy7FB2w?rW>zq)h6r2sA0=nw zkA9lHieKV_w-7=+9657A6zETjYmGLqDxuxcjv%wB1WP-K{9UZ_nzoxR-TSc_SHdPj zV?TshN@E83LrQ{&1JxQWu+|4WOU*C8mc<2F0k!P74G~P0ayE|C)RfYv}d9 zjh>?&8yD3E5C1hjIQKY*MSj{#uAmO*TN_mUr@CKo`kY@)7!k5z(Ks~+-FvsmWW%r& z78fe!&Lbp{;`z3`Md&vuMMG8=Cj9buQoUXa*GX#kQ~mzfs78|~fgfA*XpKjhyhlG~ zj|2qmn{q=Da?3-~9ua}xlRl3+BDcmjEnf@_pFiv=${7|QA1|{w82=o@!~tlgN1u^r zK~Zq4CH-+n@Y0R(`|!VIlh}f##OhPqwTIugBp4hkA7H&2g@h6SOmsrpayaL?&0?xyN+5Bct$I~grb{TgHm7IKOn+fS>y6AC5)8F+e6&L#++KsO zOObtEVm^x1JwS4;F~M8zaRF9V?X;(??NIL5HIl#2w*DLRCp7ldnVI1bvipZKc1;FB z$bl#37Z1+hnT~awr_=aFo=3T$aHoUdsBrJWAjTi}8WY>x^x;CPTnP@fqoBV5?Ze~H z8!e$2t`Fg82ofk|j}u<`-1DT35d#YxG9~28MiCpeY*MyLnw!o?_+KOr^Wa@+@fR+a zk}@0;9*=&C3#;SENVP2Nz_^ypE{Tf&PE~r*>y25~GQdqca}7{}>9+CQQ}7n>(5hik7dFpY>DKM$96iM>(GRe<&WZp*4uIyRIhFX}CrvA^59 zNn@!mn_SI+HjR$mgBB~>!{WjK6#~;32hf~6i#eN?q&JdccW(FEip@Vvr75arO+-~2 zkyCDdC+|>MC@(3Vz z6&zeCx0HnRBBC5Ox;?u_yn~oag%hN*)47 zEj%qr$n;*!zm0W6_NkY;Hti4qsyeWkMlBB+4Ka`5C>Hgqb!nY;2VLq~qCncS7qtY9 z7hOQXg`NSxCYJ{~>hnv8xUd}!ypZkNxJf${(6*%eKWG6)?Ezs;|srz4nzI&kE^0G5~QP!(n+aPc+ zdTujoQ@6O*>%S@<8}CJ2y5l4_LLQ*$C|Ie3fi4TvONj+7OvjPgaCzhcx9ET|ok@1D zs<*4R9CuFCORLXk*GMs6v9SxCozMFGrdm!Zu4vkO!WM1^ol8W{{-z0%5ot8+2NtQq zzWjVrcxOn;;xfml9>F@~+$=~)+yl0ipKz~`nD4)hYT}7XZ@e|QnioF?;|OU?5mv~j zDj*yxM|DQkAsk$8sHe*eqh>YYbm|6>R^5&eSmW^BQpSGbMUEiWI9y4AAJ+;%!Lpfe zfVa+hUJJ(Mn0s_rlf&EQS0t*#BL2-6y}9uRRWp14`kTvQw41WlRn#$FKL`GgYw@~I zW||X@-R;+Z518CnhJGw!8kwY~$orb!v#HLlna>_f02Hk^ULG%@f>8`M}3kfjolM)#G7pC9{RYKhN?{%WFx{GcPw3T|x zG;IgwZV%JjlXv7n4Othy0d@qOL7>y4H(vbBd3gtjwpjctR%Csws(p34k)Wr}0VjRZ zSWAn(_I$uV{PWKa9F;MvPecckAw_224pz)mvBQxFz9AhdgrMdKbvFaB`SjHN2Q$^i zU`Rh5&6F;2hWT@dYh{t1aF!N_4x`lE?X=s4-RhtEoD#Vz+7DXKLKJGK)lA_(xYu`_ z?~imRdZ#oBs^+D=d#u0N$wM3@@#~5K7En}!|DENpY4W-(Z072G2?xuDg(kFhfhMzP z0ahw+a;*?Oz3t&@vgEsPYrCpZqItL?>xuVBM63C2|Dj16(dU3=`UKethmGvC>4z*1 z7i;-fgkd~bq9h7%ZC}%kI8S>I#4%im5tRw7s_~d=9B_XV zCP}o(VFm!UExw3BCg79(@K^WkjXA74^4-{;Qv5TXh>y$62{wiMUptqRhT2F`AWa9p z=;s_L>7r@tDUk}dsjAis+2^Hpvu@G%79*Neua#qH^&X|;*rg=rC;8LfIBwVMai7fI zsAvwxJqe%@YcYoo!TREYx`$>1EdtH9R91NC>3G+PbMw@OSkw<=$h@-beVMy>i;Fjq z+L7`WeB%WGQQ@3ja_v-ue4?`oRZiZ!T$|H`$ZxP=Fo_ z5YjBjlQ}+)C}+Xscik7!Q-sPjqYJFY&WWuS>Q8knB(muc)2B`!@x)SqftBx{l9!GP zBd_XyzsW}m5THBE?MWRrK!Vw;0UHlWqI9BRm^jWy3K|fnC!P2E=#K#5`{&M4uB+02rw!S%k{7qZEV+*2?{)5C^ch+yu1{$H&WMtyGrsL zREE~hk>Z$Ai54aPQ4NQ4Y>ys%oxWLObb{-FH0xe2RWibg%)88i+0Kq#4pOXJ$mX*> zTEe>Nao2KBu^2F7)mm3(&iL*`Y>9D+e?nyU`Nw%70T%OAi+^2}e1(3P8fNpvUrj7x+R#Q zO2B6Mt0yf-0a*0y@;-uC@|Iw3-CPcm93x9>b3H3q=P1`>dC=@5V0{)v8ek`6ufIg) zqvsHbl3zd0x)tC4Nr7e28OL{?Q?GGF!$JUx(uQmmjnXhA)D8+9w$oBN4;Yv=7AB4m@lqtVc2#$p=F?_-%CYn`8$Y1w^l0Av*UOqSi*)cTms-Z}GMkiYpb+&bW(e z&}8oO3`$GFDoEl5=SB=`pQMkZpi=zB(-Go7$X;1jLmCW^PuovXL8O~W18e#R3)u2d zWcXL7C%huDpMTd4((3U7b5?%JJtkTbfaw7ipOYVKvBW55hTw7}$Lu#MaH9TzmfM%| zY!#|$Ex{Y?Z5OnR+9IbFgTA9mJsQn(T`vt|_j^SX>AiF7bK$C!0jVM5R(l=OYXowv z%c_K*tX0Lw{=`gZsiHG_;Z3d}1Km=4`BjZ34f25F#urNC3EJxPwINSR`22!DMb~PH z7AcGzwzY=&J6IgXNM=Bwp&5z|$(l@0#_i{iCxOyjM-^>7wap7zXIB`&d5ZV$Fr0eR ze=0^YgM~$3`}+)_;>Jv6tJGr`uKtA#2Io(x_+CVDvg%J%hWO5xr|v^;o$gZaDQ9%q zIOF#}XJ?awH%f|n7gb#@Na_N{!1K~vBnvZjx)>$Gz58>nMiD)@mU<`lHo>jmI&F_v z8J1GnLhc~zbYc^4=}7TEDfUG=tQu=$Sy=xmF$?+Zns=-;tA|E@lf+{#Hec=dxe2i_ zn*H+f^OcTNYWFd<+>o!WrgPk&&sC;`wW<57OK==Sj6!_1t=6`_sh!)qbJ$kv>N9zB`?&Y379%`uG;B$qtBI@w|=f{NTwIym$LfO(1(? zQ9LJO-1`?Jd_d-b8Hd_SM99rwVVH4dUmBwqE7^S9EYLA9Yen0x3CsI>g(NHUuQ_Bx zOWJ|Vjg}-MdI$L-#YSWkcqR<Daz<#td-$eE&~sUw4~R`Tx>0P9~=R2|Z(HV`ln4 z16)V{(KFL=r@jx37QZ`$SOqhQYh@=Smf!HnNN8*jFiC7ov*vgu#KV1WhoI{T3TL0B z`YH==^WQk+gH;-D&T&UE^dHy#H_N#r0n54nHGlv0d(rrOCVB<+?|j`~?Ew8tmvetD zTo?}RY?brcggyl3-?XC3Kzx5b-(AF{UJJ_*l`g-}wmSs4l$)Xyw6w0PSQRt`yk~Ql9V*Q16sp z|E)USdcaE@26f|0gz2d1>Ed8p1DYXY_=L?b`*+}OB?W2>lZF5J1?`)aT@?l<9mx@k_{nIVs`+~hYMO_MN475XQRJ1_S{&m6louZS;Lb@LK$l4xJz#942Zo0IQbo8$A8us#2>8R$3>Aq6KRW^>n@zY0BLqaytKzsU#B z@vAfeuJa{~W0}Nmw{KU1gea7!DP1>$grrcjdVMtc`?O^hK(m};uk3J5qI-Ou97;DURiEnc zUdVTsOm3eA$4Vy|u?lDU&k$%@{%g>4W9~V8=PO==Tf(x`HAijE;MFBgnIu0B@s9X< z@MG-H?@9}5b4Y)QF!MiOXH%;ECl<=D$gnp8)Uu`{EF;LRt@*eiFf^~xl=@%rpyFRL z8=A2DD+#ueuu5W*hyO;Sh$`D$G^zN z<)J$#BQW&W1HlF|V(F-myy$e3Vfj%ct%6Ak8^n$U^t6vp&U`K+uw(vCAfUrUr{1We zk|}|_mLu-VyewG%|7MfmN50Ufla(C7-!p4LdCl?_{ABm2dhHBfSSDzj?+X`sFP=hjv=zC;vxH}QmM9T88~rLyFPL6Oiqua)y6=t4>*zy$Ebxf~pCEdEQ| zPr%yZE|rW>Q0l39`2pBb_uH?{9H;C6Z|tgsBU+Lk`0>VdE1i0f@@L`A|=1P}&hNM+=UdMaZg`JJpoh})Gb11{p zIfS=b0WrE{G%<`*qJj9h7Ef7S8C;hu<1hw(U1kOU%8xy*(G$E2>1olGFNG5yT+Aep zvCb|zN{!f)ANV{;=m3&pDTyPVs6)p5c#Dd!jl#-%uoq~YVUzJf1+zQ)0h~9V4)X0* zPBGV&`7a8hl!^z|)SEmPy%3w+@Q7j$d2nRXW! zf7#G#({2NvX){(bv6Mu^P4qPZntfBXHy;d1sn*6_u%(5dvqXCTv6QR$0eo}s&9eZE zl*tWUq5dO^shca(6_)ocxkbS)ZnbfW;4=&*Siub&G?;|MI<{MHgcF6{z4L~oD}D76cg0G$!b$^%)5U-mz?pz&W0KXxH?< ziNzZJi_sY`>)uU=>iaM&_%;~zovV--`=5uh``t<~aVxLYSq@9yILA)BQMl5qClm(xsgkE%`*ya-C}H<}9}7s%*>@%21u#6&jw zMOUq1#LaTXfO5e5F~X3feXp3EqNwHzo35-DJ$)JfY%iOd0eu3WxP11!cVFI^b?v~5 zPR|=&B>~VwLG+>GGY1G@o@?j}VyBO6HS;)QQ3}pnGW*U2rh(sX_WgSmY&sx|jv1>t zm_p6htE8xSVwiO#m-RHqZ;XFok>6!AHW9E5;;v5Nmu4haVrnD#W_iy+NZ*a@{L5+d)QDT!4g);=11 z4M zc@yKKF>w1~#vh3#Br!1K>A)f3-O3iYJZlzfQ?U_`0DE3YGxRi-`hGHL>v3bf+ora{ z#*8U}BJ7m6FPjIG1>nRhyP zKo6=DRlmRF;~$$6M`5)=UCeDe!LK_;{jsbn&ielATIm0o!=l`srGzsVZy&YB0`W|S zOp?{47xq+Mk((hkUDl>^^hAlYG18&mZm=CuHKfw^eV7uGr0dzun{t*=XQ)RyMSXwXgR9 zJq`q+fJq-mStvZX0kG9Pcw+iL2O=-t7K8J&=<!g#WETa|3ByLl1 zC9y-^!FYDc=1q6VjyPcgcr4GhSHHFkx@K!!Rpia5RH~)grS#(7#j1AO>_bo&%&9q< zoa+v9KE-3OVBNh84uhsxW*E>nL4Nx=rlwa`V>)Shp;3L3{u`Y{LR8Zu>uGWtwa39h zItLd~3TfNOl z6Z|CG{InY4Heu-qnjH`TT^J5IM=KP?$pxw&<#E+@=^86LhGOdJ6-sN4>}Yh^b`aJ? zPt^1^g#VVS1jx;3Awo3IP`2~(>WnR1>K2lG+!r)%7qm(!`%^4uQ<-Ms*|B9scGU%0 z1Q|-F@rNYh)-qcT3t?F+PmiN>mWoKR7nf?~y9x$TDACL!qgKqu!DgKPC!O=J%iD@0 z0PPRTT6kL2G^$ibDMI!ij#b>Jy(v?;QAHZlr*kEpilrhhd?U2j3WI`3+BuoLj(I{R z@k`gqvHDvB;H$mhiP0RN#uyZCP1MD(V8Xd1EVL|7vuUJ8m0weCr0o&P{fFIWI=;%6 zCnfz?*AV0z1wOFb>3X@1zwYr$a?J|{>CR?^7jYysYQ%KRZj6r?rT#wpS9#J%r;SQo z=(3oH{F1n;d}=#kX}}RowC_#SC}=~6+f&Eq%wc?cLYsky{aI3u-NG*uab&t}47J*F zdrSxe2Ya5e_04p7mgwA+Zql&QC!;s!0GaYra>$VqPQ4sJ+L@SNXRShjpvjJt>@8KR z;agJwG_=w|J==M-Mdwk0m$0i`Kh~KgpeE&7VLS=e@NRo3E#Xb`MC+7r|oK$s}UG4+%EcDzb+4^z@CqrW0+9#0^~zHD_1qC`xlt4p@>s(*V1f z-D@g#9vfE?ObJE#`lwKdbRYijn|Ggo1dDRO`J=dXYpeCs`E#HV+FOP$$b|w`d_VND z?3oqz#ZxLSuDv-tZ8CQnCmG%b8$I#tJpP|WjT3DT>n_Kwy@ycy5ySY8&ej))F|R3d zK`q-T`2K?>8&vn-AJXePg?1o*f?^T^#V8E&b8pMcn|wXn*$d0GvM0|m%R!kR^s?$& zV!4v?l4k|)3u2BOrW;_-POY~Hx7%IUuUSGG>k7*KGyAv4T@ktU-)Z(n+ ztNz8|*2Q0$5-7W+E9FQkVbQdnz>{}I7lDoE<&k(M0(`(Kbl$?pkv56j4grJ`SRNS; zAYhk5;kJ(bEhBgu9?INxUol=l)9JDz*fBWhdLo`m>v84Bx+`HPcb)ywZ=Ph@r&z%r7cb&BV^=v)aWCn+7F-c zRY*t%TKisGi!Ns%J;ut^yZYACN?8MSDQOoig>r|sjrPJKt9|nwr-6BM@IWA=d<=oS zre-hO7wm>_D$0h?zf3%=fE8f$IZY;n3rV=jco~{hIT|G->oIXU_m$n$8A7Z?1Js!B zjHo7ShA?jlmnzBJSb}r;Igv+a5jZ>LH2O2HN-UJiYBb89f4SwuY*?f_vr0Wa=CD?a z_06o#RSXk1_%cKfOE188YLjhm*if6bKu?AXwajVkNCEwWc`tJ*1ofX##T9)F?S9z# zgxg}%&ofwggapYYEmoM+EgRr3&ayha%obhMv~zoRll>P`%*i&~*>+a_pXf8L5g34M zueQBE_Bk%+m6Q3Kh~QpdOr_qHM|Ku%u0JPFtp325FONx}QWL^y;hMe^`OLU~EN*dv1 zja44r+Wsy7@}g&`9QyP4@G>aAgjfLZ6A58qaf*+!q3~LZiGY-4C{`f##_xrqrnglK z7^_776Toc~r4xcYv}b$eRBK%+AGN!J0)6LD)1xchEJVEIYhVgJyK~&HQ2=clVO{&2 zE#rI2LHmpQM8S*4L}?lFoTUUu!ui}9{z+}(^{ zKh8FcMY3Bo6pQv>%=&UpxIc=JUzCCbkCDT^*ty`&lJirWEc<;P5E%E`4IBnd0)Z`D z_t|^@M5Y6?CSj8$4RE22=+f*q%R(JJZYAUQ`#=jAl9K8bq)q-)qvQ#_j?&1LqOGGo z81xHUE=;XBS>6?lsV-r1UN__p+48eMuiBHOGP@Q~m^SUsF*l}F3uJO%LX!DLGG}nk zzMG4GFQ*HtP8Wk}VK_{=xGnBb*?{m#e~!B&QES16=PZ*r<}^iD69w5cUUlNCTsX_r zIaA?k-I0;(v$byLjN=p{5#wlWaZ9Fp%Qa~BC1Xywy2G?m<$lij$cZO}5%l+KkLVlu z=a)dq{|~gX{!c(F8y5%1{|Q>J_$T8jIGsHLMjvW%$EJAZ>@|S>=^8P7c zfByH?&KWWYEN5n)p4+|LgGiy^Qsl5!Fjtzs;7?z_&v$-|@-grK4k_9c+#aSD-5mWq zj8oo2obXVNuKg6UM)e;8ed=rbV`&djv@Q~@GQR4)cR%Wnhn8>ee=K^iIQWw(Mql8g zLi~1Ex?!@&AZuX&m5%@G{Q&;*)=wpK4$kP&&D`|1y7jZYjc|CJWc*vO7g)yHs8y3b zsc7-Pvx^J_r74)F6H5N1nExcM=b=gv&Y6UooysR#n9dFm?9V<-|3^yk9V{B=UMMY={WpZdWC4j0Z1F{@^@w zPuqVc(Qo;TNp+Tz>8H|xb&MAUew+%ml46EK2Jh%QigJoC}kN$yIv)Qns z9u0adcQkbOrCUje)a0Q6d4jgxSVFAQo&!WbiL7=28`|D7Q6V`J~f%>tJz8B3Coq;;GVZr#ay~R_h=)aaL{SvYLZ!S5= zwjY<&?cvC&=|q(Dx_C;vV0BCn~(AE{^?3yl7^7P5FN47=i>U9y2J;is02UO zjRX@VtrGCfG}AJzkaet-IyhSCB4rf|6OR1%%(#V9kJaNQju0HEh-ggrDx=rek2>)z zHI!GwbWu%dnWC6TnZ|{4Zp6bnOcD{;m6X(-YRYGPmSLA)RTDKtArJlrb!&T%NW+Ja`DLC zN}fZ_gt8q`YP^a9ni=Uk{aIgyR@pUic~R8{|MBCE(uEIpT?CV|^N>@C;cz*MXZx$y^pdj5HQrzA^jMgKloct%zngP>CukEiZVLX_?Hr zO=pZN<-Y@MS|X2Yf^*2yD$(Yea4fH1sv1>XH{p_b;Zzl0J4dTsiXkx7pzTFRWWTrH z4Y2hOQtoF!xHDHQc#8IJsSCjbTIdvc+EC<4K)qE1SHpUTvWN5jogXQc0jw>$C5b&M zufK&O;;*=tV;?8zYvRH_2s-D!&v$cq?N{l?aM{`kI4uyI?ZQ2$Z-skN8V$lQ2XzDS zPyOSqkdrA4PwSMziB{IDe}LZv!t4ayxi*dw-(B22X4$BRvU|&f1QA)*1RCBaZT>bohob+k64={G$GAUPCggMU!mJUo zVplMu_~fF_`D!VYH$rFVSI=Xl#B83_XzrzUvgFz_P?C7}m@#dYG~Cg{=2MM7SW4Ow z3j;Ox`8K3^;H4SzL_2ro&Tp3Z_JiZAdD&;(yTl7C zSBw6;iWjDSj?kGbSGm=dPbzR+XIJV7eW8s`;5-)WR;+S2>8@XyTKix-OVt!vRCLTv zdOASR@;9p6IFL0-dh zpx=w`O&!~i{Kchf>cO{T#8k>Yj|~~`xPH=B1x|HTQmKd47k?!Jtdnx3YNbogowWIQ zdu?ZAraQgc>fvpCfZ1vvDEnpua?J9giwx}a_RA++I`8L;erV6=UWL5q!ve~ol zV4xZZ(c>;)ER=c>uSW5zV93~G#t7$tayOwc*G6;Q5?;FEy2i^k^63$MS5!z}1E5N*n-%??cGXh_wyUg54iU#u!qYfXjG*@OwOvdvqM z$dhPI?=Nfnbso6~Ue+kZ74J^RR#4Vi@D3&Ww9TW?e=guqhO}-a2Op&-r^0&GS755+ zm^m*MmtKDtR?Z%R0}@Q@fZVBLWGb2nmET7Bz1khLAFe)DHB(e;!<1Z*An{%rrH_?| zJybhrh~mFE_>}UZ@R99S(2c`OuR~&PBzn{)7X1>vLhMPmib3>#pujMg3I1_xhJt^u<^=ZT_(n5tj6iYc`)WEZo%l|$Lq zEpDBEb7z}Y=!zviwx#`QGU~%H*uT7Y-@)Z_O*~VMqjG#%xsN5hvenl$-_>KiXBX(V&__{;M+1>_tFl`gv(jlvaRIyE+v_WDg>qL+~M< zGVAai^-p4fjZQlR7ae9*XGifpZZTegG0^i~_2a9W|CEE^HJ84*@B%3p|2BJK>`Ziz zvrJ^uOlWg#WINFaN7jcva<<)JScH_(Mz+VZWa8R|Jn!ypmvax-K1JSpUyBy@CxqL@A15f2>kg zCGiwce)#2qq&)O>ILC3Z;00};fVqaY_) zaO&1mT;@8fR32x)zG@9{Q+TF0j=-cB0sf_`07w4A>`jk-(l*4H8m)ppdZef#(vmH* zJg-DNjA{95j{O7d(pJ8q04>!_QXi-l=(K7&UXI9XpI_f zNfN&cCm?kZ`q%Gkb4KJrs|8*zq+0+cBen1<*oW@Lc3!rQ5bRaBOy|-G7Zvz>qm$Q5 zI*4RoDco81GzaHM2ccSg=J2|;=pHkfKulU`y}8Qup9;tH>!>$0_Tx#T`L~0XSC)H9ixoFglhqKSx z;mLtkD(BhRoT@CZ;v0IKDsSHs>zJ*Z+rM^^!($#!QyiJqfAvfx@mVLMJk9qGeoyb9 zSh`j0HxG}vTmeQ={53x?b-0tIIr2I4^Sgg1U!*LhfsE+h&T3ckfouZsijN1%}W?$!4W^WEKxx zR`~o@B#LXXCf67%&m(uL2fpqN>NWYYWYRK6i?A$oi&U;g*)h90zMYyRf`n|fvFi`e zVQ=#LL0L;xi$XK78h?lYp9kH#7<&qiKA^~jLsc?JLo7s;Jpt_$s#ik*9lf#4Xc_p6 zJkUTcad(sD8_GRdax?5gzpN0FACZEM-ow{cDcKzLBInG#L-={4pd6&$VT3l@xP$5Y zWbU2Cg@0};7S9ZM6uZ~EG*Xv_)%G;GuR(Zz8I#uhUnSbQc9s!j4csw&Pn`yrs({wmVzZ0ks@5B+SCa_#&++@&BE1|QICGlCHSXzA`NC!{u&f< zc($YU$}S_xA-AUSSaBxi0Pw$KT(*oYy&-HOa$83?znQ-m`0&<yQl|h&fI`>dfMho z*hyVo!vl7>QBhs_dz2b-1j?u9<4$LyANO$B z0ajByPE7fLW$7zQhR5%)v!|TZ&x0q*Q)XFNS!oy{P3M+`-J5o;k;}^WzMV&tze_?i zejES5NkQ|8?4H$9G^iucOMKaFA-Ttl^grYBcmH%r2Z5O)65n%&0VI*hX()Vbuw!MYwNnmI)(K#qo)?2b~X zY=D56wYzYK30)Er1oX!L*&sUd+2Z$OLT)L~u`fnc+IS^9h9K)@{K(=!xP^N+j2$c~ z1NB>mt&Kp0W<|;1Njy0*1xNHM*bR6E{VpHemft>acOPz{D{I>XMuG`b&vcG?B0mP0 zm+{=-sY|sLSS2*FZm&}!c7H2Fs^mkgLfVkZy%ZQeAr{PHkt;L4*pIoVpQ$dF{xMy7 zyEI-KWYeghcnuu3|K2g6H-B5LOQT#E z*sW{XJwd3IBH<)XVIKX=_Z2Z{qy9b}mE+&kJpPJ`g3pl0Six4VdOx?V>nQT?Wv?>l zM2Gb$X;rJ6f90llp7^fadNA))-3Iy0(k%Eoac!i#4|&_%2=l`;QUq|=lPqfzC?`Rw z3Q`lSy%%n1JdD9?Ah*=*M(JI_cC>c;z5$p+Kk}sE_A98&&ilMO+FpfNBl!{$t3$Gn zO#W7^?Wrfs$7E_aIzPPG@tgGTd$+rAx0WO;YVEf~>GpB^nB@Bgs&Fy;50i6j^sN7v zAdQ8Ao$Y@IY5zkkvN`@E7L!kvUB<{5(YJ~(IM-6G*Lb4~c)`)n>6c3w>4BhLWXOL1 zTaxfHmZqVj^@>hYz@+!!05S3*67TcOr}iK@hv#7u@Pnk5_Y>9oP4@jetM+?$f02b( z+|8KPHc`;^@#bFQz=V4CC=nq8nV-kU`*p4g?nD<1N>JVRd3@NXE3wZSFKKl_!4kg& zz_*>#4F3dU@+Mlx;dy;88)Ehp<*#>+!4t+;wkz0m*WHV;3-17*iR0Y#$Xx!aTPjfZ zdrjJQv8vB@{a zAFkP7?1K4AW>OWtcQ*$)lr|w(T(fZG4tQVyhynKvtNf`e;Et3JW|z5CuU!tPWcGii1qRej;#=;D`71mxlQ>J+Gr;4Gd1%hYt#vA$2DqiUlQWgV%drN^Ev#R;qZAZbiD)Ni)9Hm@hW}&3e zEQ6$_NRxyuTYAxd0NB$*uQR>Q_)_ zbce|2Lm5ATLf;@_ACsATaz4F3jy?UN_-5sKhx4$K4^hn|j*SW`mb_q&Al&M^v-|cz zogCZ(%2&xArC7|-QK8ZONu%G;BkX)P)9(&_QdbW)2Pt-sZMO@na*sLy&^M{_b?q>9 zLqSfF@vq^`Z+k(owrm`4;D{~?7n$3(7&S){7SOEyrezx?zb#X&K{+Q&kd;2ssv9Oy zRW3$KNjkWBGc~cqb`iwjPgxrZg%OSa9K5be{Ld8eJOGnaL-SVQRZWaM6tOo#g^EHb z;<%7Ik4f~Q!%wos9`7M;{oxSL4@vN+C1mTvzT|z>Jn3h-Vz*L?cP0IAJ&z<=;#a*c z(J!@%=&a6D4j6rHZd)%>(^tyAGCnb~>ITg7oow7l!L4XhOb`vYU4E5T4D=^cs6|_U zE#>Q`LxbA%$rJrkVbTadJd6fnnt~oTe&*t?c%G+-cE9qC*(Udv#7V5q%1bLlv1jNp zaFk=9sDuW)k14?llFgQ6CPgY(!r-s=#MFLxBUCPsAY39wvx(1ynnI=1-C0U{v>Wx0iUdn^X8{ z`V-EesdS3%?s{RNGtv$7!%&ywtEZID-30?09|V2umRMd*)qYb3;5 zJfpL?RN7RZ0le|2F^UL1Enra}wcX4sgaNEz}30z?HGR;U?k*AK}EVn;+<}a;Aicpz>v;@q!`TpezTFxLb6p2 zsXmA}03FRp%RAY0+ZdZqp*=zfS{K;%U?jQ-5yTKh=9MOiA*9@=mLV5!1!Cjp=5b%A zst6_6!i-H&QFx{*kQcV1(&B%G5403`WJ`!w%Utuob78FKV7v3Ue1igNe@g2@MZ>?3 zE{^fVx`zf)pro(f{u?R><7&8eK7k+2pBR+W zvrgVfvPshzmU9pS-8)SE>Txufz>Q(^y=QaQA14p6bM+O@>|7SSP)~CbB2&#Rm9%K~ z5fSmb$<3;UT5xZqT{JntJ;Q!T#>@cu%{z%< zugCEL@Pf%s?6b#l;V9>+kdQ!8SVErfF-0FF6nkcV6|z84UT_z-qyce6s+iR(WZ* z$iN>q5(Ieq`W!4MBjNe)#~SpasK3f*_pOP%BgmpK;S!z$4&Hiu%<##ZtqdApIiE%@ zc^e>hwFW1pbsw#rI1hlmJ{ytpxE8c~5CX`>K?((W^>EJx>R^m_!|7%LHbGLA+9TAH zYm%|bN{)23?-l|WT5oJZ3@ryhMlM^`_0?g%?W@SIE7nu&K)#Ns^D2&~N@;EwG`UYW zr?WoqhLv!819!RIHUcA87=MkHfs6>C137`SA5n+r)HAvQYe2i90Gm){^Okt*Wa4T< z+KF1&^~)5bDdtL5aJ2?hjT*rVaYW$lM>s8b z%j2dKo|C>^eW%$M&u|M_3qKGf_JM!V5ND@+Y()?NyYc*s>4xGewOarbHMOdolWBY- zkDufusl2}ulyzP|4z;qD`H)u2{#^i3>@Y9n2`~#s~;=YnkP#*4I}8rGXyV-~KyiFgOpwUMC0H=qqNhP8OcW=}riOC*$w9 z3&k;#54|o7#Z`rZNzVmMvJATeMW;(F+k;>#R#cj7c5*L&cCFAT^Kl8o5peO5`h!Tn z8v($PU^v3tkAe_0lO^kn>{Fw9@7l$mUSclx`DL8vW%GIwtzTT;ALhxL{F(0*N4bi5 zqN%0o)R9!}bh*=(KzF)p^|H>76Az;k8>1mJ4XKxmnuR9H({op%yhP5rx^5#TZR?e# zuv5}jblTDCYt7dg81)uhRYu9VmV8E%MRc)vbuJ zZ#8SXd9jo=Yn5a4qONlBhkjM?D03Z_Dl?}-a$L`86L|AsVY`B2QTfRjbF|1kFMM<= z=by!UM;tA`-`?=3$G#&0448RtQH1)g(>#4Gx=o)iE-v&aR=_3?mCC_}!h%22iRI@0 z!Jb%}0Suk3?lObmsF21^1OI5B9pU3-?Wl}#tWJhx#m5h`M$q}DRaDzXIgwtD&;7ZA z=TgCCcd24Uj|+W9?#bM?ZLw%k9OI9>?xGT&ovdPqYQ@tNxEKw$QEp8eYsNnn(@mBl zx8C**=|^@UX71W}5QajGUuHwfCUd@DiC}(^F7Fq+%#UQ_!W%1k@3Ww)ac~RS8$vBe zoo$uk)R>MhWE@I~*q~kA1H*d`XhwPr=;VAl)o6U=XU;$Q!DkA(wcpLW+Ku5W->g0z z;Cl{BF6fROW)Ej`Sb@GD5}_*d4B(~4PgruE<6*;UPVKTHp>kRLa^G#&pMU7EVwInE z@e8qsR4tOSDieH^^yZ`YS23SDS6p)QCixyML9F(2R2gPrt?t)rNP*)~s%x1dZ*ljB zwkNUeM3iIj$LlRB3p(Oav7sTi3g#tAXV3_RS^RRBPx(EZdy)+Q#}YP9UP(21`9gUm z5U68q&sd-ZH}6#qN@_`W5A0S>tCi0>lUYxWvt(aL-T@mim_nX|QsG&;nHPnrQ+{S< zfG)v-O$gbs4W2lw{VKbhb z4pVKRt0*5&2C{Kj-j|INs!(&vSyPERaq3Em^Wm$=d8k4!We1`jEotlI%_v7rqm0g% zrFP%6655(wV)=2dz&As%P*IpsjiHJoX^#s_4uM*Q4awYxs;8W>RP8S#ieCO~XR-&k zAJ4uzTZhYbfVmWMW;Tka#7lF5`t)Ffmd!&EuLiO6r4x2qqch3*m}z1bym*Ik_rUQOaic1zs#4)-uGZywT44{_ybFzt3KEMRVm z81ze<_T-~TJ*(@z!69#PXM)9Bjq)0XQCML1>kfewt1K%?h)$rl+It~#9_1-AJ-4jl z?m20a-n+1xSDaMWE`;xhz$04uNb51Jk_MZxCy%Dr2zLCah{2?ZJ{4X()#-X}ewQ>S z2xngv2)Vnom{O+E_bT4$Ca7RmS+YWPEuUZ{iZw+U7c8&t9cPL2OGk(7`7hVV(+RMj z&6_6So<|oNuW#%&*G4yA?F=6#gx!o}6c@MraME{YUpj?3F3S?@k`+oQvxV1R7fl>u zb+IS)$=2_$I4$cyp#a5ay)h*n; z8(OWx9|*l)i}Qxa<;3Je?)E#bW=h3~TkkVipkclCAHg)i=Y2|;+nF7W1Dre{ub&i> zYxk%w)x&PCunIXVuJ6rj$Nn2;;0mH;IX zO5X-eZ6IGvoY$y5yLms!*|;0c`_ggc&@NFO1-y15GcPuc=aI~XInoLV(->ueZhZ$e zUT_~2S2zs&lx%ihcS^Q0;19YZ;K1#%MD;$oWPk4NrE(gmWS#eHZnqGa@TQQ^yW-&Z zCE6`Ws$6F$XJ~x>>&jC%eTD3)46W1$FX(s29dKkOn^uGUA4C(wWtZrz96Ux#v>)w^EeR<$t|rHERR*!hi}BZG%b1g_Mv;@R_(w-j`_XqX zjuk>3S2V2leR{qK)ozVPp0?Z3WtM7))m=OgHmW3$iLxI?-ipv)!Cd10Q3v z;n?%@{_l$p5w$tp9g7-WFAptl&BKkAV_ptDbC1LgYjM+Y8B4`gwzk578`LQ8t)=jn zp~!_Ur|wROue$<{rkcCLNp@mTI)FJorPqu5Lc+!zM?9*lp`xC-a4w)6sNwwUDD!gy zJ&n$Gn6RPEBw-fvhcFQkAQ7M&lNuTPZmcTCqXWJ3In~Tl7(b2}P$&Y5KhHEVjXCw` zMbCV%WX-3s>XX?#T!v2NvHdF(-j;GX9GtAG}Nr@8h^Mfp}Dde`S)iY zj4w2;C~9R{*972Z`$D9+YMxZO0jKt}^afbCw%PiwDsA3v!Qk|aE%V$osyVoxNYosr zVOd*~jM&yICmY|4->0t(@7|uOg>0sK4U5kiIA`y(TwG9}&o%9G!r6r}6g~Wk)Oei@ zSH6*$bBf&Utv)lJc4$-FU$9#PbsC*^Cp)0DM_yCW?tOpnFZh0LegQhn(I);A(#P?C zNg|n9=>K1&Pg^PuyA7fDRIOTWU4$OG>aBIviynVe+&dhG#NL|1-&9R98ejC!+n$oI zSL7_|`Z7~fRf1~bKO-5__LXI$dR$$k$iJub4=wR`5LDQcp6=F9mhX4a&yW56@M6@i zAB4Sui2a0>-~H2a$m0Mx^M_$sF+ha#=lM3=s$wO6$vqnvP^7PhoSN*PqL!iex; zPZt7PXIq_HI=Qv_Wt0z_bpt?%5U2jP5}{t^;5oLZKhkqGD7{m~+c*h*QM;2$KrSGH zNOF_rba@i-YFy4Y4~tb>8?ZhMf=OGcY1%*Mkp<|$|32U0{VK7jDA-N2W8s7=H(Gh5 z*;glpHUC3YRUM}GS!aT({^bEF7I%Ta2Fxd5z+a7$=Yg-*iHo?hKjh8C!c)Kc0@uiA zBEjL0#mntrqnV;aY$7Ud_RvU6h+R-Q060jgV$^_O<|#E9J{LHCAVcmHk~$!BOKSw= zu1cY7pe>b_?>?txFbvLVZR4EJOrjI<+RS^z7CD40@OoxEF@Tsv)E*!jZec~UJ^ff{ zyLeqOU{br)vC<rA~Au_pqxhPtvsiJgYkiJ_7e^pkhtq~L5Qx%x&#TAL4O!) z#rjwLIRh`|+vZc?!=>}$@;X+q0%Nm1x(!&247u{mlrNRm3#*`KhuSh%3d3kxsqHb> zQCVSMgqu;=;r3g^ryPmi)}`9VJ(g0r{J@#htijBO_L3e zT=UI`8P%ZWtfbdS!&P%Ut$HIB@w|Y6QCd)zFfF6_=Uk{?5baJ1+u5d$o^DlrgtP}~ zL&RDlCf1rayYm*z{O9DQ$wz~uENvVh*nlj_Jh#Yz+c%-`_cGk}9#8k~eLgCn7;4 zo%XF_24lxcN|f>55&CgnQdzYO2}UgwI%;jT&lN``swGqxa-JT_x(*Ns1Q(WR9hD0~ zl1UGn)u-Zs5D_G1T1P$2s$9SVdknjc7RrqG^nue?r1t zN5V!e&1t99&hyA8DhpJiwIM+X9u0^C+s>>fK4qS9?XwmNzKm)$Hm7f`#G^DS9=|Gh z!zRp0r<7X9$?Q>G6DqY$7C>vnoqOJ-#hje-9Bk>u@@Q3vxmLyxl-mX%5y%r<{A07& z=*TnAe$J#rF=L)Sq|Afz;8VKaDMMglDT5;DCmB8K4!361tFs-yqtT+jo=okpc^-u> z+LG#ms;>DQL8|90?ulEq6pnRpf|CIB5x>AV5P+)^@B3h}kp*XpUfe#4xqPR{Huz1# z1jT;9Y2EV%C4Lvfg{(K84Um-jabkhBuV02llAG0$)h>7V^!{#O1_Tast?IF6jQ`j< z{U9~H`$egJ@%Z4H501|WHKZ8y0roDl$Uxphff~_MIkZGn#PsQ2;UE-;kf-5RW+F_* zwM#fn8?gr*O=w3_Ek{H6g6!Q!5(Fvn(;W(}he_0V?%KoFA(4jW8(^(Ql9QA2bS37J z13We$-MO#*nX1QAQZ%^;DhR2b8)maxCEYWVzNkd2gEs zHNn{MG&(yC;UGoyvSdFh3-Q1TN!H+&387eMg-msUgsb2*Ud=4Do-<;n9ycd=z?f7!n)JH^~8s#}sQ8GtJN%1z-l zbPRY_x0c8nHTpeWGdIo1Bi0*&+9>rjIKMb{o1GH5?zW@Q67{aZ^%j|uV7c~01lCqT76E@xvEEkw zQ+yA`*pX65uB59|bGrq3WJPp&i0YD6@m=R3mh5W1C*8Cl{j!-!vWHRc{HDdgtjYWi zNJkd8B$$G+dHCDgzRzop&soPl(cv|JQ>EqQ1L0NdEmR2eS>D)D&me9gfIPbl{7XGV z|7aj@2|Q_Skeh@?;1+G>pvo4gIS>aBBJtIG5=tuupr^43-~-DGd2>(#L&EK_3dE07|NL zhEoQBf;C1MiL!COBIQ9s(<(b@rJ7h)t2*sk3{yNC15MiBvNAjxIxOU43?&rUn?`JN z2_eH`5=KLPHkRz5Anj@U*)6jl->gM7(@Cj!?RT!PZ(C$W-oo%%gz{v#_nUberVh z)>5pwPp1?Ew|e5Q)*#7AXzrkT74&;$Ti*{3E#RU^@m?t*7hS5(KEH#q!^m23tF4Kl zu4^{NU)IOH^+LX++Cds{T@}3o{mG@es*;K~T0=YC_zOAi&Y_GvOjUnOJ@OQQl1m8t zIS;#|S4I@B(!Z%f$|xr`aN~hl$hfJQp}2oiSb20THCanqeBqupv+E||r-wIR;|ndy zJvvk1JTQc3wDJKIHR}#!?GLY+QqWe;X5J||G zxUGKpjPLK8@oFIY7LGmUMvE(Sy*jLdRn>w_=vlG+nGvBc$r78KGyKh2I z+D1$BwBOB^woW>usBaE?Qbio07KPIKs8SLob8zdZc`a{X`>`V_-C-i$y9vNrI`;jI z1|rb-jCP(<7divIj9>Pa(4a^%Ep$)YIjNJX`G7-cQAwz_n;oXXs4@vzTf@@X!szuR zR2Iyc>O3&I%^!Ax9^9a+RmvIcR(V+HX!mx*%I-wWfeIci<&yUo%<}J4IC?gPcf>IWRP2E5cVTaB3~)udOOZK1Q9lb(sIJc zi~4Qfi$h?WBGk9DFn^m`<$&D3L=bqx*7e+%>Rxc8V%d^%-O+K;u)hwZ?zUxg%&OdY z^FcnAzFiM;ajuI}M z1;Kpu!oTm{*-g+>EcDU(7?3}qxCyTc=tcpDK21%dKxgR>acB~;t7rA?imy+Fx*6I# zvP_j#?!A$~vJslHg8-PzIIxwT(AE@!!{uy3`pi6l9mo(q#kKN^<}nd`?PLNT$w+pa zGMnY0CUE@0(~hA^&A|2KQRxDiQyJVf$Tfjj&GuhU`O(mSKNAvkW+>g;IdPOj+mcTR zv_<$_?O)p{eMJ+Adg*R=88QchYhl}M)mq98#iAKZd$DZ?NKC71hGq{pilO5i(x`l& zp=^2Wg{1jF)oJdk5Qy8YN5m!II=M`Cb{cqT@%ssnPq1Xmn7G$nJ=aR>C#j_5GNA0i zLBnd_^5VU81>$qZ96tqgX&KOBQ6(_n~6wF z70fRc;kX;lj(UDd*wr4e<~JB{9HM>2Pim+eQFHyvcvt)3zi(nG5iiWuHs9p99tm&n z*Br}7AT3lXY=_jUSRO5vpHOWV zh2%G>Ki`wsA=gv$Y*@=GIvh`?>qUaMpMREt_8iKX`^8X@#*KOwHgn!+v&pIpi7|f- zs3&?(Y(aEOhEzTHP@%u3ZtDpBu-n34Y1m-N${U`5;KwrafBZ$Tx-MW3Xa7l$B`E%t)w0C zYR;Ohrc8xC^5}HPO~z&C_EU-Ny(baO{TRmWhy~Xo%&-9y?jFojYF)A65R;m;L`+mn z&;4<+yvLq%ZzmWyierzp&*?8uyXFnbnz4|&%<5=0*PLfQbwqAi-u-TVf?13%TZy6% zkn$Vu+6+794&?PIvia%d$Z>I)_idGc%lbW^Bk0p(;avAEMp!b*BP7++BtK7pG)w8L zdl6)M@;~Z_tC}V!b7C@EnmNMGiBu-rXX*TZq6Um~vBM=G@V1CP!W7n2Z4sj3+=Xu+ zS3jk0GrnQ9fZz5xp8g3G7QB`&mG0oeN9v*t!~*7$%FuSdPJUsr!ZZFuz{9}!{~PcS zb0G9SQe|#7%VTg2$empSA;R@r4CB}6bId6%{tXZj4=3u&xg+|L?5gZ6GaDYTbX!Wv zkS)VOh#f^U*!@0~-In-}+vdpsJ>CxMn_td5-=(|tefhZ=?UTQliQJpB@_YSxpD{PU znY%@jEFhjcd_Cpk7PrVNW`_Ue{ki|HyG?%jgN!M}a|{}Zc?K6pMns}xf%4CFQMQ_k z$FNgGhRD0X(+TG{F>Bc6-q(|{6Ms&`%!w|Fc2-0HoWl2U!}eOT%nnAD3>N2Nta+lF z&>M5?#ax;Gla0{e5yz8qk?nn430EOo z-~vsu>Z2Ca)^4>3;@@+K+h5jTzq#gyoiX2$*09TXB5l5jl(|L#pAtGSuZI%bnQ$!# zdOnDAFO1P#L6V%>dn*fN1H_5AQ+vF6d!wd@x?^FP+4tGxmDuanr}bPB4Zb0+rTNp` z46*3e?}0kGTi4kzV0r9q@$mfpEqN86n)jGUnx70lLatUklRi~9RUmykhGyfFDDeZb z_J-x5|8!VUU)k6encte0fux27(W|>)j?OM#*k;}7KkSLCi(JN>NJy(N)VPM+-^g9L z2J~-Jtn>-H@$Go!Cv-UVQ&_E+Qmsiv6~fH8oI255&56W;pUNkvszAl`>u~&1zFDmf zS{!$>n@P)kX!{^?7oSwapqP_BcNE(U?RP$rN~#_LNc7nMFVtHFwUA!xS+OhEJ~hhOmF9t#;5$Dqx=AQjJ(B=vP9+3TTbSLTrQ{QxEN8? zLd+}D@&Z-^3zc|c?oy;DTO985N63u)y_`@m;8Hpgb%PTZhP|Ps@#HB1c)!%;^CnuJ*PEykP~_ z+D;=gvhSF0b`X-P=mPEg#rZm{rC!G%>jKE=H=I&+sc#-Qyx^{o)YZo;6aq^<;~|+4 zhQKyOIHte#BtR>W?N@p;nVY!GgWJZb@VWNH;pzqT>HL!g-OE`W7zpK&87eAsdo_K` z=7QkXvkF*L3fqyZi|g#^4|3N4Xfe2+FpEm=EB(>d zMHfkXUjJ=cc)F_drr0s_hCMZ*orAfWMV?$I5S(oFwn{H=wk9J%{Vr3l;vFqwP#8Wd5+dQwY zi@}xD9mP|`My(P>GB408)!zpQLBMi9plf==TzY__&K!87f+XjOk}<^94Cy#XzDz0Y zn-YZsjJoq9;^DvJ=IWTQ4`df{^+nfE6xQ?is-RxPy-JCTKuL`Z!YF>vnjpstPUx#& z|C(>-kn~M0p+|E45!!{&ork>SjP$Ds=&{L{pPV31I&ux1C|*l9mOv1Tnb2ig9Us6z zjG)IXQFHeE>=uKQEr-Wgo&79udX6Y@V9-zTRj0Lh~112f_REdWe+h^K_TL0 z&PfccJN=PRd48^}O>jOn5umb4Ut^?6dX$}L6R47=ZF-dqRTHTa=Gpu*X^x9cNPtn@ z3t0kO2li=tn&`IQP`N#@f-pUFcut(m-DDmj7VeCtuW)z4?;X-H&dJ-t)R20fQ;>1{ zSw!wl%>U#0un#Tb$+7VLYRQx1e=xE~n7P5y13!HLg*~@R+k!%a!+2&JfgwwUe%@9& zd79NiN;u0D9FxY$7`3HLXqx`Fe$xNX`r!nu%uQMoT+VvZ-CQcajyIwjd!j=iGg_rF zfAu}D^Pqn20a6yT9|B-;Nx(?gou%_j4f*#jHK<)Qc-(;S*3!zmKsu{00}Tyk)_bm6 z-bfY9*kN-W{Z^>jAhr~?i8cD&Y^lfLEp4F87)kBn61Z!^&*_-YX;{9Z_@jy-Sd6b+ z26&-`-OWcRMp7YJ=z#w%3TNz;+QiG<1j!PUd^gOFPaouO7PINSo~$`Cg#=2hf$b!; z^3|`m5^R3=aIH=2C{0?zs^`V%3oizkQyi4!93`qSr5ULv_FHnez~wf`t%LDrfKoA* z{mD|WU3?lur$LOu%qkveeJf|R-tMpcIM~A|#oDsl_8o33?3V-ve0fjZTAL5nmDdx`StJ`NbpW^)hL!pn?n#4{-ET@n?B*po9tU{|w$AihN{?i$)Fu|}gP z1ks5|v;yrOI*Gd*Qe`M|a;G^jZQ&p?nh})ON0G$SxY`sDW`vD{A^u7Bribj zBGWx2r0B`Z4P6Csc6ey#-6_hg*u;uX6zMa!u)!vWM<~42>Lp1X|w4p2et?vU7@Z{^hQba9WL? zTBysi_r^b+mbNmHQ_n1bn>n)zhB2mhh~-ZQ59wzpG!92hGY=qzwSbrsRWB>&oZpaH zureE%=%%9=fYL5_p=?{P)z0YMN4umf_C;-TH{=2sS3m!r$DIX06l@{L;b2ulNh%H5 z1|c)iIYOpya*~&j`$lrNP5)B7pb-igTZz}ZHe5kk2Q8SV<*q+2L&{bs@X*G`Wl9eeDP?gH*~bI~O}F!#&NvEt8?7_JB+rB_MY_ly=wI)(*;A!`37m1d z-q^iZ$JcJj^@7&K+NYk7>(9sI8PpydAEpnU*1@%+ucTOACbG_87Ged1<0yRMmTe2; zxA7Vf5pFb|P`{4JXmK8nw+fN+qGyStefce8gcYxzn=);Y3_W3RHZgjag;c7aZDS}- zOO4^7?r%Qp%&g_O7zgUrrF(H-=$(CNr6M)&P(nA7GGtsnd*`jms6)T2n^(CXd0bq- zG`!t7A9Oo9LeBYAHvYY~g`Feh2xf4>$iZ+-IpE3}s49xdxW`|e3DO2lDQ3oHSHH^U zsP&EhQ_bM)&ebLHEg8H~sff^V z_gIr;(4IDQhKNwnGVQh0$Uym~s^j1+h*a;?}LVM{nb&p|LKF+cNaQJ0TOM%;2jSh|Bbpoor zOOsk(skl6-DmF3M1_B*{pGNR_GOBC(xCHSv0vvvo{(MQGW)gJGI$|zp<}{T}ndhRN zU?fy6sw0EmlZI;S<|jYsPw*u6=x{{nV1E?`5w2m z;4{|^-oQYEXnzx;OfA@HfI{xWmJpj8?ejL$Q`}aY@?0|gpkos$f$~myUB$$J8fEZf z<~f4`0{N01BoFP84;)t9N5}r-yeaph7PT-rPq*1s-wwG%^#mQNcs~HbioMtq7rT$z zctkl4qtr z&I(Ja)gUnt!I>+dWe5@CvN(zLBh!)jr197Ffl*ngO>7VvLSu9KdD_%22}%dFK$P4g zK5C+nu{{Xqm@K8cB8;F{eD=^+n)dA=-eZ+)`?G#TOCJ4tmy)M<;N2GRo--or^Ktq) znhVNY^YTcddWBS$4H;yc6An_nZKwBoEp<73v@w+0K^4c9*c3U(TR3Flzyz5GWPu9s zZ+2 z_tk`2uTMkddwp_uF`v{CUUU3PIjAd;ZDc%5N4ux?NZskUVGY`wiWC!xY!r&NnkJQ8 z^A~+A`Sj?Rs|_xAI^RWqQ*u zm}*zpHTrOh-3<7;E3`28fiX&ywNpjQ*ai~)`u)Kw{m2#Bzjuub-abMWKQ#qQjC`W= z5SpiV%kK@&?vN`se$gfv%fihA5n=KpB!IlQRLzthlzpyxb>MU(+z> z(5_tkiWtwL_5~eF19$ECxh{BT4eo>;X zc6_umNsoca>v}(}$Hh{o&eB>v6=D}m z<}ynW+*d|76nmw~6LU!Gay~P1!f|<+l^~U!@w(`ZVBa1)8GQ_wzLZ&J%r;WD?I$i_ zsuH4GsTqm96S5D`wgpnqcuF7WQR`Kyh)A)Ic<#5Tvf^C>u?Dvt3%M0fo3M6&ud}7e zeM(S{d%!lN76eBx6i7dvXz36~v`5yB;LJ`~ermiRCHxw*g`5pdVQzJYLpDJafukXZ zB&c#3l{)HVp9pkDp*~mGWgpNfciLh+ET$Il!z#AhxJbeI7B8R-Zc0qj^b9get2{ehu4LaLSXTy%EXLp?W?9y0qs! zC~w{d@PhczIzik-cO7=3XWhz64^~W1B~ZsD6?T*sy6rD)jWYqI168vv?>xM6sK~tZ z(Y+~COHp~jU727a+;aWh9oBdx5oTiHa>a|_#0ar!3H9m{7{Gm`=0oJX1NM~`^SmC^>TK8@O(b?K3+!`Z+EkOKf(Nyvh$nIVfYP zNMk)C@|*YBD!dNO&z@Y1B^2d8whuKv<4H}=Dm;gnF`$m~UOXyHus7ijzyFB7yJ+I# z3KfQpj5aA`FfzEv2`$*4aKPmFGQe%I_z8WxkI3VtrM;2e6gp?->D#j3J_o@2l;e-@v0(8EvH zgpSt2=K^Eltz?#BnsyR+I|048J7hS+Y1$wdvh;{yq+KnTH4;Li36=W^b?oz~{L`*mnepLh7`mkKkt?yH`J`27v(s1BNRn|Ucihv>qrOAe=U^50 z%^)$nXN;l&kxfURCg6Eb$ zr=^$Th?!v7twm81xMkEft0_cyN?o>2U~Bzxl>+SIr#cANq>%~g0jsWy303OQQ)org z6#F7^Ynh&hptQyHAZ5!=4SZpqa43Uig!mmR!xX>#98`j=QIUCK*ODFLpIv__+{mTm zj%ue9GL%l>A^Zahqm~~@|9RF@Nu!NgY7gq10$#rfEM|jdQ+1V|DYiQ@89`3?o&XxF zU|2Zqb`UtnOJC4SCDW*AfdV1w5yDfeD(1t+8JoDTA-=dx?H$y9#PoE9AEbb@h?0)A3rUNYvp9zuvJXJd?T ztZBSUP?LY>nzbt=>AznOHq`)BH}+s4ldHZUUEny>D_nZd+0|MDe^%a7gkUeC z30;TQi{o%3+Z0bm!gE*@MMS+#iwF~0z(#bKDd{_*x)PsMEatN~pCfF6kHxg6XXw@h zcvSFXYd}(A>}Xt?%r1~rqpnoqHLXn>2j{m5v`T2A_)zeoY#MKRSlxd9sZkoM@5nRK zObL%blyy2X4X7Zt#62`Rssq2l;gYN`*XJqaV#fn~5$Kaw5gVGUMST-h*PK09fOAt>`Y&c=7=ka#b_QES7Tcl4Qo% zHFQsrA>?)KTh~=-2X@vmfE?nt{yYe-pKxAx6!g1?1Yvy$Ja~N{jG6cM!}NU0KKMrL zbOv}gArI7+*uNg;EXC*svK4#Ky&VLNyT2at&?&&(D7<*9S}AM?Il1+re!o!DZ1@gW zjBfj?gP5LUNsAcgaaW_Od34y5300Ke)YOeg?GnD8M}bm)$L^=it9WvIy;v;-g@&kL zEJtMMo=p-L3>x5iJ^-+-H0f|>rdOLa0SlvKu($pfW9P6P2!JTj*tTukwrxA<*tTuk z>Daby+qRv&UcNbJ7V{gos%{07S7Uq-NIVHxUcV^${} zZg)gzwX(2KGv3X5k=vy@hfx-rmq&ts)W%t>CRPoZ4i(BpgLjE&ojMo`sly(U?MfNk zZM|E8mAD)MkWt}OS#0epSnQR=k)}vb*&AwbyjuuV-Y2aj6xYVfJ?irY0NhA`;}2?AaI<9Oa-Xjjns6!@A85RU znF~{~jRRZAPUQIPjC~q!^zMwo&U+0w`+!{vvtxXpG2B6k5r4Qk78(hx)37q`ZblqY z7g-qSgYtl_j5-1mqAs3+%_2wpM_X$+gQK71iThQS{!QQm4F9awOR`)R4&``y?#Tmm z^q(yjp=H0#ob=!?;gbp(P2yne z9QY?k&iZ{!ZtD{Tc=A{qd-;&ad9_RY;jeA1ePB+~_g=7fWo}`HkF(2l8K>E zy2>Dy5ffENy4Fh0793Jtr#RxzzyYM#^Knc#U=wB$4d*7l$kCwV1dZy zsb?A;QLdXwzL={{zn!zkZ6lkfF4U4gf-$)^1D#gMQ5lN(7W{iuvbyd4iqU|u?8Ush z$>h!rL8$YzLk4X3CD$4?;O2hbGN{Dlop%MzkHbK51MRn0Pdm@j+?RD z031yst*Hg6vFL~wqAWu>9-T+$=QQ3KVgYg7Cwx6|U?xVE;{A6*EZyFT0y6k54perW~_#5mJ^8( z*%0&CC}bH~W6VSNQX2xC9mH|8^a}K`#`&ze z{^+;riNz<$&WGz%p3Wf?TgHB>?`jjd0UR~OzBV=Px|Ldo zd1`f71Rz=nrSA2ysd5!5n~SPF!|KGtNH`-1$_-?6d>d)jZ^bGc68B-XwN-3rk27jD zu`I&aQmIDrhuZAQ{fE;AuyMxoNogmsjggfGV~^h^HH>Jm0u@#vsyu+XeNkZAkS&Wz z@UnK5j&W{=6LHcDZPB7q>ytF|Reaz0=O{%)4euXPD{<`Z!}qVJr10I13s8jugg++> zZvSBQiGHnP>iF=7SGFqGzAn{nsL;-r30*5IM{3IzK(D&A0^pzsRi`u+nxFqgEAi?U z(dwINkB=U(m1$r*R;yxV#<38f*=hwf6zgBk!qg4EWj=cyPiipT?k+74F}T78#37(5 zvj*cj6>+5dFS#3XI#WajWeeMUXHKU zTUyjVnePw}B2qCg<}JzePfzsgP_m18+bBNc@oFM1CMtL2`h1cVM5Yfqn?<`_4H-Y} zT?^`kk7PJn2sax*-VeuHXG+}zBQpExq?`fn>-F|5rl)u}(mD&Wgq5T{KBOT=j>QswkEx5J-)pRdeGc-#PH1Y0EZafAvBg zevSqMd3bJ&y34%k#+)Hg2gDm<%C%3aO1&3#zz*um+~?4k$Z?0}Pmes|FT}2Q$8Vv> zoLB-(?<3XW7WqmN+3>9e^jk~l#&NE;o0%Vb#IVck=;gSbdN&ZxQ681eB<&5FTYTjA z1q_pyz;b%rTh0%D2Qmci;8c6Ga_L#&IOp0?zmCSV6`V_?D(iGWMfWb?sO7Qr#)(|RLp-08CK z6uuAZb09~C$Y7gT$o@9(S%8YgqXy=c(^f7qkd@H(+2gka?(@qiD(DE7Z?E0?x3+Ts z=x^{GPWNj=gvl7ECiIC`F4603zi3P))+M#VN+pig&_l-owT7ut1&$!`Nx(}`f7Qb@ ziZxxS9q%+Dg!m5kd|~-&$Si3(J*b7Q90T+rhzmop9k- zgXJxJVQ|GF=jk1x9#^gMfPqAhtx$p;F`vid!laUqZr_Xz;|@iZ`US(qI$WNSNo&R3 z`Y$L6yHJVNC*{ZU^V>PS*D_nc3K%$;nY6F}y)omi-Hty;&z=`&As8jk;R0tNXW__c zS9gy5+9~-@2KDYsAY~{Qh%?7B?lfLEX3au7;O~4^P^^5$J!^LD>DWwZn{G!AS1r3v z_57h{*6>V>G8;?dNm@>LI=k@P5*|Vj{KK|fR??giXQ%LH(}VQUA1LYsQar;Bc?x|N zFkSz0lH`oH@Ba6PU`WoTRcCODb3+MpvLZC)UGC>-$VOms@HqYO=Ca)oi|As|hL;#u zs=_X$pm&}23Uxl2d(`_^YEo4@$Y0&F6R5dc(Z3L9j8sUgwG;RcKCpf9V>yt z*t+(YqR4`;=&}}@rUq|j@jnRnaM=lj@CcyVtNQG+_NPy+>MQunvNBg;E8JzE$*O-t zoET13k}aaG4{VV_Q=R7x4qZ=?OJ!u9YD_O2%7)ykBYWrD+V}O^k%H?U9Ka*kpM@-7 zK2Dsz+!c@bS0S4KI`bneuIt@H-FYne%&@n~G@TtDziG4lKs9^Wa^Thcu{zstWH+PS z%IoEKyspgtV%4oC!9p=}4^WqAImYC*a+QTaFhNE>k-ZgmaxqSei>Xw0W!BPfL9%U$ zVQeKU>kvjqoYOQ%>JvdLKUzw-XTk|s-_&kTOOnC7?$}rnu-Upb4Iu7VY-|gvaSdqS zekM-dIM!e-y);OT|Ah&zocm|0l{DK|HGOe^&W5uD$2$z9l1d>*FZX?xOTj?okJ;{d zdVdij`T%w#f@Cn&b8(Y)b0Z880oKZTqz(NwBnJys#14>iYRJBdan%Bh!>e{mzZ~() z?JrmLk^C5oA1_Ji%=C<>q2#o7pKr*VRHH%S^c<8r(h@Qg#o1@EoebE8~+3Xc+_5&m?am(3>rMu6iezg*Rbmsc#MbG|@hm*UH;# z^wXYWC`oOV4ToNTgn|qm@30pwx+;6ynHwea?-~f&4=FIByfR}yNfW}Ffn4DzL>ej% z!Yk_&6o?<7Xpz^!m?CCgeFB|C+70|c>;t)VLD|QWqu2vJMC3$qq}upE*tVq1#`;|G zG_dv(!~c~)-+i^;X)1z{Dr}=e-9)qu!!Y_N7nR*CYe107GIbPa1m6z*?&qWj1|Mwy zeuPWEL#}+Z2y}4ZFFR+v9<&vap@pK($X|=QZgU&7eUAMzNj-!#KSV7T?I+6Bdm+4a&^u_Cw$}AA{oi8J>WKdJ#vbLQ-kKR1MxCyaawfgoPqyeg^ zqi?7kzyotAxFn$Jj=Frn6AJ@Ovs{+_L5oAW`4dkbhHLijzlW%*qA%yxw|aB#Vx7zm+pPCgNmpxqmb8~! zjwbx8w?1n!T!Gex^BvEV$l40@th-uuL$Va|3RSUTGi+C-o&ntt9E~!4QED**(NhNo zjjg`IDO;}bY1Z7WJ4;J6cN5TMv^JxQ31MhsR_UG=K~Ig?d&2x@n-RaW6Rt>c=a1z$ zo~Bi=F);>kK0NqF>D&*>T;Iadw=7u1S+wc2HA@^l^vRbQk0;HJGZ*L&%a1}5<5j?? zsGS)A-DvHTfL+V*A(!6rY){rp3b5VyW_KbbF$HZQaQM`YrHH|Q=e%g#d*3g&6r0#K zZ2NYEy@{*8oXxDLwi3i(d5Kmv@m98rBi81HZ#0D!{;(=|$#v~g8)07l%on&4))Il; zE}-E?45&`@)YHsdev}@vavg=O8^9Fkv2LNJUg)0+!I>Bx&goPu`$_#p(8jI=nyBP> zXqAD=0sB0xIpEUL!3kaFwc8bsVi+JyDEXbXVAKtrr{Q9I%fpt}#W}f6N!uz>)rm|0 zO$XP-s6*J5`L`c-q7!&*1_3>z>86Z=!~D0c2Xdd(&QSj+-)fua0N9)V6SJh(`@uh* zu^F-9v*>cGgUytM=&L$#9d;-ZKgF(jWB|@ws4KqZ19lCtYH~$Yv)CWA59)zEtFeCK z;JjW5>YRPKw4yHZ^9Qd6VDge(@6!YfoY4>(;D%4dSkXU!1_t?&VVKbNSy#qn+w!tmtjt=8m*S8|II^PiHoh2btq$Su0x6HU%LOvl!*9r=)WW{N0 zSb|%KRUyRnDK<}elC>(?%dh&UoG+SC0n&fG%z zcu-kL*8F?K-0(uAkOpt{Q~!&KDCOZFA3r`6_93uEf{5Vcf{_7Dx*9uS%^pOtyA!@6 zyNh5T-pUlhL#`V7#%&&iQBMrxKIFPm*mR;C_FwkJVQ4!J6jGxd*Y9I%;P8nzGvGEO z{P$%RkfcHV9_WP}*!fq%jv#~Z*Ojd5vC_kE>I*E#4ZX*j>+H?4>nzW(jC)z7;e7)N zR19gQu>&;h#gD#da0Z3$(Oo%ZhY4=^=E>e^$&whRrZhLsp46l5@EAs`>fS?g)* zJ$LgayN0kvRc5^PXqFps&DRNPZZMMiRC=a-b;5iTn2p@LT{?-n(2DE5Q>=ltl^~iG zN!$#Tbk!79)<5$@%wBk?T*1`e$7y1newirJYqAm}zz~EKr?Ope1FYkp9StmE?votM zN^8=^XP70nKX^A-&?QU$)o2T;yc3FxV>m^Si!JBY5X(B&T-S|e1_N5%93d-I)CkQ| zMwy3=aOynxmi&=cOHVlC(b|^)ek_TwJH*Cn3Y%5|m{PExHD=pCJsF*fuu`+ohDp;L zQFNZf)qh@dbO^;S(Pa)E4-5Sun=JzBUDPKir%KKzCBk--EpX?Ss&# z%%ES-$bPzq$iL{ySBqcYu5Zi4P$^hC(AawcItV%Yl|8Xo=jiAV#q>2l-|jJ!XHWl$ zQ#vOun)Hl#xGNX=XD>`D`$geTtK@dzwuh;-S)jZ%2Cvl1ohilba>kEh6YadyYZlsE z?*CQ`r?SIgnKO0kZkLSk+iaDUGt!or5d!F`C5$u=Ux#riY4?U|>uHO>Fo2TbD_en% z14OZAItk_NWR|~=Qz<8v-6;|rT$v?gLs#aht|WTcA2&KdP9d>q^fgX(WD8u8{)r~c zkxqj0Gv~ItTJ_k%JphsySHPW1!?-#u2SA>`sS?>RGKFL7l8nxmx=PL57UdNqZV)ki z_?kn<^eSz1qW~k_inv2mi=nVY(27oIXF(W3Un_&JtokL zXc2X59XXh2RaHDKdon%Ein&7_xGl(4o3Jz`y?K`ELP!C1v~AH}9r`3>l0Ks?I40yL zw#EzEr$3NWixtk)9_xhEt)U&zvl3~Iw?3Rop*9cfrH{0_B(jVV(%Y-QGu!zST0^s+ z*YZf+99?+661K@k;TVm7Ga}S|s&0m|AMcHKQmjC)LU)8I-ZAW-TI`gj8;cwJr;(Xow?KH{bI~l)#2?#H_3xkN8Yws%PSz1KG85);Uq?Hy< zcy+$YDsLOoW=w9UP$>OkX07>^q92!=m}={phTKCj0aeZlvts72J?i+NweA^0eR!;i z+tI#U0D|74t!`-7?lR1+DlAns>U^Q*n?rxL_l_<}7AQTW>)MT;>P!KtD_371Z1u+f zX{qL=j{z)9*Q!eK$M=7q1E3oa8_Pw`n&$?5Noom|v_$$O3Y4|{OF(cVwP6fsS$u4~wP#&CPw-98>A<>(?NUwX-rJx=X2>l@z>mWW$imHH2|AXTaV6mR;jh-{2RTfExrkkmyYl0$p7}XD zL*>n&0m|k55lp0C9UFuwzOEr9IKTsKva&#*_DQAINh*vveDBF{MrZ1?M&i@cX++`5 z1WDW&sox2`sUpKLf@-JAqz#VFEcBxk`x&#Xk2-P{vrZ_BUKqm>hWzcTY$M#{jT*yIG@{Kfn9^$rEdG`CN1*}ZBLe2zTHZD0BqmmQyIBE! zp#oh)Kl0>S&p-v}a1ui3zNEop>Oy(37D->oh-DtFEK(Zb^lhm+Cn>jLjzfpUg8^Ks z^Yj&iUZ<}UffJlNHF&DTP0yG6-zeL7sp1~98!g#)8W6IJEnQ>phc88H9(1yc6>tVN zx#)&NYkakg+3ik&PZbf>quWd#541v7+=FMMGhkx>xzGDi=Axhe5!kPj%y`=gY#!_U zC2Y|XIqj0wuC4xh*^*VN$!nsVpFRUM#_s^Z_D6$UvwtHt+=kt~B|;6+)P?&Jc83d) z7lZE;zb^Xslrq+67Wpp^;hSMof@xM33*rpAid|s~4S_%qOAo0;+ApJb0J}i3swqBo z2E7E822fh-+uyL1m~IdL=^jjaRmc-ia^~7KOuo(>`(7NT$9|YDd^nF@M(6{3Ziw0C zcns-c?m1ok8jhhx^Nk(KYgv0cp|^seajD3zf)6XT_oTA-7h+DnTYDP5^%Vb89n;Rf zUYvBO5%)#rX?Q2G(-`=W&JkoBi^FE9KuobIdzCgNtU{guogEKk z+C;kI4b~O4s!rBzCnIz{TG$G1_>VMy_+edCwFZgqkF@6sVOnr=@zuI(n-HWnq(qf3bumhLgnC! zV`cCCuM&Oj_e_wvc7lAKWUR#gT}p^mykwmi7Z}$siI|C;?-tGJBC2D4Q6t#(k54o7 zrMJw_CHR?6#PY@<8<>;=ZcG7E-LSfEZ&mE!w*;}DYsuJUdO18OE8{eBn<ohu{U6V`!n!jaMu2EI>8`K``b&oU=a^Uo4Ipn90iHt{Hg$8!;gdhB6foy#%DQ?x1KIPSYBS_VrFgt4U&nts`u8k)-H$r z;v5Oi`8^l}{Gf-e{+9Oo{j`!Kz-BHBTKJP z#%;eZIV&HGYG~R94gaOmW_4Zzn+44ufEHUD>Nc_JhM*n}Qhy_uv%nWEKRe(P2nGM; z-Iiofyt^;r#vlMVr2s1|-8u8y0fKq!A=)_#;^GZ{O&$MWF(rgfdoM6CY(;BBMnr5Q ze=Z6`^@Xh`M#5cabWnKQn~6S`@-_i>4uEKLVoRWB5G*5~%%1&_1v>~+3{^>Nm~Ti- zLR5f;xGz%tWR{aRd1WdAtmcwtpO@$RmkB+?FVA7ZsOZ6q8hf*K+HKq}j>u_($yy7u z^fQX(uPo9*RxfWBM29}fcsrG2jmQC^WjBFV_krQDC>n3VU#JOqp_H0*^W2rlAE``*hz)2ZUy`1{V=fEP9hJ|8rkJYT`*Sb7(P&9^>H#g* zgOnI41S|$cjtt438!D)g?_^nkC?q`-VzeVWc6Qa`s=BD zt*-bLMD(l_db`}|oqx{)b0=c$=J%}TKka>yh zfT6tSiwxouo2K09o`JA1YFnB8GheR9<5Y)bj7C@THL!*@ufpYMPX4I2ASbOR1(brS z!Rf4O>-5@ek&MmkO9?`c2LsGUPVrfkjpmDn_xlwJ!)ckUkWQ*MatddBl8z342O5$YrpFdAr#+pc3rX2O%~j8WY|C=XYH zNIf?`)-43C+lJ_26M*sEadp%Bx=67QiNU_s?9#77CE+S@G0CmmkCw>B;7ylG({z^SRLmwSz*k8G)!^P{F=%;==C!fiH^ zAjLwQ_G|u>QWwHO5MVe@QApAtP^yan46MMYZZH4{^8jKaihiPlf@S_fu-&+_TlT@% zPEH?Y9Et`GOWBxOhDm>5v<8_U;jf`mEs>Rn-AME9OQ`_24M#;Epu zHeldQ#&lFcC2pc2R=9EIluH1#__Z8-aSnl%LpVs@AKM(EiO5u7aq|f^s>rx}?c+q) zZ_=1EBRydi?TYH0GGi11T3r7yK?&z5QUqWIIY6ZTdoBP61ZKC)lSRB_Swnp?FX6xQ zTre&}u7PHGG!@VT6dOd$R^!H!eNl4CJyT4*e3J?b-NFK?l6D3}UZ7>WmdY0pjX21= z*e%~}i3O#L6$x7^bKgY9=VJ-Wv&(50QVeBS^yJGR9282>T~r<*6O53OUAT@)f~8n_ z)?8RhV|}7;VlDfLlVu90Wx1bEI)(R%tccx%TT*Hu`Pb(Kk{=qc2ubgB8AA=7M~tJh z-&pBYS+x*DKn*!1CAL5)>2vfV$b`PaG|N#VtCl&?P{|-hQ)J$z>N#_sU zwlR~xRnT;El1eAUz5i)=$y~k){}+jpBpG_e(CFU^`M=CnLOE^yVlYYoC!G+2$!{F| zDp3yAK?XU3Ev#!8<2ohfBfW?7!7`Nckb=3(K737xaP2Ghr$Pn81<_-Y5iZOD6!Ot< z3sfh;ylFHg%~lZCa%<^S7PKy!E&*!AtvaNqknWHp(Ejk`r=`m}Ny1^_WeL=+rbh-q z+WJ{|QjQvfFMEPIF9hDL2TQ^>$n{7?#hqnlpwyCGgVt)om|c8cxWLh0(HC*$a05(O zHcXD8$-Y)4UCHKhvWNfYxB!N&^a74GvQC0H|Nc-A@%N;o=oG-a#$R}Bc{If0>V!%U|O-#*fXAEjbY z*FH7D!X>al45mR-lUkn#om1_(#M5Mk#l~eIUzT1Kf`4<_^T#^;VXBG8eaPLFxlyVT zFMCGS@Fye|;I(v~2OVuZu;e>LIrSYI?aZ;r4exg*D;yQ|qzKMOjifsUwpz;y=#bV= zbgA=p>UT=S>tE=lx=?PH06ZdLHbgB=r}ScP&@Y?&zEQRnq-=V(P;!DL`&lVFo}wPb z+Q_Bmp9=vf#4(kgG>{W5C88TDGp{bf1>Ur930$TFTe01>C&Z~B1?`qBnyUT|SpN>e zkpFA(UlmD_4Z2`%H*pJZQgp5tC~tKCP=hsNG{ z($69c==yceT(9qFrC?_Z=>pkk0S1QXG!9yQqGvasqP=#tnOFpEWxV|X!$dd2Q*k6W zdD5uuiPk_);0mn=E@6eiYk){wN2wtv4bjPd+EVIx_n=!J5n?Vuc!VxfdxXMq7omTt zP+i)|NG0Jc)t?(#byVGvRp92a)W|lP?5LpkeN}j6A*>#&F%=_ipacVWt_daLM1pKv zm;>4FD21Vaw_NPEa#h6ID(tXR?&L3EmtxzVm_rB=MdE8XXR^1C=reT22VuDG?;xCK z*1gN=oSxZjd5LOgM7ESX2%did!juWaD1Y9~5WyEl98uJ9vQGOky*c|L>azE>K0WBF ztO!ch*-ia%y?F;Eg_PCzMB}3k?W)t$K9ShPs4~YgZpSi9>3|4xvZhlCe3m7P7i5*e zef;OmVUzODkJwVM_hBDQ8Q_XEbRU0Q3jDRb_;3IWDL9DzcfMlbs>w& z$QKdor;6E<{BQ_O)C)8>1JW%-gLh)k^Qd)OE(9LLL%F7^WNDPTj08bf)l$68yl414 zOQDJVH5`mnTk5c3Hx_@iU-Lo=6&$=`&@tvoOv*I{803I)7lh`be(|OnL&?IjTP{2N zfJ=XMf(o-8LZG~?|4mNU%zQ8FAJbX!1%Vp7x*oxK7 z?LV?v0U@_nBQ$a^mD>pw)V+=nx3 zl+i)Cg;uM6)6ww9sc@3DDugjxq0;8p+UPMJlu638gqG7cE``qP4-?4%lBh`lWcD1T zSFkskDBc(W0rY_Dmg}7-r?k!Fxi3qm4TbxN?j}rUpMYNu$pN`T=Sow!Dp2rorW1Gm z5R)mwd0;e&b3iLMg_5xzg@HY&8e~d(tG|yA1(9Y;`e96ou`PDu?Qun^{FJ0bRY&El zI#t|xl4*!@aSkpau2fck*mKpa*! z13lJtsK6AS=6KETAO@gaa#izY?gzKvMfl6uA2-(~rmghSX4|_9Wz$I%VAz)eU}*sx zdqZ+j&NPVNyVG>09m(0CLCkpj=3qICS3V(n%iUODeX(lF<+rS;)jYj%2uZ!!VbiO= z&&Fq@V^_qj$ju)FxKiKj1Ktd-aq8ikg}UH&&URd$sx*0Cj=5wTs^2vs(rOf{E=TBm zNv*n5z?#wFx!gKeW6WBf(p`OBfm+*4jnln2y%ds~C9{385x=j6^6rhqgZzOkdM89t zX8gunf`30MwZyu$9~j{w@7;?%2i!AI|%;0c~R!C zT?I>y%`aii=NexuNDjSRk|8JsuJrO0eus+F3lDCfc7IRQOq(%!J{psn@-L3Xr+7W{ zU`_R8gHapnjRCP!?_n~_d&TcF>CVWa5he2O9_}b?Zcjv{N6707)M*S6Eb1=e_gy|y zJJ|iFy+SK1VE849>5*}vQ$LUCqL{Zkp(iU_wx+ku%NMxkAQmh<0+HfpN2;Y`N0P@! zpOJD@|@-9Zt|*d(vy9G_N1WPlP(-nYp~Y6TS`PxDEMqr49>#Mw03ii2r849ZD}6!9VPm8qB?@i<)%K$-AaCuk`2N6HV*DOL6O|E(JsLParPsd zn7bY5*iN8m7+pvenyEGX9d+J#W{|-1T1s0^L7@YZD*HI}48HmlBJX5cdlg2D5}`MA z#A?gS2BbxYG{iH&3DQx;aEEZK2$3LDOUdZoue1JO0&-(8!ygqWQ7bc?Ix;Z}9J<_4 z^!En;umu<5&)b~NN7E?CToJYcIhJ?Qb&3K*8j3?I;x~dmsoM4IF%$`p9HC$qzZ%>W zF)EnP)ub?^K>h6|Pq*gn&-P4Ho{#M-><<|LwAm>6A<;avbsg9N>8B4K>V9n)-{ zmw#}S4C^ORKBJi<|HIq8V-b-j{ZLCk`K|bJNirPPf|cnBVSo`U2$6`y7lX8wBz-)( z3|{{=GfIECTE1718pA0puV1O`ZR1<8$ zKFCrlHZ*oUA6QlyKK5l26$E%O3eyr&@VVT3mFsC2jMH+l_=KgdoB8f)yvjE4+T#%?os92@$Tpo6(g5gz9_Qekal1W&c9WsX~p!%fCM#=gIN~MF^-p$+i zJZ<6tG;0D}NY77$OR%ie}EX#4JGT` zR-gB)J4wkKd(knw?ajMY9-d#BQ%c%gkYH< z{?DbZ?Q%`O>_*V2hnZN3Uc%@I58f=Lh3_dvoJbf0DD;X1ytv+m$@^*_z5|q2!FbNF z=pHf0dxK{(AB-KeL+?w(@4fk;F=y6ivrF&D{f(vS$?qwXpXEthk|4k&e>GWC{dp_T z^VY^H@5eai(JlVvh<-PA^fYlk6CwQfbLTynJQW3gW`Q40jC2wpnJD*7D|}Ia!vl|a z8u-umUv|7y&G8em-5%Yaj#c&D+wTS52lEt;mGHq1zEF-`{bqJAFkJuPJ3byvHvL&y5x%pN96NN;2J{!cDtGh|1|{S^ZNc|WN?<;iYg;L zXbEBccF~V9C#kthSw$N8QTcF>ImH#FmQi$PEUAgL7IY=xNu0Kivhu_I4eUBb=|bZk z&ywFG_E0H>)1KZq=?6J-;pj67Y=|KAO~@*&$f}SzeR^rdhvUa3gV|ZLf75^ASUN(f zqvG;pP5?R?oCS|DgA&A4=l#wbyoK8(xh>6TVY4(!s=&x@IsiTxcy&-uM}syvJa%gB@ejMm74p{b4Dll!nxXAI#jD%+^&C-Oweu z+{!Pbfn){h)S&To6@veIbNc3BxaAP2kld^m0B2=1*EWQoMiCb7{+FXMG`hziygNcw zy_&QRmxt`sHAA0VI~?5L#SUGG{k1zW8ZBzA&_!%F7(-U54mvNY@6*K0GBi?o*5Boz>>;-ru0*fp^)S1d%IZAwE zZ62J;DP9DR8ew-tDB?<(0jPzC1zR^EywX^jqKd<7=jgA%2`z441(|JR#!e$v98TAU z^q2e=ReIxF2ND)%4}pUoER3~sxzACHSI>pa#8~C7oi;vnvao=sQ!>WFn>V&i?5B+) z>iO@a)^x(wW`wnGhIWfDQLA%LFx74}mlKZu1JFNBo-|Yd(rq#sd_4OnpRfN2WDEx; zOF_fP_Ef;Xjx`fdGY&*xg<^0{3#S4Dm3;V9sHS}w^!?P-05*Cw8*SrOe`I6S6>S)n z{uqV9GDO+6vB@(*+js?<_N&@Bf5 zEw-MDCpvh(i;(nvE9+ZC^pI_Hj*a5Q*n_EuehfnzvE}H)0nf;sqIMG~K^z6Q3PSWN z?o~Yx;#yEN52X2C5RVJ9yK)a}Al*YN^AaNCtTN6Y0WR50*@3A%1`k|tL}~%1yP^|E(LRlzpGfgjWUzhpsEFtt za{_mx`I8Qs)Ea@v9j{RcXkQA!L<=+IOUNAYbzcj41-YPtxcLF%O$CD*^TWWsfku2e zhgHTXsy*eSfmxqA$znVTlh?DObZzFEe=@}NY<_mIpu8auP1!~4S8TsLrun9630se4 zF(-M3ebfq_$p2ONIHjry4a}LQvQtTpF6B|AsWVW7=Dn_!_9L`CJoEewrZzP-@~!1G zA7Cyw(C|&+!>%RH;>Zo%c|4Y^*F=(5zT|Y%@u!uR?|d>rItm=k&Q0y2dsN)IEUN;v z}jT?@9D10~hx*bFud4Ze6J0p#Os`qZs z&bI5vFxTjZ7(qTp=US?TQdpqvjS6iq5`)_n5IPT-%5*Rj?{4i)ML5cxmd7ZRAfFnh| z@~rvhFk`M$Q{U`ItTNB@BFT^Ce~f>92;>P{?7LUC667ZB_srlVM)+VJ*6EtMAF+y9 z5k$|sW)aiXP)~b~UZpYDm;!K<1@FiRoIPHHL6zU$^zAkV%-XYZeVtV%1t3*Dn67|0 z?bce+o5O%HAEzNKO>HAh)XbH#r7&2TPFE(8K8f_m?DeK%G*=Rt=Z>^fN>}!^3X92L zNKZkYQpP!Vz6MDFrP6-=gZ=aIHt8llUdsg=6P&vEwf+yVZuBp0hkHCh87wz|1~Rnt z#mJ`j5R!05Hzq2(lOpU?MAyL{6@d0PAuv?N5mWJpQnJ+RvO-HC1}#_!;GoC|<^Fx9 zDX;&Npd+|l{_46d+8ejBZP;o8V`o^DJi?_Ys|Ppn*ye{tEs_ZmYu!!AiiNRuO$Ml4 zvmBZ?vO%4W@HcH6dOKTfXtO;rEMu6R^HZoSa0X?FL=hg%oA|gQgyyD9Iw9&XU&I5- z?hiYAHGp4v(B8s}j?7dMCIJ`eQ5l6WO-IV!)M-TsW#tISK|n6e=&3u{!Eyd=_>LMu z))d*HXi>G%?vAJ3=iP#vV?QoE=3n?vk6I`Az6920X|wA{iUxR45Yw^V*Z`>5^oo2p zW+>B@6!y7cAKL zTwBAM`sFI(TqWB|zdYOk(0n|lFxm*?TWig}xjMEHGAy;`-8v#!h!JZ-NP0YkBb{}T67Y;z?7(eV%I@=vBf~xU$UtC?cKd2X?F!p?IuhoN7UpFyH*5ISD zl_f+`s`)!92!KIbPec?M8|gM}tjR9E9vs~pF7q->RhhWPg^EJq64w&pBT^?n*L zQD(P0Zl}&>XBz(I;>cz}Plp@VgzTGdG|LRx6B1S6ybbKYEStJc#}y5zIF$Jen0CVJ zbiI{_tgg%b@(*gWUs^RfNF$K`Gf9%^UdzhVcvW1m>7sl`W>9Ku6z}K47aZe`-8met zIc)HGqwyH8p*9NHHH%kG+f|0^N@z8FRf6ADU??nDFJblMSjnzGHh`*~&oA)QXn98l zpPnecj}{WK71d7L)4h4e-bxyh4Waafm1*74=;nD=`N!slF}6U&J8ijF?7$~Msy6Pn zpZz3o>FeG^Bf(Pj@O1Cs+A;=Yw5xtC9{HB;qhoJ;4SLhpaD{r$Y(uF{0yanAJJ{ni z$$d>EY${Y~|Ijxg7?KzKvjMX~eSrS}2P z!Q!tvqs2w(fq%+l$~h!!aVP^{8%cEFH{HzeBpkjJ=$&S`rog4CA%?D*}1!$hnQbJ1Cf4<4vOehJ6-B?6&I{fX6rkk|c9vfV-I8cm_pLoUgVb#r$ zBVxR|XTiG{F)zxhTQ$h;b%k~6Q4F-jlz;!*+<4p1(9y zqYIvue}6oGtk|A!uHs7QRu1^-aX-0X_gpJKpcpmR%8lc%YbseC%Bn()!c^Uyp=)6~C)M<1;!AE+m_Kdhjf(Ul z2;N{uRZ}nsCqXB=FHqM#H-#|NlX!LD^9&k>5Zb8SVb=Ku&xY3k>znho=(h!n1i*Ga z1*^#z-I{H=2=hkI^!zpUV~{Y9HyQt?d38U9_AzF_DCSUV4|bXi*jleHG0@dFFb*mB z9wIv3B9*a^AGT)!DA{S$U$8I|4V8yPlx8`Pl#fMFrPM(*OZ=)!y*>-ym;&C)xdPRr zkJrt`5b|>CWH&nw^`JYzv6~1Iex6(v!N)QA$xqlv--$FgOWhT}OgudN>|JB%8YxV7R+xo(aO8Yv)_>%nBPu$yD~akd{%zPh`aEvw z^o(5m8f8cE>uFSmR$}BYsD12TwreJfl8W7PqQV*EM9&(mxC=IA+?QC|q2gISnj0Q#jbSzHOYlA;wF^gEx$lT_5>eXX)!sI?4cQt+dM-qmjS-3Ej>9jtvKkCb9Iati< z&Czw-btdJSo`j0ZqkEv&^f&I@;S={sP7p!PpOM7W%sH~o?QdW&jWEX_s7Kx~dZYpt zH5WX#o+?xCba{c-Q=|%d1_jDG!23Pd=kFX2?fai> zE$jNAlqXCyi#xXi9)5?nJugF9bsA{$rFcQ##E>?Nw=ZW4`Xif^_4=LDc;vxAmSooy zd@U)Q^S=FXES=bm+tw0Dnjc}^>TY+*a*FjUVVhl#bMEW?jCC&l<}|AgJJzy=!m<+_ z4sBU$zJeXz`V^Jpby1J;p$}|~&QAA!C9n~8zyD+GotlKvf-T#!ZQHhO+qPX_*|u%l zwr$(C?cN=6U;4&*IKN`89GP=W0YjT#fNSpv<7^~)^ef8jh>2_ErBJ8Sig;G@5~V@D zn{N#IMY0a}=r*W^d+-ij%MTL`)U2zNmR@}|zU!GuKjx1gTnb^Q2n9)r-IBMpH8I23 zqewTcDxe4eV+~#4>XWvOtm^)~lb37qY4&VSeX;0ir=Q;Mf`~$-LNhU+gc#Pa2e6jT zs65|ZWMlrG-I#}Fp2kCm%M=Q@|I~aM_mS=&ZK2;wuWM;bqg~4Nkpw3@KOefoP3<62 zAF|~F6pB)wy(;Bc9UXxsAxiNM*~4UzaCWJ)2YG-*A64LJd2QSCx+{KZ5D^v=@cpeT zedEM$UM+cN?Vs#-O9tC%e`4<^*(6;v~TzM+|^MI}^Xjq`i{ z^2VnWhQVshVe-D{&TGC3uQxCZ@LHy!C)8U@4Tc4y$E+unifIB3f_`PIOC5`bNa{D< z9T$abA*62-++PY}AEf$8=h>?WQB%5YecwxPYeyyNtXw^YPdL)7bTR8*T`GO!6M5iT zkHQPJ?u1r!sx76`5HZYk!?MG6R#>(iOUMj-0#1M_elb_!X?@^V?bUZAGckGvh^H$Q z7ywGrA|&_}+9M4d(chNKK7 zc4Ji!|Nh}H*O68D!JTwbgV~+VIQe6oJx}C9K8WOE>C=)tDYv52RbH_2G8A`(9L1BW z-W4&SWAfo{xpSNLb@$pC%>=Y2l7%FG{`4sU3bhnAoOqim^0{eJv8f8eF{ zpq8ebTP$R=y_g6bh&@%CjbB_Em40#mAi_%u7@{(Ozmbu%f@!ZVtkU2u&kk@9ExEvC zkc30%)hB`n)>S;deV=5C63#2@2ov>dN~IPu5Gq$j_Qk<&*1>GDN{>pYDOcQ8t7&m6 zs=cca8$(^Yf{A<>Ayj)(@}y2>|JRH0eX!7s)KWbGrb`*ad1S)WP`arnM6%M^YAMDg z`nR2B*2Z>YyYPRB$=>(UAMh2;bMXHJ1lj*LK#+xvo%#O>4(e*h{TCecovY*Un52sq zPEe)MJ6z!*X*fI{VQ7X2ay1nwTESo>0tSN-`F;EUl7qJ9%}t9MdefXXZ1f|Y-l{Z@ zIKQq8;QvJjgTR0L_`Ls!{l1w0zUGGddU(AbQW(L@3danF4sM19ENYtJ4dBI>CoT5R z?D@OBidu+kD7SGZ^1Y$8j^MxN93ocjAK8D4AwQaul!i)Dv77gtf5Nzd`$120t9XvV zA31rC&1|FXoq&}Rvr@o{IX&Bjb#s9nVCh-k@7!K`Hj%#PU1@^;O#vv+rT)}sE75FT~KW<*Qb6}Ohh+Q4GsNd=L%%7771IE)yV_`d-B{yQdcC|fyBW6^F8rR}!n&kX zM;ZiCr|dov$#%Iw^)uc$vp#tWSyWX=@f5mJ-RZCCHE1K3GIwIY<>P?jOYN1L-&pB+ znU0T;FxCCHc#2lf^@0R9HQpbs(_IWuNn-uE`gg3y`A??SE^*qkDfda-*?A6~VbUA3 zKWy{rsdQrPDL2Ona6sP67i{|~8O|`F%B^WN5K1JrRwGzmI?^$4k@A~H25*+}<7XnA7^5w4{G>f+%E;}H2ZV&X9f_cgnL&{9HU0yii2Zee>XaGfVU_<>82ZQ}a;05+Or@z*w@gohMT0{FsS&9x2L z4U`(AEt7kue=ORmx!dBPyB?(_Nftt2)O{IC_@d(Tq2a!X~?6}X+%@|U1y0WkID{lTIXZVpNL>y_wz*;h}kP}lAMs^N3= zhw-ngn}`$D6uF1>lTcTo+WdTP=*oG#uqXG6jaW6)d-jI84nC? zmvsf$L+ywPf^GjMDA$`Z?eHwh6lYB%J z;jVW{o95Da&GbCdi}>w%f&s;001<_*#6kAw4EyBKsIfm_=Q#^P8cle&_uJLLK3TbI z>2K$vzMisIS2T~d_()^_=9Hxep>2Q`XQI}=R1h?A6UEgi@=+1|>}`w(nIw;j=<`XU z@7py3L@UZ>@`F9iCbu8P!}Y0${wi!Vzm4&3;IB_GZNZ3H9RgMs(#_BN7?>dF2G9Gl zM;2*M+d(LF1XBMpW8zT0D9u2HJs@p&UcMMy@-$uUFBepW-j-GN6bWtH;*3yoBi^`^ zs9K?Y6$#*-#UaEk?TBG8-HVhKFvxao0Rqo%_KuQIISI-x7Q{vQj3Y1Ko!; zpL-g&Vu_~2>T7Cw>>Yal24y)xKVal7lexFck6UCbQC|5h>IhRm{z=TZSD> zT#LhdMj!y~_W1W=k`vrqk*TnwgUzK{5*kg7ZH9yO3Rnrbw}+KlB_O^x z=!fl|70$2NZ4ErPf^29{rasR?wZrhaMRAj14<^VlH_4+qP^c3Kv=Mh;O zzNY=QtK6Jdz|?GVcK}^PQf-7^J;tZ~HHG-@++_SsBtUH~s-#CXa?N-Tz{BxAM~cRQJVt=@ zk&3@u$7VF#W~rj%+_6TZ3IsgK+TB=&`G}aOMc;iiqRtNDykTO)EFM^*+h7_GA&!<# zk?ASaO-j0Vygg;yR*R4r=ZWa)6^rG=ZvrAS{STL$-Zf4gClErBvC+lrvY#C} zz)r#qx42Y_dFlPfP-hz7?hnDb+X4Id*z?gjrmAHE=#V*{WtN5#Ea~z~5ZmkN9b&iQ z*tubTyZi35aM#Ufq#sCkg=CidWz}Xwc7;^Fc{Xd>7-$?H(Y3aCcOH%6@g?K#4}fU@ zA^!7r+pT*CFH)U!-?=-~aX@micdTuJJk#2Iq1R{_CDnh}_&{efZ~>)zpzn6uZ~GlF zn`jDiysG4n5MQibj>RtrTcbm1X5@k(*aa6F~`!YwXZmuy~(E*@iiy)_K}PL+wW;e1ewd;M-bM z^J&+%LXwcU)c-4g-fk#?Y`PXdSWx5sS+BbFqe_Xx!mH0PB|1Fg3Wd^I*HvN-bmrYe znzO=8DmZVCQ9u$}a?R9J8lpC;R^9aOTRbzWo^4dr$Wcz(4d^Ok=67EL1wz!{$t(ydbB1O1IIiGjZh@kH&n5-Y-OU6(wVMnl zNtGh@oiZgnvNn{Z14OP3DE=}UtP@HuMy~qi=!Yag^By(CJCoeJx8vubp79bcu6PLK zW5NTxXt|q3NS~}r>SZ?r2_lipqR=Zh`g+}`McvWKWN4L8wzBvB zJZvX~1Qe#=2NQ$-Sg_4Ao4M81E9{s7?DIO2>h6>h9dPLI>DyP164%9lrQj2Ms4-Z0T0Ns+2Kbs$s8yE$xRO`pgL~O8E+~e{fc4!g!5URFNcGI zgWiRVZZj5Xeo_mqh?-4@Uq)O!u!rVVu^ris=A8~oeenFLlz0yG1g`28c73n&I!mvO z?&vnVGibmTh68-mpprSXUON_CL`4mvfpHeK@B_<|ZlD&+J|03OG@SY#2HPFO?4TEh z=B{bAlj>Of_uu%OBv%aSW@Te;x?%#Dy_pAT77JyKPPC!y-O}xM#BZ5F2lZy~MKO6y zZoPGMb_(FVtMS?~7;`JLLXDK(Uunr~tdWWh>-A*&YnP|~}^k#7Z97^#b7Rof~ zIuouA^LJnG8i=mcL_~j$ zj{NWWGHRSEo35=O;wXJN|gI(Hl2TG5N39c9=zlF{AXTI%oDm#@@KLDkLBZ2cs@CTsfX9ar2x(@~tn`0G?{f!%7{{YBfV zl`0HWMg1a`4zg+>bqeWcvz@YGvn@-_Cy~I|mjBARG=~)3sWI0Rtx%00g^joj{|(97 zXjfXE)pPFhDbd|^?3%!PknP>+tOE_4DmPz0ST0%K0>Tz83VP9ZO#=P*s8vpac!u>; z8{q;bx{j4knFIMKUKZX?6lIn5d3n8W2@-KS_3ivI>IzIqNjnuiK;^u-zdry}FXIpf z<&?hr!RzDyrqdVSh#NPb9AHqVv2Er*I{^kfkc&5~V1T#S-i_5F2!LM6T798^pPRqTLVst<(cEojuR+uZB z3EnsG*SH|o?Q+as)f!;Menrv}%Lqp0!)#@{53EqJlb=QhGuiO1?-+00os(TL&IMW7 ziF*{n5WCS0S)`22sLsx6z9Eu$Pv5KVp#>D9MX>_T(Mc^t&O|=jQpu8VlM;y6K`Hz? z)sn5h7?(*v91ASkJH23xwjzh zB)N4>&KfB&l2kZ=8s&)u}$9gg*0ZIH@ZG^kw7P>ABl0qA@nz+ ziNqRCWuh?+xvGeQi&hIpB(EPixu7bAo;SV-r0_Txh4AS{z0@-;#j zEIxlIYm&nDheLXMa2v>5kp86VtGS$m<{1UOWH;O3n~d3N>K)PydXb1Yi*vBLZtD1V zYPoi>{A1|nnf*1Sm;UZb_M6=NH4KC@YdU?6r^yqE>tr$>DL-VjnbRy(m`keKWBw^S zoI25t1NAwz9gzkA<>8R1VnmZ16vw`vv#M!-EvG&0N{+D=W)vFH;9O~9=9CaOOyC_p zKSCh(q+8Pv=#Mpq!8TXLy>>1Ev?P83v`slaM>C@plBH{{CvsBt8Jg1`nH?h(h{Crl zHdGX%1_9LN@6;yH#z3-8Advq<5cutY@D~@7$UqetI#@I48xqAq_c|>8E#i6~*gjI{ z&mx^Wi3~=Sd%C;|dgUfOcD81JrVhZ;SnMU?s2)T%O6SpNC$_9R>;2J{yqrYff?T{O z!|9Vs=1*jsYK`f)2`S1M$Clljx-hUgefKt-clK`>dtnN+{wV9CM0_UpvC0E3UtQ+j zOxQ|tx;1OYu`AoOQ~&L7mHg!mE}y@OvrzG&T9IA7=yp9nf1N&rk7K6AF?YONvwY_I zUQx<%Jwuu=Xu~G*(y)mCX}*1G`!`;AvzB+rYLvq@b;haZOrE>qv41Z*7%bFwZl>mG z)A%lksV{@QCyaWtXJ7cYnbMl`oIT3 z)VG{6fr4fzj5XQRr!(Hm;X!7QE_>V4okKQX$k-#{LG|2{c#k(G8B)u}&h8Af0LJV{ z^#+=CQ*ukE!`J&kns!zf#_fo1pIt^0(3|>I%bkxn$-TbArF%YGFVwg4$or-_^ zq8Hs1Ir{#K9v`5)OKUqnw>JlIf6sqfp+y+~1BYT}_+N1-29E#7ntt=2HJzjlw)af^ zpIs9}CsD%kRBn!NJbI#XA}>g|^SHZfG)8#9cK07&u^wrK3M(&j&u)w17O|BD(v0LXaG=o{y=l?aI6$?Pl<}6egt#_2UM{xG@&c znYru<;tXYtKv3z$p^UOtjb4~<!d##HQpn|xWzb7*$LfLEtYE4P(P9@L>ztPR8yxqJglGm;=%wbVX{5!Y z&YdztB3-AVXI!tq9#K-Ac@U=UI$aj9M#q+3YU-#TClC9c3ZVR(EXg#QvjG8HkaX-0 zISB_w1J)NIC6LLtA3&|O$?=)ACdV10c$|{}KlU`)xgjM8axIpsi1o)W4|9<2GWoO8 zgRQ=~uVd7PR7~~@<*Zs#+JKbwnr=m_N$f5F4Q;l}+*;A&$Q#ILTq|pPU*4?5*QhnT zsmGrq*q!d31Elj2%UcV!lHBDdpjj?7{4NZ0NaH1XGp`&~bZ5MC5al z_+!YA(RiiKQX7LPRgD;%3qS^K6mDd{8qHsi?&++si$;u5)KGJdmEs+qjHTHJ5-;a1 ztV!u`p(X!}Jj@M3moJOEP>BM3B*!3KcbjRmNxT91rOL*BB{L6>ch38(ifC$X!EZw`;`h zDUH6S>}uYa#_&22I9}+%Ks{y=TmPXs{LAk~{oGCZd*(g*IT4nlTtmQPZT`<(53-e3 z@JGhcrN!?RoH|CZ0t1#;JL~58m>w0*VM4tY#~OOO`j?TVmHjAjFAKJWV0ZGvP9CVD zl@T76f=KXakruaprTl)Th2bHKk8tti&sRbx6c9EM;Gm{lcULYh-}8B5MCp zv5M``=AWrqSm0u~!2m#Dl8KNL-&f0Q!29k10{rWuy1Z;DKi))H^F7TjV~P88|WB+icCTP(XIjPo73pD`(d5=ME zyR2_zOE)9<&9v}g_J@=)Rz_RX@_f*|+s@Zf5SvS5@UYB`*LUxEbi83ir?3sT))L>z zO$_ypXBv|Z3?(x9&lBy)cn-Llsvs0;7y9dE^E1Y zscP&sFc32;*7z--5yyWtEgr!WDVh;z*UJ`ALoI10NiJQ+R}uX#p1U+*i{zq2*R$x@ zKqo<|#VDwlVo?I|>VkGv+mz?kNc!%fLjUBSEpHNUs(aIY6qIMa7MoK(wnGReeVu%D-nWGyt2;k}Ct zZ_8b%-5;*x|5a9Q5V-8!f{Z~5^{)kmcgk=dT%KE=kS6cg5w@<%P9FQhUu6%pi)QQ( z<^S^0>jz@sElj6{8&Ivo)LE75)D^g}iLrtL4442L-a1!OMAT81*JH(o9T!cIN&c8G z`_4U!ICZ*>91NvJ9`PZEr> zs5pVFNqr^?M=6bN10ctRG-4@GZGnu`mGChqg_q+`6ltSw0UW=A7%4H z^{#-5Y_<|xf1z|6k%$&RLY)36zbar+k8mT6%DB0!=UCg?ccj#KSg#nu zo(t8SCKg(0TYF!AwS1P%p{TX%hied*nwQB?>b+UJmta<4A1qFgw%S>zFDd&X%~Ur< z8L5`GN!C|X(P`vJA#Mu?jXT2jr0h2~vu?4@x<%Qid?{vc^ltiZ#HgPcj0`c`cBp(+PF$*_Mp6G)ke8v|S=uh00U5a{ z$E<;v)TFr=rJN~m4hc&QegunWyVzeT0mlr}F`dx{4UNs*o!K@8JqSHua>wQEOE z{m@?J(bWZsG~%g@EeWPWDu@(l=PuhtJyw~NU1@efnr|6?0X~QB6_AVrR)S(A$MrIM zUdg6`9$BVqOri-XZNv3>)Xt|}RB5|$%!7s?aZRw_R5W|(sc7!gQqJsKUEbuSyPN@{ zk9AUu>q3`+LIL(zP--6v%z4#NpjMR9EsEIiEGKI`Sc_aEGR9!Ti9BG=4a`c+S&E_5JaW3Q@LeDZf5q-Ydql+6sFWBTMG^O92pe!)` zHDck7`_I8Zx@ zE>?LOs2LchqjqRDtrA_kaFcq&AQBMog8#e{%|E>XA_G2KiFt){Jh@XRrxW{tPB-W|UG6BH zXlA7orPFt=8Je@aC5Hszk`yzKg{|=gWN`y0WTGzjqbn)o>M{SHqr-;XwtU85S*ODZb9+eGz3nz1WfrLKiqqaVCDNL9>A zpmau`<&T2DMJrp4)-fJ}xmA1y+WDnLlR+N(z1dg538^MN|PiIh%2k3m#&dC-Ax%I4I zC{dH)Ayid@xAt%DRAWu1tKghq*^~;u6isw$gI51&U39*=s!^)8 zsmTOE9s(n7i&s~Dy(CN6(-hSV5mw2NdXl-pxMQgjkJOhpo=pl4DGs#JWhrdnvEj^@ z8;n?*yP<;;9<63H+SBC6riOEqRWNw>Qa0uTk2bBM(LqPm4lTGP{b9(P9r!|^r!h89 zI{wZT2T!wFn-;0Ng}ETYFA{YnH9993XkGZShMqZmm4|0^@jxHhWPmYflIp3kQ;}9+ zMSaLUWRt=?`nWM&b2YdSZMj=1L2`K%Y^OwB47P}5&dbPUpB1lD&4!AH1&hx|$k>d+ zBS|*tq5e*OqhYfr2q0QR$&Q56%pwHgL(8gK3i-uR3p2umwbKw0^|8 z(~)X9AH#AOWrFiI*7r?(G!DKERlj!WURaW>>&d1?Uop|+VZtX$HohL`d!2t&tQ$Iq z@P}nuxDK#26j2z^;bE=ekzfcwDo|^z;sYZr%mIVK0s0YZzNH!5D^3I$ZG#ro@UvR^ zx#&6tutZ8|W5HRjEih3*g?7Y;*WyVkC^uW#LYiq-BAO(A+SMM-kAWz1-Y{9yM3TN- zu_I1#y5R_He8Up!5ye-V@>oyd!ZD%D%n>RJqx*A|ahsdCqSXw7Yy?uCyZYzIEc&wA{^M#W^v96d{pJ%a*EqhCmI`Z zJ7N;eD$TT-tdp&yuF{0zuF6SO6vU0<6RQ1c9UQAEb%{nnYJK@jzYV7l8@#4PFet8G z1Jw(rf-rqPMorJRFcyCy@&P)L>EOQbux;9ZM=E`A^OxmpX}f-O1wY}-$e1~rIr%EN zUQV+yDS>@{Zl70mzwmkU8$SONI$-|apaW)BrvC>Wv}pf#!omsbd!~-FTN)xKk==D} zOGqN%j|OQ;LV|&JdYvK0L$gTq@aIS;m#tDM=Q5YSqv)ne8hiBqxFM(S+gTnp{I@&; z{7X;I{~a#>H|*Ef_kDVFlGfLhMo|cCPKU2gPmsa@1wglU9ukB=kALUqmx{zEUC}2| zVW*@;TLS%FegC$WR+WMz&hcG1G{w*Nix^QE#UzAXRw!*!rw2`9HFQ#$6FTjAetGm%Dp<@Ie_Py(f5t{i1`1G$KMF z>uTAeed3NVw4!Ag#0d4VLgXGEFcA=r*^ixv5 zQs7aYF8(_ZnnX5at(7L()N+D`j)(EiBKQ+f{C(0uuXS<&_A5Kk(HX#%xDQ@>nv~Xim?!Z)Agm}#~4W}`B`g+ z&t_F{S^lMu@tFn^tzzg6F7Gr|H75!!)zlUd>N|oL5mk`aGE>UeBo_!BvRI z91oKySkv9fCK!|^K8r;Ct%)2DyG>OKrSi`7H%hnT99b#`NgaT-cVN5&z6sLHK%n`3yl0qnzuZuKdi`aFw zbORw=Iu!w8wl&O+9}7aMy|ji<`@)>C@l7N&|9t}vNv-UcipA_+&7s^ zq{)l{J%vlP&hY^Jv%N1h#amM2y1y9?8`9>a&$anyn_qDJx14ZxP25uV*ce4;DS#ew zAo8sl3G9i}DJgJ1_6a#ac#kDQhbg>F3%wVnLl%BnqW4#^+S2!!^TIey_Qsh;#`WW5 z^Tb->Rq`~f_P`e|Ub1VjtzE>dFXkqoMU@g+v8h92e;mo9*v6RQ| ziWx(Ub4QJFKeysS@3%RVR(u4@yTd;ku~4CC=_-andF*qgThf)NS4_Pe|xX zbDJk>YGqgHAj3iuCqx@^JZZ>=2I?>epWWbJfI{*K+=s zlvj?F3N5HBQ8Ei1iS8ML3`aYu=RiI`*~U-^|DR${y+Vr>f&c;@08xH2s(e5j3i7hVhDcB!GKz#Y52ETAv%-8ld+*p* zIuWOirWH{Y<-`)+s0`N>)-Y9bjVE$|ctI4`?G_b-G}&o%O>dx2y$6W8P~LOM3$#q$ zKx0;TOkou0l&!x>6Ivzw}^}s9YHAEDNEv;deGiPbh!;D84p! zoi7Gz`ZzkJT6Tp}AzsIapHGdi%+#Yz>`TunfON;o>-Px*dz>xl^J0L{+V}EEB^aMn z5K>h0Ng(1aYH4HrDE{({oQMsjKH!TNOVV&!aIJ*Uc1bx$*WQ~|vCb;mRakh%Rw`>&HfE|j z`>0T&h$3O%l7v6J6ux^h$y_np#wcC8HzNoQ7AZ^^#W%iaB|JTXCCAy751(BnG-oS( zfRDMUfJqCF9cA(n?$!sLb7?N#?2MqiouP%sLn)0n5)&wZvcM#YLK#RxpehA*VhMYl zdTl4eo~gTm`7;ZWf6wz^#C&;jD>Eb(Sk2gGnVrw1Bkynsk1WCT@dKcgvDo6O#!DNZ z%5g}mpoRSam$cHB(Xh$dpEp!o-e&VQF#h$8ll6QQ$R&%0& zS9NiD2VSrI?3SO1E5uinWHYGue@ZEvze(~x0(Y@#E@D!?$paO#Nk1&wWHz?4||v2#m9 z!*T+!Yd~S#S$q{6{l)*C>8HN@c(@Mz`2+%Au`Kp6Aw$jm)U=$Iwv$#N7fUa!gtSN* zQA&uT^*Ef)#CW{f7nVc}YItqIo|?HJivO!YY2Diav+f_FOV1a}&X-1qyDf-T8)JJf z>STw4;3$xu1|kecWw6g@eIV$CUcQ1T=TBU8w(nF&(#}BdIBA)688aP{EP&TjF%Y6 z?x=U0Te_Cuz3$Ah)F@v@9=ko#1K4|pB6<4qVXS3vl1m}6A^D%Mfq>z2aGBm!Z+M4RU6 z*#laRnW|{y6~d1~qv_1!ZkFAUmiAm;_r125($&zOHfXL7t)!njUXhBO+(^Uvlzq4i zpj(BN7-6wUK%elMuTCZ`neD9fn0#Q@x#LH;KdHnYY9t>W9)gSXzx<`cM@ZnMusnKA z1;85O?x}TO9jY2}z~<#QbZe({Tng+V#=;$7edD540P7`-eu@%wO;cdg;PB-qK8C7J zZVLlDSb;UhMMb7u@1XM@0NY%-{z|$Zvv^k-dz-K?P?bwE5AVMaeGJH^j;SEESu)AV zn1q>pAPrzPb**0!Xhr){?bV-Ah#c=o!@FK%;!Qe`{3 zBax2wl9mtQ=<-(3hZIfg`gEZQSzYywG1nM8;k)8hJ?tK2@hLDax-}uAamFpE{u*t( zF7l4>1dAEC0?==LK6q9oeLoZxb9CWSp~=1uZwe6LR1zB&=HmzlQ+4io*?cgt9f3? zfrga`6e`@xk`Fz+!D^Li_*-g&)$Y4}*6Eko)P=OGvT1#_SsLAiTLUNfK5pXXXj#Ut!^=cLJ^_~L?U>lsu#GBCBR z++SaFx#Q|^f`X*!h|4Lawt;W)4Kn@~=jc^;Aj&NMZisI)lk86XF5J|I+`Xy5miYZ# zTLtJXF8A-YW*y`fx!c;Q&QD=Q+xs z4!6!X)86BZz909GskvWpxID+)|7jFt``?U$tW2z||Nk@tZpZ&kGo=6Lql*$w5=Eo0 z+VEhgZ$<2vv!SMc_!MkH#)KBhvhfFa?UP5nGf6tjUXaid4PP6SackNzY0!9C31MaD z-zmqI{HwqQfA;fu`r+>Ur2hGunW@v;`+i)L+R;GFejVNG_Vo%9(*S?|l9VnWnLk>S z_v=kt$;oqT%5TbrwR`jer&-nN~2v%B5QS=tIcc*-~2|D$978&eY;_ZaD zUu3o$d)xYNm8@CYuImlIDDR#1x&KDvcO;85L+=;EE(ij>dQT#^3whHroP}(Gn7mwy zT@nJGiSt%#K@!?)USSSjXVgRM5p%O#YpuJ+SrITR{D!vPl$o5#dEW*FkSL z)YEV5n_2h4*T>jfr|XesKBj-{`mK7iD34cH@W5rK`+4Rnf8l}6{Q`5#=d;4Y=YNKH z5vJTdA?vZ}XyFKP+xt%~v_CIe`1u0Aa=9QVH+(zNE0Pxf$SFG+SulwBlbRH$&?zKJ z2&?6E4fwHI)+0yk)Qbs(Tj$`wg?oDfIzBB?jHxFnwZ6Nomws->*etkA=Gt!6vBKC( z`IM&z7xJ=e<;*VMTkiCwT(`L*S-w@C#7+WV&i>$D4Oi?uY|uVAVy)u69p+KuH;o}> zb&XloQm;J!3inK#8;|`nEQv8RuN)lyt%UXu%*AqY%hV(8tFaYg2W8Z8x#}qzcPzOW z>Rqq;pAK&DqJTWJ=1(kSSFg(Xmk@2gr547<%K^a+FtJZ6Zv*&?f1`s&wyx#Cv*eL{ zO$1c>vD|Oz4gW>Wz0}wD#1{Tt>JgDHLSXF>)8itXWUwr-)Km^wK>=)&tiL;GRekcs zTcd8f-)=$aB$1gn@ldnwVva{wv3-pF%OW9D@bu$Eq83De%3-%K+t!6iwco+7B=0aM zUrBEUniFA^EJKXYM^9sO`U-?!0H2~i#1mAMzEOr5627O&-T#NX)l`C zTD(w^cD-sRcT#bD;VnnE)sq!g8?z+hNQa53?!N*^p08X!(|FN$6yE}$`b}3s3H#=m zty{mz)*wVTNO59F7B0c5x}$wNzjkezVQ7f_A=xztq-M+EQ8YWdL0Y|~NHE}>{+Mn! z)%a3-xWqXx!TYH!o-qDB+Ed6uO>-5y$F43>b}6VZsWiLa#>`ygSpf^D28gWjRzev9 zf}MadDjhCU8gYQpaDt#o8nz^*@ki=lI9r3zFi9-{K|@#waSmrdZklqFVt~)oobg~U zrX6$KisNES4Qipqiu?E%`n?QRa+My8yY)@ik?KtUrYdON^cCGxRgEXs3C*(n=eMCq zYMMLv6R*(TpVL@`kg905athJPCF>;FxGnzL^aV&%1gMlhQ%=}J7WD2CLamTyetkA* zqU^?8jp94IiGv|AOtm&~0ZUwDhZ$@Qvi6nSO`=Fcy$ihiK(?jYi5oq#dHKlVz=lcs zR#DIh_yq(HnKVbQO&(yE|3m;B8*F<} z3so)4$|8~&?dFM>5faSaW~7o`gv`P$g-Ts|BqBe$sdee~6}k!Wx3X94P0Ct>3R-#< zfX-J&SZO6Qff@X6-|ZIzV+PpjJibf_30<<>B-X*8_}M&AYCd+ylUr_*h1*Z?`U7|E zjFMB7mRYxwp^liA$3JC4{wr-QgeC!CPf~xbGg`&{Jxs1BdHlVeZf#<;vz}Gtws{tE zCNT3``Hl@oHHK|rB$ACN4KOZfdj7|q5=I1ELU>_AbF+)oH!`bN z3<2|k+&KUVCgmg%Y<5w1s|K@B*2&aFSN7N#20>)Xj{C+PmoxLRFq^Pgzbm+!hOe*I zzXyx(ot`Olf312z^+KEi?6x^6Tx5g*2w=%NEf1LMpH?gAuz4n-op|5BK9cmr-R$p- z<1cTp9TpQcYG&WZT`MR#0$16X6E8bEp*<7cudsb62Y{M0O@2beI0@rcl|1UQuJ2>U z&1dwZ!E!xNuGf!MB`QRN;|RsJ4gw{nRDB)KTaye%?FBA^NcuIWsa<0cD&X8sf>mzT z1#UWzu*5atFLuWJn&xpDder61xEYWkYk1sdM7m-!UVGEo(SB(9#6GfC`Ga*^D>NZMVU{L#^7orzvWkHVGEV9%wFz!7z4xOCdk(?M`IN)XO5$po|sI2KcQ9D7=td}An zb{$0%ATgLb#Sl&qgdA^6Ind5jPEHQ@n#Uw8I)T1MZYD`Oa7MLBDNI_Jz`UBliNqp7 zfv3DRRvY6=GrBO&;1;Cq4}pw^AmZxL4YO>b3pea<5&*bC9(Px|m#UXNY!4wa2FNH( zv#FT#G%|la^Ak@kzdNqOkM)7}zGg{}K2Z*`}Cj2!IX+$LYEBswJ_A6r3K}0QKqc}ToXXqqy*(nXlT_3&(4HiE*yYXS{&2*guT>ja(*94GV!8(!wGp zrT%a#Tl4R)?^nUY-q=*UbB3~#(^RDT2)Lef%v*Vnrhjjo>Rj-M?^5t_(}wFJyyw4Y zEnk50vC^a4?JO*ND$YCX_AO5XmNU{24O`&+hzJ8$)c82KYo1&e1=rx6QXBOW<2fNk z7s2vQl;;BU4*9g;T~z9O-{Lpu*2>&$#KJC&1Mv{HQR1ZB#PqYc)0PtP*QmE(NlxY@ zURKTctsKxFwUwe0&*wME=kl-OO=JZo(<|OEPEFZ?IU{UL4uuV;_U?Exx{I-CcqRyC z5fr2ajK!jrcK2fVUF0iD%<0``=c=eR zd`fcz=aT}cl1W?$WQ~hWfKf1}Nf6bbM``9?%^sfTn-^RHo6_) zr{%&?T7a}_F!pW04p`SLqbjop%3$!v?7O03WA+&P>4C?e6clK!gzPNI>7gsFi71;ZS0_4G>Xk- z_GdRBueSU6xG8Pgmyz-^j*_RRqK5BtO_gx+ScSJcQ{>tw$1{aMl#O6Z4ONjCU^zy4=R)bKil>H6kS^{pvhZcC7{q9M=25eezL( z_Rq#-Qg%)JQdBc{pgm_UKrkfOo_F)L#g20XMq?Tio>y6Z=3Xw&K+-F%2yClcnNN!Q z&7wqeSX!?F<$6pQAH~06UksE9bAXbARvnK5mq_-bai5}F%NWCQagTe!7>eEDsk8a( zZvkX|TbHq*X?5#CW5#Rfa^X8ZsFS$R6ISdc{ws=Ge?ZE{&K^K4@M3;{2Z?C}rC6}ow>S6uTQe9Y6+xfS2Sn#Fn zM6+0g_2(YdEnbuFd%J7`mr#&Sus^+0@q>1X3m>n)@A!PwO7GEV_ftLI<3%TTzIk}p zNq^nNQIw#pdd44p;??9&Ika8g2i;QnzAVSxy+NYsYfOdu9R)d3Iv}Fze*fL7!rk6d z>QoA8D0~^RGQ*>i?D1l$2T%yqg-`I$J)mQRnxNj%|6(@^ zK*~w-d0R|9IJka=Jx1u_?5tXe99GdI;o@)H0WqhC4YSq`8^Vnz)awe~M<*W&oZr}& zIYzfj_K!j?eez#Jq@u#08f|fE}1TpwC?>@EzbUJB8q_%3hOZZ4b5t;mtzeJGz%;o)474K&zfbPC1fe|!a`OfW*$_tz1}{aYq||9`ECv^dP!vxlLdocf9Obxrtqo=*4a$N z6MaA@DD4>q)>?F%%=Ympu?RGH_vB%+g_?lfZhto1!lQN|dWCErbzwIRsyWa5OwgM< zB~2!TYp13+ON_PeI9gbS&3jG~R_8A3R$dZ&f|+9c&;$+p%(tL=jp3w4}O zqUlf~uCrCNQ{swbg$MkD)$JkrT&9AHeF)0Ks#C*^=O|9HaZJ!e+OxnpWzpb-NKRJe zR%5bg`MIa9mQYq1)4F77gjql=l6f-W;@#q~kO$&E6M_AF%|1kd2%D4QQRS^Zxy1hS zXtsyK!{d6&=8_Q?fV64)}I3h5|3I5j5#hJS$u?y2lpNjb~gM&1}QqZT5 zI7=M;I$RbSe0M~vTdGWT=>E&a)lRS*MR7`?ND!4Ica*0}0xv=r*CsAIqhub0<=yA% zp&!&EZS)3%Q#`xMr?#d;#FxeIx&H>TaJ9!|xAAcTWW1bxYaB#|jc81bpQ9Qk?b+3} z)y=1mB*e_$IZ?8kdreq8sA2Kuhpse*z2j$47qk;F+=6fBu-INVhEJnoIpo~K5-gY>v>X!rv@>Z1hLP6X>)X1yek zCvy`s3~Zh$BOHSSr_rtEHHA`o)iCZ|JsLf?o0WqIU;R{>eS^|E!>N|$A|&4<0cqb^ z!GT0ywRj8Lacq%e!=mYYs(4;ko7H{!3DfDCyzXeR<_Z=#J)NLefBB(!+(!@sU)2LY z`ci|hM1kDJN3br?pm0~merFbU=mf^SB)x6NDnJp|lH&61(0E4N5V+Cc!jt)~{E$15 z(ZV?f>`|PHBx+f#d8T#N-n4e8PPsYub7WqVwWU&F-kh{J-&I~^Nrkf&36g=8GPdzl zszB30`m(Pm^UNo!fSCAgz4~y2$Y@uxesT8Dy7rQ z&%{Du9x=_Nw^`iKJhScDhr>-*fMvHPQ4Glavuf*}vWip+_T2Agy|ie76EF5^ z)MLcEl=HCX$ytwv&+|;FvS-1I_A#4;{@g@RZei4jE3t`gw`w$Z7QGb*TBntd;_voD z%r!h2_u~4cNzCz!8jxhZuiM)us83VX#Qn)1s&BsLj%@{x?(7z^WOqAoWmWiYJieX} zCP>@0D;mDy4*ei4BVUgeTbV$)@A2jIyCoSMa}Wh~((*f8C)U7o*i(rWp$jfZfM7;0 zJ<}LbW;+uOoUBm!xVge}D5&B}Gm5gMZQm~_aXxn)gPqyla*mfO?ZHirF;v1@D5rd0 zdDAt9W&iLv-I?J@5GNr)eoU6~)J;E~2Ef&+dPP{K&8kQ&9FpG6qS?eWXeYu#6BlIz zt(cTqurYM-n|dU4wx5^hY5bpkKR~#Vp|$@+Gdcb%n#s!gf6ZPx8gay<4!*Co7`@Yi zXU?X=IWLa-5GkM-e_^DoF8Ut^;lhO8`+>yIeh1^lj#M<3mnU@^QgtPRu5TtLCWsgh zq8jmf{N&*ieoFCh=6;U{*?y&VdkTAZdH7#72#Du!gN2w+-l*Wisojpyxa0n zB!P7NULW-AikoH?v3{Kypbptcidhx^d|P!V-R1E5NvRbVRf3)0K0_{=rT@-7EU)49 zCM)vrfhPCxeZO}4MH$T>su!V6Sny-f#O&X{+Bq`)8zBOzMKGkI>f6-Er~Ly0&D#9M z#FNLIb8;HY0yZdQB@I01fD{>)+IuW;`Dy}G>!IkdcF)-rSFMsB9nTH;FT|64w^v1V z_{&ti;s})icHF&_8HmkU%u>(U7S?lpn0frDKps*ydAQr%P97BZ+jFH7@E6Qn-K5NJ zWzsC`FBHj`7Dj}>stWLT_Z)tFSW0{o zOf_A{LiTm%BEcLe`UJsmTTV0T3K4rock%lP>c{1bBG}wc%8hUHYPKTj+rrr=Ta<-o zzQCfSPKVfn@Ddxd%$~*iU$W?PbRANx(pU$`Kk?_K(C$5dSB@dIJCeBqP90f(Dj$gs z?CKxg!@S0K7Yirt-Wk4yE-ylT(IyJ=;zG}l;V+-<1wn;^Ul(a=(J%zL@eUtEO^su& z&C6-4J!4=X9xsyLOOs=)3@ysDr*{uI_npK--ih`45X&_{pX7^$=|$TkY#(Xo9;>ci zk4bDjykdPYUrU=5YBO%9gcE+FDM0{C#Jgf3LK3PZTkobjtXULh4%*1W1}IJ^EquPT zG_?8VYrt*q+sbGMry?>!nKup6jpeDzAZ_KH-WGYsf4tv!jK7K zj+x{+F6ZE(ZkbtI;B1!@5kr5Rn8dOrTIzAqJaF#HXVN6%c8ESg(FrJR=0|Fy0`qh?Mfs|96 zSsEV!z5+H1W+owT!iy`j9z{A7c${;X_hwWjx)+9D;9Qj8dHN=eQ7(eP9dQXG}*hax1Yib-5SG0r?+p!(0Bbr&m+2zlyur zS2Ey$@ng%9e}3NyiX6IAh?IwKRrWhDnv*n*%fMBHAQtx zqhT-npOW|w22TXeAn0y`f5d~`m$Sdx0`Ikv>Du)b2iEgBdM|BWrz+6nsK#hI2xe#?v?(Gex zpelVlj43k3KxtVCMX8=J1I#6|%bb5NLJY!Ut;d(pZx!x3X9~80sYY1aPm%X2?D(NJ zF2lkSjKUHj5_}*EyUFDb+nYk4=y7e6jj*@Y+Z0(sKCBRmy8$ZMV`xXdFvh-3>+qfO zK7{8i5ASIu>WIF<;oU}1xMNNb_Yz~WXaE3pAD&+;H&jt0QC*EPgPXdvBQKj=6Rq2UF=e0TIX)? zu4{xlq1RO?aXBD~g5M3mx&RxeRX6}#GVt6)9YP1|@9DA3N6olSm1j~>oUQ1lC+Y!i ziVCEv4N4vC4_eF2s8an6CUCW9AF>EC3$XsUTB;^A5Y8%doATSm2@#>~rgvmpnUr;X zuWAdmYt;b$ni|gM+FkAFDpPSjDkE{t3)s4+PZd5*_wqqham%iL*R{ifTPZQDG?H&l z>-xI&;en8(=n%;8qi!4-4_sM8#<9@cV^OXA!gyb02ff!Pttd+7Z`JkYcrol#I2sXI zae4jO#F_83$gDg6jU7X(jPRDKd%R^yIoxj$WiJ7tiodCNEuj+QjuuO84#f)u%ta!* z6%hB-l4u1m`|1OdbU+H|w%xdkv4|p^_yvfONlWIQ@5Cs3YE?ac2kAZ^m@PhWIvg@Q z&sii!gx3Y2{nj#`7wu|#tsR();!4U5P)ap|K}6Q()|$?>IdzYwT}WPf24B%Ukqavn zK4_w-b%m>`BXEhRqP#3?$Cz}as5)*BPsI!i<{DE;JaLZ7yy-+_04nYEQD3tuB$W;pS(5mMCSVa;4TM3FiEMwQq5hy0-u&gFx=iYf z;1X*s5OdPo@-Q(SwhklT$?np?e!%vv9u?T1=JX@UI(1c7N7a9Z1OU+?aPKw1oUbq1 z(nqsBY48rw0NvDUNIOqlVSz_>$OO~x9qW^$0;XdnZuoSSU#jpvGZ8U7npX^1rUfiy z9No&W`LfP2YBcQGgwOFJ{qmfZ;xHb{FM@|c3#-D>UpE%6&(`6ez2Gtbc5SLJK5XtY zJJxk2g6Cl<9PgfvCjG^VvxO$x!^=xN7HLU(S?19Abm=~L=&+1`5oVK^uAFu!;B(T~ ze8{*ZSqzx5zWq+QPR5Pb>g!^ms3D0diJ>lfUu|AN*M`U@5zY|+5aBNRTet%a4k+qb zpjVUT-X=kmWxW~dpQu3V#@j?ySNmLdsy9Q^@^fq<4wLcHH5w8Mq=c@8-mKfHk8yaM zf2)-q?hfL4OIGjtdO});wWiM_a^>K-GRKL9wGGy-I+~UHw~gf)~ab)l^M?3pT|n`C5^ zpWjpEAic6%9TS3Q%mRE10&Z~%yJKMgSCMfIyD%sV)Wr-9pKgwQ-8s_Jo$B7o+>3{O zKM9S$tDhEj767XC$82Z6nM=hr5v-8R{&uYJ`W4J&4P&s_J~hfwNjFT$A=& z4ecb14Snh7o??V-yg3>WMb;C(5XurWd*ABN?ozBE0?{JZl8SVK^(=2ULN^kFPpkSt z5q|_prlRh?`*JE+gctz<78{)N14+Q&jgr3c1_;Jf*fM}6xU`MLj;l}EnqzpU=^#y% zoMtecM3q!T_7!ULl`FtyX0gNt_Hz%W+hHhH&FD3m_rOc$|`IZc(f;0{rn*>2lS{OMumE#T=z0*RBF2$8D)4 zPB4UQ_r}aXPy%u5i)H>JGpT%l=R8`Z#fqc9C~#^AmaWFakzFDFhV%WhG|S7~UDFxv zZ0v6g9#d=s`M#xU##-D?wc}6m(?T2D>~htpAGBBdfv8x}fcYR;6jZ%w7+kC7^)j4h zQ7GVb^mbDEdl(E+*iB&X7Dzcjm5F$@w6^A9f-gbfHJT?!=5!+-GYd#Hn8}O_cWjC*r{CX&o3;p*n_ zRvr_8E{L)U_iyo*M|OQT(xdu~5v8;{0rvuBVjXQ*tq%^^k)H~^ugdH_pTepqH?zgA-L%vg-M2U4R?zmxNR2r=bl%!86DUP*X}j4X#wkXU^B!4V!}S{hZtd zk#<&hlY|u{n6yRlx^zrou0Tso0KhCjM|57EvRfi<@GC8|Taav-&vRH2Law|R?U~th zMlLvEs}1qR*Nh=yZP2B5M;zC&#C=;M^f^a;Q%(=Ht1#3fp@eS6siHjBcq>_-on#BY zY#VJalA+bCH_oX9qFq!S^D@E6TUg$-SnMf*OvtKf^fBjatD2Gu)>Z)hkbMFXw#r2jSH zo^dRmJjGj3Uwnp#oFfF43e&{1%HE7~P^+gfD7Crv@c(RaJv6#Q)^fciW92I03(`}y zugVB$A|s0VH=>PLvfV+r+Z%juzR=7_uYHPMBjjb|t7gyQ|LIa~3Owyb)`e)f3_pWD z)7$kVz^ntJ-O+&zs8*x;&tRkaDZHCUtM)-c>huKmZcES&&g=HJVGQ%>-3Zvr6kMcJ zQEzNiPQ1mKOSK1z&0-Cj1dQo#Ln*lAdv%%!%x00obB{hWmC@4pG)&z+I+{l^2Qq>)EYfWsw6TQd4H9XLXZ zhL3jqlI=MT{>?1n9%PqQYR~ePDolS|NV+RL)Z+?*@+ACmy6PgTGFlp*_7;lazYcwg6=+Q zExxCBhz_Z#|4j?IH`;Z<`@sG9oSuLp+H=BpfBFVj=Y!ixac?OV;5e6rAM>D-aZ2^7 zpfeQXIU@#C2nEO?D}L+DdJmjH6kzvrP+{hb`@7*jObyo@-sbodOwZ@$6RQy`%$`80 z2&o~8_IrCFG~`bxQQM&6R^jovRMG{{+i(%Vok0r(1+uQNc)IM&Tdm`9iFjg0c?u^x zgkTZ+h=5I=sJI(&gr7>775 z+Ox`XRkzvo;)tB>1TG&_w&b#Io;@3#J|SoFO53{kC=>xUt7SgTUb0obAkJmnUgR2+Qko@*NX!%L(gO4OVVmF14y%A)sdI+XqUj!ajMo0-mQ zJFtskav)OaD@6`TNR{oF$4>T$f}N;JB_C{~#hO8~wOYsBs!dSl=L ziHaoEyrxX;YKhZTq~l~mx`hN3cHcrs3qiajJ{8OiX1k^7%b#`15UW}yn$N)Td)67c zsPGTPpW+g-0i3-44t1~X;GO5LWa9NFsBnq_x-32@JuuhC`${P6NsKf&#I_r<*uF=O;jP73|0Ez z*iwgRxW%VMyteCy`+~JN0~G+TVbBAr{8DU)TOjDFn^tLW!2~gB_C$sfn>vvftAE%ZX3K07bP+BdygK zW2>FDz`)M?PgbbT&(Gft!KW1^u?)6?59!c$?Z+9ZwU7=zTac;xUaS4G1(BkS?uXj{ zRK<@bn64O=h4ISy70}y!X6wS*Ao$SpTW^LTvDSVTB8Sn56^TdKT44QxMY^n}-@Jfr zoX1-9YX>fwHSOAbYz+Zt1thF)FVoJFE5U~dXG)A*3^^r>WZ>8J^%&Uq6UxuG`*Zkno2=K-7F{|vi}-qH_qHny0g~@_ z9m@!S%L!*zVwo?MZg!<5O#emAn2) zttmgd2P4OV&qi;D+HUQf?OJW8aNo|4FFOAgH2W~BAw$mh*lqoYU*L)8g#t^~`rB5{ zx}lN!kg~8-Cb~D>_7z85&C^Xv;q=>|FO9_5=U_*sHy`{5O~)!@C*KPfuy7yuy$(<2 z^U-J7a1^m=cYBL7wpz}`v;*7km%fSS*6Vu${!lISS*-&ldX{4-0L+fJ@ya&TcV<-> zR7MF*COe)wYvd+n^u~gx3Zs^IO~q$-%NebYRAk@c8^nCi(%ZSs?+L2J2s=NJM zo(4<8*kiwpE=;HJ(}T`<4fhr-L&QtUqNGIYy0?c*UU4^y`AP2s)~7`j)0Eb$hs+_A z+$(I`iPY=%ppCbwE3^&HSzqHW}l)icG}oWk>&E&kD}#F$$Z!U&doX+CcM`;^2J_n=G9? zz8zI+lqH*jgpCSQs(U=aA%HlpyQcH$2Fxfe?U6_dKg~mmT!A!*}0$h%@dnk>8a6_W~Ed;TOmPtR$R=_HHFxC44eZ2br%(twci7- zy59n1^5&&~E$yvLI6^|#Bq`60{Bb<ZgBfUBC2C%uPf)1Rv`s(j@g30; zGFqZ0=5l&E$I$!nkycAo$4FZ4GewiKV0>I+i^Y5oq@CC4BaX-P%DTUEo|qjEa1SJ3 ze1#?`KU>Q}{(PcB8Ac{f#{ii6O$37q__XBgAzYPnDI%2G{S&6Y2Z|@_&ow}i50t>1 zMsHw_XuMKd1N1xqafGP|BR@`GiJ`d}(T_o3wNTtf+n_MGPtZ==pLbBdSB!9oP{Lvj$XsBj++}KTB3so9JKkFv zQ0T-e=-I}HsA>h4=mmY@4Pdy33olmj&Ib@}+X&fVrK5lZp8DcQJoJ`~o}V;*fxMN)ypWAVn8%{OP^o=n z>=8fxLF&HG=Qu6AJWMH$Ch!1_jlv!_P+$uXjelb)Fxq6+BfUI8ofximnE-73S2M70 zFE)mHq{n8KXA6GsNxs9E!y0{onxssa02#qb$76>#U#AXLUujz z<5@luOEr2gW-ZsJ?+!bJzt>1A(qP=)Ny;VI^(*Fj zTJF{uiQF*}T>~DNyT`7FNOCy%&H-N^ju`fMU85HNnnYITdCXWG%j=n6`UrWW0~dqk zPsL8$!P*L!du*|5+UfRF#@QWyxjee!g|T{}GhMNF^r5&O^h z2CNxhoJ55>z^%Yjt?^Tr9$S~SEU#Hy$PWP$96$Lg7X_O1&` z!fhDzX4nItk=zFH$;j1$bz;qfYxXMy<{r5j_r2y&a?cAB3FXAKrW_gvV< zkHm1>+bSg{_P-#~|5}>kuGFzwKm>t(=C;NqZ18&#w)*1|7%~q@RBOs(wL4 z<>KNx5ryJ!gLe8EGw@xm3%YLswbFx3r-3Clz-;cA?h>^U{F&$^=`6p`B!sTN(Hr)W z{6%i?V(q_yeE(Pd&b5ZpBKR?_v-IVF6wV)>}VFc}%(mQ_7GEsxZ{oGz!;hiaW& zMp~lnRh#@%S&>Q+4lj%8VuigwQAK#hLp~*NMSQB6&!j>w&4h>BI-^>_O4R#CjWoJF z?IUcLbvGgV%svMM?4+HgWr$!w0T~|wI|zz`OA=8mscWNpUDkkB@3`V=76GYE^IX?) z#+U+wEQK}#wMD~$DH7#BppRQlr)k6xNuOPGEqpnRrXyC9OA(iJJSCJ<3&!kEF!C#h0aSa1GGs7kO) z^aVG6fLqTMSbbptN_g21Q&RV|+JU1y1TBB+=wb^Sm@SMJV_WdXY-+Gx&#q4+Q&wVd z*XQdDXq#dVGF1VkLlJRjScS%(5c1Oa&21;&4X@1(>9f?^-gR-iN2fCJYT#Z26CSDH zp&E6?p0W7c*R{~@z1&C#y@Sp2>yDBCnA0(jtfOcDyC_*$|J zE>lBg>2)j_e>qMSBUa_^0gurvL{5?v>qCb}vsp8vqo!ucvS1>B1b>(>^p+>Ht9_3s zFBXI2H{dc^lt4MaCgT3vq*5TTx%#t9uw0yzx1X-yG+0JCEex=y!gsqq`*z07BCRN zBE@5DNH9Le=93qCh{S?pp)sG75{ru`hMp9g>&XocU27@EJjtbxf7kG3Q~-s66mw}T z&4iWdN*)Q9ckHv9h;4ZZi9H`rQV>TSf+`neUL{3=rbEEIN0@J+Rk$F`ZPv$sY zj+VZze8$5?9a?2sTSgUh`E(#@ZV)9bN?cJmxnm(Eum0%ivFbww<#sa3TjZ9DRP;Tj)}>n|9;4 z%>y!$Ps_@RFeXE8S8iLkD0^)>S!G^s68RD^LpsGKCQU%YG;<%>5{&i6=oS zHR}$H5z;-Mwj-;NVMsO7uVN^>eJy0=(HpRszg*W|Tky7^ETAizwM}~A2Uu^fwcE~Ag9%18{~jhO};?G z38)W@rC7^x67G!l9U!?6?w~~h7P1OQBlpPj;iVWXvh&ah`Y4+#a4Zg%QpQcEjjhNU zTz|%zq(N8kvH31I+6HAmJKTgNK*?(-z0_wb7@-iQnO-VWoRK?XkKFltH{_rUqyn$v zBwxFT57-CLC91CUPEV#GcORSVO(%NvNGN)-ttd|z-TK{!c|~@})|{4cueCXZ1FgjClo?XPoqIu!e|kB{`pn}dW$CrZ$Rr?-|u^DUoXsN zRw=Pat;z!ZH7;Ntx7_4zc%d9XW3e-N(Qwj{T!|{|qt>v1F~px)sl^K7BJ?#=%uy2w zBAfnpDRT^OmFlE0BAmGDu+99)QFd@y-R7{MEI;m`xgz8w7gVl6BkO4C353Epio~nS z7KPR~_+ASm`kk*Yu(n<{r?Ur^5bmXT)BLR29Jv$3x*EYI=+Yoc_gWlHsEy}IR$UZ% zhw@VJK30Y90$?veK>&5RGVNcu%B@76l8d@T9FHE?)%#ccCR3utW%>ChkO$&#`zn-GoeR|^!s)c%&gHW+;{O;xLu zyG9St5eWHN1Huam`PO-s{KUKcr9LzOB}wQ{W;iU(#;DM#Imy2_RqNY)fLAZfNp~8u zzxFd$ziwy6rONKJE~Wm(yck6bb8nOMY+*ptx^XhBu4S(yDwa7(m#Kp0I@|KX_Zi8b2f4$LC4lg42u$t1WCuo z^Y?IMoZ^9l4RwQTyXIbV>LSt3+=E4AWZa*t`!*}MqUHd{JvXINwbBUka*@kAfOK92 zPBL`#P=zO!;IJ>^r@5}uZjGhAzR2umQ}-rAGY!6XhexaXmdQytNhr3g#=-DM*Xu@m zpsF}$6|*$ibeEwo6nDPmPhr0>OmeLzkeGtuQePV#*-|c8eKiyP0halwIT&vWjkv`! zOyaH2fG^IyLprm2O+Q+m1J3~`9_a6?X~3$w-*Z!f{d0A-_(O-Z6?cl#h2~IPg~M`J z#3M+XI`c!=jOS>WZsSXK#2UBsy1)SVXDR*GXe+!=Ev;pDo7AcyJG&!;RbPQ=n~GE1 zK9*H3)GoQt{!WOokh{rT*H&4&)3|1zOPU}ror>9)ebIvAqJzu3QN zvcCrIQH>_~f(bcHc$+OeG%NCd@vhu?j$q=F(_ZD?Dn$c{H`H;8P!_&wL4;q|-qj{V z?QTlNVtaX0D9;K>bz)k1sShN+D{EBCEV>%Mu7rA@4BB1J?mOdGglgvp_M64Ko5a~( z@R{F{)DZ3m4s&E64R1FFa;>*G8Mdq*B@x`rw*nlOeVhVct7tT%Mb31EyKg>ge~z_! zmei|mwy?jk%^A@rWJ;gMJ>UjmF$Y20tipIFfJ~Fs$i#Z;2yu5JG+Wks&W^3#wwdHR;d+gicbg{> z(^W!s+_FRN^G)%2dD#Si2X`;;jgOuE=y!R4TI=Tp{pa;@P|gl6_X}oEKXq@+%CD`R z51<{iFL*G12?*-_G_#YhM|q-0b>dA;40vc4=Dydf7~&0GeD|2ik?L~M&VI5w*^?qS zX~FJo)$RzgOWNiP+oRO#@NN8Z3wcHN$NNz#o%{uvrA^%?@VNL6rqN+s>rPEFdkMBPea`)^S65@ zm@TYMoK5qeQ+0C~^LWo*SQCi6MDX*Vk|^I}yw9W2P}J&Zw^^TL>{hjh!H*`zj$HkK z>?3wJ{CdHyYc{d&nz&1k**|pRqcE&;S68kC`fDAO(Z!|SDVb~>SzPYP21_HKPOa6eCXRAL_LsUub~TgCe%m-9cIIpy>JmB z; zM8CvrR(Qv5C?zdJ48k~WKAucLL-k)fD6w3a_`4w3)817wrkXv(8Hw4r7XKuvG1j<{ zRnDRe?E$`|F8HvF^wP0LJrSe>YMbp_$OSdeL^@?-%2PAjpulcu4~^}1$ySy?GQRMq z!@h(@SWW$j{z6lCyr#iqRA5@US}W_swH>u8rRCIBp@pV(*OzN~yNebkh0|Bhhm#4M zyJcZxYW((f+%Mk6gX$ z8(|t~1hig6T5-C@ZgO`g-t|CuJ)j$#h8A$qTwfGNiT^3gb!gGtbXFz50N#k9aB-|2 zs>y16k4Q}&Rpn*-Y}HsQhp?o(N%pVy?qBgd{-S`9>lQkP`h`zKdN-G=k+dQ*_g=v| z)M#t0*uAHNz+VAVoR_ z-3H*+P|5Xg=;MC`SqGBV>24Y)0ebDFwmvRoVk44G&3Baq13vqpxoOgaH&s16%3Rv1V5idq9O!GeVrElRRT)J@-krp07P@(-c%DI^&2^k)%{k zw3f22)h6vvl@@A;e3uAYP5n7Ar@Og2HPJ-1fRQ4CQ>UFoe+E&;^JolEfKIh%v1N3< zByqd1)gOsMSKx7JF0sTuy65DBnk6x0FHCU(qpwbM-}uXB<*dVKpxF7_>5EnJKtWI@ z42DbZyKY3Q2WMP-%r&6RofO@@{_QCrH|3Fw7<8-;QE8y=$-)N-dM$ITpyAKZlvgKT z<)V58gX%zP#7*-Plo5=s*cpQ<4&l~pzj}Fx5i3mtx?=f9t*;Xk2nbIB)#m+Qd;rbC z#JSozS#)sHm-%+;@q^q!#RGsEi^Yd_%NkxgXmj*~06_)69^;qk?~Jc#WVOm$)g&;i z#j^e9&5M$?D*DI-Nja$mW)2EddqHCbATnnJ*tv|~38Ez!IR=G?DBBU;&z4Ng^lo8( zd=?~{Gl=gCi^Z)=6YzQoVss`-j$~%E&yq_|ql|{aePe4}v^p1bgVA-?vU#_1iu10& zb(86+tuYh{Spcja)cTfu*J$nMj3oqIH!8Q#Sk*S!pKsM2^O(fdVuaK>yOpk7&kJxD zje0$}b%=546OEdx5B+ONlZh~kWj&X)Ue3{t7xOF>JK{KtZ^r4Fg8qc@qIwo>RmlbQ4QDk*!WkoY&zUOCJ_XDACG%($yTiVg8<(YUZafm@*{n zl9UV4;uk&~lMoI!JfbwWC!0tDMtSqgbT=O3GD^$;@R}ruPOC+c2+B$pKqPUm4x!4p zT9T-0lSra6Vs@#IhWr{Vt--==$v!%hbm$7WcGZ22IDt%JnIsy_NT_*A4ezE@F{p9K zxZ;HewZ+@}RvGvc{P@jx#9#o&sQM;BlzXjcPa5n*d?6{AWvNijDfLPp&_eOU1Me(1 zvhlh$x~3mTvNFzq_Ml}67ozd498?43 z)t+Th81zFcmkU6GxzAtXU#A+-^>L)Lta#(wSqaBKeUIXdj2Po6E{fwwIP3s^V}Xm8F${>Z;XheD*7 zwZ#~A<*w<(3aw96YViJ6Z8tm5+%(iE?0;`=*PD})+rOo0Z#$jCmr!IzIDHH*aD2zJ zKWOLpH@Dn4-?{_A$QM_0#Tk|NHJmylg3a1KBU2KEz_h@RRAK;O_WorB(Auy;2r-wU zybm@d`W0U`9XqmKa)mc^0hkHv7E>g~ehsqq5KkV0mqun^Pr9=gMV{j3(#~4_Ky)FO zliAk|Cwcm_Zf6ztgG3n|~7D7G}u4KLJ$Lcp1ZdQ?O+&YCV#Uof*>J*Cv9Nwyd6;*bCDFXE z&i*f4P-^e(N}Z@HdK=3M)2mzuOO-@mP@RL-Q)t>dWQ~K=1YL^WOi^hOCQEx=H(*Yr z)(4R7ahA?#z3Y2vdnj)m55!3J6zVV#a3vj#Dkv@VYeb>rucPjLdEkS=m~Z+>Kuv?f zVqi1rstxO>Qf3xz)H3n2%;r);b25`oNBy|wi;r%XnWYp%qwNcWRnJSylUqe}&3V}qVUB1U#&WvFA9rLL2-G8tV4_+zhqu2f{ic1)HIp<^w^zL&2&e!< zE<6Y7Ako%b3}_{r4JruRK8kQIsH|xBYb{W)T{xIaZUJ%z8fm!JR5gFQhbgOy3;j|z?ABuG^qNk zSIF4Vv_`R~0+=w#K!iKW*Y9-{8EWgu>n^nJt2LCc2GDa^pbAzD`jD#-%vsVu_siH6 zQ@)$LCu8YEwSB-W-q)wWx|An0R#RXBaUdL6qmr`)`24)shUn%w_Kwq{Hvs@bmELy>AaSR}$Z6=G2;N*Mg$ua&3lpMZn-qL(eCCNM} zDH1sY@yj6td$JnBC2X&tiV}z18>865E#8WGWY+N=o}-K;VDt9e@vOp^hdzZz8jAwK zVv`$Elzu&K?_D`E)|)0$IdEe(8n3*%#fyenMM<8l^?2a6f#~%S&+JSRhoLgFweuR{ z{hf(qtP5i9!Ja$}>2hX-LkiKE4_L!(49hTtDT4UBDY|hcEyn~QBdpwo9vCj2H(*U+ zT1I~;pEp3f7aG7crpcRIDk;pQ05v2nn2)=P)y>U#QaUmhV^8Y#*nMCHV6bhmp_UBl^$#M3^~qLEE8njEInolQtV+lB<$%!z0lI_AIJ zU@EnkVnQQt&CtsGy5t;vS(A;RuCv8z&avgA<09YaDRpTs9uY4i?j2dg)rG}Qf0qBS zp)pj$es~Q4=KY&Qv9y*XS^O6yBQm*5N&Gz)dp*Ks4uPCGs(~fA-3qA0yQ785KxRh* zy*XK8I5U3iR7QGZ2yuHQl}4E|%&%NGZsE4Q8r*ngyJ_V_H{Amgctish-H{oX zCtAd($^9Md0Po12qppoP# z_0=VK8Oz_8=uRG7XW_e?yGN|Z3I6ag{}d^Lv8ZZpR4c|!=Ja4 zv)PgJ2qxY_6HO$MUP8JrLBV2XD62naUq@KUiLGzX`u-tH8Q#B}y6RB6mS``3vg_Sh z+opY3kaI5;bKpF#ouq(Fj;Mn;I!TFIbMQhtC1q(Xy5Nc)t6E-Hn(-D$K-Ei8zjYn= z#jCCWP2_;T1b0fgj8|O_J#>BPGjde82<22{vGwKeYyN51r$)GG%>!di@U13CtKJI< z*^M9o0qxQox$>eM!rtSWw@7gNaDK`#2D|rl3MJaYWGvRlxBUV1PB6GIW zQQK-r7z8!$_zrC+9@OYj2}M%>4`b)lT?w?M(Kr=WQn78@wr$(CE7pnaq+;7f#m0$k z+v@7K?lJDe{SEtJk2Tk~=66m*as(G`Q*rSiZRNh#rPAb4>}r7HYFfKC@fupFpZ)g{ zjM~oa)$mMC)xWG#@B#aqfNf^X8$G>7oo*Nh+iBj>$i;kO93kTyt`5E%y{QgT2=DBb zWsNGm!H^CCQiVmADMj|TYNBOzFiYPrSWYsIGsIEiAFtpQTn$AX&_#}C;ee{+IY9-s z?vZr~iq<)(%1Xb*G(G0NSPo1A!-!drjGSyWy62s&d;0Zys~28+9jBEaT)fGJB?|CY zn~(gptG=|mTS=WyuT#4m0&ffq8p+`Q2|028SICKp@&6h24*&JE;kF|G>uHm9PDFyA zs@P-Ey66|oCQR##l#ev&qwz8!Nd?Vwo^Vh=BiJO(;%j7?zp^G-8L;(ee5C~LS3IgI^&D3Q-1Z9K_xQTJ?9u!VR+&>_+`T#aGK_J?f4wHLg2aBk&GPte zn_JsF3_x}Gem$Cjo>fO)>BBob?wgrhUoTwBtc4#%>qTyAd2S_reu*5ue#PG&xxQnu zqIh2BSitGfm+E}LKQi#idyjw42HfgpPGK0Vim1*Nurx&MGk20CM&*wsYcWHzIuQ)@ z%1>NhCPbKSXyz^Qh#!qyPU?NRIe8IlY-aV@Fkhj6%3ZB@C6!WEhWRd^>%eok9lW_R zpXpsqWwMIv>se|XcMC&EbWN6dQd^oi)qcHmx4Pkxp{`ldE(mb}xD$4ldSzt#{LfR+ zgb4s(`5VVG#l_dy*k~Cdx?67=y*bZEZ5TLk0bOrqYsl9zP)8H<$X&Tr=uHj%cTo6Q zUViu1Et<;xICsUJ96pusKa?U$Wm!@Afe&j}JzjhSJk*5Yv{Bw!Q$Jne!^t&Lr-!FHXHXU{f1x5JN3=~jb zo97vuq6F!L!0}Oit02v(0Ok|p#U>PzqsD}RPTK*+TtS;zbd-!W6Q=gBoCoD8tFLC6 znJ;pK1cR+k8jmZPPG`CjuFYec>$A@D^hfF8ieXkP)tv3h02v&wT=VWppdk+lRei@c58-m!aBL!3Xu57c^SIHX zH!o(Q$lL~Uu;nTC7dQzz-X_jpC1}v$whLbd3^5e^F-AOqcoJJ<^G>Az7iF}msID!1 zkkw@Ppn8rf%YcKY9`DeZfcl^|8X?P)oWH??KU=p|)5BG48W(s~Dnk&7WQ`&fDnbI4Dz9F+-TIq*i&b+q<)duYqkMq_C9AAQWr93w z*S}U#)N5p121LJytnLdxr*(k#W1*885gj90^ZIZ6@txwcsNq5fSxsgG@|GRy?$*mG z`!cnBXtlOP6O}%2**dtFoE% z2MKB+PW}>Nvgt?3m=s4D5l+T(Lfb$7xI<5)>g{R!B@l~+LR%aZ7V+($#_acl)mCYY zQ+U+4F!R60oF6%>kcFXx2;oSW10d?)V-gC z_HxIw==5_Hz}CEQLPNVIdQ%8i1*WuNyb@)7T8;XcVCyWoHnH#i#`$RYp1#+MJ$1Q} zkkVn$mGDwP;O~T}8W4|wm$20z!|Ziuy|Qgegi7t4-cH7BmUT9pct} z#qWwWGJ|Fu8+f+Glo;CXG`ca3#N&+pqT=ocLi?VH(J`O4*;@`QqP?0W(RvrCVa*!6 zy>9x~V-j4=Q^f@GgpgU!#i=bd+%!zb-Ox_{bQ4F#<6*=aD(r1Z(ZsWXkjT#cmfE_9 zL;Dt{iVXuZ<$=f$T0q4;A+sfH1t*JUN>Rk5xLGq%J8_@D6)$NDz=!=;-!%lzS79MU$A%K! zD#s>N3Z#g)lbwEKHhoL;vtu?rL$O&r)6eMsOlF+A+prCyk6m{S;w=P2gMdyT>%K(v zNw)}c$F~sXDTs7B9P`NY!)XD1nfZ0Ui0(}^N#laF)|O$F)X`^^bjvGIb#VltFXtf{ zp9Ab!>S7Wc6}Wv2J0Z<{(d2R271I=!DQkmY*=O#m1&M;wIJdt##`CxFDT-FRQ!Uy< zN2XIFQ)$jgIRTDP8})>%I8jHhNcBiMxf&48TDz{0I6ED_x0Gl@aU4l=;}Q-wW(cmBUWEie+R2LrNL*RoVIMR6*&0Zl3@~z% z%#t<6EjR@uL1{I4zr(zl^!V2-yX}t4jlhWD;e!?wo3|SlAkTdFLvgL#5JJ8sR{yE1 zr9N^pQjePNjjFYS-bnSDy+GH!SP>EmnWa^!0^tJak_CAk%p8ku@I)lZgTWHQ^bKPV z@C&js^NHXabj*Ymevnu9%}3K3=U?Mh`;RNysQ?XGC=)i4W_PbddWB zW~7AQ1fCk}Vub#jth?=;Gp2B}&8j{Z&B7R;k~hYm3vK%SfPTMnpMH!52GyCH(8`@2 ze(L&#qfzqhOF{|{U3H)2svosFus%M5P*s+#7d%>iDBo4oh9eF+kHjC_Wad$n)IzMo z_0)et`|GXRWnqsM)}O%yje4WP1l5f@3D^A;jAxo)SiHqU2~eNY+rDJLV%`#6(oJu{ znl+?I);v5({W%Tf4~_YR-%VUAXAJJKBS>46hZH#4+ABGmWJ!AfH2#(qfS_X@zhFl@ z9(uUASTmA&z85-olO`I)R)j#FXW0If7kO*`tF4I{Vao_l_?I@h46C9zx0YO#5uUw8 zyXeC|om64jqvGa(=eVWWt2XNve3clQv)Z_pz!G~PeP~R}K~RGmnuErWIf=;dk1j0)pxS2JK=1LqiYJc(3m}UJkIpcgljTaL*`?4z5M*HD4NtF+=nIWgb+vtQ09Uwn#^m(@ozEmwC7+qqr>&iSml&MrCzA1ps%DJl(@BI!EC zv()wK%wNYP8Xp7&j1>a6>FfynsFj)1=75V?opYGxL*OoMs$>h4OZU@GN5MK1Yjo@t zZ*860D3#ojWdYz%sI%?3{#3HMLCwogd^5oi3?K%KO&7qZwF7^MM_rA!Z=BgIhWs^N za@Mro89jSNtvP#{yj-DA{ZWj7#Zzrwg$&=Zt}b#co$@p(lcSZAz42!_*_@4n(c4jE zN=lfqDQw^R7VmOG1mqCZYH7ysnVHPc&-G^#G%-pz?Y4E$rXhiDzG6=9wk!_-wx2F` z?ld06IsC`bAn-mPJk{@qEFyLyPW>7?vc|dfgR4hvm84;hY%_7v+jRm1MtfV|r}DYq!z! zsjlnlX@U0(0$p4m&W17AMVMy-w9;YCoeQ!&!?u8p;@q=OP$gp)!}{*eg;?v zD=T|vBRP2gHr-JSiY~D!+^l;T0!qviq1f~vp7xN1-G1tfeIPh|Sr5OHauOo?Rh)t> z#L%r-Ggdz-DYlFhL^Xq|)87l#PJj^yx|>11pu+RNe;sj{>D0`(1U{>2PH?J1^vMp8 zqSxjT@Fea8QK{2x*1uvW6SnZC_W2g= z*MUwPX)XVvA?^Vd@ zdf2G{`W*J_Z1PSl#shLlr2xibq&O^t+ATm4Pik{P33fQ)q`XI|C9ub|Dz;p=LOZiE zzc!Vd9s`y~I^=gjt+|)!;_s=C@xYI49 zWu&E^N1+g10p!xS@5QRWc$Ff*Oln_#Wvq?mqMS2X0JgK4wD{rDwU!@>wb=w`qlGFM zw_n{IbQVma2#qw1+70r8JGTwFzUi9ci0LV;JxK#o6iy6L7AV|l&NOlz0jhewmcBu7Rg6FW15aRM`mcBbBNNO2J3rE0k3DEX z_M6dg-7+_1{l^oQ@UMeGDa7@SDR2lQ_Ca`fw))(0O=Cc&k4vM7$rAr)Z?ZHtVqiWQ z>R3lDSE!WIpADXarA2g+9bRl!iKNCl3 zy8ygY#QveR0aJrv_$G*C$ef82H%awJV0e{=v!41qe%o;Z-MV-{!)?j^zcLUN@Q3f^R2YFmvM?C##iU6#HoHG=gZAoJG_a0JBv82 zU<+TcRPv1vmx!`5xR}-@zc%jVbBW>=Q};eyjn=b~*N+RmBcJiN(*|2ByRYf|)An+( zm7_-l6aHCPBP9n(W09wbKl*`?g?>Rx&7@rdNd*p9svPBJUD&CO-!g#;+ z=+BSL0t@xE*&GQ{*Ol5=QHMia9Xq2BRbbYMxmRBmT~K&Z$<6jAsfn|m>u)y7v1X5% zSW8GEv0q~oXsT=EcK~$gJKp9&+QxYfG`>z6lN5DlvS0K8W>6t_4;wzfp1Bie30JeT zV&1uFjRyrFl}RaAs1*e8x_|4>vEKrcc_0`MI!a~V+e+lvc|inhqPB?+7jic)fB?0S zXVc{+FMP03?@=ks{sj*8FgI&fC#s79jypk>a#ALc3~X zN>3S^bKrUskafV$m&8g;kFER$hcN%#z;`}-DOpmbE>viX@@LP^jTOfMHj6VKJWqiu zkVWzEv5a7lB&#hvKhw@Va5Vr>%&d8C`omILWa$!-VBFHeb(^vx8o7~d>)vfvN0O#OODkP z16+s!{xD#ltuN^}c~&dMvbq_m3Cg8qu8gQvqv6SKvc9~`DZ**}jfZR#IxSuPTMC{q z!dD=}c)%y{=bhp4B!LJ3K)%?e>Nqeq@C)Dw1LU**5O0y_Fa}{W|M1vAp{g!?#P~hK zTZ---I|^r(_v8o|XNHXU32p*^K`b$2Qio%Q#*7gGFZg(gj2VvpTac?3MVpI;AlL^b zw{L-p0bC#!DvN($ePJ7+{>c`uz1BeJDJKkH`C@z@f^W^sMJV}P07n%uy`WP?wI)Zz z^dz1VNXfo5+&O;ZwoDLH5W|++O;g6h2S-H^R{(pD!0y>E3gpfo861kr2ez(?K}~GU zl2d^@UJQF9#YyOxA;a@$5PPxf^uJHf@dldy+(EpUHZtVpYPfYgkiR!K#^4lJ2Zf@w zxtrSxXXm*sCiwxnY^yER=(UG3(8Ps#ww~35wd&-&Q6x}6Q75V3B}f4A?O%xF?qxd1 z;sN+Ip5Q1>$|L1GT~y>5&GJiNh?@V3a^z5%m44)f)LMDOn)HaHnbcr!yUz1m{0ol^^M5$#@XaT11R!JP zBr$tsnbI6EA}m_rbGafTzqTM&QWTgQ8RpsKu96->O-|w3&uEC9EUVAO3J))ovY3~XysJ_vH(V#&j6%| zv^VW;*j#W(2Gh+A1fyk(8+t`iObMz%TX0+9VUEF z#5DzH%b(#!*Wm$dyrg6^8O}udoZW~|R#)R|Z_c#@0dp)PsU}3m6(~sLfls0~y^~_h zkI7U7Nf~^MWKBf?kEUVYP+(6Y!)Xs#a60JBj_?P%YCJ`mw2;D##%~T~F@*88Hj^4S zmIQA+nJd~rUiO$gUi@|?R%E|y6eTsq8Fwyn6O;T{pqb2(#_LAY>H9_|pT#wqdSc0yEiuIB&ZgEN%?1qi$HUOg z(ozf{b{IsKQ{@%Yrh3D2{pIzB8T^~56Uj1uIzfemiPa}J9cV{@!=ZAyV6jY+ds6J( zF91?BfGDo#$I>J?&f^eu_-RI~#>=r~Z9VeoZ}}<76dMlw_^1=OdB!0!kGRm8DM7t- z%*wD)RSUkkKKG|Zi7(0a~w&kb9 zB#E59cDssB_t{lZsfw56;Sol(;uV=?MP6BrxrWwNAC0!;MdafEjmjJ6@eMvF9ZDmDCo)Dyasffmr zC#IB@=?A+D+Cn^(j@g)}OYW(k2H_<_icn8nwEcamqxjZcx3+zFsd}cDc8cq?tqT>Y zJ#4y+CQFJ^nDh+!r!DVOCkqKYk(xHSp!|&Rc9PB6h4j)PL`Uo^W5J zx{h<^ZKAv zg=d-cu{aa4gv1&4;&~S4A^IyDD(%5%c%POrQN2&M$|nUSkn;5XQuyFDJ4-p4eMQ2V z1+t}50bA2#T|kZGxW%#S!@gyu7JGKWA6@ogP!Ug3ddeqR{e%j=XTP7h+l{aEG z#4x1tHUrQ|!WJq*Eu`RYtReS)MI6`HiGl0FQ^}$J6p8T9FocLLWeDs=oZ4%-T(PMk z=2^9A=q{-Atp>`*f252s-)g;lVNyv#@d8FoT`0$Y12q_UBB*k66%x*H>*ZIg+R|qd z_h?OMKWPC4{()4zTS5iIaFR}98!p#IMZOuVzsu~sFA-ZWaNt_*!m>ONZC0K%1h8IT z=|;X6By%wj|K!Nv^0d7?Xxm=kC?&pL|&As`JMaXN}97RQZ+nJ5( z6?vxqGnmCi8(E_soX)`YsdSCdn2Oxu{k1nAjb4v`hET>$S3P~;x1aLhXlO#rzD z^`fAG>AQ60^Rt1jI~+95Q$}ZfRN6^&eo4wylsm1A!7JSwq`EbJ9;g20yh`==@}(_C znBki0ilCLV3QAkt7m@w~qGG$utvk;Ba^giXHZw5VN2+IR%#`A%dOtRkU>@}|N zXV8u_+p0mk2!>W;dmPG>bB4{?j2lBKD7=QVyL6Y8-srXXSyr>M6td=t%l6|JeN*ju zWlT1aPxXz_ffAp{CU-RVA!k-nMnmq=>WB8l&=Pf9M>SRo@2fRz_hlbz|6i=c5Y_$O~I%nZ*)d9&C^PS9s}ld0cw+mu>_r`AT0nC zkC?To+n(o|j#G_u*H|}i&a$3oU?gM?643SPa8DQGkEJ@>bxHMAPj!VN%b1)h`baN= zv2KpV>Y1O~*~z3>aV%M~x%)P(Ae^rxCIPxkJ)Yn%pPoVLA}6Z?INR{2O5i%o#sT&1 z$r^WPxp>^4hB=8w`pq#meyL~hSpOeX7Zkl!CNPO^8tlL z!pV7|`q*D)#9zidBawc*+CA!ecriD6?XJ^Q``Cc@^UE z1_|fQ@DHXlgioE+;Z8?|SxVI!tix>i7?^E%rh-MAT=kKsc;Ud9#quQ`#)S}l^+?VfFHV>dyAWN5Lz`R>9eJFK}_KEah za;$jXtB|0=HSQ|&4A=G;o&gFM9L`Usf7Y^>Ks!|CTTnu`R?JI^nYBhPK|-~YWTOAk8d49?_gi*&)P+6 zA?%gkN5y7|GA0dR7q{i)%7gTl%V95(=dLGS4Uc{*yDtou0kj8C&tbXzRt#jNdj}&IGr7 zIK8(_F-Ot0Nb*7u(dr{w*)eF^+)@jIWMGoT6O3y4^1k0pVtUlRTr{=x?J78XIUl74 zr`-OSWst+j-A*d`UMDO4Y#d@KSpys*(aT?WG3`D&0ujqAUiLTvBc=6fU8M%?YVG4L z&7Z2sF(7sk9g)8j0=~0x0@kia1VY!d+E)4>$8lphRG0V z5dD$Qb{7?W2#sjB($y@SxLjdZaV!xj(ex+dOBsBIRYO5g+l?yVa}nx6seQqDYW8F4 z2^V#-n`C65%Bcni9_n3;pso+ErhNHnRi2MJiLAGM*d@$>5MzSZ&~n^`8{9iCxRT-{ z=IZb^l)&YJ%?5=Xs2QaM`0?XBKakwBA^OS<0=E|GQtAwosr53!==Vxc6q6A}NbmI%y|11TNkNLcv zFL4lkxj%g-xrxZoNqX{mJZHIisDq?;^vPILHP8dI^4ymuSB8C7FEX4n6smRa%8-SE z-4;;InJM?=)W&|BmtzWP+MseIRn~hUcbO1RQIkz%n-?dm4H5>}YDBqd*ZU%2qLzO+ zAx~Wq>nCE#af@P!$XHCON0vEceN+}#CApPofYXa@Zl=1nm$X1*kxPAV-fL0aKYX5B zTa!YVx&q2wqO~=-e5lm<&ME{wsw&xe^}Tuq-Y%LQ<@~14?W2E9U23*kRJR>4o{Iwb*C|z0EUJ7OM@hX3}DwGsPPS z2obkL4(Zp&qEB-kXP!06AYg^etu;RECz>9Fd73Sm=5NTolP-^{qquGQOpa3suNUwD z89~h%h?J_V(?!cGjLy^s+%DX@4t)T%*qeo>W{c|!-TV2I5t5d0)%P4kgd}5IJVGYX zf|MAw8$*SMh)o=DfTiQ=k}S>bFH-7P2qx z$Z+N}A$0a%C@}^)ojza#XntQ=Xc1aAMOpjUEl;yz4>&2)vA)s49ao*pWvlU!#{$wS zM73grW?P|)DaiJtqBD&#w>HRVu|o>ThU7I<`yxd{Q=!%|wxhE20Gn9!RoxGOxOv6& z8?92a&a_)}9j=^7iv`59nCq>>Fj zA1e@xHQD9uVgD&k!&~w~Khi4=VsjYaO*6Z2Xz(MTMzO>_i?Rp^mnJIqcPEII<5jZU z|MPwcFsYgL^Gh-+|0h2{+2h=)7(ZtDNaLX|gZF4Wr}h)xeg8EYtFhc>CbMbrWE8_- z_oCFfZwZ;NFqAI&t;NXXXq9g7>J9J2p2YOA2ic!h_iiAynC>LXF4C{5rVe%)dzPy* z>)XE+A$0__&ITUNjG3%UlYYUT&hM9!q?B&X@aCod|;P5T(U4Ev9cB zPPanOFop^T1J}mUqyf6`4NazX45chHo5=RmFHj{Di;6vv?RDe`k!(YWN%WG=tak!! z*qs{NQ|IxvMxOxH=`8wFXqdN%>K@D_T)l?3QC}Rha@8pHf}6DO>Rs#C>53vyXBkMw zuohdM=ti##p1U!#_`)u`E6Qe1*0u~L_-*tSv6=AMS)Y8-6BDr zhQUu^Y7<)qwsT$r?7ET2do{~j^a~%(fxD4^t|HP7RRc^HJZ+A54L|P#NcnN@&$T1F z^#+?>T>`3X;%j5({wz?}tKL*J%cAMRJEI<1Sxa4ttZa<(*K&JJYXXrRCGR`xPvJFw zfpBwyqL@f7b{DI!*2CqyNBP(o*Y=v(@}rfbL);|WUiWD~N~zE9c$d;U^npMig>H)j z*=*VS4RZ6)V19fO*pH=G5_ma*U}YmL_;Hfe3HrlQk2W+Q5@KUNZaZ46AzlZ%W;+Lc zD)g-)DVZ>3lhIwIjznncp?nODBfefL{v$b#GPU&|8go?JKBP|6wJEJ%mmeereT&|C zXAi$eV`GWV1Zra7IG3bFHRlI=ih2j<>Ns#?O1Js*OpM0k&XJAd3a(*2iWpN|@cL+E zd_ZoT;h;QED?oVthp9NGFV5&+RkwO_rk91{nIzm!W{j(p&WiHGw$NRo7#q+Krb)_I zc#(=l`s!lEuG>7Y>n$`d21&}N;o?w5{NEA(f*6WIeD6xK4BZy`>#{U)@fKkZ{Cnx zRUjtzzIDZi;-a21LR%d6Pj5aFJ3Ln7cLgxS7y}&tLdYk`Zyi1p3-WL0>^`N(!ENlE zX=|YF>2z>kvH?xa)VQ$_Elbk$mLx<_njWf&JECS+BH4C152knnPe072DNbPwh@uX` z`Hu(DLVG%W?N<|~bqhMX>-WP-td}MB^_0{pIvi@|qV`DwtXUoJ8fd}hGb7xU5U$kE zHL{vr3O+pV5c~7=i}R1ae_UJgW9e+&(cdaSpX^BQ;)1F)} zW9I*4xYEL(Pr^rgk*g^dgYX%^czenDBgtx77rWGpYS;ub(MKck_XR`BmrdaFSHaY6 z#YfX~{;DryV`F&Ad!^fe`xEY(3%eI&WLBnnufsK_mnQ5Z#YN^zxSL?sMMW-0a#iIL zg68Y#sTEipR;QtI&_J-q0ecjZ09#S?@nqv-ef9%j(F&xcEWRH7+xc~wxgVcPXTMZI za5J;-rwmlg(g|yeKN#6%OfH+qaXFg4*6n~+0fwNv7i^yDuNf|plU7YNQhhfCHPQw+ zeCg&ncQyu{9XyPjvJM}&gnis{Opb3(NH$Y{=-F?77^CD_s-Mh)n4U-l0U26H6V8w8 zzOSE|RCoU8jQ+RbWVP0JiMXIyJ%=7LYo5k9$J%pB2tuZRPD&!o({~T*JW}A2g-L#f zOE@oawaQ8ZTCsblLii)@iS;mHT)cj4kx%4#up@gP7hxA1eyIyX&~487XRE|mDD(z4FA=qB1+l0g8Jd_%te3G;xxiREZ+fs2NCBQ&)*JJ$6=wtd`Dv_j>DwCu zsuPgLQk=H7LoTExQMz;lpJ0eHK*fs@=!54D9MhO+4lM8`{M`h+D$>}%OPJkx(%1j} z640`OJ|sCrpdEtt8XtMk{li_UUnMio@upj_Gj{loEY`)Y@pBz^&MqC5+O%jgUgyGc zcQvU(uWd=I_JnDfL}_-!^M3*6(~CuB7fuF9&%a%D{hOL`$f^UP|7-***OOCQ6Si<8 zP`&86CmeKw=ScH>{e8ef2YPrteu|MPNK@L7F|1gXx=+j0cxmlIU=tlh?q}@rYkoA^gigf#tBIFo@=cl9Cw+&!@9BNnkiR7Tg+nPyA9ICk zbB4HB{gAeNHpE^RxI-{ZVV@9o|5~My?>T3g|5D9}#q@qV&Iu&l0IfHUIfwv>5D>h) zpyP9l82-t#Gnv@?H}SL6hx=_oI|VzsDN1r@&gV0-X7>Wp66I$iHio|hjMpw70sc)a z@<-h?vMGlt^_RR+=Rt(0tCW^|Uq%Gdzg?hJSWY*G+Ri|_UdpI=J8I|?N znsJFvYsO%m$R9Tb#LxPa2Df-muFU$fV3e9+;k2ji?LHv%dRz=zE#QoX`l4>x1bH_5 z3C*Zld;20%%^Dmqva;HSA){wM(8y2BjjO`wdloDI=Hy`Wcx?HhSeYl^7C|v~Q~GPw z;bNu2r*71zYcZJ4U7_VK^L5V@*FJkFJ-Hw zr~DvCv`EUP?5LV`BXzlLj6E}4yV28!+usE#?@2ZsM($y_TNT4y3q22hhf#_fsMz~P zQ4A~q1^tqvfxlzI9%Lsu6;s>6)mqxGbHE>1u`C@rmqsm-e|2bDg$*gIoPoaVP(Q)C z;cdR?M+%WCG+~bFB3$_2jOl3}(ym0QYU%l|n8B}@Rd%)aAFc8#RVqb-vR8Mgy2WIR z^+b%$Td!ik+&0bPOE@+&ptI+U9O1~*6@lGRiwA?TPtrHI8^_?1MmexY$CZ82T8x{=a)4>hS6$@^6caB7O6Mzea{`MsGN@&MNLrr%d zB?DE^wbcd0o&~s{+L@9JapwcUAt>+rX+f=jV*b(T(5-M?Z580Z;Nf_vNhmf zrjPrp2ZC-TO<7z$9xsq`vv}J2Om^CdT#mV`#$Ce1(J8r=?u?Og4PPvd^LnF?8O>F0 z)_VC7WM`^;770~vv#4KFD(AGOG~ixIEVZANr_H!!(3D~Ju;TkemezjfmAQPb|11r7 zt^9^GYWkx8PfU&DzhY_}tgQc+sa@(xC7HH5{V!AV%j9Q;H#II^!!wdwN%gIx^9tIn zD+Bk@-p3SwATxF)XI~<-wbm3zZm@9 z2;N@P7HS2uzrONPxV4aRy)P9A_;ZpU26Pl1JH)7xA>O_Q_X)0wh6syqpIgO={2Fp| zKO+56`4X7Q)Szg^>Qd8~SXN*AyCh`=a# z^|tTgOJG}*Fd`wlG)iWM-xW?krK=!08FRDuiVFyUilTV5AfBC ze8>n4E4)JU->N(^`48spdB`v1F2uzyM%WSDIp7%6;8{IVwKg5<(6~guq#_(TEIs20 z6znV1BluHygFR=O|7yP}m_&A&x%E2GkLhq!S+2D&9C^Ie_4+E$TjaJKvCF&jU;OkQ zH5qB0&#KQkXdRCtR>PLyrYzE{^t`y2$;IBTo84>0s-5Z*DF$1fI=Lr)d2CW1V+zJK><20qv~^9=06d zkQn*2)$Eq+alzPyp>Fe+`I|4A_bDd3u8DQRTPTQXYB)vGs0&Ihvpj1FwQ+dCEi5t! z{a=ktTosi1y%b`;&%N-=x|!S>W|{@huvIJr z$)Op_a{xQy@v^gak0C8!uJmwR5caZb>3HOX^CA;Ld1@A+O8Q7q2QEgV5sNx(Y+#AE zvU@hHsLGyjoNgW4VKdWiWXwy*A7QH6M$0u<$<5u(DC&PunVWGzn7^+7yW1dqApgPW=DcUSOdMsq9rBE& zPA5A%s%X&1M{xSDHzX-8uwViH#q$PG)8 zAgHBkoBZWdm{_Gg9ak9|BTYDU0L60?p5hI+9pd~P1rd$g?OTVU)| zRjaG32j7p7z2dEEUuS|<*^eCTBq^!)+wi_Hb_dsXYjeJ=i8xu_8zkIaj2=^5q#i4@ za88d&`0nH;S*SlGB&~W(a8vu!L>Fdv<@ar^b~AZQ6@qw=zPE3YS%T%KHZ`tmOqo35l>95!E@t*3RAH?C45m4y>=PV|R?M_?Kle&(#G zTfePyWF`7hwM1o%FRKicc|0vUio_X=! zU!4$J)k!cAGM1Z{RtzmYWK&MItJvI;m_=#%_i(rUoxyTP=gIwJ5+A{s=gaQIis;@ind_jYH(D0$hvM>>0NB z8Vt%0Bb{a8<^KNJoHkhXOv13e9df1-Rx|n)Xmb`08YMR*?L87ks7K}+D6gJC4ZAqU z^d>d|+kO!UwwNLzI-R*J&@EDw>SHHn*YLy^X3xx6w_zH&^^wlsA#nYN!@u6gzuj2H ze0~km>ao5vqhryaS9gV$gA)Un z)ZL#fX?vIuYE^3%DT2XVwe+4$J)~6QfKOxeOsqjFWfL2}$KY26 zm(5$sGB9x+ntq`|>rSmuOcX}5<}<*sn8^hZ zRajx$8ozhq9eGfCK&R4?z89-Ne!2 z=k$=`o$xAHSszpLWCSGcQun?hxL<76*5WrVFHeed6+u=higJDf#XeQaEd&NZAX#V= zvLJQYg6YkV1zKmVb%L$qGJ!%+0;`0|IOZs_T-TcIzRi1{B1FH<%UmdI^g+C0-8o9 zl5kkM+UsHFWbHZBmBiuof-Y2aR~{TlFtU4!|C-I+B{;-?3l#6(6H|F=?uH=OG)R44v0ZOaFE z&w1V76wxO0$KNXxWnNuPXU(Mz&|Z2erzR8RekNo*E8b1LzM|P*{DNQ-ln<%~IqIeJgCMJd zTjOXdGk3Tm+F;Xb%UaAJo@~CqZn~v4y5>NRgjy=rf#te~cb8Q*UotCp_5ogYkCH(L zOwyYb)R{&m-<}D6^qX_49TgNj1|%n~G%z5J=2=tg$7ay$_|(iN@fRDbLvKdZL#x+X zJrfLLuWOT^sUI3FJ!NMcb6$B})O4+-4|~WC>OBtXQYvg=<_NuTVqj7rK|6L_4iy-C zjWV?;_Q+a~8|A7@l6`y9UTKc!q8i#xf%$bCKWGwIaL?(KCRN36sVO{s&Kr;>B$(QK zB;}Xaa=d}CN&Cg~Z#CAQ znP0WXo0?5mxAx@$!|iYe?edmCxs6KlS#sOLZge^a&FM2t7HE4sy^*c)vaZFVYl?W~OiIU<+uC<#rRqn+`@* zZzlev>(pVW>~xO*+uqg>eZ9r*E!o^cHORGCQgGhZ7FxGoo*YK^&SfgP%>!}*Oc;DP zdS#*hq83ewi6(F~3xG#@%WsHVm_W`N($j~NEPkKJtlXo35)iva;@qkDuxa1KwL2~y zgG1cqW@zhD>0a68+w`gbDe`-*yHyI(2Ug8CcyFsVX|BlT_b@is)jf9}L$`i53(+8D zT90rDSc-C|?-#EDoiTa@*_F%HtG$+rQK-sr!ve{&lsR!d>vEc^r069*B|<2(Zk%n8 zLDY-$;9&_8_G|~tQD>0}x6ijSo(K)O#f+WxamH$;0s7zgrbL*LMoitN6%rAup*cTU zeT6VI_`&ksu0A?2`GI~T?b-z>MR>&G_){s~^mQAoCn1yV>1B16R5$md4`2^Bco(uV z*Rpk(Vl}813XN}2fQ{gjdO~BOhPT;_1yb163n?z+hm{r=xa(nYj@}qA3e8}| zyhKs}r(`FUjh}X)rESI{18eN6#=OAi>4pw#s(p-CQoNhDas9WMY3>rQ`KBOxLggW`8yZ0Y+#l ze;FGr=czPF%|6=75Cu&ep}1h*FdjYfh$Yyo{tD~mIrHI*o&5??(xZfMGC7pL`jZK$ z8A>;jij!>O>7gdqIh|yfne2YJ=Fd+UL15KO-)00i17cy?0^GzLX`MzI#-aa<17WhwP z!HE_Oyp2*CKt03*{lOS@gBJZ`{}u4BI|@)iUu}`v){TIf7AY?rZO`bj@JqtSIh1;4 znfBEIizq+Ea8Bx^F3Qfys>MCYz9`SerQVGxt!^TGo zTMZzPOff{X_BMXQ(Zh9DOk2<|pi80cB71o!!T6OU$5(2`OiqlxsW@@jnRx?$RcT>m z<-R}_+st78#lRJA{z$nAs&Bi1i;TB}>)YuQ^FUq6xTLVu63JL5h0m;>jDH4b5pOZbZE-~{pF76)U^^+Qt`cEVe39j8jr%choc@yd=x!22-<%m;Ck3EhBr zb3pv<&#PpBq5jfwv(4g%G)lN2cd;OM;=@YTZ;|=ED8ZryUbPxWKoj2or_qw5z|;f*7S7JRvWj#2Us9gT?JJa=z{O#YukYlyz3F_seYutB z8tZNUUybvX*t$Pp-FOYLW9MBr7h5yoRY%1LB(Y#hlK( zX)t?kC=g=zTgR5Y`xLPC%5ZL;-^&ixc_bx>bg&Os;aBp`kDW7p4%F;WrN-%G)P+p& z!NBpCU(Vo}%`_4+`-2|LUFj9!cL9t+CGa`}Xwae*bYoN|{L-NoWWYSwktxCP;mA~u z{*9G5sy+RR1zHMlm&dYKbHS=F&6KnYqr0e9t zCme$N2NZ(mEmBdM&J@$lkFtHz^&$!HKcLe^5UtN^HBSO%RL%$gd%k93 z4%nXMs_LYrsvyByT~Bsyj57r(=DaWGp_2n$Lu0<%dG(3fdDWdX2|hRUNN(orv3Y5o zS4(nx3B~yLacRN3IFQj~iqGkr0R9R* z8rwbHa^EP`hL4?}pI#|xz~jtLdVh&NvKz8CmO_Zt!6fT3f}pM)-uI(e^Gg+gcK<#( z=PoZHxRnE1&(l0CjfH5?re{)Z&WFo9lk=*CsgqJQ4rJYY(n<7HbHc6SM-yzD#<__N zjbJ#fK1aFQ@p*n9j-OlmUwrF(oZ+^^vsP^ z6Vc<&mSRkajEyGR;XX`Lz(Wl6^i_@6Ri@CXbdC4Z506u#0%mV>>|24u6r#pIM z{t)bYy?@t|_9F`vQo$ncKzow(_h=%WKgmM=#CU1WE`Py(n7xJ$u)W0Q4yxW~+n(mE z=jMaX?0a?3!5`{6ZH|HKyHD`6rF~qsL@~&+l`y(=etx)Os<^bYPsfnT zL>VqfHs@bKWB&1Khnfmm*~-fr%M(mncW5eL_6euCpXX`#v4}Way!l|S!JNP0enr$d z^Gm2Ox-WmyJ;T%P^R?X{1@|JDR~XMfZM{#=8M|O254AytpqDJegZ-tw-AQsJh z-SeE9pCV+&i2&^M)IV)qj}0RU->kGdyrY-@e)Iw~uC+7!S0KzNWSNv1Nhu6vAS9uB zLUg~OyPv*sO(G`bq+FVJ6OumA!E>CFTN6{3hClK$lS`K~9ltp3RM_DDOAvlP>Nr_yJ=$Rw4~-Svf8K{F8_uzkD{EfGnnr1s&! zx3lPLAo+s7ByRejp;~f=IHI)1JSJhmu>|t8b;^BRa%9$<+1$ zB%)jE%YOnpRb5}c8|=BwB0xaelpj+Nr!4`@`s2@~Y@JZa z$ar?!nf|uXf}mV29hnuIxz@Wa&5S7Vmq)uLFKAfPeyN;;cUEF>h5tyc!{u(2sQvuv z7~EGMJ_bo9NHH=fc^U^mDC&zZzyA4;1tG$wJA5q*;Uw?-bPG2FuG zC!aEY2Apidnm=)eZru$}OH{%kvMhCB>C1a?uk^0hMoz{^&JRqsTu*3E9K@42c2nfj z(j@&D66`1ofZAZmMA18Mb}Kx16lH9yq15+Eiq2=Cpj_ZsZ)f++tK;MO>zlN z1GIRCs%LASRXnqKj?PD7xivw`RYdiF1^T-Ds?o=nbQ%ixh>w ziGldKoj6h*6QSf_GW%L$?D`mG>YZF$it;~<^~&&V+xU1+wA zX|Xo0tFv1a%H=i$L|riq5Y2OkCveA4w7jzM+~$d@h?#ZsaT_rqzBc#oE8!`p?A62S zg~*82VG@s&_h$4lQ^r%c=&Mj)v?w@e((=T1lh|TvtdTp;V4C1>a>00ogaPc|m!#9`DEPXS@+Mb~1C;oML(9uH1cVzbmVF2z3OjkJvN7E4!p zhj#m9Yw~SQvvi=NJvGC4%4n3-<~(_?7$xrvhG7o9)P2>`WR3KNMxh!)6|+IPqGLMmN&C(=as-CurSibvu0xMxxCc#k7hWG9!Tiv?PB}Vq2m^z;qTN32$)!32;OW->RE$Ny}@n9Kn5kx9n#r(~s&j?5Xd^eoNBsT65V%Az`3^Q;+T(Jb=b)=z0 zuaQj;c_$z%geeJ~>OBtip$IQPSyF6v1)u(;=5-M2GU^k{1j#l{u~i8jb?9Fc*{-L= zZ_gmolnA=cC%R6gh*dRcNCI`)96lS&oXW4~~PfL}`>#{Kie5vO+-SYZB+)il6UQ3DAiC-5nPM7=ADa+ph zX9|})g#3`OQjTAGmt-$Ylh1%a%2ZME_`RXU5%>gCP4z19Y(%`d&olBb?TA~%|I7Rv z{#!2a6OQqS?QaHx&MFs!vuEbfZ@UZ&whLtKcnFV-s=?Fpwse$mx0$uyOnhwEfg7%* zZE88axO}=2&8W&_=TSm3wT|$r$?7;b<9ZA+y^BxmlI9br=(!XD93Pb;yrJ1)P*$G= zPpc(k7#x3Uv~jA6rZJ$))3!fi3Ddozh1a;7Zm)7~z4)-Ddd>swR`3KcoL6`P@nGEK z{Hd8Tjk;_|O}_aq3`LQFjBvdxw+CWr7ydR7a<(cLS{B9=w*oYS7zy);Fft_E6=uGo z+qX#C5DF)IrWP;l+rkigbh6$j^b9pjPd6Rks!M5p9wqOUy<~;W`}gVD^15twF9;d4s|5=`<^4+{RwZ}-QFi$OE zj4_%*7~v%il1}lTIOP$S4JiXsDq*l+Z|fK8;)ok=0mGXYxCukgIecbU;`7B5dc6+ zoDwZik0Lr%kpT>zQeIJk%H`g>EvMiWuTy;|;LPAS!n@9irxrgyU&M;y$5uKFy{IiK zVK2mOosWZ`;8|hY=6vC)W0f#hds(Zq^+=Ch6DO^Ir>F3H{*%{vYXcq~HgxRl%@AK@ zY7>4t!9AYTbycU<>+VhrMlEkbkEN<>AOQi2$Ug`mlst*Pyni>qD}mCRF_S67 z*kY25#qrX5^-_^EEUBGecWk$J0W4~~!!(lk8Ch@Zbg(Pm<;C)!nXWz?2}mnC?0Hw5 z!h%XYvG!R&Gqy?QxKGRz>YmbuOQ)o&n+HG8pbuyi#m|^#q5hy_;#mqKkIaa?HYzSv zIY-`|f^R%BT81U@JW+ch$X&(nq;VJ0*)bNu6Dy5_0!G-@fOZPm(3x0Na^4|!9_hf9 zgL76bu6Z7q%ow|r{mxm&nVg^xGrk?o>8aAfqs&w5x(A-x>Nr`)|A0F*s8$~2>7|mA z<9Vm6|Bj|9m4>xI0i;KcHNTmYH@N7YD!yIyKu=zB?Z!wjJhd@4jOEiIhC$RFIX z`p_=F3VpI7Ouc^PkXuhK9RZB3yBu;t(8_{bD58b+>D2DnvX$H9VsZ}xXv2>7tCZKv zgsFizLo^#<4UKece>8yj+O{KFB4!jVO5SjB&I)j^EP14M@NX!XLFWzW>w~vA*2fmTUU9alLB2i=oBHU z6v)hg;;d}^?|BJJhxcrKAQs9@Q<*K(etR#Pu=EwX81sY^ z2I5%z+g-eBU?Yy~uL0%kNT7q?UJ4}ydQ=S&c3q9b-Vi?Eh&A~2H*Cj+IYPVu@wo__ z$d!#Mr;vE-!y+Q@lUfNSpuR}V*{(_X@kM+dX^gd?xvc_EuLBhW-N7tX{pC81$=WKZ zg@>BWEnOI<%POM$7J2)dQ z*L8C=e9r(ZN(ieol0L+^qw$Wqs})NyvyfPo86lOx!A;o;kUOGZYX)(dNC##)31`bHu=;ZMx-N- z?c(-*;y)F-J`QeLEt=l8{K6W3=z`Tu4#X)VpCXbyw%30?e&$GLDl}tUxJvszsB@RKY-RB@9b&oSKX|h*)Pfp=gf~JV(p`8WxQsa^3B-Sb{ ze&{1I_fpIYJIsaPhw_h%!d^rHuVE`^ zA$P{q7;%!(h*O_hq6)>Q)vh~N2&xHUJnRW@q65%&G|wMbbetTkMP;8@C@6mWD$fn{ zysW|+I5MEleCfD+X@d)M8qhot$kPU2eB-UNO`(ZR&&ACU zB!Num`1(@DG6>YiSKFJuUoDDf$$x)GYy#gCkK~`gf1tjFDEy4@kCK!($$?$$fTxO? zc@GdJeJ6AAyODDgeUwGfRCxxT@~6aI(^Z~$>NALAK3To)VrKEGM^fMFenluopK5OA z2Qznjzh98NGP~eY3=-r`?iY2x!r#A1d+EyQfudEQMCOZbPN8dDISHizkuJUqeGe4k z=mh?$7}K+zKxZD_q|_&<+4`%p0?}K;Ug%EACta-mFIfFSxOofbkONx|T);8| z7!HnC{4?5bFBa^K0wC>A=zSmeY6kn9H}P&>v%a<%shb zLooKpQ1i#B$a43*7xRZR=T;tfCZ}&x7yg~L0j|5#K@Kk6{R9y4XCJn?;MjJEWT?sT zN!L8hk`lm!E`+@Y2+E)0$OKbVvPaBFPH z917xp-G?eb9(Xo|nJ-LHV&DwOVL^lTcA_<7GSj~TIzm@aoGjYx$g2iEJeTpuxDyGV z!s(HwupX%#lGO3oJXA%(qPnFx!4Fb2Zy2kpQ6Md&WX41ai8Tio%NaFt&)1TsNDQB8|xjv&lP0sf4py+l1j-7ZcGnD z6Nc~#J=V;|P1Aa)?pQ{x(5Bxa^((4@F;ne{%Nh;8FAu+>z?cMG%*yR1;akn42oZLP z5>K245$pwKUT|ygZtmgA574L=-NuhJ)1*BpU!ne-flh)ob-MW3BnjzC3SL!MbKax5 zUYH2z71KFHHY}NSV;_>q*>s|y@Rjd8*+Lpk@(Z&>cq;^{+l_!%Q6DHmyH}vd1PCe) zzs}%B+5CGD>UzyE10Jp8^w8qnHTb5~3imauT5#!>mti#~w)UHVkrVp0Nq19N$XpXI z6LcrKDFTYfz&<12@S3@7f6Zu`Vt0Bfbg{ZKk6_4(m&8?-Jdtbq2msyX(;c;~+Vup- zlzMs}8Wq@8G!i3}dO2TB-?O^DXVgWiSAb|em)2Hm0}X5KP(#bLw6JJcULQHG4 zkpg_SOP3RzM}Cy09~7(5u75qv3nStbd5N!Gvw%MzDJzP;?&Rd+CLz`Mqk3}jy8}5sw_V2!ExAszUmM*fcP*Q%5 zrwUMz$*P9l@$MK=t|oVppD4tr%&l&!CcM|nz?@R&hoiiU9<2MwoSjZ?VKyTa7^AvQ z2k^X#bXk?%-OUZ~j;Y^48<5Xk>u*<|gYxyAQaGTh(!I!sW&Zh0X{VOu`ZE~aGM-5R zN4?H&Ya1a*4jb&tO%#lVG0!prY`T!(`~1e!B2`J3U_rY>qZLC@fa+07MBu1EuqGu= z5U_tHYUn;XaVIRKJ50=1GmbosWpL(_08>dHA{H1uBJ%BP8e(=em53 z4m((Q4;yW~LF#XQKSQ-17W`uTZ7CB*n$b{UGmF#H8J~RC%XNDSv6zLy90^W_hqikI zF%|HG2!!0&G*HIWjKAuy^U>!IAwV?en`c9PVC-oa?N(YCTM=fHc%Xs83`ZnnN(*5N zjf+wyDHQfjgOyX2593&&@`PbBpcS6=&t*ji|6K@Yf~nE@*C$?`PpcT|#Wb##ZE-OC znQu*Vo15ZUcR~l(z?2@{g!2B4xARrcB#45%!eZiSKjKQ;9ZhBnbpH8pn&OE!z+Hy! zY>L0WfNk)Wu5=#{ow9$(P-U)SkJ~ul%&I zI__-qnPiPgX-9!U1N?E^BH+P_pqCpk?>P)HKzlnj`ENS4(5>f7bc>T`@9XYmXR|?> zr)<-PW6OwVW^BJd+aOg!9o&l-6JFK_C#vbPQMlZ9{!%&KI^ z^kt{9q8I0w-njL2B8||Q>liN8*u^S!J2B^2p;Yf}(jb;0{YGRp50Fszq_aI6uF~j{ zs8~aFdUDs;e*2X>LyF=a^Z60sGmaIc9~sdHLv)Hekn z^Uw}v2cdeQ%k$3JX$i{C8HB-?`|QqqWt&!U2!%77I6#Bk{6zE7(i)l~Y{vOh$(rgI zaq3f5=q238leoS74{)iBzj>T7Yy078a@cBza38p-N`s1B8rQ2gvhZMKOA_KeR@kinSAd}O$N9&(sE_yv*nw&}qo6BdFa{(g2+ zF9q|@s-HK)cja&@zJ1nanz7X%ogUdFjRCleHFiC*WPIeq|Fffu^>bwdfO}alXt*>s-2kM$L1oV;BCe630{< zouN$rsxqN9m7!)SJ^G<1VFCkrgpxd4ENS7C$Z{j9tI8T;>??wE6~0Att=q(_PIGEEI`BYx&3+49(Je&#ab zBhYQ`uJS-yhAnK1qEuikaI&j3-N-@_d`yBV?(^?~j8@vXQ{mkoh6xKzV{U&;C!Y&> zyxnPBc9r<$%QEhieDu;`LeYQsMm>eKo8(`Ol8Be?KhC^D!nYrik7zdOZvB|>NqMl1ZeKM05p;b!mhyVFt+Fk}F^2x~dWPu8vr#MlD6pAc zZI&I)6pI7}4wVTU#Et7fo1w){P}H=}d{}Rcy40&X=MB|_SMDk^x1bKfm27>*H?6`1 zZExRAhC&fqZBqP)G79h|Z!5=}S5lmtXpLdJZuFMUSSdzHNnRo8`;WpE8y2+&n!D%- zE*2>?msvC4Hbotc4{!dRTa<#hju2}66<;Uin|Ce&So+v$^R#2M24IQMi?F?QGXYKC z>ctecV>jMQte?v`VPXt&_+FF<-|yre_2PBWNRuZ@zv@Hv#})LcSH|%L&q>H?cKRQ= zJz`Ccb4g^7@LDt`|02 ze7@S9mg|M&8tmhD({4=Gz)`s<>QS51)s$Dg(n^xPFG)=eF8RttjeNz{@)D3VZD45@ z(zm|UK`j;%+MYFEqAef1`f)Zu*JCnS1$&c{8W=ixCscCX7#O&V(aT-T=1X;l_o_I( z8jkPp%>_*?@JBvyIMudM_=NMTA{o{v$|at*?X0$8REueCu3OQNcdd_RO6IARptdY2 zp}{o)pjE&)2(K6(y0^pZ#x8=^19bh?PUN41cnq^Ii=L=c=04h8ZxC9z!oFPxbwlBr zl`W4p+@sjaiHLE6Ck=K!Xv?8WZ3|V23_lsp7YUU&EVJ{0VqHpPEq=H z&&n|&Ciu2bS(T5IGdQlwF~;t%8f7zr#8!ox1@PIwoLoB8reJ#Q? zS37p3p^Hhoei+(pHQgz2>M@-b?`*f8__#N0s>VRcvwEbgA3hb-GSj9g&&w-#z;Vym z%wj2Y1%EvS8J4&RT_zo<_AVMq6nOz!U+FAGF?|Rz#%3`V{XGa&xF@bzDF1dY<9 zod0WG`2ylBWw}~;ESbX4gDn;=iO}x2HO0{R{zh*eiRc_@jIdc5&^+sQSz90Yv1fu# z+wyCcI1l`@BDm%Xiq-sE-1|~!OQ~Zs15#%_@4|i4hQmO~sr0Eq`Ggtz?=J(1tc1EN z8n0pIp*GiC4*R@9evD3~Bx)LZA9Hc16Y2o}KI6}73QlILcH_N1>7=~13uMeyb2VgD)Ox&LuT=*v~zI8z2k6`MR!!KZE}c zl_xWWg>J7gTbPZN85;ohg$LXGB_3Vg^A+R1_0?OZ9s<51t4BpUfAfQG`Z`CYl-{!$ zFbE<#qeNU3&<@Cucuh6?&XQ@X0_pBfU6v}oQysFNQ(ay5*-$Ww!Fa~3=*tmC(D>zk z?0;p*q~oNw1i-7|f!)=rW;m6;BLSZjj=22J9-1P38;;PbpT59vuXy;XsJ)>ZvoOT) z$(z?`l3n(`#MQ~^Ba%BuCN<2q_PA92yJPPo6Aq-qRjp!BmlXUQP2pTB?e+(a0(Bop zM{g$rKZZN^iI&N`(>>Cr+^rQ)9W?EKR=Di7=Fxq&qag=&M>KD$qgt~F%AO*#Ik9K$ z+Sd(0(KcQ)7Y7}VuiwJowx)E~Z>&n=>vffM_eb7xt?QObgsu*%HVt12q>y$P9*KwN zFG--pey3*M=y1&dn=5ADr33aokVnH>&mO#tk8}HU2t{guX}%BAYj0i~XhV)GYduPN zw_q+81*I8gql+p8t!Q1bNLl&{Z7uRzTF}LCZ>sQKJFaBuepwTBd%3=E@_xV#^@ni( z7y4rR|DZ2c7FNdpl|kaQjw5Mv+hM zh=_@ZKp@9=+}8E(%hFZ$=5|+{H1}v|zJ5)lS?!L>S!OT)Nb=6_$<+UcUdFz6-`4hh zr!W8a`1rg*U(B;`2%}{xPmeFBMQh^EpQlKp1i`S+zwcs}^22W_~$gRl4dND`u_ zU^V4`=sYpElGW9O7T8C5(f5F@2Jzz%)*F)t@lM?4$lV<~=gq&Tw+CY%{yp;seJA)` zg--@GT(+VbXqlQ2Ea8edY$* zi|^M*^1eK1PC^-Gad@cz{U&>Dyv5f{K$+I%?aK_@WT7HfLZ@F!htvsM5JD5kc_5@j z98&8isVlptOdHD{i`4G72}EAvX1S&3oyBd)P2VKJw8#L-V%%$Vy)99Q{>Pym*&LOE z<{J3bgei7iD9D-C+3m#`6coi;N${Eiz#KFje)N~3$G%4Rb3TQMLy1l#dS@@zSq8yC zp>u!{C}N)WoJOhN8{u-!kKNg{@45eb3$yu14xHeG*bbU=Mp<9yfeleWAycc0jP+8dk7ITFrY@2KayV_sShntf!-Oim}K zot6p%{{Z^Oq<5$^)cnEREm<9!Dmj8!Kp4k1A4Q00;K&>pMB^M$6VS_I;& zTVv*t(^d?TEB&Aou69rFUYUW$1Eh49;#68cSoGE}8^251`La)z1;i$IAuU#4v@5E|xB8THMhQC_G%)EvV^F8JyLJ zG5bw3a`cJ-%Mx8%`Rl~$HQD~D7MUe624i1-&o#bWcR#kUvEizg`XZoB(3d;yd;rNU zMc{^0tA7_E3P{O6C=B?CC+ya~+_S#hfgE2{puIW5Q5McM-S1~vO)UROiO!-NqZ$qH z!qWQKQMRlpd|j2x)|rFbRyClFQ}7cyMnbDiheBZZx~ffg2sD-El}%}((7=#-I`+o3 zL?*zE_|kIXYE-O;zKYH?fW#F5!Lvx_v&wqJ@Y6v)~+$R{P^(~y%y@8zeMXc zGJf*TOhB&3xuYUziimzzvWGHiYEoLMyc$F^#FD0^e{Q@hs!@Z1U9CcQR`&?d^+=Jw zLVxjGvYz?ER`u*KT)_5p=O#rlC$h(BW_u&d7LZYBtJIn1S??}bv@{ZUuyfVYsR() z*P2pyyR!RO&T1Nc zL>PPj@5~Ha+N0+4u|K`mZ!3lJAIaf1bM@wvPRvEzU~OJ)NCz3Xjfo+B466#2Cl^mJR?)M0ec=R_EO zTNQvd&>IU`xk}k=tk!_7%jo{(C9k_@%!ldOFx7bT? zKKJwj*wrounl;8@-H?@msbJV|#VThD5FX8d#w!eF9840^mI>xo|3ef(OYCfQ=2|>G znS~=l-x^s{oIL0~c#G3jV&A7yS5DFp4E$d`qQUrk?)8<9+PY%mC4fH@$RxG_$&cXs zTUSk94t*Y79#4s@V17=(9R5^I=G0D=Sh2x`71^f2gm6%pO(rr0V;K!&^{jf{hr*3f z$zoi!A&zAsvhjjiZz7C0xYx{+apNDjgiBCU=gPpK@`~Q;YR#gTLREt(>s8fB*hFK< zwlb^PHd--*5*DLD8wbLhby6#wFN{7j51_`YYXl=D{}c{m;;FRZ8u_w??}+yK935Vl0Jp{a==B24$cWlgUluqlyS|_R;Wh)^_g+ zvl)E=Z}hVqlD0A^9r`ZNygb8bnazhr7ALV~CV)G`iEQ&TF z!0WqEp67qjAl)WPLSKh_rMJLabg8TY=-Uii1F*JMKj-dURA$JO+oP2lGYyVq?h~1^ zNJF)ObwI}{oT;Z=h#3j)hGD?25be0JmL%9vqN%Yb7D=*(mG^Rd-zvvuyt4^jIPp0| zp|($jeY^K{qMUaw`x49IqOr^mW0UHVO{PQFIr*PPy|)z#e|**dI4(?RA$2m|6Ve0Q zrH8eE55a9N9({>PK=Fv?mT)&ig#N5cL^sL{{4~ia8q+gOL(`yr#4mIBi-{ z`%51HA``^?x@j2V1Cf}-nc+L-Sj`pT1{>0{ST+B7Cy}nwklCOOsOg9u)U|0u7-Dur z@cV%JZRn(sK^j>kvOL&a*f`0AsabMP+djujVyQbLv&O|EE{tWY*vcxLz=&M0m4-A< zFbV{Qf5-E8H6yrBgQ*D*f1>h%gci+|vQD9#Zl=tXy7FM+FtJLpf+;BkkmA&161|my zuw3lGLgo@(v zWK?ED_1G_lK!Ha_3OvsL7-TRJH7` z^c0&+2Y1`e*nKWXXB$MpZZHlaYn$+1>jH5TiOvcA_f~S>*=_Imph?e=eaP@@9GF=p zs6Nt_l3Q=BHKf~0uH$+YfBQrPpJk4MdVvOipZ!EKQUKm-;c|<--dJ`>2xlQOhA|AoF_E9%{6^sVPVvgHE=PyYxPWxLQ$MMj1oIhj8 z%QDhmf1dod@Ge0uv$_Flb3{jl52&M1xuyc2nN4db!MVP%0ktCxR5Is&0fDivioYdh z4I9%aHOi91e*_kwvEkDGKmo(AbDsZwR@_q`6tfG5Nujzpo4@M)9a~rIRUy=v(tm6d z7gW;zP82q6EGT^et%RaNv!CSOl3(W6D9jX@6`-lUTtQ;kf@tI7eh zZ8KObeQcGAj<7!S+5uOcFq8Y2en5ezKI!t%_tf5EG*j$Cuk*`73a6v+iMW+(f5sF( zW1Y;P=O0il&_&d#ItsNe8RCE}f*#lYceDk&s0MU`tiY}# zM^at)W5a!m4joSC!w`LSrJa#>1`K}yAf&IgXAKNxnWH3zIkXK}bVSR>#37)3l{90c zTD$hqp0S7SF3BE|cR)qzzmYZ7rp{U;n@E!eQlFW*p~aSe{?TlrEu={;xQ5J6p_AP= zJcW{V{*P3<(@`5)`%{RI{6*^JKNG=d!1eGO7&1)6YL5E6c(0JE1O%sRnoxpuB>KHl zQ;9}@Ds^GBL?EAUAQ?thRkm>YB5VLDaVDktnP0V3E%O8Fpe9CZ%3!*+k8mIz`1~c6 zR&g+qJyp2mL0EL@>1As}C^1ZWC7blEiCVMfqeHoMCxdSiyhamw!*q9vGu4_yiDL?u zlK1r(PdSVi>LDb6(GZjB85KWHp$pBstD(?1J zd0s>jkM+qmJ~b4AGX_^kTGrl3c+D}rl5dJx$DnAdJzgfL_q9c~_qku;Q3uFTR}0Ao zk_PR%>f-`cNegw<-WDUCBt!4USh}?kitJmhbkPTRQ@QjjX(a|oqq$Sle(wZbkSuL$ zHp5>3{}R3uL*15y5MKK3#r$)OgH}MM*4^%*9Yeg3`zlouIlKMt-i;CVetl#wbb^gg zbSpKo#tqt0mC>#ffySsTHw}nAE6pv9OBAhr=k+D0?K@%q>iuhgt)f1Xzjf?{@d~@3 zp4?UM*851?socm_db5F4ZUed#S>4PSd*dEVZ$pTs2$yh!Efmwkpb$NUrOkm{ORxr~ z2=#7m9rsNL+rpvFE^BNey%pf?t2iUa;-}>jBF17VBAx{WP}B;(|FFu^>3fC5LD$Ll zel!1@8OQ2-k(^)>vR)i*YlQ)ATuVzDFvG6tRY9UL$%>xS!aP0M5=^#d8c-RvwwlgO z5mdb?u~-kj^&yeTf}Aw!>jg@SEyuC##ls@FTBVT*}w_2R6N(cN?o<>gbxQT%GUkgI{mvE2ZCU?GxYIZUNjdy2H4 zVZ#d_irC2s!V4giuG^Ix-qPGVWU=D8HHUf1ufK zu7)~jO={?uv>q(G9BXBnY*30 z++LIGE>W;&o|hN7)@uq?+O`&g`vem4hcdFOu6@QD-P-a_IF`8iwX~8SY=mOW|cfHeRU< ztfM=mf7+2T@ex_aro;lInFR}3ENN0TC*Y6eH0&sCejPtV_q)nq4I(S$&ZR3VA3=3o zK9+poq*Nr0{Hh)Ki)Q;%Fm6dhCnRmaE?2lDrK$Y55c#X6D~qrgiXD*8dN{2-#Az;R zm9PoLgRzDQ6X{6{Nj$TkYj7#CZVc&8biBqYs#Fq}{y>1LL4v8fD2AUM$|AMiF=G&u zbQ6F2Z)iQoNio~)=J_!=}8 zZom=~p|gKVS!}$%Q6Be8&L)%^@X=BwVkKan^q+dnGQcVcw?ws0@4Xy$2$Xc$w@LI% zLq?secE%bg^|v;ske$j=yG|l5xD_kkj@pK1Wai-de17K-Ys|Zxqk#0@e&{i`g#qp$ z#$M6Fn7>h~tj)l0aFw0C*@UCt9}juF5y+z3fO1!)?dH|*t4jMqq2!hW6t2!k4?z0r zNZt=TxZ*ox>?UX0*jubSMKihzQW^8cXl)09E^LD9ut(4N$6aCbfD!jYh>E*HJ<)Y| zf4J*@m;(3mzl)K?RR$d5^n;1(gNx|NPkde_D?1BNC>QO8&wG=sxgCdv1SC#K#8}fx zHc8HRyMvvpv6d%^n}t`5o12a`TPgT2iwi|(850xZ^-A9zb!MU#D_in$Hy^ExG#>%w zmM{tRSQIR-%EA~g^2X;rmBA_ckWumR$1?0v$Snq0LS;B_o6fq6i7Ny(X=z+|UbEtq zW2a4V+*d?X@5Fzn!la^N@O`zxZUPP}VX3rS2g_RcdVRzLbN`TRGgkD^OK*Q|#h1=reYv7r9?PQ?=7A)N1 z0b$&@6gWK3fxz^et08WRMt^p?r^h>#E|P*A3uccr3~{?a%T=!?_p|C`88#ga%Wx%U!vxZ*B4vOk$CZ-FboLp1kCrW&|o7FX0# zy1^05B=n7a+uj}|U~1~_s5S+esVie19KbU>|I3=WI7{M^{1nf@ng2V!c=B7S`z!qW z+qtmk%lWzQljDd3DBlAuNCX2?IEx zu9<9~dzpHNz6rbI{}JW^jy887Xl_2gNN#>}{}ZI%JxMT-(*mhOI253*e$dOCB?5tN z{U658VM!1m-NI#?UAAr8wr$(CZQHhO+qP|2-(Jp*n8iH7AGt|t5D4%TI$N|U@Y zkn_Io<~9YJFAt@VcEY!llQQ7;w>w)UARf$I%cRQ9%?#w}mhCD670Rr|$?izMuOvvK z&5eFD2+I6xU^1Gh2ZMr|T-ifim@OeD<`@99;}k`BJ3V#?l3myR#JtOlA2GRj=NKND z1~KP+41WJmIN&$*duwbj?u897upC9GkSJwO9V3tb11|3q%R9X9D*J`2I3s)ZZ>wnKi3d=&u3t>!I4@GOzw+W`&YYE=ud;DJ;XWgNV zPa7Sg8Nd$|7f`jkn3H@FLJ^$vyub!Nm0%0r$#C~eN&ml|ZT*M_x>#jgl1H8Aik3xpt84c^~OCN~ZW~Z}|}>4SFOU7$(}dwMD?1Ms0B^Tc=(b z>57xw3!0PaMGP~z@W>ef`wVz`s|Pc*iW}UM9=BF{1`ucwA-%jJ#224ajGx3j0=(BF z!@>#3&SccKFMv|tO|%{J6POd3!n!Aa6X3K*UqUtxV5Cwh{q0Lz4?PpBMAgrN%1Q{K zNk>TF{&qyacuUflzY%YI^pn<%jfA*iQkDI_tr!c4Gn*0>f=jjn$zRA$=qMxhE~w^< zk<5&d)jExlhEioxom3Z?D2(STtAzOK-iSiextu44q%KoVa+UGAlPf2+p;82!*Djl_&@Khul2>h@!QZ#AG}Ub33zy)CMrXbf(-N1mH2oRu`%y zSO#y3Hx;ZmXSu7J-F6|N)P>qGsdg;Tf2#Ybw3xP2H$DY@@>0@zgm_Xsy^R&;ZuDq? z&gh#mm)VJ4*r81-?}DQLxrp!_oHaOt@kd>J$(oWxnaSs)wpD4)tme!K;{Rkzt%7%T zk(hI#k5@%0?ydCLh{{BVB4(O|Npn#IFtrd(gG*`DtA4ggrG;_~v_`$`)!&->s@xjZ zvrJU^_z53#+{(Rt2h7vORq^;KuSg_+8y1tp{-%qqlH&qUGOzjD*{(@P18P|BXZ8Z9!#{3aZ zl&q(w;e;{T9A*jq2-zw*E3>3lNsGroN#kX@P5)3+I$u4vuDm>1f(zxHcS^J#gA-5R zRrKOj%4a2Bozn2+8Is#sF3G8a$ziT>A%RMu0efC)ve|vSHxg4aLn28B#P9YKYZWNd zwqzMbkI*>~;z{4&4aQP@_u{z5)WI6UUFQb5ci}%J70D?)7MAf`I}xP-ZgVG~;D*OZ zxOfoQRaePe_Wk*-;jiN$oIJ>J2q$Bb;y3~=K?P!Ec9Iy3lLsB#ri;a!()hZgS4*la z;2sA^8(<@^2EElN0eff(=+LUuvuD#y`C@9MnxHD#h=KrwLvwc>SG5yl-|E3_{$%Fw z=I7(4y4v&gBl!SE5om4OeYfV>Mua*yBb(fKGUd6R8!9u+1#uGtPjqlYG*40VtpJj! zU`^HP*N4I#Ne-0n6&hJkPbiE~Jmc}?Lh@Am7mD~vkL4^>P7NMQEpg|_z#}h(_qPMVc(U!!C_E2~7Y4yXy^-V-oU&C*x%AxKM_rFpeuDZoFn7xvaD=Tq1d?h`{|J8Kz%v4b#ktR@5z?A)46l7q<*edW z=a@<21{e+GqE#1ZN&<3-KFKiC>?CyN%$i6Q+Xki2c!B+X%^g(&FR}CUPer^5IgODu z6w*c=vEK89gp-0xL<6dYcH3(@YbU9)Ok-w)3YMGw&}AFWjxPJ>!xIY7gtltdd9PY1qgCW zPn~YVr;m#CW1SYjmf1E_AT$2~j?BSACYGT0hIcUsZPMP}Z7N`#Ah;0bdeyzfng53< zW!`LT@-hh0l38M6BiioEVzOk^k%)|y&f#q?p&Ov0yGXed@a z5P1)8oaR@LEs6$~rIAk9g! zAVkAA=tZI!y9Qj(?TqSl@;H>xf!;YtkIHM-xpl%xA7~B@7MY4EDIff03Qf#-dy`i- zh~Qypd4`8BO}j$869DWqpU;=!lBvw8-f&<&CJPC~f>Ir|6Y~v?D^HZUz>ZZVd8EQ70V2-aS%wLz1%Y@ZmIJy3 zSQTr##0tZjl8d_SO>)h@>Ykb=7XZ}@&f!2D6w)`lD{BHed7xn_ijdaDGY>z_2U(ds zj__88djl`_d=4A4;|(6N*9p>d( zSd%b6U@%mgoS7%#u%;3~_vXaN@7`j1kIs_m+z4viGD8EvJ2HFzzQhB~N#JsP7rq4p zI~%g~$aCYOsZSujRp_w~8|`=)Fb#Ggsmv*9D+tx~=htaXa|_C?4dK!sOT%HJULJ<| zD|e5LFwZ5kW~UM?1@W-QwCu-l!?w_PE%{Y1Ckg_>0O|7x-%whG&_ssX&F9QHA8Bfa%wvm)*|@3oias5ke|M6=Jav5q`O6((AwD4*Kzi~@I*?q*BhZ<_ zZ^l{<4?z$)Z>eaL{uGcb$hFz!&*z5;;gqgu!J{V>#e`awLGRN*N-|o_!aM#sw8&=x~07j>7wmqyQeb)W%G4St78VGk-XNDCdsQp7nkhaUEr%>S!BBh;81YgKA>RQ5-zn>o!gNqPBu zr&wN>-d}=BA^%K;4JCdx#zUkyT03MT1J>K*8LtWS2d95SYdyz|`$yEW1es_haNLz-SC{ATGba_AjU+;NdG2a5BPsL6L z0d9}1F)ZW#deKf%7k0QNLT-?!#3h`O$FQslQE)*JLb@(Y-?Z#rOG117+n^-6qatv3&FTq z@{39Qa2tz9-zAlZ# zIT1#hxUZD*i(rS>1q{EIlJV zAMY9s^R}~xbgi_kH9)#dYvyGp1-qj;0@AA7os6-@HCmp|`A)+Xp->Z`Yk0_nNaY)%oZsBFG4V}$ zU6)RKVisGMoFRZPg?YFRVlw)^N+fPKWMJj0L%M2cs`%F}e3eC`#2p=HV5p6XYGScN zjpdk*t4L;Z6HcmE89{gwiPFCczZHXUgyhwl-UoQ8>g6LC^#B)g$Dou0G@HBW5zR_r z-8AHIA4+6H!ta)GOF->T8v$0fNhWFwB`9gx9S;6tS?a_{w0yBxZx!8253W>~@-L#`m=bj2((dXh4tLRO5Nt7=pS-KHWfMi!Af%SP>+uMV}BC7wz{cdEYZeHJPSdDB>Oa`0HO=-CLdAlmk;jioK;Yx-mZ zv^|YVL~s^o!^ho56I$c-%XWKPH4nMqEiPG2Ih~nV1=`4GA5dCNqc4WPO;DPD(9uLR zQg`s&Gi`D%FCG3Jac>nWXW({H>qS|}p#OsPGlgyLC>=v4gI2k_=P(hPMQ!_qs)CT| z6}*{)h{QSmc=#wdJWT93&IOyGLN|7yVpD}kIBjzNOCpfG9cvVD9-rCrWGXTa;#9p_ z<-7HWtUZ;rR`I9ur!oTUG*VC2z{~Q)4F>fVE{wm$(oQ!Es;6{>rae?h_RLkpzrpx zfF>Jd%A!`b=H};4YHQf@sGlZysYI_7;VqrG;_kw{yw?3zEzhQ1=j*x58ZM6Ol+K~n zZW>LT47Y^WX)xBd$mX0(Fj-nV5i{tIRcEuaVNJg*F?TrC&00q{C~!k%2Pq*7D7V4U zD>P;xetoNPJY7#-Lprx<$IWSRO6?zfY5MjTEHyP#=s8I*@q~Hu^YRL>Tj*NJ5FP_6`EkH%TQ1XO&459`Pr(z(~isP)__o;$0%l7Qw}lONC~ z#0>SEscFpl#n$@}!PsKkF^i7KNoECpA>&5}*bfWuls)xM$ zJZvz2H=m7ca-LkYx}bp&(1TA+@NBHY8Sx}UyidwWFDTVYPA`(zTnm}#Rv!5mG8nCD zn*}f0?1^J)WEL97Oht1H*@42g05^O`&n|})6t>fj4W+K(W-;G=ehN%TS!FY+(lA%6 zW+yKOnk;@+$X8Sf-eCCNobyR@mOj<^0D(8T7ghmF)XcUp*|a+9#UJ83D4~2bKFEsm z$um&CeYgEcS3=)x)Kb4s#=MK3@M2y|`AUwlPd2Pw5Y#`O2Rv?!Z~c?kCWlMLzhkpS^3zhHw3vFa${GVteJtNEiqm9@Tu_R&-vufP3&d@!COoVDn zwvh9GvR1-5)b;sqE!qwMki=-cxe}y~RW+pEnhmH4x>)Ke8ySg+jPx!a=c2kHKIL?& z=l>o)-rhOC!2bMvKQ6VU;rS4rj8N|uD&0Q5UKFkvQqSK}MT$V>kJ;h*(v(ESMfv}4f%SR zc@N#MqNnWzztH(5qb#YL834H801d;6u-Vex7YO|aP91XHvyv-%XlNJz1{?Q71^P|@?lATO z?)VLG>HS_eGiYqe?OTec_)K$0EPB(me03R!vemzyw&X+zY zPQIMvfWGc)ibF?SN^An$gK4j<2`ag3U< zv$a%2CpiqQ$=P~;>R*Kr350mf;`O&S&;6H!FPBh*vU9*FeXJkjmIMlk36W&Ad~z(? zbuq-TThmG{Icx;k1&uWw^3uBVYaVSkw(rho!jpKbOlFmgd+@M*9`*hAACt%^p?I8u9%x8y8sA8l*zSH zuR}%DnC?(0M)@3z!)cvERYv|p9je=-Y8T}D@o0iiM2;W_(F$e;f>Z>9t)La%#y=P_@y==MikvMDAyhs3K!^yaY~g}W2_2~ znZVM(L5>Qn1j7=YJRQebt|3=Lj4x7{_Uz<1g&r;Tahl2^X6_OEP1d7>>i$2;wg@l zcHs&p4(x@O+%V;dXAk|y6JUlUl~r;FsTmK76?+0(qD1MyO84du60ZeqDr-7QSPPd| zJ5x3vE;)LG7E2WvUw%{pMN!jS#I+|v5-!y}PdCm!$t++TQDiAsK(wf?7q7|kV*=aq zT}p7{vROd6B$;`3Tzj=qa3XEy|K;b_Y_q#{wF5kDAID6ot2v;g!u%oD?U6DVg|asD zB);#P&7?9~Go`^YpXhw?`e&g_tElYaQ|cS8j!IV5@gJ^3zr^1rzlexV$Yp%5qmEa` z6KMim!SL(bi>KDi0&`+eE?>q*9&%vnN}5Qqc1}WV2@}Z&@Y>B~bWKA^*6^P;aSKEl zXCcOtkdq*wNfPhEe80Gj<`-AaHEPH>OtNgqhtGz?cs1G2?ysEZdt7M(Np(P-`1olO zlce+pM8xNDE8e(WTi=hXAtR{|z{WLOC#t9mrbaCOcZbm0IHEn2;EyV^ZBcTkw42^o zNxDovPW6Gf?i_u5Dp$S|Aq@Pw-7GcY-h>o%XUBAG!jMF1!VrOgM0`83{}@|pZz=Wx z9}wblK-wGo#460&3<{OV3=1NRhzx^SK@BL5RCK)o#;KsN_bqLB^Du}+%$Kp6=snak zD=)c;NbKcEIQW=d(rGMhbCfsD4BU*d?*tv+XT$5IE3a{*Ld*`QA%w{~=XI zLkEm4d*Z1comN3gNGb@hy7HdOksAThy7i_+)L(K`(H?NaCwedFnR@sN&VQAluy8LQ zuobn3yfrkcKA{2$rN29iI5^`cz^aMHx@lwv*ieYp zMx-^VMzo$$FT=Nm!rijI0uQGuNLDv5*y7Dbs8tf~i}@(V*r5cv()7C_D2r3|0L_)C zzM3Yg8(F zz_@(fP9Be*9BW{FSp}B@vBZRvR*TTWTIg3E1I#TqEjik(5%X<`3pCRn(U(Y+x&g9S zOIg4N%Yr+n@0&|Mdn6qv=tz8wDw0%5)Kc>C91`T&>V$p`mz?IS$*?&VWZ?|ORW?{A z*h!b8s8uSt6YVu;gEE$(syO`T-Wsqc6EO5irC=4-tF|USRPyL@SYjedB|nwSR_BrM zF81JTFuWl~8&`zBPFQXJ|U|& zPQoy|VfI_j%%gx%z1&OQKG}cvR-zp%6Z?)2N(Sc3M=Cp(NrG0{z}-KGol8gA=gdKW)*6JdTvDN7fSJW3`8Ihc<_8wESloKKOhP&#tzkQc~SXt#L9~V(o)tpk? z|MP;_5$MFbREb`ofe*Q*zSQjjY&Eij*hKGTD4A{)O3vYv?6^z_SvrQTrT9@_i<;yBi0eKJ&P1P661#>_@P z{$Fb%G65==HKXLFvN%``wP!dO96bhOLYrOJ%GOAa%=jN|g;|sl@~+`g*-@le%$wt6 zp73P#(Rz4=V)NngCJgrz3h9hec?si8$MG*|WI)VVM_0ul8Da`4 zF+o=NLA=hxY`ab&)m^S`D`0RYK9(7sFAShkrR;84wr0=}tFA&=R}{V;NPcF=GOm(M zp9QnQ%PyDQRRpullX$bclxBk{h6cn*+iq2DS_r+hV1yvfE!~XzxW`D)>ihZUACNJA zJOx$9y)p|j?P6$;%wy#4jeiaZg0LniS~GBezlMCn7;g|cUz^KrO&+Q@%@1jL?|Aop zN+Ww6c@F3lO^MxDs)$~{xusCd6wAs|dt83kMN1#vz;Dwk0#KLma94w6KWU-%*ldo# zQ$`T&FY(%|Ds@!q(BUujmEV$hdf<#LBVD*g9M3vMWSPvnFh@yigZTc2yGr6I2Ni*! zPg||+6=CeS>XQms9T*zM#BC*$?}36bRZNvjDBezzrlpo0QK6TE!v4dmoIbtmrqliJ zF93djwJi8UZZ#LDMR*rsQHy{jOf^rjs4l0ED#t+|pupL|gwD&xH`OR=1u?-5bHs)y zm&xcCdpRY=f*meMM>+oBTs*bSvt3zuok7C}g6W;3)F@W~-)wpKF`P;XWi>E5)=n|Q zhl64g3dYj6xdi|Li()m&hVV0K6I+p!Xnr`pqxk6wXxFK{eVZe}#d?IBCDXL>md)7= zeH5VL-GaOBEe<^{TyU5VA@Ic`48VA`)wu+KI~gS4b`Vld7!STCh^u;FH)g_lElo@` zlm50F5?b@@#+%tqm zI^0b(4X0|iy)0p~)WI<_Pa(a=dkWBoL<`IiES3#b#=apvp0k9QXz;5u`q-VgL2|zG zGR-s;tkTVB4=(Xm5R3Ot{I(PQe9sXPyz29QU;7x9z3oi}9}ESd|BIfR+0hPP-m7`N8Odlv7ju> zt`?9TxkaBqb}-@HxX%Tlm=Z3HFOMJDqbl@BMth&>=7-MhYjpTHNJ)(~{7)@pDN%0D z6uS#~BJ>a(&o)J&;ZJo5MW1*L|fM2e*a}RL6JVtLnKMYOr zxvn}SA8o;7=v)THJ`-P9KJ}8%XrG#C!tXv7>IBLI5j`pz>W8A>#vT2|<44lfv?Z5b zez{FIq+8JTYq2>J8PCRAllF^!b?)_HjA3FgCa`0d9*PO{Rl$=2gT#FRPk!}TvD!dO=Z3`-T?By z7Az(;rI1Z_&qrmWkPZVal^*98|0_AWqr3MNPeRPT9CvX-YtbQ*2wVQvUwyH-kUg#G zqi^SvcxkMG-UxLu%S`wIbi%PyQd5PB;;)PTu(0jry_g13)*_+Nx!12MHo@#*ld?C} zUyE*u5i{(0gKJ|A?ee~kaPwFE5q2W^zGJi@_Q1rvhhR$;Jheq&F7?!J*RRi%B~ z(n$`#N2A}5+@S8CjEveOB#9N z#B(=$v{jeDqQk#L!TJ){;hl=H2R=iM9gkO*H5gf%5L21JO#V)({)@86^2f*)1ufkg zk%FWirjrpTz8R)-@^5f?Q(3myAxr3IMhdLzK@|6vOkA+SDxHk?I95`>J5k8TETI6r zqZnG^-jA~4Doed@k+ptZ+dSXI$;x<&z1<(U;E7`Jugj?}VIgrXQ)}S5(KEIjTVs{6 zxzSY=iT;ildjq#mT}xV|mMp>|Kh;9~M?r=2qIO??&rpP_#x?h(R(v-FnRV>tGV+Zp z@KP_UQ8TkD8c;=RD!RC*a)?;ixF|SsQv&!ZK`UM^L@x6}Gu|6^1+!@u$ zQ%jy^%>Jb{HtP!Dd3_voTa8o}pqVz88vi6t>XV^4Coeubo7tQnpQ0kA%|iIRBj$cW z#swcDIf)xS8jnVV%1x%8+oJpXKiQaGP;rcv>gP5)sT#al#piLh>(<*; z8@W8Stg`L}h)Tm$)Z&?CZl6mbo`ZCs!9Q=0f1r;IjEv^- z0$VBv4HooP6&cQoL87Xt`lr4o-Gy>V{}PoiQMH;X=8q~8YX7XwBBH$^Ym3wEbOs%_?^cL;Da($_29?os0|4QXmF%J1ezegQBOmVB9Yth<9 z0qgVd`q+8<1rGjZ&HHbhkL7>kd<^ve$@yluw`@r`Z0|mx&Spjrm&H+Bwz40D{Br;{ z-~t7{>&InrH?Q0g@v-v#@b_>p1tSzIW=D2-kf;CnR7#R45RY(O9ZUuJ%0K7%-t+&h z3hVohsr{Ao`}=$!M+eXMUHlTXRmcW7G&J=U6x!~Aj)*HOYNH9rg_A*1D2!?rpL&+vuFt? z=ayGYXALC3%?BfZA$Mx~vn6``ZVBtuNh3@@g8!|@=Ql3R&ljMM%`8T2({~3&<^st+ z@5vv}w-MeU3J#mpI2)#OMl1960K_y(6Qi0gus~%g77|y;4=qm)VX+mN5-HwpZhr}? zVHW#%+MF$llOOO{frmzQj0VhxvwC%*(XQDh=B$yucOmEPEGfdmM7n$#C>kVbg542m z5QMhaN9E`SWk zB>I9MvTb&4sVamC|9ZVVTdoe9R~2}4iB6d7Ru$*!w8*hfDc%9QD;Mv z_1y;Q68bjcC;kMhR9+u@DbbuZtN5FwB{3C6%rJs;wzPq9%?5{9%mna%^HLCsobUpQ zTd?21Ru+RT4xO{4KZei0%IRQrI1d8rz@J;=Ca8i-8J8 zV$k1v_bp95MPS9Ni*;b3DG}j8e5A)ppC)@6PZd;B+C+{8hN zUkfX3QdmpM2??&*Tq%A}E_<&Se@MmhXIvNw3+N9Fx6I;_r_9@Y!HnzHQ679YgPbTI zffO7n4DXHIz=7T>w(P7%|J~HVr`r`q#4Z1{LYR-nP1XUH?7-6FaQpG$7x;QMZ0=l? zLY0QfV_=Jm0=(?EIQHU>abfxAVVw{bAA^PR=Fqf%C`?idv088O)G=+bC(6Y zl))LYWc9+W?;(rf!ffKu^VU}IP+_XHSGX0MabiEghs5e=HMS1@E;TVdrW>`@)zT?H zR&1;LYe3hsEv}wN*_VTNSj{x!lp1IACRrAUQ5#b~?L!@_5NUXp^NO)lg5H|)&s1g| zGe;z@*Sg(fpQv4yIz$0Ra$f50>o~?4=8!Y}2t9Nw1mp|)ST&OG2JTsSFmmdT{}WPY zV}kUJvDM73PgYYXm3%Oj<2|{1>x~mk{v)JVjiBy?DO)kOgE!lN&TeW$Yja!oSpU`d zTlX_~6&?YRXYNj3E7TVJM~%rjdDsp0C1@9na7309u>zJ%Ci>^@5gLtV8UfDz@8m&? zAlB1vUYXfX&8goBRc!VBS2^X#I0iqxEuwK0P4W(X7^QM_*|^aWUX3c%vbn{eoo`#T z=gGLyhE2r4vU+u!lYL#c(%V>WUNHjD5{Cf#T-p+#3xw)(>IK;%uC-ZAEIVF_mV5$2 zU96lqCq^CWaT}CwVdV+(z}aXqe`SoCoSF=7K+bfH}q}r(;qn|o9*a& z#84}5c~e`2z8TDd+Hpq%Y#(ACOl=N*1=l8As(3u1DGGuv(8!GBAt)FGXyoytK@YfD zRh?mm;^>-eQRGJlMeGGzTxTiG?>E068yr*onVce@<9!V)hw;pHg{l0f_?jwK#Y5$Y z`EJWYn@!i%%`ntR`&QECC(o< z=rK~k>}lNk!igdxz7qspDG7321=~2cAVW8!_2>Qkn{u3+jw}7ui4{z1#ohaeNOmP! zG-X~bD)v;C!VIEtM7mt@n0gUL-yt@x#9|$l$FWkP4o-IxoQ=n~QmSs|N-{z-=IHX| zfLOHKSlLH8T(w{xJ&9WhDkol8y{&gbf~f*WR*}KR4Zj2Vl=g?J>0g~=o3z*bpIeRlld=B1d7YFP@eu3 z9&H#%nm77Ew(RAxKHM}lSQmEYpX0BA7!FO`4W7tcj_iLK{$*J2(J{oSO}{k~jhcx@ ziYtM8RNbfS=3R|(Pdf^rt3R3YMaKP&RBNd?r%7e(lo8T(S_`Xlew^bATz+_LG(w{! zsyMHhA7Hkff5`CKFL-Htvhms};nOaK@3M1!7Wt4T`X(4$O`AG+A}vtf)do3#H>Wuc zpK!Ke`0P(OlZqLp>bpid3fWf{xse}cyk&^A1jJV|P7ktGKoJbBcw=Wk^~U0~hv(#& zF_{Dpp<%a1MrwUjsGm{7K2GXThceGB_NmjE-PF7|uHIaoT<(m5t--1La>%JI~ zZYrCXvx=JJW61In*0-P z&t(wFU}9cV>e>@)fJt?mtVqIka@}tgoV@3oK-7tdPja=52zb8m2HTP3Ma#W>)m$CM z$&uBqbqk_##&2wlELB2eD%fk3qu<*hT(T%+4IWxLT$*aw>6f|A;5;&H357T1QZ`=8 zYCru82g_V&esbZ-4bmX_EvqxTY79~p9a7BROJ`L#`-zQ)?6+S?@28g4YWzToOIR@| zVvs^rPwgNXfYC4>XV&W5bg=eyoInbM?P+)mUzir}BnuY_Y$mPAKM_gPP}Kh;V%shs zs+f!Bg4mbP*^lD#RI_q@l8=qA-c1e|sbhtYngiy961b0}p|L%`cqB8wGToLbRCW@3 z46AIPdlEfOZQ^{Fn~)oK?th7jP4OF- zr$NVEcDU$dp>_=1ReKeT;{A#?^ft{_|2>$ydHfi~uN$w1OJ|~}T7A+AP+JoF*FE0( zz5-S-kh)38d$P(pvnt6UsJ!Lp*Zm;5Nh{^TlomtQAv)gdp=F276JUae&CrMD}N zB=DQ(-<^s}4G%OS-un+G-N_3@M@CrC&S<{E}9C(H6Rad}Bb0AG(XqcYG zQ?c^+k+$gJ19 zv1!grm<&hE?cb(m7E)R{>75I8mV&u9&#Usep2BdVJMuvH5#ISON065S$Ka&cNZGzn z`jcqhni`|xGhcbo5^Mr$q>hu@olu)OYpGq}GxSp18N)h5ec9E;=@FgB3m@1oe%umO zhhO6{S>C(84F~&vi?rc$Maek^4Rm1;T2PzGoRp*q#J%Xbl2JGDMXWjqoabWHG!wcI zm}?zV?U5>O({Xk%2q%($v3Rx;dZnru43+ITISMfc0n_3`pFk3Cda17#6!s1h)YyBGXe~E_S_Z0ND ze_`{0r-3n!e}%Rewy5PuFUQV`9?_O-hF)9YIZ8ys>!HQI+^qsU{!IVUTUAn_u9KVs zSEQ5cPsjf2k}N3-sG7rw9_7TSk$nDg0qdCW{Tookn}30Cj_StHSU5+3VdsW}f2%s2oFEqNFvQlM-GwMvlRuf(jqTVy#B1D6Rhy^e279gA!%O_Cd3f`=}$DsxR%&Nfp%66JH24fygiW0Pdn!|RO@UswIV6G zOqSR5T;Zf`V@XNZAWp7EVxev~YdHxIwD+S?0C^Cfo=7d4oVP5@PR{*mY zGh-{y;PO+%=5$oG)^NYE;1kIyAQyUb5(g|dDpt~tIecj_Kw1Oku95m#lld0Z7K9DF z#|8&?ZPdh}I3_+QWif^pHuEhap!r)}BWEb8aYqxE1PkmBmrE=QqAIsV|MozV#sjep zM3{{)eRITMV<)10f@dP)>Zn_zFk1UqONwkeT*Y7Ro03|e52h3<_4lnbFySRjtd+|j zT`$;|NQ9aw3~xFH^(2#>I`R?@si7aiH7Z|V4_bW@xSjJBDm$kl(La4Ng0VRoZgT6+ zq+@k3JNGZ?QY*O~vaM>z)qQzc+>$hnW{uzt9}+vN&_*Wd$rd&7!moIh&l^TnuOVBy za(mqC8xUZ|0bK}XPy4DweA_o-q^cPNTn!uv^JZB!y^i&RNaZ^NXM=u!EHAQRTB_y4 zvaa69$Vun=%Nthr8yki_)G%;!c=x;h0u|4X3l^TcvAK3Tjtl!Da==X_3km6{ma~M} zT1J|PKI3O7WPTPU&3lneN789J*(QNlqSM&ssq#wyuY_VK%I#28Rf-iK_3?b)^!Ntp#k)+z~KMO6n2LHWeOu3BkO<8 zsnMK@y>5rynNwSaZ!T&x&X@Pq4(?6fUfknDee05@9ESv znp$!8WvZ9(c3Yh;X$;L~7Xp4AHFxcAkR^41M*o!MIQ@Mh&&$tiuA8dXML$QUjyHKr zHT~_RO4KiP`WCgMSYx-Y(-thm?lS_897rX;d# z#8}}5flE~P0)*~`5f*Vj8=jErAZ2?c1Rk&P9QxKZNmml6_&!7p2xjU0`K z+sNS%U?RfsOpub|wq?cxLh2=iR~7!Lf9VAQz(&U#O~^w(SRWfg#(-#^<@H6eG{c8w z<~3u4YpJ-!o2j`AO^$$*`ndkWI_0;4tB=Qk{yv_!h)thZyR*p_%Su8RF2@p_ANbs~ zi?~Zt8p}Y4MhYL0ojSG_(D)^rj;(ZN0}Cy0*+O2o-QK_sGEjQu7i_J)#%{C2PI}F+ zWzIumTV}eA;^qt+-lVErKZY8q!8YYkW=D`6oPt3nCPVDDvAazwy*Vm36I&d6>4>;8 z_oI4}Zoe^_SQbhQkA?aJG+6p3@KpjpxcE;ed=4cG2i87|%=BQJ{SmpF2HT9B9@>Fm zeWjWF*C|LPfuF$qPH1QS>K@siNsKWZ4{g3aFMy#)-_sh{ub0vcvSxUZ7-8mXcLCNd znAnP7kf&nxCxZCxLUTz{l)3t9ipwImBU(%MLHVbj6eV&2l%eU zB?(m+dCfc#R(*iP`mPrkqYqXOYS|6-Mq_v&$v?c+%km9@VFDaXU<qMV%~_|I>-- z!Jd60Y8z?{S<=LNtaZs5fQ>LbsYSr+-g)@-D+`^1?iF_&M)1u48j;nQMY%WXblflZ zI%N=%1SwIPydvKWM!3y&F((`OD_q?aYbfOB)Wm zV#%DXBg8_8LNxWup&@Xkfu!8Q!r??t0`doU^rE=H$nk zD%cPAELcPy_a@_f=)1q|?TL@atl5t^)yFOSmA^vZXaEc+^lnhd9;R0Tn&GdA#*p{~ z07Uj`40m=LyzKAe(D#hR~Y-J7Bf42r@<=4wo5>dXE{&iq03HoR8_3)OA? zTBh$(#=3{_n*Q2JK`|Vtb^9M;yTHM2CdPAQ)`r#72t(u|#$RQ;M@k2J!kK1fTQwhY zq{3o|v(^dvC=LKFrHC%a&z$^#>ySg&s}d=5p+++DXyb;nF_yPZ-+Zt;rnH-W{AL4|;0tqAknvWWxyoh3>HNkNmOB$mDj zE7|zo8w!y2{Kct`*-KB`SE*|GnY2lWRDJ9Gcfom)%{6YLhdoE=+XJkZ;#!G9 z-t{)-7*8+T8CZAGRuq@FEcLV$E0axcW0Kj9ugiSBk~e#4f~=9f2@1(be&JJY*2Ar> zHWnycn8$yULi{cGje!M}nhUJ8*)MFasUYP&Ot%$V;|4&8P&>M)JM4FZh{LHna;LV9 zms{NN|8T{P-L+@K$$tueM)94Eau|&<#+Zz=FM&~bZS_E=SQj9hEY*^gWIs%Dc`mup z4a9|cqswuGPx|u!U;i=9UVwcHafS6@!L|>)!iucrP3K#Eou^fcX$|LEFBwvj+6jQj z|IKxam~Q7v=aiL_g*Bn^SGn}pY#)Ra+8$NFJbP%}T{oI^Mlp_8W{HZ^jV)BKsV|k-+}`AQS3T&j#Ac5DpihGk#;0);p#*ZL)SpAZ!vv!UL=tGm z*j*(ugySJe`3(`wtG-bGxf9=8V^N+S4+|%|Ga^;Ox@4nJtxAV$Mn{$>eWaSU`h z#eX8WKAhBNgkXl#89dcYY*@zp!N49n!mxo^+?_q`8u?vfwRyxeOc_ z`mXI9mdjFRi5u1Tfu_@gf)MUB>eBp39$LoAGAzXlo5$NN&mO5M7GTROAnQ@!(`V38 zkHd2r#wliX+uB!zZrTdKo>`!Lnm%1Pj`y&{LG))p{khjL=4@A;Xui?!!qR!-=Z6k!2l?^Rt*mWabHqPYl6vaE!pvLT2)^gCZhZ%4 z1jnOTkyl#E(5iN1g+Tl+D}*`G>~I`23Vj)EWZ<0-u~L(_TVV>`F|p3Ps=qRHGJJT_ zt=Hb%%{kjNxq4JLeEyI@e@0>wj}$khl2pIY>+%z$?i7a@c~qmizTb=g{b)7Omfd%C zgSNBUCp+i-1zxW-!yqsBqeO8hKNw-+2CAiOfSkLo<~s#>78sAD{wZoj*Y(^1I+wwr zQy}8B^mqserYSkBQikoOn7Z7NDO1E34zi&zEWh8()$!g~;;iZ_GMVZQ1`$(UE7g(V z%u|boVu1`K{dx9yJ81pqN4dKV{75R-!Oh0BqZ}dOjzlgPqW$FWc;G_qDNLTMCz?GHJ1P9(5xfpHmt{>WrYK@Y*2os zm)5;KsQ=S2TT*BD8o#WtE`a^ZfvrxK)A$Gt2A;#8^_;60&{)UB^A%h;h*<5uC`xYv zt%9KULB?TXP8rt#$cY_JL$$dG-Kh)Lk8?o6U9pjToArgA1uLf|@t!11}=-Gx-{^mlj3#jO*81KuwueTIg zx8ikG?scxIn2;>Hp*BcQmY=f#S9Z$pEP5uwPl>W9tW>7s!0B#AiXjEo7;3V{Q_FWk z@iI*R2awTYXw}UfeCf{BN&-5K<49W_eg#^b4ALV|t@^f4P0F0;UB)*q#$ss>^(0jH zRBX>S0|sg+hM5e7Hi%~0!vnv%&csA58xN=>hQX2@@v@wrsGhck?Fv&PmT^jISF z7+$Ll)JiynPp@uDODY}eyD+meokps+d&1dyEy6w;xZF6KvCjuO$G6MagmP^6@mXdx zDRv)g1fKw_c3i0$=-pYsPED!mqXC9+0`b4QYEyJv#?CWH7S2TpqPBR4-=MDCgAM11 z&D^)>h@$Uz=V>(j?-G6Ld>a9DnPSn5yjww0{n%=)PJGLo0opY47mGoEH(z0^q7hC1 zawpk`7U@ZII83P-7CD8wi{+41f_cz*kKc8YaYpd&=WL5kFb#CbWGBCt}n?j%>ZsVaaV}Jox zT3k7q_0T`2vX-yGi{+SE!Y8tZsFH_`q7#E9({GN3g`vWVZ)%e|Yd4u*Y*H*-JT&Oi zo(0OiS)md&&iknx{{$2(nW|juBhybBQwEFbpDv4GRz$Lo#^9KmT`MRb{5u}hJ*U_THOajxXj$8y%NY0SL9W+ZnwoM`B8u+1uVP+ zHyXLoj~`U?2g4xNZ%hbH4w8Ud8!*jd11=INjXS7V$*A&> zm)jCIBsap@NjWbr`3KBi{j>!l@m0I=a9__m_(a=i|) z;l4K=!E&?Sh~JAK3?I*abY-hltd|eX4JiiM?fvYkt}VYBqwN6Y9+kP^S8sg<-8~st zvXuZ(a2s@QV2!(e1`g0E!u6t2BY@#f#7)qOr{5q>&w}&S7*{Q|e7Z&n#R>Os3R%nK(=MT&)Z8vw?&jSk@S3B;un>{u@c?Io7@&zuXFNYWT2+`Cduo zLe0V8*@SF@X=Q!iEP_!rKNS$~qVHF;{}+j2%6ecdf(yn^u$;ihkB7GRPZV4K-X5-0Pg;xqELNwMNy( zl6%osR6N|5HwC3uC}KGI?}8IcUiNVPQ(zWMY$R|M_gHl3@Iwt=?(0}UruTW-SOvVn zd^TubyT8m{+p_;C+F^orp+=QNsSLq7szrMA4I8%|9{6+9dxg(-hZU;D}J zdBL{E=@0qSc+ux0U-@2SI_>$VE^+InQ45%Fb@{;uZ&x8g&-!fK(#U%I+Z@xf5?qZe z>Eu2-lDC^^e_e?g!-5_8oW8;1U~_=rY5QI{kV-j)G{;`>1*qpSk0py3|4L98&@h)pQ@Rm&qs9&{&p2G zx94K@JrT9tr0c~-L0xTzM=@O&(+~5ODG#~i6?r?q)No?~eustjEFyPual|p=IFcif zCQ=wWY^z2wFTke}53{<@yxQZ`7kReMipB?%kjYwv<)KWf7KT9EAM-TMgE6(+tmDuV zv0AkiE_Ik0z26H*b4UcnC!1Af9BVfGE@yweUoTf(n6jjQ8QqhDidr_fn-e3&`CW9h zavf9g0j>DT2FDI+uH#IfZYOdh0L+p)9?Ms1Xe7#a=L+{rlxPp$zI;))Nrq>!;6j^d(t~R-(%*VqYOIN+ZV2#W?Z`oo1CuZm-7!`^;(s2gvm+W47sirpNA|6 zNjRh0d5s-1Jh!_A58Q**FDCAhRC7-ZoW#z?213ioQ7XB&!`oSn`0w)@kg{!1i0f-E&~<5X5T zST*8;6utB(>vC+-?>Q;&o4u6qr^fE5qNgXv_lM`}xwN^oE$OgfrgY|Gj0^B9(S|EK zTcavq{m0{DB#iO9l#y6(y07CMqmi+ug+og#>aDkw3&O9Q_lE((KX>43-+WTdhW$zH zXIbMDaG^pHeS2 zqZtu|c6j^t=hv?`fs&{5eq!HS%h%=1GvMphT)s4ME*uJya!830qqaf6qpcl#Wh+o@ zncr<=xX;yTSp9sc;RJ>xa~~+E>3lXIE~Z<*{H(qH z7I8zHjqX}sDgG%_T`E$bbSirp#Xl**AV-uF&XlJ|&U#$+-N!`@XNvRajt@TIp_pE< z=HZAbm}5VbO+>jtTldT>PXrY;&j_lP*Sa$UVWMJTV+tu#@?mQm_ESXI{{cs#H1erw z>WwX#Y%#ZCOSbcsXg97Opl=Z}3x6nbOch{*PSuyNIcnpXPc(U7?vFaaP7dWGWeeG2 zm_%Sb2k4scF?Ud5c9D|0!}H3ydTA*)fkawfvJZ-sZa4rTO)2)e<(kz_TFfb$Q-yv+ z)C&j>z}jNfne#c!5~s=!VgVJ{^-lp%xF^1;`-YAM){F<~zM668?0sS82bmylQPU=Usvn2JAs~4}4{0<#Ft+d#88prVpqNx0oM%%s5WP*ps->9)lt<*)Jf9 zQO*G3MbqJouIhYfx1|d!zjgm70`h1N3Hcvnk`Sao)NDAM_&`2Rs3IjI68>PUf$Z>W z`F~1Giq=1}%;Xu%t0ATUebzKGbV7Yl)i66$fK2p3;E1VsV~AKIBoZ!aRLR{)oY6~I z7?%7EyXy}4=%$koNh)SuE@X9mW9>pWR_@S(4ecAQ?#y`{ZA*w*BVz*Z%;+$*uDC^E z{1jyQf|q(Jfk3R~p)K@W zm`l};)Hcyc>ODH1hVnd-LR?#Ycnb}(u9g=VMM*x8?iGi{p|4+d2D*@K!>Sb+G^63Z z%?G=7Vw`UlYqu4SEEREyxe7aJ)IMdq8gsnXU>#MLB5OcA*StD=pey34OaRP^g70;< zUz&!K5U4d$^III^KoVk9-w;_6o)J5Q1m-8#4*dY{yYO|jL!QZ7T$0D%4pq*?lDv%r z4ahTbX4HIBcwnxGXQwF? zI-F#49eDyZ__e3PU$jTSA&I_69ynW-z`;_-!i&uOUK2G+w|Lrq$%IsezpGLhZaHFp zVN;CwiPv!l-n}gH5V8U7Zj84Bd!n9vRff(WQwqL|pDg6K78QjXlCUY{NWmn}a6-m; z!g5p2?k`a@tKFAGX686uv{erii~Rksk817JwTvN^m7^W|C+icV;}U=G6Ou&-qT36B zT|LCG?fM_gcC}=A14ap(fmC*Hu-bslKV5geHL1>r>7Do3JSXWZ*Dlf-m7l|93&+Sd z1Yss+c&#pBEZ#n#UcJe282;dg4pz0=y)7JaX=#>>Ru;k)fVEi8FkCLiOO+i;IG7bK zg#$*jW`%QdC-Tc4)X0t?yf;>zhAp!^+Bbm-Dfarxms6$_mk!;utdbZb#PccB9i`|@ zkY#AkMjU0t4x(yG^L09Ek*xPfZ}cUH4R1uJZcxF3jMNiX76mKQ;YgY3Hc;SXlCRo^cE3;Rlf* z9K=Hs0@kpNkDd;Ck-|{h>%$+u$fz(yzTp5eYZ#8+mJgQ>G;1{HwneQ$)~OY@4h}j1 z+4Sg)YVv|b>KPd8k;9qLQ~8QXm&dvWNWVz4kQbAMI6L+_qgTr--v1hWo(u!n=ctdu z{<43rM#R9O;CE{Z4qI?6F%HmWInL}Y62rj#`+Nq-Y?b?Iy8{8Yn%u*V zLA+g7{ox44ID{3dloacM;keed9;akavuy*<|J}ymQ%FSnMXrrr+-7EszJ4>+ium;$ zT-y0-mGLoNpH$j;^B0yC@4>h3wWdjfH7Un9^~JslmNov4A&HB<*S(7lJtgb>2c*~6 z1s>n(cNi6S#d1XF-&%4NZr9TS-$d`t!+c?EPjsZ^)a}@wO7E{m&i1Wav^TvThkon} zM}k`7GWc#|6BqNN56JyK1zR%vz@t8M_)!HRB02R{K?io znoJgiw9N$X5FHN8*dc}Q=T=w3i&?6#9e$P#k=f^V!?Fja7qK%7J3se&uL+~3{{b^O z8U8EGWM^dm-9 zeY(!+8Xe+<-5~v!rQRP{$^P)RFKGX?D}}!M@pXNbe!shYeO#Qaq%P!s?{8AdkbRKR zl%|eQhEkf8?acV*Y{I#`9(~VD@RVwOd1ag3)c$zBZIsg}Id;EFiVy32c~u_N-k%(< zG0o)r4!8Su?=@bu`_@u>cX)md#=oA*rOWy#ZicLU5K1GOg(%uj1?9Glqkrz=gIvjO zE*T{&rAr2)-7239Ut@nNZ(at~;X9JGXwUHd<`gdb1-f`soZxk9{%CK&Rxp`21I}L? zznY?A4-hrp=-O+WKhoowIH1uxo9UeI+N&ySymonz0Ui)I{05O|C+M5LI9hE$W+>>CUT=}@)kf&lm z>iDEw1TxjM?i}hb=YB*qIw^(EnP`MlA=!F*cGn{Hhs?w@UCP`;Z9658V`Fey6GrrQ z5ZpG9{tVxg`^u>l)L#R?P{G{XrMbiVx(?nWw#2y}DnOo$d!*efV(>E6E3b%rJF~xi zQBj?lhp8doR>P*N{6X6*VTOEi_yshBR@jQBLc=-Mo`^{e=a$V(K`_T8_qvZC$^APE z81QkBi1mtyuKMqRkCA<5#?sDvlCZh2RnEJ85BFATjw-R_M>R!UE%^;eQNjam3a=^S~l~Zg)M{JLKb&b4A#tFtuLd9 zzoNyGYq?GdBnGh_YTTVm$-%y#uy@JF`4KmFKa+yAI(EdYi9zqShAnc#w*A}izm96- z=ylTHy;T(Kl$#8x4Xh6!Hr<69bBQ?BYN7VQ;>=tw#fdQ;cF;6>D|g3@W}+K6p{Fp8 za8#mr`JI>6fvfQavtgwfjiWd+Fv@!>!Y-F9qttCo(a_g6u@6Aef+D4R3s_>!^v|ef z^MON5Wlf6{m-OYGTSo8Y6EK#!QGG5DEPY4^m2&_l_1T&Xf2NiTs)ml?F@sfxS=9FY zr5EFD54jiyHA_(*bPE!(<`L^y>rWUK|`yTuo!fKPesoA3P^A>7ZKoI|=g zPc1GXl_2UA!eZuq^Yx@7nXY*%lO7inJO!eb2fhEsu^F7lXCcg*K`)Ka<+D5zBYG0r zWhvLMY9So;mL^cSRAj~p9%e`Jz6-{-&|%I=I*4sn--xrj=NN(@EpxTgMz|a!|IS26 zrMAE!Mh{4wS3AUbtIqbZHUP?5U!B>#K+XnQOwQwwFrLK*$^b^8clgV0-h)t?rE&bu zvh(5bt^|jIW4iUOlkn@;k|6%^8VvDFoc8KxQo!T=|(u+Nihklb3Y1@ixPstnuYmNioG4c`O>Azq2Q2#0M+ zAC$V>J$t51%A<)+OTX9|9PuWV41{D8!od8;X$_yb#B< zT%iFD&Sw-0QKi*}Re!uNq;bA3ob0IB$;kBvFo5}`Zq2$bm7J{p$xL&WJsb}er)5T3 znV2O-l#fe`a}mmYT1+P|l#^7{Nvvw3E%@X&e;0yoUww2sPE)2&s&(P0VAKt=9h$o( zijrrxRm6yk`&=inlY=kY)xb+P+Ik_Zca69q(y_DZ<1ryVCZ~BsiIN|)V`&7-*b<1^ z-N^XHQq^#`n(Z5Y+0g$8LX94whF0x?LSnx^YPj--67R!m<^c|XEL{%_q3Zg71nEylTq-PQ^ac3^eE#UK2-e6T2`{G)T5oLS4M_< zzbuap#<--NfKxO03U8KC5YM8yX!`fx)EUnj@GA{Nbt*AGIm{F4MvO=QR5(@<1lW&aB7PS-#>6X7n*Hg_z zBt{JS6GjRS8tbSr^du#rNf5WEf0xBUj0lA#b&dH#9LzAaAh^zTLhB`&pCJ>c^>J* zrt?S#?a~gKx2I-drzVQs9G4aQ7mkdV5YCcR=tU*rOEL@C7$5{qAYu7aJ=zmWI7{vq zXh+=Di~o+$jokEpIwXEjXRG z=eznmUmj$emw9T5-K}t8ozpJFLW)@ZwHs5|J`=jZHNS}qJmk_t2?=u(xkH6tFu{;n zc*keO&=lyf)fn|=+&V7C(7KlYM$2k27GeyJ=28d!^2c-ZAPEZ!{Og9kf$6?peCu#3 zGE_M2m$lGnE3DlG)cb^LVx0IL+&uD;%|bcMj>4zf%EB5gLnhezxYpgRAM1YE-U1FL zY^f47=i2v3v%5TTa)U{`-2L`q+^~)b_fMhWiJWf&qsT6$eDoo$+RNf4=9xleU?t(7 zg6|2RWHR0*QOwX%auT^L)?<3@I6sr=6$)Lkt8IrYu;NcnmWr@x=lIrjZCu#Bl70ET zHyi?qIv{zXza>b-&+Ux#=+bIwpuAbc9?G{YIJ@$E+Xc!hIMe5%p8WFKA@a3$uJR?M zo{1ZRB6Ai2*3@aKgJrzYkPTLjN`Z2e0_Y+ft>LuL;D=;0?EX{~%-pyydOp;^4>YPM zc#5)pjHqa-Dl5Jnc)=HiTf1Sa;({mFX4v1f$a4%h?N&38c;G^878u8*XZo7zy|UW< zxJzZ|9L8--74OfND713>MQ51-wIAk)kTln;DNU65a_{8FW-+ltoEDt^!h z*crW!9G72)%^iHb9X-bKehFPg}2`& z5kT23fvFSm-$Z-9<5G$E{2?cyluQymxZ_;Y*~G_-4Nai9dy1du{dy^qqxvb8n>+M7 zfBeqWETi}6_RO$8^Qx8s0hGq87#n$N?C=jxd}m-5-eN+0!cD9E42T9{yD z^A!KBcTM1Pn>e=kx5BJ-^2GaaBe2-=;u20l0KI_;*Kz2xKgaIfR1jxD&nz>0M*n^TZxwt5G$qPTyS|0iOahHxe4Lk|T%{{p~Pkc`nZvdvc*#vC$ zx4XR=ZWsMA*u3mf>u+W!4cI?#@H>L}7CfqrpCY7)>~ooFCQaHYt_I>jj^BQ-|qw z2J5Jw&2Ho8Z8x4!Jxt}lp9{2%)hf1#^Q0FG!=bCV!h7(&IFB1`h*MPdOMHAfPnM~> z(a!?~3)clbpWjCp#(03DQ)?QQpESh6s+Z2L9=|WHjcnVjR^G^%$cgbIYL&%9);X%m zoL+mr6Y`1p^vtI@p#qVI(NT$qKyd!&Pgs;+;24 zN?LC1Yd^-j=*<%7O8b_@-`sP|nh0JB{{qI)phbxyIl9TM2)=YC_rt#+m;FXl`W`7Z z)iSb9flC+B08lx>`!Lv8T#7|0?X zws#MCW=HZsDZ%7Gm!%_!_kw()uEB%utHVHU8I-Z|df|K6D1i1I11GBAU&&C@@Shwi zJu3LT^ofIq#Eiu1W@o;6C?wMtk{+sEJ;y2+JK!I>;r9^+((9)vq$b=n?TlxmiIWU; zpZY3BHCut=ppGseC|{`q9r5rV{)#Etu;Uk64hzY{N|r|OPaw!_=&wZE{!=%fHv3B#9%QJ;xKgJjEET?^fb!xiI~H z>9$~#8DEcHKEef}iGlxUs7SbqnW%}XIT#lAXskr69i-7#`32;*Y(keKbdF)sSyPaq zS*GDQ-+fLPr0K!un0IT+;YEL8Ca}~8#Dq?|^1HaDhize5b$bS;}}XH1xQN7vdo?h*PEilVfZheJ#B^d2!YbPK_KBb-Xy0^e>w= zj>bs6I0Qym>C0cjq(QdVdtJ!vU04F6DfH--XF-o^tONI@V0*>hFA(#6GwKF^|lTUV`t7 zKSA>+i@TbP(kYH};c?mZ5qvh;jLN1q*k(cQTtJhvb{G&DjT<7w%h!c*bLncE{?$kj zMLi<4Qdt7az417Q31s2$^QVErcRS2_)&e5cFZ^4WUd^X@lljc#WiOM

71#!X7(sq6s`vWld$zVXPECZUij6lTF-GWLcc{1G{Edf7Jk5T^n)&O=w1;>f6Q zFwcY|^3!Wz1oTOqDTJ5-{Xjz>OAJCGXb;o*18+Z<($i5P{5uikj2It%>1VtDtjZ(L z+^T2X^v;OGSxrf(wkTDrTw^^?**lXX%Sv+E8La-KiAW`GQ?6;YSZIhRuRxx`l#FSb z?oCBobcNm?98B_ko2bRhk-=+jbp~B2IMtqs zr%R38iZ6%+>>81dD#ZIJWTkW6VFSdNIwMOo&r2go|Eu z%W4RMRgl}%kbzmPrl@+K?;?F4qdkhZ_|X6u$aZA!x$FE`SI=x0huF8t5!n#)Mx~Cj ziQWXu5GF)ciP)g~&Kv?8%tuz9&M+>a5Wj<1qdcfq0%~nWHK;RyL;;(PybxJRmlt(a zb$c@c``2;4RW-JZR z9zIgu6v!xsa4{Sk7#);hmnXqqTZS34FmPCJ#j1mNN~xhwZ4E`UhdA}uhx~8O)$zkS5;K^_2Sah~s3pC8GR>y*BB5p(?&H zs9KtqGlhD@KI{eXe(H?8limSqfqprJT$0C+S592>&Re9)HH0BcSvN*n%Kox1Ojq5@ zWwd5w!E;FA3rX-=ms9yvi6N`Kl=?<6tT&FVoGU) z1()XD8P^6<&N!vn2pp$1Qyz}mL!);0_=CR?mE>1;`V630IvJH!q}4(u4DBW!dYAl3 zeOIz^j#ZCoyqF`g6e;xR2}TZRXYU)BsMh8B@=nK>ngz0cKR<@f8Q9}%|C+B(?=}*E zwd03WRf{PjNw&q}>ihbV*InCO*^b`I(#t{iC9)BnpkwzlENK(nA=8EKUH_iO-h2 z%0#a81MY#Qf=w?|`Xk$D_^YGcZP~|TDX*o=X)^jkowMUJzQ^l$$@!kyNqvujYH&^U z7#Wc`tvDv^_2^VV6q{CLO|QRHpUO-qj!(`SldbB}3)~#qDhu*+sIjKr+!gNAFYh^7 zs=>6M==d{mMl1`~XH1*xg!&dkX#%-jCe?ptW@~sH#sk-mqE&YA+U)wo4?QCsPEiW0 zhN*g;Et6iaIwSr)Ce|F>yZwn0Hj{tlUB1?;z-pgdr)I`yAx~&b%v?2sWb`AMQttv# z-F@mQYjh{;2o_Z;-#-P~pCwEc^;@x&P4v##e$yo-hGv4-m)~E*)eP8Fpa>I7qN%NR zv9-?02!PsAN4}{Tmere1WJ+Lxh-LI|E++K%k&ndCwJ(&`Finrh%S)t|#T{wW#3L(b z?zX2s{C#O|OQi8ZqB>(-1s2^F%N>2QD&I`<%)P4g(^apP+{+W`3NkI_suIZE6ZnhD z$&_g3-(0Q1$M1O23fgzY+;BD?TlP|9w|k7l+x$mp&%|0OG%2SxRu76dzV+_FFLWx5 zy4YHE*C+C)A< zeBWezwVasmpX>uf-QZib`C4^e2_9g$jT|5@qmNX$2=^uakTuQ6DNUcGm6>7dWO!qK zGFr!&&2Ol4PmM{E`A1k%&+G)rk`(JhPpiW5X$v#!eT-4)7C5X4NB1ExfDSZ~M(LqP8+bgvheA&3 zqJv%C;R6&FvBiRuaCaZFI9DEracoX@sw+WyE3px3LTb!uW5PqunayIah7{AszRoZc_@ zkk_ra^uI?`^4S4>Zx&GKu{%`z^sIaEdW+(_-De5sKk~ShQJ&??qS*N_G;=eDTJT!^ z1lScd0j0YFW+Bi7F2F&N$g$Fm{}z#&q7sv}mC_ZZ%M_o@3;R(=FSqLzTn>Lbo6Q58 zYw4YGK{DaTbuM1N)f z357GXyaSt41akOWC>r_`pvSbABH}H0FDAz_=#W1K+jYpxWZ?R8f}*^NFZHW(ILXQC1xuf(kO}^Mqpbn^E%NS23AJ) zOg>!{cHfd@fE>990aE7ag>UK6GiJSjk(LJUb<)mGU`Ho!eGW##l{?u7XGztjjBRL6$11 z_!(zri(W_9O1zDOM+mHj`RUhJ_pC);_cFoqqCfJcZR8!xp+pqCcb2uVq$dvTsLy8u zm1dz>Tqnc2^-rD|uo>==o8r{rd#J%OiS^s_73P<~2JiPly7(f`=2ysp;%06^8^+Tt zf0BH!cU-u>q0sIJsJ^>qv$eCCKI5pmMM2=a-748G>NAPJR?$>Vw@I$f=ij``HJ)Q4?IENrLa0ado2M3$_GaGG zuk3JdebudLfFkUW50OYtP+9PKCPEInxjkgblNV3_DEv4v#Z{B_0c031Cw0|`9Cipk z+}$)HBjH|8VirLZg?l{BF3u|GU!a%>y_Rx_U@PS`1AN&^mi;cwMG^=5X5<1f?D+E@ zE6H4poho4Me0Ld?bwAuoWlxV?3hN&x62o@8JqByao;K6Xq__6=aDG3+|AL40wNU>T zIe?Ave~|;27&-o<67~B31ISb(Fb@~Hk5`Js4GKJ%s>4HCW8Rr}2L!Fn0f9ZdKHgh5 zWOgqyWi%(P&B2+LWKL7AysN|)4ju~Nu>brGN`5;GbK~3F-x(2=E#yzI@p1{M$8Kc#d1+?Z#$-HzFRTh9Sh-J=OVyCwdV^A7PaAVVlF#v-wnW zw|&8=mWM7{F$J9y>#Z-m_kDc&v6s%aAg}(Qyviss+_e`mkpTq%x(E9t5sV3;NYCq? z7?2spJTm5}7x@&Nke*;cfjL^|ZICc$>+8+1Cn|)wQ%R`?^!tEeI%Jlr`+)bPoU|d- zI^+h`L- z7W{~D6X}mP3IrtcYmjx5(BZDvC#T4tgl-<&zey zkC)LJa=C}Vi2YN4hI*T{Rk&4pxLuSqL0e$`UJ_&Bz4Rl*vg6Ih-mC1E=-e8uZ){@A zAVK1r8=jdDKG2@-Z|xjqht>Gk`YfS=T!(9iVY;$TFIrn*klNJetG+Girl0~;!5;ja z5FpNRxP2*{Or+;2AKQzmpgOIwsG)xM%ZEALO#A$TQLlH+-s2{#=;F!n?CHGl4Mg=L zcHTI}!!Db>Sy5cIbM|xo+b9H}udSrnK zVhw1D-pixzGCzZ+9jjvKil~9fVy$~c)gP5m|A%3j*A`R^_+EB;4EGXm5Dr!clW>;t zga?UxdbYB@oysuycpq6lv$4jMJDxDFAmev{%_sB0OIDAUQ4IDGDQ&sU|N9h8P(0h^)PGGvNtZ^u_%x7N z{Jm?4U>N|fK$!vsLv@Bx4c^6?YMWiw)Y_NUiXpQ?o6(2Op8On@Y0E(^=z1>TGs&eG17t#wY7snt$CAWp z2E=$Hsyn-~zfkCk172^&{>v7?(+;yIPD~Zt@t71|=0XmUMf@0L1^WCEFM?>k*aL3a8%y zO`Sw@BJI6B3E*Sh^0*<=P=buX$2gOLvZGz9SX`QHSKgT z;z1C~{U>@NtJWhlcNx8p>2AbfncVpMsO!KyPt#X0?ysq8n}l9vAOx%cbjb?+!S*Nv|=YNIPlk#KpXq5rL-9 zC8mUKHCdQ6)*(e8S9iw1G%16kdXis6IZiUze<6AIlA46f<|DtZ+Up(~x|$rh5l~M(cYa8_b|tHUTC8)d zAZJaqKeyc!PS~X@0$S8eWH$jt(59kM95$I%C8cO~bn-Bsfl&NgwSOOz_Qbf|KJ!Gu_?8&de=8=mBdcN7+|9$IX7j|-r4%t8PSwDn{#lAdE!dWnM8hOLGWkY&3_ulm5IZEa5WHS#kW0hnKe2f4rjnc7WvJ zw&9jA%p$*1L~OeF!ZWkc5Jy1c9cT8B;SfK8sa-E;J=l-7_~b7+)X2dBlbZsU<)o(e zf#(Gg0yP*c@0TxMAKIJbR=@9I8Or>30q*3^&5uTK1pf;diO1vtS8)XE6d!;OM`?{c ziZQSK^SVDdi2lBc9NA;UP9fAcl^AM+ZKA?6Y(5F(+^I~!f88EDrLW`?RG=Bie65d? zv9l!fYDnHGAv8b)`tO=5bRK&l5hg24JUrRLWKzN0AU8=5w+@NW464zbo{)x^KaybJ zg)uc>^`!vSzz;_W^6qvZT@XHmoUTGTbPca;^imTx+a_&w>mx00ynBw;8j!JJiw0BA zMJl?{o44C*K~Qj^z)CaRG{frF3t9s~ZN{=2ZIrgbxBfUfIauBhGYsn~3==yLvgsVH zWknk|T@#+4TWEk-y;l{EpWnT+l#7+I;NDlB>*4vOCW`@rV%92yszJO)J`i9~=}q8o z<47)k!fE!rih2P4kS(+sJ@bAIx?0pQCCGvSz8ZwZ1VF0wC@LbH=VRQfr;T0ERb4!g zeANq!Os-adX(evM=zJNu5pu2(c_)w=^1DI z3_Xyhf3*jQjotLJppMbc^m5`#EsZn*>uS?;lost&^Gja`aEFl=i?)+nd-adEPFsHU zjm2R5^}x#nk*{a#ts)}dsP85RkuJ#}=&D2g({OO|qP9e;;H7qswI`IA&sN(W3ualO zJ{IEMbts03snL>|0-l+Ow5)+xaY4l=+M;SJQjx(yc)VbpK%1}xSOarxYbo@KKY+_L zhl0`(*cOPDe+~{-@9rSO!mKzOI4GiGQ7w-!FE$47uw(~(%s)cG{FxN14E8&gkzQ!% zAYpTb)fc|S8Mi(s?PGQRkFj%V&IDT4aBSPQC$?=n`NE0qWMbR4Z95a&wrx9S&fPgx z`(od%KhV|HZ?Ary(^;_tJ9G7NMkJK{&$|2-i~{1I@>+;^IJbO*=Za9tLd{h>R|qF) zZ+B3h+4UpokEodb@B`+nSwy?ASY6Bf=rXM&#zbTN%sW(w<}84jk{qR*QWKZib3>kRjx-cfCpP4OaXm$i z%I~-M{C|p1Z|haRhwQ##g(ROI{?m-a_TS7%tn92D{}-}(rKb~1-u%CiP0rXx;gMA} z20;HMjkK_Bmtb0{sgMyCI}FTR4H~)K+Z8on!?kn9W`+(_>o3#7mM!31AFwucef5v9 z`BUhM@d{}FxR&U7$Nl+qc-iRO8u3-MGz)4yZQ9uC-lo3q2bJ#LDEx=m6zKJOJy(}@ zR!;D$rwsmMiUyFPero*`z0;!>!R@h9l6J|>LHen-=^)(pyV3vS{gTQ=<6Ov1I&1aF zOHXile63}>G!q@v%)qu+ziYUS**d>#bA8_Ep`lI%iLfz!kFvkmd%&}Ea$SEz@Y>G> z+5XeZzmXOsYAjti<3!q*ecX!fHf9s0sEyky@^_FpjQ)o!x5f=bk;|xrF5063OxAA3 zt!FB+7{77GZ*H%e&ytkxmxQaA;9jz5HbAvY_^Yq-Pd0${DsmmR5be%>9JcAS5N`7i z7oZY(m{?OkR4J%LD^!_k^nuQmC@Ws_ZjBb2lN<`F7N27qmat?V8SD>_5IOoxWa>05 z?B%Y2@IkDTagvR3dV5^Xzk2fOG`2YK|GXC99jX&%^iZV@elT$pxJJsdr@OXne~aBp z?PP2iew=vevMq;ied_L(I6{XGnAW#z%TCcNqb)?fXrhja)gPKd%}~E5vL`wNfLb?>69!T{?Rr8 zLpD7eqYk<0=va1|`>%t3-OB>qYlKUmUucm>Z!XIOG{{s@M!4e2zsl}|f3cZ3!3`)+ zVhVxZJb*d2T;&646ub+1>03Xpx;w$$=g95aYM`nDUxpZl!eBY7F;jLmWbL25Usm#PCOlO;SS6O@jsc)kI^|GT&W0q7986;|TkT82aUu){* zgH(jdkcDGtYhF6RnPv%cwLD^Kvxvmh=DO?@W>gD*U{^Ik)Rt5Tfj(TT@Up7;4T}qJ zaZR9x)IdiL6EKegQw)PxQsLjP75)5Y%AFy*qhMw8HnYpUy0~MLTURA^N{RTRoDTj^9jn6Fyfrvw5tqch zIqLl$T$#&e8%auHgYqLurSs6OiI^m2@o_g6C(nHxFXB9Fl`7$WA<~fjb4nC3YGMs0 z5tl)Tw&@3u#cvp%zX*9T%t~+|T_V_vT%h*ujrl_{1IR~#FDoW-l@+>pM)o0bV1`y zt*xKA_p%UU@$aM08kz2kaqRjegbEx{-6gy+ut3x2oF8yy<$}@EPyAMK^dQMrffP$$cuXvdZQJ3rFwxTW~!m-sa0#PQ&Zmg`PdN8q7{#zdtInd#~wFc zF?THy4e4OdsyPvQ%k`>YlfUnV_d1enrj9wxsmTd(z=?ga0sf8!1EUx{yxrR z3flfEf%%Ym#8aE+Ix{mnTekL19guKS;h*%PKSxm>NN+8C^ZJ&%~MQ%H^58#BU4_b z!_`jUU|EJqdVT%(9nVu@0D6pLZP z&LGRmWO<^8(@ta?Im@Q&UQ@%A-V~cJ8%tbsF6=A87)In^-n2*IuDxFsAh8@^VjqpK zvo*0;B$qQk6mhZduVM+e4?(7SbuosRr>8D=EWKN<63nB(Iu%&O%3+#mU$gSl?^sZ7 zHaS?pD8vT`BDjux0RfhoB%_60SD4D#!Eycy20@Zu7te#A*2?U;OSl2zz@&(Mic@Mdk_GSF1X})=Z)#Dy-4GYU zQw|P@TAO&Ol!^NYU3w)dm)1N}ROvf%Tzg>c5!|C~lyY(Qp5qIE;B>y20mceNhnv^*_ zc!&mF$XeL9id0ieGgDG8%JCc;LZj*26hpSNu6bHyZIZhf=+~MiHs%2JiVz4dU8Kb! zV&o@r6KuF{7bD7=g!|G$QWT`a1gtaAs6H^%k@YI$=%0ClM1hXC8`SWQ}Jie3U0)#f_e&T zsO9D*47dro%a}9CX^cUHqbdPx#eW1^yD4w}p+^(@{rRgjNBKQY0UQI6q~SE0cv>d` zqNx5tV{ALEFG*zwpv*u(hN``_S$g{C#MUTwZohhu9|In;tJLVXHVq!0Hc;^%m5wX+h7f_Otr6*+33G`W80&}l}= zJ&-d7D?O;iI67hbvi&!p-jH3GA|$ngf3{y1v!TBw&eHHY4iMK6nB|CICWayO+X*$& z@I~N8%`{_zAhRiXJWF)qc$`m*3;f$2=Ivs%{sp9QI?$JQJ=13q1*t5LZ6d$)#K<5gU4p9XND{HF0dcGDrBhSffxbXvmu6f- zg*p%aIKhfc>+N@NI)?q!i74pZn^6&~Fm0$bDr|+3 zkgTi9EWt3KJcXI%Y=l%ZFKUgIY^i2X|QBF!Lg-5RGm%1p*;AOwQO zJBRvL7F(4o#2}fI?d$iz(UuJ&le0VO*@$0Xc)<<* z3xs28IRaS0r(No-`?ELhhYjQ#I*-tz=<%v9n_T3Qp-rvpWPPrG8rr<{bVqDv#HcN)^`g zSA#BDI>1Jb^ul|h4u&WXDZ0i~$;mzma$a*FSZRPblx10S9AmStDkEd}|73TC6EZUm z|H0f1jR6%9@W0>$p77wh2?oJq-REo^jP53*r(T$uPj=m++e2i;0Z9q63TO0}hE|`w zaEJ|BNi+cG%O-Mabg0+4Ni!v*})`0N#)Ob7iUNaTMH#j?oYU(pZ8Y4npd8OAPag1nv_C zl52pr>M@O0o83%$W`C(MTi?RDZQZP;*nlmTeS7)4j`3lW*Sff&=z^ktae(=0O#@@FZiPMDo9{y;Z_(j#W2YY;wrz&NjFjPIC8t&^T#KK<<8il1a9Y@;8}!^{_e?H7{j6p@V&Y9 zFt+jLzIo{7i}r`W(@$;;!3Gfw8S4`2(}-JGgG{0J>OWcEDJ?Xs+|IjA9_3X7O>p4t z9()U9=mkWvYut=y$MYklyd~ts7KSS$|cyYI19*TdFpkW(jO;n z2~scOzG`qy#an)$>xuAYaFawF>AvI4)$`n$6Y^0H06_w z8RH=EcOy{JQ4%H*f~6g3yv%BMOZ4V^@q$Oju`Th!e8sT-`_*yStg-Oglfwsg(Lh;cDzD)?*@po@{-&Otqmw%6# z{HL^u^S?`**nj=Mv`P0LQ=}FCAK}$meobh$L9+X5n+vQS^bl>t>w&`0Yy-6ld1N&b z_2(nbGr36l$(Z1x-f%VYtVX?DGU8J*UiFIq(tz?zV3n)r=jeLtMaZ_Mk5XjB<9uF;a`DjFU7EPOaAVHImtTorS*5ouP8Pvlru| zp=_B~pYZK7uwn~3Yqwl_@j7*-9~vid;pTj_vC$pR3t`b!@N2!;_gU|Kf^>>6Hi1>z z`=8R~r{hs$&dqFG_mh{PoSEL)wb+p{o#Bq&mxl*MXQKciR?0G89qrH1AO9 zUwZByOuM-Uwv<3!ew_@$*jBHjG{y;(j+tJfpCdrtW@$L#aimAV%zA1(FAU)ejx_WJ6^h>>-u2jLXB7%&S_$q?3ORFT8d2MzX3Cjir9hV6rg zs*y*o2*#pz63mhQY6h4@lVH))#F#E5W z`0mj&x1u&LAHSGY-vSUT~;z=Ae%!x?{z4~8aOAi=pDaa*MCisXq=YR4IDJ{I- z!r9mvTB>5(bLo|p(w67PjVrasVxa#`Q0(RoTI1I67r|7XajZOJgxNfF>-h~yO2wfV z7I8uMqn>u8EEL@5ip$j?vRx>rTCBVUs}f)s$vGp>@h3y(Y#$LGQeU{tyogWH+%2&O zkZ9=jT5_xzVXCeCd*C~EjnwD1_}stnCRzh*K5MDuW#-Je(>oxjtXH+6hXxR(Jo2`O zE-?*FWX61m%LzR@eS~|=V2S4Wbb#W0y77o$@O=c&g0DeBE0#t(hYsgQp?tMsOp7Da zTVWa|y9;{mkL`hh^weyFg5})Lv*h4_9`)3M!G{(YN5qf@{hfV01Rp7=Cr8E4dMpTg zCpFUONm`%AmS~6Uz?mYZ?s$jPG;|Xc(K$#hyOf8~w8b}CpSH<*f>omas)S}Yz@w0e zZ(_=ej}_6HZiC3N`Y?Qs*C~ev_X(T0jO0g!vAbJ0XZ!wzJhjiL6*+qZYahfIdM^YS z1dIq0$MkVEF`(ggn|lT-(j`pA1v|)?I?vA*^b2GE?DMp$*CbIkzp51zrz&m4Fbc5L z&M;r7r!_^*{1xmu(dA7OKLR2Wo6e8Un&T8QW-8L_tL)t=5^BLe1Op3XM|{&E09m!+ z$+Bl~?^NjzP+~{;nwcWgJ>%aTjveu}8f*ai22SyTmHn%YVT@w{|`_aO&y|V%C!Gh{g|JTYV{*c6#$07~i@24&^O?>?T3puRuZFjItGq%fab659W z9AA?hd{;;pWw+cEFOro!Xkd^eoaGSTKiMQ$XkVuHciir{#S}~%S4rYDFZm{_GO>(u zmiS@48B`!UKk}1p zRe~_M0Wax(t+gdt)O*?LHE>2L6i)T;?=IVfvZy%*uMX&iTl`HRr$q4sDv6RPs`X?MGG3o*Laqk_3egcv z6a#BIA1V-Vxl768bSx#l4O=+Dik1UuDj&W%on-ukl@^U?ROD0ga!Ekfhz!3|@YKZt z?SqvqgT^R`axm1Bq&m--kKR#({}P}L6p@iOrlgb9B!%~3BRdxVU%!(?26=VR&Vty~ z(ZMnbV7$Rtv5f%TJ!_SD7X^>XWM0KHk(MU#B&@9cUWF?TPN6H*!@W0d#d`hnH4jwp zw!_#%mZ!7jmhEN7;^kn$7J0sRr{@ZJwD2t_fs3I?mhye-fho3W$YYbR_wsDvw__W1 z0Zx(K_;+p^Dw-^Od44cKV7p(y<&<&P>y!&&4G-p!`WKRyEu?Qd5aR23P!gqBYf~k` zCHXa^H;tKmR#T;)BgF!bSB=zDXc3m$5MM+E8bXsn=apHxx$iylj~pCXuqI)`C#~uM zPeR0Lm2L0wiZj-9P;>iye-~u*;&Yx2^^OMtHCG%e+|_a0#>Bh1POQZSqswZmxA%wi zqpMR~ol=B*Vr9EQUE8mKncsz!>_RZp$)))BYjEt;!%qFEEgfO55Y|+)YbAP_U>8_O zv)_2KE_edd8uDX`!2@?dW$hiH9^QpX-C1{*jbSXn+{(U59TVlN#4(^|@I%;FvkQXj z-0WGEF`HLo7E*TeWiL+R2{wgHP1RS;f8h}*92WSoTK*{6E5e^Wg)~Sb8mi(qme{nY ztm2+!GF72bC(VTp4JoH_FGw^vLhB1K44z-{{T>Y4nJyu-7G;#?I>@zsux=V6$OOy? zg)=2O%jh-J{^`UHCXZ@7M~>n(#XB~Oa6&#VB(W(+>^7MrC}TN}(#fcB9X~i_XY|o^ zl_#g%!CaAR45Vp)%OA&l;b`JRiCD``Mo3L6#*yKBPCE~`k*ntKK0bL|{KVrMmFhFR zU>~JuQ+(dEu@n>veMbm4kBlBJEB8`@@raJH$lzFhLew6JewTPRRi4W}+@Ob%L%`tI zCnknk#IveuxD2+pm2{kC)`XdSUQOzYl?!H$scLT4WtZ2;%-BLhAKm9u{d{E_aba{R zo0wpm?nzP=<1Yc`rqz%)@KdZ(wzU?Kv!`FbfM-%!P7;+a_Dt>+nzi3j#g#cOwjrBM z*HIl+o@{KhCR|D=F4zSRA};EiO6r90Qlc+L+lMhvIz)WgE^1Jbr5IX^peVLWHCN6s z#6{?n60*A59fM&TmWrT(Fve2jVnKS3;Y8V>Gf)Jn0)C>3W>9W1Yt{x0?sxu>szv}w zg4ye$foM0sOi@R5$MV`zP3?c)4hh4iV3We2uhNdvrkaA~S=eW2Xf&kqD-q}SNHdV= z@YJ)>Myj7U|ZVB5Cf)`cGt z0;^{*t?-r@lim~Zb493O{lJP|>v^eZTA@39PaLwc)lcrWP(4jYk)&1+I96 zD%X0Ev#{i=AC{)04jHLoGUVj8`%SBRj?x^;Gw0Glo_EDdaU+1Gyn(1|oW#UNGG5$QNafj?(zUYp*-sOG=>)R_5_;V ztF62U@0yUj7VJs(89B=#+A|)a(e5CQcIvcW6E*z83CO-b^7`L)169oJv| zeG@jWRFBh4Nn=@rnb=rbF)d8jO)29LzVT~N{iACpkq_|_1~E#{2k>Y zS!e~h4zt8=>cNMu-!oJ9z7}HA6H|EJRBfybtNT^_JL_hUMWdI(dh=Ctsi(?Fx&Vzp z=B1R&>LrBGqeJnP@*ECWFLHDqxx!NV;bu2l7nZlT^4!JHh|rS4cCJhnnk5^RyZMQX zX1k8(f2fM&+t0s33y(0ysG18X0tFQj-~`Yja!+viXm@_h_}PKLz!snu7A&_w#fb0!I~e%|XXk*V=DJ ziReT1%-v%xeYF?@O!QGxO5=5vBppbUW*oPQvr}a*EKlosS43;QO-min;x>(ycjA7} zZ|_YsJ~M^`Fwbv~%Ad77guNBN9AjiddWw61yHK2CcOiDXk|Xx&Jf-}P5ff%HB;M62 zP@!kD{0nL2%HY)^L>?-D{1_I8g%xB4%!Dn%Y31GPbfVJ*yr*9yPeqi#xCP&>*nf#JJNW%J5ESW zO?JSZq;Pd~fNhtLZ&{06_(3_pvso}j=)Ed6zQp%(`qV>S{62#jK_?1@M$FU)k@Nww z^UdpOTVofM!C5KQOwN|KR1E>01q`9}A7@{|G3$={FRT16Xn@sk><|I%aX|?oSBNJanzuCuvSEk9J7s#;y|26C!7UR!>@4G!qLmQSfT4$N{F^q zzBknEGmhQ|lCNnee6}}>K*bwlyOBsAqiUn8+@0gDi2J}S$(SY z=<~?S(S;HOAOE|JSu?t1d*yQHDDWoMt;#*!AJ>2uWevc~LN_GE4x5ZFm_GB5AN}aZ zTa3CV{C9&0m<_@1*wy7%7lU2$GSlOD?M{Wt4po~o%oHy(A%Xt89DB~G^X(K5@d$~k zoh1?#m78?;X(E3;(GpkX${6k>q8Khp3oU$Z@p+AmfQPSjC(U(JDtOl{K~aQyK5tqm zh0W$$)|7faY&QFBv31Xey$HN~@2jPeZqHjKu;fH>GenD88wU)UIwPfS4r5`V`U~>K^OMOij%}=*^ZOOD)0=~A`+Iwsl8}&pBpfotE1Enk0blG!a6Tn-`)6ux%7V+q>@-oa|dS{|*R0ub( zH~<;%@h`3BMCUQ&tfwF?`fscM=nV|OWr@oIvG?&2`9~agR~9ox&B~NraKwIY2|O1% zj1L1+#h-@%$N~vgEPvKJpO{bK&b)wHpP8?=B9hVo+`)W{?5WX_q1acCzYpnuZTR{+ zb@OiW`di3(Igd$MPtWVTaBJUfFH$;$X{De>xA?abAZe zO-ndYXuu1!9$=Mb@Fd7VmG_XTt2e7E?8<1v3E8?gge*G;69c}lf2JP7E&fCH#QE#L z%AVMmnE!wF^nY~1{b>kVyb(z&AXy8NNPSX|25;`OmW}?Xt6|?iG8OJ@V>LPHTgmFu zNUQzR|7^l0^)ab+slHPtiyBncQyJ`b_7y|q7=(egYq;U=~ZK@F=8<8CF zisA((CZY|23j+&9v>+FZ@R7PnbLF(EcxLZBZc}c!aV{{Ook>DT)5tANt=r=f2j-`q zV_cugp&gAQ%mnZmlvB2-p_QSyCh4p1FwLT zQ3iRm4DLGK^Nid3YKlYZ~-U{7%CO;Q@3>s3uNk5d0C=OF%x z|66@#q3=EY=e~RT_*Xb7@z1f?+tTzLLGp`f>`&6rJOcqS#Cs$#z7Nw{)-m^d_?u*? zr>HV<8a({WnVTr8Fxj`EVa&8OVtZUICZrjF0CfxXDzDTLr+>bv+8ri5GN0+l`{;IZ z$pG{hi^X1H$&&ero)&zhuR7WpMaH-t#fSucy?Ym(N|Ccm{zL5jUB(a&H-h%1(b#Cn z$$YmU1`^_z2tXIM(>{`=1!i^0?uajF$UoYFiJ8y{c3}L{NXqaR%6ZQF(9R*cWw*QC z7o?6MOSyQ#ecd2y;q&)->U@o4TmZswvWHvC0VW~bE+l0ekHoEIkP9AJISgaOJ-DeX zo8_4k+msZAp33$;+)^K?@0V+EV@Ba`zZ`EMcI^os^XC(DpY`muU@2D#9>vGb3Kq8DpI zILXtiv&GizIIoI1d3lu(PjmFG5ZP<1a7&yHQT@mW>X4^EDY~dbu`r3!O(rXpOY_gKK{G%AmrM2EC*y0U0ARPoq6|}ZS$8S>a}Mfx9B;b_ zf|4i}^|?JIu7TUPpXxOdY>K-7`J5Dh8759&SuD&lnlcbA{f0Gm05|m1b`GFeIj#`4 zAw*Y5pU+6@0a)FrDz{i+gP=U&`T$)Z_+cp#(m1@zaVn4NU-XnsdDz6aEGx3K1EU<&9aV)vur57b$X z$c>T(EZiB2yDo_~Dqv=b$mx)h9)x6jgy)Ue?)uJAPbndur9D$gML|1nd<%KE-t76m z0ho-t^nf~uzt#>Wx(t8*zAyg(ssLLr)Uv(I>RyygRmReE zx*}nst5rREwW2~fKpEi5^@U$(L@wwDLuUL8jt-;n{j!c?pp1OK^%eduff(7-XOEBt zdsGSPYclC$HF2meGx%L{!m1aEOZCw&t7g!S9yi21y{ za96Hhc8G*S)maLvD3DYudKU#gZzImvUT^=jgAPyAS*66*xd#(pPX!M!Q6S|BYK$e~ zB_LCEfB}nifY&PxG{4SfN_1we9qvSrdv}BXC3ZnY$`Dq}Pt^3%NTupuRv5*Fsux9B z5IH00{JfIv#4=|S?Qpd_i9=hd)NBJ(d0$O`&Hca&HQM~^tVzxh2c!RdT^{OT$17g< z_IEU3^jn2u>p?`^F*ATd>HO&%ljIqT?Q&%ELd8#mOcTnp$%&EqK7ka{88n^BTMOgh zSJ=zL1u5*7&$EzKwPMD5V6nS)TaVW%OvU7(qb6UGwii5#ym_4XbsJ%sM@NdsW;hfq zX$F$yETN+z;R&z8;F$g;P@iD`K{oah0J<;@MxgHrc}@`t{_$^e$@s#O8h+%Q^L|qs zg!^|5(PzO=VrN2X;_Nd9hIAA$(*eQ8?0UT3@U{Pz@U$tAk@3I zQ3;W3sX~BC?@lm8mMy{=%B5u~lO$+_5t31zaDA@BRV7V2%SLG~|0Za{IYA&|WTzR7 zW;7-Kd^Z8D1^oe4S9hB##RHqlO7t znfQ==&gep^r_CTH9jAU)Ge}Rk=b6`n!Ln5ox|SNVl;pzo&eerqs_KYfMB8jnOlFPO zv5nDpg$9HHy0nbJr!4b0zf^r(^`eVGuq;@BF4x2Zye|dgw5!zJN;NxRtl$Kt0YKqy zj0lT`5b!y@{IH6*#^wrQQk504@vk%1y5=c1p0ac8;etv$bf5_6{Htx3IPf+v=dqF_zO+NL*Xf6vWPh?~UJ`CQ70 z@z1ONDN@oYMUf9|32jf@xi)#=2InFbV6H=XBo#Bl@-Fof#;HUY5hU%NN_#WyhAQ6K zGsLtzAHr*!a@kSHehd~ZFmd|Bi`CoK7fslimy%Q)x%>_*8l!SqBUZLOMo~Xv4=`z< zwFs8b&InZnv7<|sex%L1lINfFZx?&|3zHQWtNJ$Eg7(~6WI{kmyJIxV;URNV(=N{K z3){eGeznj2r;EC4hc(&U-0%(GyCl5Hr*bC32m7f@)Ui7KIO0NCv_XK>I4d^cyGvya zWo{U9&Oj4#?R*I5;8PT&Swnw@-GuGg6Gpvk8aC*-?&L74kPjCsZcxw5M%%G!F>dx> z7q#e8#z()nV0?C6Eou@X^DBr(D6P7TGF-h*#uAZp@yHi;YCy?TwGh$u`~r#YuB8?G*k)aD>Im%FOa-RC+qR=KeaInPt9nZEq{%_l)~7= z{2ZoRIw(~p(Wx!2BSDOW>CDu|-rnBTj$!1`a!^#~2SapIjFD7TufpL8v83JJ`Z777 z$nyF{ga4RW-?kxn&qA8=?n0A<1mj`is(6FUMofp-z!Y|p#~IDO7=s9^l1-6IFblL%DRTh)st?m+ymhg2_wCC#~Djk-W zT*qumWnjkh@I21)=5u62d?`<(NjKr%4AVSIgFf$ATZYKEQas8zd1)e?nT&ybsBjL~ zx5Q@8)GX^tG$VWS*wAF4AAF=_VJtaT`C@RbG59xzURgL{P~6x9k+cINbr{X}i@c>a zFPg^WE+hX#0f#|u-H6~hVmmga1+CExhQ`&2?@b&86Kv*Zw%Qcm>DZV@m@q>bpW7%c z5J-rV3d4U7J$K>IDmgWjs$VQ)D`!w;WI9z5CDJkYGi`E--}itTj2YR&uwfX^O=07soe-zvfX&D!94Boz!IDogTEqjvUu*0rFP$L zCXG_QXx_4uiTe5k2QyQj0b2TL>S*9yxUOh5D3>_MrpI z!Qfs@P1lXJ-Zc%?s<_pM69CX`0H{EjWJ_VH-Txs?fP_l4A`e<*Q{~Ivv159QtjfNp zpUb^YyOS!0Up{Z&w1-t=vfR7;0w+D% z!Oe87UB7*z*{w{>gRGv%!7U=sEW3SQbl=#Nl)k(waBFq&M4 z`8%NMw6E`L%{*Su! zmW(56N|{m6Lh>%uDqbVwQ42QntGGn3M#@>~He<0Gt$=U$K&JIWw5+MIo|j#GXVC(q zN+oTi%n&^^W?s%t)naPZArGW4&(}6L+K_#}WwPajSWfAfJXe!t-Fh=B`K~`Q%!#=8 z)4jvf8!}NUsw*UB?tNYCn}n zoq&efW4kmA?gX+akO|Ylb!s1VBW!Cww`|q^5a32|YEe&IY=zV*A08_mpf?75e>d=v zfLBBh`J$V^@@VR^R+90p>!i4E}VqidH9i7nrA zwpVoL9hK=?*pYglY$p<wmZZDYy9nVtJOSP^~knqW{hgQ{=GV)e!AxB%<-K&z0SeAc2N#mvMJnvTO# zeVP2|e7V2-#`PKPt-k~J_eLN8`#$mq=r0{U&wmPcSpS=F=NB8(|3iH&Y05ZlvcvVf zXq0h$5QP9q2FPadH7ztPoDti2OD~8l$9P#%bRVx^?uwu^>uyM8Oq-y@s*`~2-|dm+ zo#jGP(Eb=0CH=T|yy;wjC-f4Q-qe&*G6Iztpr|-Ibo69)vG^CAt7_KrwU75E z`o;gt``F_S2%qseIeVkVbOa`$%VqrdMTf%>e8^@j!;jNAKtyLLtKt(RUv)0*h(4P6 zIJ!A&d?8-NFQHws-s8#ZDT1d4nkJAp9-8PWl{}QmemGc^ZcLNB7A6FL?E#BG^SBS_ z4ctAJ1Fn+HfRZNYZ$f6pwI1qyb{vZo6&syF>+@ubGG=}{dlVRM#9==_3VI#=2tLyp z>jn1es6kMj3O6`AhG%|fGNa=c>Q!S-$7%sI_0VzO%RyMZ|KTs^zup|;-6ERW9K7@K%oEb>Yt zmaRDd4ALQ%w3IQd5EWJXtfILD723E$<|QD?QGueNFyswUB(x}-G{JAmK-UqCr?)@M zq%~lMVQAg{PL)xY!SSVP(+8^*v>O-*;Vb24SUv@22d1Z|3(ayr^29UTj8}pQgiAA0 zB!H78J6woa`AJv?Km_4p=Ei_EFDg^-_4#PPoAy#l8aEwRV4w6bdvNs^1EWAFuNcG! zyA!<#qAJLDaL+-(Xl|rNldQQg`pLjm6o5zz7kA(mlXGG97rTW&8yf`cIhtd`rc-7@ zNMB>!f6JY_R6|u+R>N!UPwVO6I@6Ije+|5Ty--_KH~L0=i}#1~PK&a5T1n*&<}xxR z2g%&TEP6H1nTVsxgoYUGVx_Y{;8`h~_uHpKSACvG>c+0IMQ}s5*h~wf0v|!LahOi} z7yG#9g=xg-gcCfXQ$+6e?cp)W^OV?w@)hQ75_`{Zp&TLC`adSaQztwmLMlXY%Nsob zeab;Syt8%WY5$5!k+;H-axsv%uL>(oxi8OQF0gR(n=QYvNA{kN2{@z^5|3 zn3}s=;yZLS!$0QlME*KKvDo~BC2OR5Hfcnx!?X76F;#??4MDIvtZ*or;-cvceKJG2 zea2q42Bw%_*&dwLyh#Gab6)^K69R*<9yTX|Xf46_1Ss1THR-c?s)%X#A%z{8W_jl9 zo8lh0v5`=}=4X%ZDjN-%v1z~M(X6WwvC6H#g%Pe<&=S<2fbh1`@~_PvC#)kgQXt6# z3MX;eHjR^KczLXnm$$FgJ%eJSVZG1pwV`5FEQOx#sJIK+D2unlyS0=?VsXgqqZtY0 z4R1$x7p_k{l@@xEnVs0j(HT)M`tPcgW+0!o9G|aaK=gsL`G4vX9RE$1U}0ur`@buI zEuDYgPq~nL9%v(US{1Q*`e(LEhDhl1x{0R@$x}d^#hmu*eEoLhUy*%^8)>{e(@N%K zD`{A=eS!||hA?Xu7%5#69u>0jW_>;0-vG`}3hy5aXNbA-y3- zFzl{g>f=xc0V<^|+Qi*0F+3&m@%qim(sH@-{5p9b=Vl$4_k1FtXS8|)57^m0<8HG< zw5YYtJ_6fp8P^r1%hYZOHU0ph75zEP9^8$68S4qReb%h&5(la7Lp6i~9$GXY1U!1= zU^k>cS_K}|g(^4C+9{q>-opyA2c674N_XRSzYko0FTlbueA;&54$VhWY!_l6dG)8R z&f5-09XQOKEnpfhG&j!h+rsOXH^+8!Qgy?#G%0@9wC6svJ}a}gcVUvxZg17_#u8`< z7D|-oCZhuXO)pa=!79{DY)DbWEQ^#M95Yu3EmP2Rn^()CY7Letr8u)V_fG+4{1Ylx zW7Fy^dM)K5BY%}oN9rT)Klm%fGg_v3(&-XCf7+@t<#9_Ow^?4N@cwu6TQR!Pccihw zde|l;E%I{upht0zDN5&N7!Ugni?Y3gU>_aHI#&m%nCKEpzX9-Cfwi5|G%PeR5xl$z z|DPYtKd@OBY97G)79YJ$6?Pilmid1@ zhG0w6>dwP;`L(Mv+%dkL(zaBTOvAuC(|8|s}H#0 zHU0AF+RmL{EjEQss0*i1)K$^8NERcg)N-;8=eef1jvdQ?SN2q8Oe3G{zMC#ee&7G# z;}Ojn$xc%_u8V|}YSPEE5(O&k0VW9Ja0NuVz6_OyH2wrzavY1_7K z+qP}nwr$(iw2eFeUHv!WEY6}o8?Lx=|t2}(3R!2c*$*>&_ zop6mw`Axst)I$ZQm;&%EB`5NzXXWX2a+78f*>qG)5n*FtnVzMP(iwcu9z{c8XZm%q zcXl*)Irj|i92+3c(Si3SEctAG{78jN(0U3{rQ_gIl0UXY7dlZ6l#2BgPr1C_gJ5@_ zxtnK6Z%^&fD=i}L0fJP|d!=6)P0zSNc(@Rtj~4^Z&Yu~MMTK{bUH0TYCx|W%6*g?{ zHa$ikN&Hp*KWvRul!RpfLxs%g8CQ~1byAx*h(3qNiWn}QHcMJN%r#fU*lPIsH6l9^Ro=im7o7WT{ee?WmG%51N z<;Y|W9F=vW?fk+#v3uY=YGSI)UMHQ5k;HCNp}6jax@5o>od~sv(8W z9PG)>fYh1*;1`*DlCbUC`S9AM|4Zh%3oZp!;cP06>Ud` zo4FVm%%WZjkgjl7Qvg$vCJruBSUhkWxfk=MkoFXu-=fz>QUZ2F+P3yN0fUl?lbT;% zGFSb0x|RAZc5uvrm8iewQ=y10&Q=FnMqSoU>)X#mV3sQa!^?+|EC?|^GK=lD;f&a{~KjNe) zatohq&S?$m$hc#k^Bgj9Sy)Sfl8x>z96Uhj$n3ButaB@eSr;DNWn===VfpeRhb_sU zp5jgU3^V7qKaJvG1WkEimv)A*`7E*8}Vt$h0)D;4K^gMz>KZUk?k#fZp zL(s@~Gg<@^m~Ob^GuopR#%D)hkE_5(BW@HRZLwP|Gr}+a=1qhv)yPy8kofQA3PF40 zuLd$f(>fkl2rgvthis9!^?!fX7QBruLmC27zeBD__puY#RVg=YF83L3w&z=b)ur1N zQUk*c;Y+m`+Su2gxPKB8y)1NEzMsk7ia2ni|4IqDbV`ObJZcXtj+nxR)CUVAsmEXw+} zGGvlaQb=tDK;5!q7tIa_d>2NzB_5TO4B`|=Yett+>c@{pg;7Bs&6BOzMah=aj6&#! z$(Vr}Qj%==+KZn$%;%3pNwSDu$bFDnwcc;47iK(Ozj>{StM2}?aafTf)`@L&o1gsX zqNjEX{RC@o1N%OW1PVGHR5dQzvj`JF_{48m&7v&5+ZwfAB^t|!BYTc~hQ~N7vZ7kg z{KuouD~iO+ETF@f_hTm?L2h|8Hc-898hd2MImcEw62Bt zukM11%2OUsD);j}zJZvjtsa0Hw7>noREQ(Fn)kxG-w2dy8*ghg*nH{Lv( zX&yQkozAcc1B*`5l8vk0l!St1`;Tp{&MxjQ1$>s;v#2LZM$R!5LJw@;gO?18a-F8s zjXFXa4BX9$3_LSZEV(w~)LQQyqU9*083lN?m+J>hf9-CFo2?IP>#5qcH0{qiA<_>+ z<4y)OWj6O>@OGg6bZ1R{^3UuNA0lYsXg}{o_IM-W+SQDhTm%JhiK%fKwo zL8v1lV9Tp_wca3RY@Zz0d|86D{XX?$^?3zUUfM@AZ}(%aW0oAM7>0ENy;;_~FnRFr zt#XLUMIZcQk75+z1oFY1nMgoW5uBC|Ckm6yQq5yR_6&E~!Y4V~RmhBk6R?(7l}di@ z>vvz+H-t8>I(nC#;`VsUxUNLx=2hlw76M-znX07nye=3PlV!n&Fyhwc=ho&wm2A|0 zFY8xsB8uQ0K)opm=)Tl){9cxGNRs6$54(ZsZYOfWOpIIk^TC?0L2u(LFB*YD{HL~A zD}ETr`wpcpxv}rsSPm$3+z=XAz%%-J8A|f~ZG|6ikj@{KEv>gc8fsULw5z zwJc;X-hf`fEF<<&F+J0f4vjj;{H!^WIINhe1@q=f9-?ykZmUeD21ZDX16%?0KFZFY-?rZY&Dry#V0JwQxkIg3cL>_91gr;pIKD_Jq^=WL9pPZb@yG3qNSMyx(n;ukv_ov^RYO6x#-*|s&Kt@Kt>hEnp$^WtUUUAE>ej{emc2hTHM z%_YYn<@KDwr%krUij`P}D|ds&Gj{ST$CC&0L0!xhDSyR?nYsZ^!CS>FSpTs0tr96m zY+WdkoqB#jig)Q5v^+_lIrPd8LWjEwQ&oj`h=V$-Rpi=U=5mw^CzANajwZv`A-=+t zo*!b8<2R$7xVBbSr93{gEeJiI87zVhBXj8vD>4?%rPYf9t zXW813QpYQ)pf(_ohm%ot0*m3sRfm}7RH*1C+;TSCM+JJgecf0T=yskn2T2--yJ9%k z>?hh|I*n8M;tAx>jtvjp-DAAfwH7m^N;pK@u}|aV@$O|zvS&X!3CGR1b4Ze{ZP>aF z*MgOdBy)sxY#{OZF_>v?c(U@j&5n)JNahg6cv2c~>6K!o)$VI83;kkLM-z{nJK6^U zzgwgrwA(O-%BTO4j5YFG^USZVSr=b!mDD=d((G%_&@KU<<>H4bIP|U}F{POBZrQAn zDgk-NBcPR_0djava%aial?jWO>$H4q!T(^qelvy$Z*y%c+V~YB@GdC9P%ac%2((`& zyFQ`p*GIUvD=59?Sw}BPiEI;qsO@8MEVhRtt?Me(>$@P}oqX%vLt!lESoHp*P7D!) zm8_PK$E*kkp#;`;409XR)me_-h+!a=+hCWZItt$wn(@>tyjE6hS z^ZW$CQMYyZtxu_Lb`*#X@jX68omyUR9d!x2Mk}{skffX|j=rA?j->mejVcpS!`KZ6 zq^VO@St;u8z(0O7)5Oo*=L~{gE-@|`I_#fyK1Ke7UO4NUBPEy5<%?`VGoHn!=-9bw z={0z3OCw5FCDdz_8EK^@3CYN-pcUbE2#&-wvxv1fFvX(&4wcsUDrCfT$|Xk`oO`&u zf#nze5*zmix4*6y#DZ8EYEi<)@G|hR(KluXi{x7e&H0hMKx#|nY%{Uyy3m^uSZpv@ zhLmwKYhsXWZpLN2PGq#}c&M_&)l6GYb(<^zt(CQiaMK!NC=Cs%LQqEHdGz^Rp(=5vW9|wLW1VPR3?JCak@udK2;A@W&hvjf z=ZSg-lVp%9XZeK!vX>{WEDS5Fe1DO14kRsFiWB){(zOlY` zND@}ZlJrdEQ=Q~x_mE8oGiG*zL48^i(KKJ#{1xqKIQ)L}u;R6t2mDn?{mTMYr+M+o zySqe?)Ug?8-t-U(nFSsobNgP%)yeCqF^VJ zQqXxRPd?4KH2@G#&7w6BSVap(P1Yf@YSCBLmZMloha4Hyk? z!4gd>E^}SKMnj-9^l43QM~h=nSEB_dsB~xCD$;6O5HWjRWIAni#HK-1#DGN_XkmLd z{J4Dp%If=0ni#6U+49W)#B4jG4OlL8FEs+~K7N-cJBwITfcHhmI%1=7c$b}(g>u&T zSOMs)%!ie)L`D4Wv~f)|Z$WHJn3Ou0-VZiS!EHZ|y4eNei_x%O;j0Z|-<_n-M=@{a zNu#Np#2abO8Zcce`w6ENB5~}k{B^8@1KL0G+V>7Ri)+b>u?N*oB&fDw90OgBEs{fV zhkgDooO@(v)A^UEB_@{%*$p(t2gAu-#+&R!Y8pT+fT*P@vjS~sSw%8_aFE^>3)9(k zFIAZ*p1_ok7Sn5{F^tB8QK$zb{9T3bXVm|^b|E~%k(9Vlxd?`eGXh&fU%l%v;EtCI znh-W-hgSz1u;J5uiBQX@1S;*;i9i2DiCPS6fsg+g6oV<`QF>03;p~4nFF5|$T>Rl4 zaD}jRKfnlY1ZR?pM20+2B#-&=Y;I<*QxAjs_BjhBM(FwF?gA!Q4`Ky&I1)5`7R$@f z1bRDf@a^pskc5L+c9oS-d5yCNbkc-w71r_EkvH!=IM2&Oz?mSnXMe)4W0Fp1H-JSe z4e}?39ew;EG_+CK^0YiI8wG{ar{VCI80NVR`yv(aAIST>+6e-TB5Lyo67Ahuv|}}X zW(_E(hX2n9Y5h+*$EfS z74Kyln6A+bONB{H(agtfi`c`s*py~Q0(zXpB8dtOAu%{wdPOfrxf&mq=;`xitPlaX zbxoC?kWD&6tr48!uh z!{*F$ao`u>o5YV9C0}nN=2IXx7Z#Xcg^jh;c>ZnOr?Hd2iF-hV%d4VnjkX#@z*X<- z){}_bK0w$~&!Y}T`EREqK+(yto`YpgC{~mY!SYWt&0F)U>yXF%K-Uc*_2z%eRULeo zbTN?#Yl;(EJS$nNvfCxs%Td}iFU+WDqQ6#F-6YDkmlPvBsz%pp{3)=k+gB+(tpW5^ z%T<}RJxA1U^8tt4Ik5q2X46yO`JEGwh(KNKH$a9-R$+gNnC_a! z4hnd>Q8H!D(M7DCUge}TctYeX4PQ`6CM&3P z=iY|YfH5S1+r;hM+-u({p9Q@zHWb9cJ&0ZO#%pDL=0SD;&Ttlkf%fqb%Ze2`@OLy~0>wd(0Q7aj&isy*<+bsLmd8>`5=soFX1vmZ*R_1??*dqHF9+0jUeG?vkpm*Jw ztXm0CX9F?9gC{`%UwyphZxp^LYlaO(wcbVHSqYTaDWsi{*FfKTt(l`mzwBwP+Hb$J`div$Xw{O@;9wM8#lkG9RWG7NGPu zHP~`{Bb2u_%deYrol`qA%N?k)hx$S)ksJx0N$~WodFf_WBw%;s>7_nk`^wVZJenTk z4EAOxI?d;<4eddfPPi+Y*Tm-P7RV!PqlSKF{x_9F?`^(c>o!zlSo!`ES-H0Q{W6wR zh+EYB;w_iU78>HRbPr;CVM{lQ<4()nLqv0WV%y~40mJ#+v?LOEU*nS8@DxzVTjMX5 zi4LTJfBTO*{Vrb7BMZ(#jDruhc8VpuF=f5rf(2VuX)_R|NX=@7%o+X;#kT>oJb$1Q zZS8R1mj)!(JpzbIx6Y7b0JN=ByL?!GVSBG=ub4CFl>9>@HpB@8R>7Ht$6l`!tl=U> zpD_sWlienO3X51X5Lrz?LNZ+gYDiBw{|4%vaDGhb*FBdc_~24zC8L$GOm3v#@et@| zB6rK^3NR$p?qxXc&pr>KE2(5W&-S#O?w&UMM(s&KBR&L;ebX3O z<~_Qku<_RY81KR}4uO%NccV9?H;t&T67X1iac6Z#U7((&aU82UyKtn@DJZv0sGnt; z{g=4c_U1~NBn#gwb$GeUy5??ay1uBN zTh{%B%?tRYN&ZPr|GvZF`m(v6C@t3y)+A}luIZ;rreRmSYU&(cxWlh`4BQ{9Nml}5 zWdkpyE*$p`(nEpJMNc(IbwN>G0Euwvqkh}2yd*Dj$=zC9WtuMhm^m68T5w+a#8Dqu zbTrB>lSFr!^lZc|tM~*_8nzY@DfZ2STw_=+j2&y~QX^N0swcFiSk_rEM{kFIM|Dp_n|m5}J~;Fvy2meOa-XS~T&EmweLQaQQ$~*gVo3ulMcYYa(ak zfqi_4Dwt(2&Fj2-yEQ18BD*0Om}}*`41r#EcC4-u(H&7ung_Lh0n;{T5H4vsTs`c1 zv8W#yLv&2?rM80Lselkad}ej8aau4-^wSlw1s^{}-IVlLNHGygdgu-1xS^`#GIkrI)64hM8mH}M$uHO~e|BNV4#%@*VHuBfE1 zE+PRZ{2XCQeAdUh1J?9^m@Ew-d%O#WeTPhOr^I0z{t|r5q|XyO{B9Edy`wcz;UCH97NL#~G11Yz`k0Yp$B#Wis-$`{`Q6_aJ zoZJHkJwdA&Cn>3Z$6*qB`B zo+_#N$ZuGRp<&09^WZ%hUfm{l=6A40?A{66;-x40m!~TQO_SpenAmtAhf-6PfwX+) zUHdYgfea9k-9wk~d-+#F3&b3;M`5%AT^&cF(hCuZh9$8V*p`HYKxOREv$_eY0SVt=AxdL@I|=M*%!8CEZI{8i-7wV)?W7ArL4!|fQ} zRv&A4#4rjkQ6USsez+%r^g-oLFv40`!pn3bvI?{2NCQgBL9KK#g`Tu(Qy2X!GA@ww zV%jl`5MnJ=lJ#K@N26?G&{?zZ3D=1V^s&Z6FvI3DDlEs0Hj~8@P;9q6=GW*0tw}uD zSPGfWi_2OP^pr7Sf+RYlshJKb(!GyqFZCoT88O{aaP~b0YA{0xn`Rq7Vh+hg=bguk zV79xF;itoQOh8fRT?8XJp$#hZG|b&2eAU)l)%_lRnw>T-EatrtTwVdfP4t$-(fYjIdXLsYq%j9J>uQp4{-9NRI9Gnx8CcC!|(^Oj48 zqH2l(?lf_W(Ry6G)EEY~(Kv;H^B`&xm$1>Gy%r{^tt4ScifHlxwPDA!W%^M|3EMXr z?Em*f8F)qpq^qETDcx%BRJJF@A#m(-4pn(+L~#A&?^F{@K{6cLYQT17WMh2&GN)It zQ!I++00o*)1{_45e@f*@cH1nt6ma%bFK1r^bsR$bPD1@Hb-Y0a(`$AT) z@G&T0?Up_4Rv=)@^a5$bvP=q?65p&}LBQ`-p>JH)ixTq0JwcJRCjI;2yX!K)owC6Lc%@ALS=d0(z=>F)+s z>7F-AilEXFLx&TA*owvH-29=cRZlxgPK}L2x-eKA-huF@>K8Nel zFPKnOv+47#7wKhmmyhhkwIQwBRB1|hFdmjl1-~uDI&U6Zk7ubA=`{R*b6+@w86Lmm z=|~{|2y4sLCmc%^Dvq}h#CrCL!>b2hQt!7xYtBfyD1#r%5&Lt2nQEib7HLx z_?_yY2X#OM+iGQDy9mgQAc#-RHWyLa_{yN^PKfyObG2H7&4#&tAEH07nNE_kBwL!t z>x{dNP#C|av2Lv!nDdK>@740UXhdn}RY`bGDSs>${FgWnYtgi@@8iy&)EZmG8vKrz zlM_N21tmn_`XwN8fR=IjV$Y9x@-~^oksa9?U#w?KSF9$8>r*R1$;^E>;cYT!ovT-Cy9Bxt+4x8>@h;@gq=9_p(O6+^j&RS>ri|PLsI0AzdUvn;A71(*5rV zHRcf?z&5F;!iXXJBkylo?C{%gMSMnSkpXF5>*HvW{B|FFO-RHDl?3TqXQnf$- z>RL=p-;1g5=i~Mwrq}MgN^Lab2h-*Bw!gTv($di|nt;|-MZylcZ+Y{?)ue{p0nyhB zL6#i4Qw;!<#w75Efu-F@JN;8e?o4pf2U_rt`zhQP0p?U&tNzMB@H5-ugFh)b4We@j zx`wZ(PMc#jev_qY2=BJObJ5|^`#}8k5w&LvlF{leTwwah48&SwUmHpwqYy5y(%u7` zAO0gq$|_o*zNzda*ksnHlZrfE107|x+ybR+mUY(55FK#jUx6kr49rDb_|Nd++`!}0 z!@U#TD6VZ{Q8>HOJywZ)buJi764PwhY{rfhtIYNkj^Mhi==H^PW^WgR-l_3%)p?9V zMf3GS_?TR9cpo_1P?|k{+*KRhD?5k1VUp#7Z-2Q#;kC z%}k><7sn(;PgzUqmLzRH`t2$<^u|JkM)WpwGnY+1iK+!cSwyR6z_}HU^-~JAErOs;S`oSX1 z!d_gOGIDGMT06M7MR#f4o8RopIG(l{8m;8UL>bERC#;#8>!6lkM=^7iaVs{oD>iXQ z=05uHHQitS477)MJk(T&s|BH>$7Yq({d_T_YLnE4P#ZoPsKzF&S#e#;JnCzo-^<-n zbC&JhTf1v3y2i@MqTZc}NNNr%GgPn4T8Y%0J=^;~Hk_p8d6duR3oKj=6B*}g_@_#IzQ<(J?FoJ1HoRYmdM--Fg<6GXjz^jYR#&Egr=RfJtVL&)JlEXio?=0l zvmNfdU$3ECmgCQw?CXJlox^3kNnXMR7}*q1t6zK>e~O@%#RdS5#468svl3TyZn9F=p+s}0S6`f+c)Qk?<7_$nHa1{%bWJ3 zM9n&f-bew{$xpMp+27BZKfr?3$BO?+0kQoz3W$Y)gW>-uAT7y6oc|r;l(OkO#>xN_ zk82WDv{!IZ0Fa{M9!WUNnRV0QJIvva*&@6G;cs81?<`BCTo1`lyRc`H@c(|j)x+Px zU;4A)d$H&DO^@*RTTqp6p_dQ;`}O_y*i`~o4y?5ME_5~amn9fyUT>@hG^sycug~kL zxCG2wF3hQK@AqZDdVXIBKko7AZD5jye5NQR+}FXOI`AB*Ga&Rel9#V8!Dn~AnG;_c zveZlT@Xf3^LY33SVWojPe6{_sKG&`GDc{~}vMc&)d_kvl{0`TdkjaTXv$ecbY$bKq zpA!u6_neT6A5#A>givBL#H6K?xJuCO%TPSHCzN!dZmbRw4*cfT`sztn`Fq?b6h%z} zlYP)Ho!5?@hcyq0Uf!Pz4y2U!4W9~8^q_lsI82yg5P`8&t$!V}ql%lvSalH@m{(q!9vSwybrr?+$NwPCkB zJ3wxNNBi>OZpRQz?VPTUFh9%Z`wxdszlUrE(vy{)V;ZK(?<%GkpJUx6Sz7Q>!=sxg zlEK5IBVxV z|DJ+%a0eH^j&iLWl}g!noFZ2qM+}>%HY#=2Y1M~vJ81+7Rb3TxX~TUG@v&E#OAn!WI2^Y;Hf5>)T`)~FU!$8j#Y6JGR7r;oSJ7f9` z0_vs{eE`v0dS6nga}4gC`+#awrR0(H0xH%-kYF6c6c{}Z*7Tyic+rFBWb^8;xj=C# zYO5n25E|Kf@JF!I=L~c8%1AdpT21fT>0tC8D#GShpljp&1%GFN{U zrhuMJ^y+zCcXv)jCg5Fmpsb_Gm}`Te?qb)Tb(hY+hMF++3+r$?T1pF2noVlz?TWbq zUoB2l3yNAWrwlGnsb0#bx!9I^atlxi-K1SK-1W@}b_bEh0@Gzq>0K@4X1)a zhbTh(V5?KQi&Nol<|o^8!*yyPddS8$UIRfSsJn?_bq;&;Q zy5fL*NTE}8PV0?t9<7O*tyyU%V~3~eZj2!2xR4=U3C?Qs_|kmZq<=mz?_}IS%g~3& z1xRY2JhYiP=D@P96K<5Uq4civ=mV$ZDs>8vD-r4!M$X}=vp;e) z&)=K&(zYaPGanvG6$&GtfV_FxU{zsd>Z7pHE|@HiivH!cXC{CwMF_aL&`#SH%ug?p zn=x55GL$y1jluQjHiU^sc2;EsOCyqQf@41!NzM_3vJvyLp^OWu*b|pO$yKINw~Nmn z%M1|rt?i3<>Zy~rDTOq(AP(M*ECJ*=9@s$wG zx}7m=Ra51&kT39Gee~(Lr!oyqice7V>; z&EH^BSgA+CMKQQrIE5T)$7w{NfMCGm%cE8sb(%+A!nAH~OuUK{v&|?1l;ZkVspN z^`r$C%>5{H_<8~YkBUwaGdw$OTtSH#^wPi9bTFf7>>j!Ig_uQMB8C`~2)$%0YwX8= ziA(H7Yx;%gwIHAlYu-6WCPhO$Ba$hDoB$2y1D(>IPibwuVPeJJBiC5|Z?<>mg4A&F zefCHfDnWQ@cJC%x_}!udNOXbki05@r)VWF1o#g04@H_S3GUxE>dSm@zzJy{D^-}~- zD`SK;s|c*w&N2&ZhgMFyXL0N6z)0)86n6hXdFfX%K0IHD+i0zZPuOL`M`k;n^;P&K z6SA2DSD?L3{^RZx=>|;QMzDN=Zw8|}O!b`YFXd+Zz8f4nXg)8aVT5?U40SVC85-13TjQQuvJZqiL-f4Bzr&s~h z>sSFWW}; zAVxXXTQ|bTp!e)Xo7}lYct)AfKW7gEzvou)e4n`P*~=Sxaw7#GXDTm!+V77-!RYTo zOuw}xb-rGRhx{S0OPb<{emJKVhTl!ZM~HNl4?fRrq%ExanBA<>|LpV;b6<|*9`;Kn z_upNX!RB#(8>Tp&U~q}|(G+#tg0Zr!5{H3l=@FXwroS5*-E~W-6er>W(3t{*a&l;l ze$rwjxuz`bmMRrCcCeD0)K=q+n1Vrcq*1$xDeY@UlE!@3=xV-U}yzA`=` zt_iO;j#bloM>H*Odd<4_4IOfQyu5Aq=+yLS3?w^T!VlIn)CaOre|P0p7?D?j>IwNh z)P>UA#jyNw=fj`)9isqq%V<&%%Yyw!g7S=7qtqOUr-CNK9iuJ^4N1$75j5I_x!0>j zt1X^Mxvi|K?w)0w89~VdxzH>jf1cTTN(^G03bUiQQS(VRqnOp*MGI2_ssA(S$*Kf$ z3mUT!pka{?cBmy`Z;^XO3ZLA@+E7w(P4B)sTe0;B?k< zM1E(5OJ}hZOISG7X|AoIo=m0=aB4bwc7D5bc@SWab0&o5uDMXMnqbQLV_zOcXInWbmmR5cpMGS~xa2_dGG&{t2ou}fJyx97R&@)^Q;nN7p;*NrL-4M8 ziE=f9PA?ka4M7a?U{7~+|fRlB8LOD+j zbai><9wl>&j^obwze~^c$A}Zq8li-<9LxatmI5Qa3Xz zRegnQ*^N1lFD8vd-L|$CzOC#|_>|^;H2C;D3Omm3uB&w^1ZEs=L*li#6BoW|lzi6vh{G#uAF1z;38`PEpMDLCWi zRZ`16B*CJX5>W9?yGyzgDk~J-PGE(5R+ZTb!1~Ugi}6-D@nif=AD`8(AINTYV__ z6FZ=(9&ikSb3n`8j5Oo7^NG~P;<}b48hXiM;zw!$bE$AXvn<|54tr))8M)5bS6AC& zjD;vdD)wC|c%MI|*c5!unnuErN+zjh2F|)GH9B3h;IyRt_TjOH9e%;DrsLxW(#jrG zqQ@Ad0c6LlJAG=Qnr2mT3<7L@z4-WUQK`Gd7I9j{P*n*WHBby%iCrOw=BRwJNA#|d!Y~_ zSTnV?GmN3GQb*=^p5dF`d2m=_c#1HBGBF1j}PfpCrC=@ZZ= z1D;D!A&XX;+PA43Uc$qgYKoeWL0a@c-5BJA*A)8LZvFQ<1-LdR?Jo~mr+jcPH;bpW zii^*P$6?*;Z@$IS;qX^F!@&xgUvEmPO%v{&E;W^0?5VOZE|r**Pu`TP><}`H~P|e^|~oup}WUzhYtDCjI9F2luek%s4_gG4O6t)w>+@31vj1zZ#NlBuR}Xa z9@eo|_|;UnPlSFrZ5*u6kCgdCLmk5le@2#9CT2^2kz@+-V)pVwLIw0BEl(V8nb{tq zH)yDUe+j%Avt2n;|DIieNfOD3wzy0UW}@^8ZQ%=#Z4i7{*LMD8UA4;@U^sY$;q*l_ zB$z95c5hPN%Q!pY-R#v$qizJhK+2M{p=6a)^PG&}k_!;GU9OETs?73-?+gs%?j;;i z{J2(RKaz^qMO^wkr08TXQut`VEjFHQ1=D&crQeDEt3q0&XDwf9&i#8vqcj(x=?<;R z%h~pN1YQc8+O2cenb5&X&54H(_OSoo#J{g;>+J5oxsFO<9gf<5k`2|IClcqrp(1%d>_dcW)__{)%NvL3%_DyIv8f~BaK$DZi zpynJMXwT}AcR&$+f!<+wJi}NN$0y>|;z+N*^xwpIYJ8G^Bi>e?e_skWjS;Uu zYf4`Nq{eT+yvc^CI z)-=}g4pm@j=!BP=g43w!?t-eUV)n%a4C*q^4m{vV=0#4x!uywIh#+0d&%1ub-Cn`+ z1;uLYth4bF%}@!#(%Xt8^&8waV>Xs=@1xB9GkJ%GRHM&$0mnjdt)#9wQ%IO3{L$uW zXz$OBZ=NFB*MG7N0RN3`z|6|)Pt%&~^9{+3uh7hvI;nXe-e&{P80I455 zL;(&9m&RZy&gZZDO+_!1Oru6qkLJv1qfMQuM;82HgZhigU*50RdGHC}%D;X+=5lj? zX6E?h_x9rL_;PstBr5!(4p_wd+8;dpgGpSZs(>5w|7?SQ?|vR+ByfvZzQ4_qO8(U_ z7tAT;=W7#q`NYjpyOWt(nqN45M%Yi{eOdq2@-_xdEk5{jb6?w^Kf0n)c(uQm9sz&?!#e*&5u0w2%AYt{rt(0E(Ia1^$7%9udyxHJO0LSJP{<*m;P!|5;lO`oT0 zdB8W0c-O?0 zUWy>Pb6?7M6x?zu=gLgo>Tux1G#V4;>$=0iMaw5WSBLtBV-GzD-R%R^{&it&`yd`n zVHbo)kO$AZh&#Lrc(&}RGsG_A38okR-I`<3=4$D1pXI!fhylEn^i4jv>4EHvGRWGLUPT$q~CcJf^Yi9S!TYdi~Nxh)p?L&x8n#J87$ zgXD7{q9#9Qqtr!zYgpjh%Pc+~v%&tfVwZTPC+>i%Nar0{wR|dfrPW|sRE?i>b*mHJj?+m{dJ3QHe}#&uU4 z#exw?+Ly7zFlNl(4if9GRK{<&q`DUbjGoh)T!Id79M@81zIm`J<${5}GuXTC&q9#J zUZYX2eYyu}_b{jwCB_4W>GjG4xKOzQFA!~9a0q^*rft>pRbVPo#OJ{t95Si{ zXqD(t?uVMnZbKh1n7ekjXGx%xd8jehn$6aWnd;FSP*m&k^D^Po;z-1W90>irWY#I# zZhz!WPo*%SX?#7Mt7v)eF@6;XX!z3E<`x0|Fec-P5Q>6SwxngrV`&h31VRpH<&wvG zlh$D_bA^(hXco-yJw$UJTvT+bLhn*yqv+M|ojULKNzdf`Z4>NN%8X3MCGg}R>e|<@ z9a`z0bfjG5t~r#&;HpL;wU3sW1+=UXjC;I{ZF3vy0A|piUOqbdPTNl5b)QUWr0-1Q z>BbeC z%ew+8ge6Qjk*{2W#rD}@oN&SaX9a%vm#0=2`zD6;bF3v7+BN40ssq+3EtjF=DQ&b< zjm^jb=z%+w=TqS0x1Qj^m6l9cuM-{n+$_-on9o=fmx(PbIoX|4wAx^qd23%>^1xZ2 z9J4T6xR^OsF-tSV!c0|^ZUEP~z*sc{N_V!JJ2;vAp)Tfi=8k&9UU4Q+Y12!Npx zwwBaQOymA+^s4k;nLXt>cYq>_H+rf)iy&( zD@P=X&fkNk$Edh9I2@V7BAq}RdkGTyv>{_i#9hKrSG=9=p(wp{^6_br;Q(A^JI}4{ zGpqwaA5-O-J2gva63YCk{V)#ltS6EoOoE=w0%>s_C5FVfDLwf$j%A*$l!kr|X^Mvq zF^Sl!>EygM3-;R0MVOgep)Z_d*Z{jYHmHu`hkGn4Gdo6SNW2`JV|RA!D75`Oji}KA z2ge^{47dW15?>ufo?b}X9Aw}RV!L0qJ3Clh==qQjXEYy?j0hlsP9@??F;rn@f3}r! ztB6%IB_78t>Rq#5sOF1E@b67wCxwT@kK4&6#XI8z`J^lRRe(rM6(D}fohL2YEXKfo zH}NCjNT(Gbpy(L172JE28c6EehNi#gbPg~vE1OpX-9r)n`s1vn4j_6?*$eD+PgD`J zSds+4h%IGO=;>!1S#@B;1C(cEQ7{3@*Egq_e(MD5g%Om~Y^>^~UuG=Gml%$?9CEP| zXU7HJiNr=pfAA&xl8T|JhS%|Ib=Qg8mSFR9j=^Y1+;($rRC6P#eP#V9jE$zwjvlY4 ze-w_|A^N-LO-GZ`qua$S1aRm0UD`25l{-oSYO95q1+WpvtQ85Mq(DOyY6zmYTC)J? z$8e&$KraAvWD&ndkgO`tj|VNG^7whWN22%3D9a-!ip%M}(&V9YdE^_2LvF3ArnVs5 z`u+&}a2M2ob&U#k0p#aV(<-OzK*3`K!Ku7oL|^K}=j7IUbP>4a@P(*O2CXset;>Wk zy*XB#kSNWk$jLz0*^+mlLY9pO?;lyJ@{1IeL}aNT)sH-_??3^0?&6M^`eJ6+t!c&H z5k;@mrU#Y+&ARRfo}tN@3wk* z9w@wdTHXyyuYo7UgowoeqJIY|qSN>dCV92v*tU#1@#fR#wyA{>lhmu_4hjb@Q`TC* z&Qz4(+(1I_-(2~=S5m61k%2v_+B;8X{IQnk{osSW%@xF%&dUwro{7v zu=8?dAMJJ*jd>mL(r7%#rtE-4S!Fv?VEXZ-PL#9&v!ZBg8(gCvPx!1Oq(1VpvMTiF z>l)9FcGB}E5`|Y^)>a(~kh4s4u|wT|yI_Xt8Vvq2mPB4R`_U)u-wDF1Gn&UV>yBY+=e6v18z zX+m1Hi{XYQ4WwIz>j?~@2|Jd!&1$_W2}}Bhp`J1}$K1~rosl>}b8U!uKpCEGt=g&< z%-)pS6QaLIe@74z_pOaFSTT#dll zZx1-F1rYBDRVehXMao61F7|KicHFrvYg8}|<6d*&lbTSgp3G^>VCAwUZlix2GNESr zC7>q2sts21cD+P!?n*1xCK%1CJ3sKlhmuH@TtxDMH_4ws_XLN=`bfwQ+FI4438W*t z${+T;b^OiaRsX}-IRuLqZA+|wr$(CZTlYEwp}-VqoRJ)YrMve*uB+S z5o^rMnTY`$ygYX3eOCRWy2YnUb^51njY*&wHBv z!$coXAgFi&*#_aeEs;?GR!{GFGWJPfe^Le5AY(BOK6e(&AbBqvY=(@d>~3siE&iT` zIfUb(`E2Qqip7p2Afvl(yaFgXQ`(aaP!KbwpZ)Df%Znxn`q1cb7vRZ>&zQQBY3&qm zdzdaN z&TtC>lu|wFiUT8D`A4Gj`EIq7S^7_9QBi}N)LF<;U#nU!!c|Bbks3xR?Z_iaRjXuf zk3&x-nAO-!{M(LIuIXVu<^9*@grvq)3)0(0ck}zUe;3F9jlQQVuKNFz9}5H1e?@+5 z%>P?3#@US3ZoBT$bAWm>cr`$gL~)T^4O$aZDz+2+*3YNJnyYQA-)x46EEMhSExtL8 zp53~7-jIvOV0MZXNkEajFU|4I{7Z7q&&nzLJ9Yjd{_)KI@fvo%9(5jNmz?=8kEQ#5 zDe4n4re1F86;`64xOA2N=Es|u^x|pmrq$2mer%#Z0ZW)b;NRPfmXrd^iN2&j-m6bV za|ya-6YQs%uSY;KukA_8hMg=p>j~t_HAv~6UY|fK{vGyL&i~Z@O(O`H{c&uzZu2;b+!1 z;2y*jO*m~D=Hu_XMt%lW-{G!j7a%_66mk4rliPV$fqc&tv&$%=7Ye%|6wBh8MNu|H zKCUSa@$oB9nwmYV{54YUMqW%AFRVP)ME$Z&=B~jW@*h0-u7_kZ&ZJRh6l|#Ar4>gL z+MFN4YZsE(Fvf>_6A9%fpNvEa8fjFLNgS}@JUOyZK|{a82Qf-SgcRy8xEQU3#Lwuw zk*`!Y;(|f>j5Ip>L2t%ho|5lq`Ocn6g)_+?FggbkN8%yYuE7G9xYg)6pAjL`pU-Y; z2i~NU4Q+ykky2U6*O&d~MobHN4M z*i^{MY=C^Pj1!%;}I;Twz^vD+{B>I|1#!4fs%G zgA1{=1zBWjZ&c5>73f2WhRfLasFTQ=*rx*ekI>U|?7;d-@JGUD8@VkQ_k>m{QC6RO z$#rEu5uMwizfE1~%+`2QXhr0mX6>!zlafKT=z2I=LLc4Ru`G5)G6-xGuFI&ruf@C? zkR^sMYacVmb{if)WOeVyc40i=1ts)6zn%4Rb3!2G0I+wBgCIYHMt)c}A&3Zp?8^Li z$un}FR%4%2!-X~{m!8ok2v9Vfj}$nbxX&LKvUrsV3edU%CkZ6_po)u~TCM4r(NBB>8d4tv+}4J0xHok{N( zfkgG#a5O1HqZ$yFDNSeHtoW#AdA0Uv660SJOwzLgs;70MSBufaVy-O>2|6nisIG`B z-a@^=T`04oN)j|FOV3Yb%S#;W*rp++j}-`Yqt)ze{b7wL%&MA(`HsA>6FiM>^|mr& zqe(PEpwGv5dj@HFvo@tE{*YxY@WE`OX9T*X9}z z0|=cn{5hv-Nl)tD{BxtQ7;+bUwGOjjP7VT%8`dHc>R*@0Q`H zJ|UBFv((H|H)AbFwa5}AQ*G#M^?u}bTw%K;es<@+aVp&T0+=*jPsYST3j3>0*J+-$ zF*BVO5;<<^F>5F5x1e7mUBKXbDa_t@9(K)yjI0v6Hw$Z8$8QU9O0NhY7~97_nmaX9 zS>W2Hi@>!e#6c5^#uK4qPeS#)!8l2=jw77g^$neWO=KkPL@-EMv7JT`q0eeIe9~~` zIChrZIrtY|Y58@L@F<@w>9ru0mCn|L}&H4w$nK=yu73p00;XnZh z>8k@gtf?_B^J1hSze#4xNb98~`*FL%AFUUC1@u{X9IK9$Q*I{IY7sJmxDOvyu@Q7> zBRpkrsyS-g6O5(ot~A?xsl4U*U3<3WPs@DKNxr4~x0Q%snsm^&_v`vzKy-~s;W_Cz zkY&NCEh^3@(=E|U2QX0T#0z27+qO(5Qfn3EizWrB_|&JZo?J|@Zlq*4iWMXm-)gEq z&8Gcr#Ia$RAc6>C8|GpSIA)ZB4il4i_IxwWlt-Z+w7T-APEEi9$aZw*!OXLYp6B$K zE0bR#0&+yv0&}5Q(1)9Im{ zxhF?)M>@KQ(c-@wrKCenP4?EKxpahdUx-kjm+p91Jf`gB)bxlf%IqD=H66^=!B@@Y zK)t!N%_A(qMy_paYa${xR!>n=!cR^xA?oI$Vz>-a2uSFix-U~A?*s7K}~3AW|(@6fGW*-YVQbOrW!^B7guRLXs(tBj$SH* zCfLAO$?s>$ksS%Ld^|Yh1Ld=9*oRr5Vx4*MLK?+-STpV^tk8&&bt)`WlD`Z?SG~)0 z8!)+Ixxe-Sz6k!r8gu^*fgnoPEZSb}82XM8ag_cV*u&W1%}i}8{!zt}iTF)2mg~BJ zonCgOIUYPFTqC&0AMldKkY zcH$iD2my~r%n$U;oaYwfiRHJpXw70-fS6O$xRur|4Ij~C)j?BhQki8)R~QDc&Z$e8 zo}1YtUGzxEg=92?=>l`wE{$F>0%+8orllRTI;g7OI9G zwZRu?Gj|G}S)t>llNBs;qipe2Ut?vJok-XwjJZ@|JpCy-F)U%d`qfSW6Wke5qxIM< zE@`kSI!MNgNou{AW%BPw$D-!4kp&G+1B-Z@h;kkc!^C1ksK%?YKuf_nh%L1jl&ozx zCpSgoF%6z1ER+r$(*QYHR_i7^7``Cn@#`!U*NB>vifo}_37Ei5Q|tlg1s?-G4U9{JsPXN}=IO7=l!Q+8+{>aiBenx94QDUC_~vAwPByl&}4$>c`t2+YisS zD4Q)1?o+1U?*KzAy_k}TP~vf-Z(Z3OPBRFqI9p&-g6svvXGdZDQqpKAO=yX3i82`L z1ZtZXkLroYMD#?0i)>gz{_zMi(7gh@p1~;<=y>g%0eQr&nZh_dQ17fn_|oj3FR6QD z^=i$qKce=BZt^&@CV8MEmH@Yq`SFFaPXmGmTTBU;jyB1#2y%tTosg$qzB2Fw;hVO- zT)}fTa_R_;~Q44C) z^uO^4Ce&n)^2Ni$w5Db~^(v2!mNxWJm3PLvA1^8Qc&;yKn*wr0xH)Rl@}p_D5;f)E zCR^EVx^PQkiVPRQd7U-sL{WtEmUQu}4$z~PY*F|MNWld0Ia5KqA0k7x&%aOMR*bv1 zBma!Wtws4?gd)ryr?~0$zrh{)#)+Sj3IKhvB2=ggK+y-6zhc>6z{PS!T!J2r;#NaT z2K81YuaxGYXF!y#_wYO$k3HfZfWnEM7c`yj-+h|=AMG1I9(=bx4=&1O&^F{!;+oL! zwQ+o;`V>!p1NI)aS-u_6jHpfE-GZaXf(UOm+oqeR7aB?e^pRX@2(%%~Ig5BWzQ8JS zarnAPVz*}Uwyt%1N3GiX`avSB$+j=PvY*8!n5Ci}rUGI?3&#+-c9X?1q=i$bB4xaB zR}8%_$O;l(r z&AWSwr<{`+ocwxI;-6l}sFBvF4RVEcPg-qZfcD_QG-`Ghu+^afoSyH3gqLZR)2Fb8 zwZ&0vH?D;_)!RYj<&$s3nq~meo&5_N%=xKV?)kFayb4DlvG6a;=IjB!J9L(5h01JX zmV_#qV7kCI<~*wbbHgT{(~X7eNdrj-C37%#tOfG*0bHTw$fGcz?~vyWZhe^f_51o5 zoU#OG6q#7|-B`-~75NB!KtdxW3Muy9O5~)#fmggtJ#CL>f;q|0p2@9sSfd4Xt_H6I z=0zoP6s}WrGN%D+l*!F>VNU_uJ}khYwR8PBr;lSuxnFoADcA;K%E$WTo6-JeVXIlC zcn9F*B4)Wx{X<&rL~3yKmJjDzNA<57WV@cRl-aaz+X}ZX=5Y^S+V@+;`mxi2H+gab zkLfC_xG!>4v1EQ@zVC(KdB9~(&bk&6bVN|GKmZZM1vt1%z?-_tezD+Q*~_V$Dg9BR zHlE~)LotQeL3)_>&8*Gos2y`RzW)3dJj~8rpQrmL^zR4z@B7ryLK$fVTg80n>*Pnn;!D7%}z4={zD%9FBgUg>RX#hA~WI25&w-W*1w~WL(2=9 zV}pYbWfcIuhYeWDiOh>X$R4yl79keU9`K(cYIu@t$Op^gVcsna3gmPh67-nUiX4a{ zo}xN}+8k-!Dmt>pCUBE{8=7m~$=;0~DBiV9ORBhx$g1LxG!p@;4^HuzWXTKY>byn$Kw}v6RbIRF0VDPAP9Mx`UDv~*=^k~*X-JqAW!f3D^(?<13 zBAz&e=N4V9i?L?`HUs25(5tgT1#w%`XB$EF%adSD#s}pJ9R<{U)D!zXqqqNpLsrZrE-Oz)xTB6Ac{vp7+>J1RdW zxu$Lx4%8Bz#yyi7z#a?Fd%yVpqKa5Kisz1>S^O=S9WiR^t+dIq1bh(7A@6Y_eO%_2 zjznT5vtwSzWzLzUIW3=~x>dLS^Hw(K)@bk|DAJ75ST1bW9RI>*OmqZ4#n*7eUY(9D z8kj_x#Ua(HX(LtjR^=e)`TdC2}Svm+f$X;#G__BX1b`3 zd9j}T2gL%-t-PU*X$51& z%Hu{4t*u1`jdFOOe`q)C)~T_9WK!f$|3tvyf)JWUkj3&`?BbKgYP{GEI0&2u9m=?= z#}_T^vG`uIBo@TRKK|Z<@;L@~nwF!r?Cx4NiPXFGlc5mG0zD3y@C^qeiQ{Q6B_ z*}L(zyn1bRoI#}Wg2-$A$$e$su9Yjw4H>Wl4&BUF{Z`wgag2Y`3|qQ<#Iz({&9X^^3rdSS^6fgf z2HFNaFgFG%YPyXb`^5wFrbrp;8^O)g9cc!F4=dMMP2>tSM8fkhX`b@Vo!?UBk`09Q zEt_NabQRqW7;SDqboY#C{^53gu}5!@m0>xr9q}nz62wd&9&3Z1*Ok9PV6?O|yATUP ziA}MAc({IAju333GFg!srKNxzeH4lnwh5)%PDki@uB)-$8o)HArzT`qhmXt}tX)mL z2fxEG0`IQaTE8M8#~gHZ@b^`DeV&UjsWdCn5-`HB51RO!e}f~-$yJn7?WQ+>ogpOA z=S_WV_7sTXW3z+QDn2+jz3W=U?0V6beG648TCtgoX2YSMjOK@D7%iTkuEB6w{%Bz zi=AvbH^C#0QBD*ZCv?}g>7b<_^&7)vlU-WM`u&Ryjl3BaoDxc$Ih|294-bCO_dhz( zn-2#S{F|NFfB1^!|71HiZa7YT5OOogNW8GyuI>`JcinSPD*>h)R|^#Dqb4wqv4L!6 ziBd;1ZevNO?JF~%{>)^ntVRnHkjpR}t%;qmV0$AybptASaM)fBmHk*J;ZBvA&0rQ| z7Yid*m5uqD(lnr!lpdQGPPO{%sF);6MF4k*IO7V-2={SUPTY2Cyks9_j;kW#2u>!Q zZYr~w8;%Wzr0;n|f#=$Z(4L2f-Sztn8sSAFJH$P#U$=uJ$HAy)}z>@wJ5!^uA{j0$7E4~}PmoB2;F@uUP{ zDdWL7+rck8^Ju~^@AR$<2Y9Oxoh#;p2wt8K@&1+a9sk6`>Yl90#G8M0oo4jiqJMK; zPSPhtDpnt*VjVRKk@>O`(#cKC=+smXQkp0P35?1T9ZA&@GeriS9L>V{r&oZl-Zu~hDa&i3{lIDo79sxA97E-$5sF4cS1APX+ zWPyJB@Zhw{CrVw~Y)yVASw9w?sXUL~oWK~2-Vhy+-Mt)e^Kc*&a~RlLI|I4D)o+TE^-t!oDW7?7Z!H^8YK*oxtnw9e z`Ph#>ZeKfiHFc*dVFssqfNd>my+Pu=M>>w&vi#MqJ(!z8JB~p+^n__eq!eh9@xuc) zq5Ih0XU)=QC)D9fnINIsvyF>erA7ar4pTeU*<-)tMaeo@^9n#+k!gBDL6Yi?xF^cTgf-ZN7|uf;Rf0QZ7$J)7CS<}MkHzq6`Dy|GUBMmBu3 z&PfhQE#!Bo#@jaDA(znoiBBjjHS(eLpK(*^ppMw2Z%w7dcAZ7HP zP4PsBz|~yk^sZdx3tStcFQ`pBpypBQgVotzi?WQ;4ZN3&xsT(Wxk@JsBJZ)1M{Oa; zWanm=u~|u!=dsMx3G_z<`S}8~I8z!P4glBx>I2H5b5H@GGF0f=r@;%M4lpVS^j;r% zY>MEkw5@0_$=0c!3!Wz~@f+8yhV!cY5W{xxv@auuDWO?X%Ii8w0LBDCu1zm%4LD9b znU)ln!Y2qbD;}CV@DT9huC8_FJoGOLpS)*g00u6cn>`7u#zDW8bng3>W!Odt$rFCCG*) zvAsypDNUM0$ACC>QFR1)9#5fqMPo0z9z{6c!EcAW?|V1Dn4^nn+rW_R+-Xoy378$# z(+E&7#1(Y4EtM%IY8K;W6`Ks{CJ0Y9Y-fs-*4DWWo6OI(OrKM&j}1IU^<+-_!{h4{ zcY$lfrAIV5jQv}42om@FgXGncL?togu(bW86QDsC*VA%|_nzCYI`qs5x`l`V?_ytP zdRO#$(n;@y?qe+HRX+0=-ZC+o;xHHn{*a#lm>bP zPZfEA3YK8PA!{q|d#xx$*ncm;%!NeHb4A{F4O4EH|HeR_+>+%tbrNA~OlDDAsZo-!Z-(EQl((|q2v`{kJ&c5#+iQ=Ed>=NX&D6IpBxZqt_?{}oz9 zv*jruIWFOv4Y%E~;$@C#5WOEzMm{NRXxXki^Mnu~2|?x~;`VJz1xyXN|p`arO$0UNcw_c^ylQ)s!cfDTB1dGRg$&=h{e z$V2#@a89Q4Q&i~h@4O#)L++2I|HOP8{~hzO{qJm^|7$UImfI1XN2!XOQ^y--x+3TR z33X9GIL==X3k9SOl>hmxI4H`x+UIHRa#igLY+l1<3zJnvjnY%`*~5q?(^V-`D-V>QqB}f*;xC*Z1{# zR0Gt^_#p7k^%GVH`07#CvcG$?4Tta!bmgY#+Z9i*KGV1RV74|xHhS6-vSr(fb%Z=Y zz`b}J={*bldML5U1=jJSbrKU@ChaGcR7G3Ax}nUR#cn~OvC?$QAfqT6HXF`idWk9` z#5^NG6-cIhJOIqmGsI#t&VTgoMghF;it{hx8LKaxdPYiQgve#QN`SaV5o}`yBlncw z(P?*LT#a#eW@H1(&I(_PFC)uS*3&D=uPK}5<}$qlwxsO7P*h`CmfQ9M{j&XAX3>){ z&f?{`mhjhol};*E>XND9X?s=GYk(%oSd{dP_J9Sr+?@99UrU?>k!NmLLY-=YM^96X zdt$nYgNUJq`V*m=MP6S{nZ{Vv6n)Xy^>?K}C4zbgh2e90pOvlgk!RoE$I|jW8%FHa zOjr&ju8%YK8bu2$%9`hk&C4y!`ps_L1lD0M^yG+#u&3{mr|YW?ib%%vitD$J3r_}6 zr2%ZJP_O5?%k_;a`Z_cFpNp)8afIX;z$l}3PahpF2kEXl??0mepT(F(4`iA$+kUh? zl5IUMnAN(+*K0Z|n&Pq*Q(=EY(!#n&$p7%jN6J4;svbdD3jnTh;gt9D(Pk}L!TuD_ zr@`&^X8UHW*#eZfws zvQ2t5pSO2>92`aWVq^|jCpWABL;)?Fj(ih8A5n`Cl3;>5|2xi9t*N_)1I}80?hYMC193QDXD*?{!pS(nOkv4(yUf+(vY6-ABvj6u2f@uWWe}LDL`_&ZQmUTb zM%IFPdHsIj3=`nNm~&4kE3T?98a58xq}X^-aEdz$$Y)gQH711(N~nls2q%vwt_bN; zjuPU19FmW0tRJE({oIFunxrZkBnP)12p%fPKO0Qr-);Bc=MYCC1FhjuAFwxsMcUTH z9~vFy18(^2ZCq|SRvu~KZQR4%Oc)8Twsv$}bGOvO*7=lMK3bRPhBWjarLxoMIJAn@ z6K6Mht&*`PSeZGoX+Z|o((>SnoJp6Z-EI1$vkXZct__bF6$jq-P8&VU$LH{O8*RBik`ae{{9 zB{JSy8^yLUqCYNuPfpKDVKoGko&=r$LE;Q@ne4#W5}Tcqn|xotBQcdIgN@I@_`Q>? zPO$YsvJ0N`6_>^n@Qa={@UCn+J3EwrR$FC0kn|rXlfPPpCyK*+X&p;O^ zLC$F+2W19s%pvxoaE-d+5#U!nd_M^fZ~x6$Bf`*)Fc?b;y3cm$`?x=n`@V-5%)&eX z4VuYN7H)fIaPJ_W>!1NRybteM4|#(mb0 zUcbV`HG;4h z_UBZRqgH9fo%|6_4vBP>A8+pMnX(Mx>PX^XlDU6YifGSi@~ur8(+DB>GHQ6?wOpx@>(M~-^jw>Bty}^J7yFXD!9g70_4v$GY2$DH8C`De1P5zwtqt$( zIRNNuM)Hh79`f2HFP^-cmuA@Yl1L^yZesCZ36kMN@Zb#MYzl)Rl36K&ckpMTxin*w zQTMEM#^l<)EqbsD@e>IXuTg31o-ZkP0wR-YA-%yhG3}cv`;;Agi)gQb>`y`l4G*re zJJ+YL>2ojJmFc0-LDscUPQub<`z7z?cRfSMVkC4I#O}2ihZa>d-yl#k{UkpOSfo_a zF$0_1yCVyf7SsnoR?@$1nIt+*v%TVrE)80)qR`LebtU3dWT^~0*}5LAOf>MbZik{0 z;0-k-PcmZzReq&{`3M)1?dzsmbiDKmy@}?Y4+~t&1-&0{Od zc8Yu`YhmgtkXFX;YP~k^BFB5Ck{B#G9i~nnFB601>!#`Q`6ULY2QXI#Cy4?X0^$~^ zx@x-kR!{2IOcknWD-NVjMkkPGwzpQ)i<}c`(Ob3 z=Vis|vH1f6_^rC^`=$VS*Zoy*1RNvDxAN`vkxPX6YDy;FPM05Ky!pmBPd=C*#mmp- zhUVTEV5}i=8lG(RcDye48S1w3?E}4f4)I+s4r?95Qr^?N5Kf(pp=StrkWIHJbXeH< zwcT}PT?ts*igBZPWs3nJakJfAz=$c5V^F3DH+mM6K`9Kqfei8P`Q0N6HIRkE29>R5ev$Ypip-#g zaHJJPHPv1nhCv|m#$oCbuVtCkYohm;ubb%SY&q?!v>!nbS{67`mKk-xp)61zI(WiA zJ07V|vnI%vU?Ft|VR=g+Zsl)~-e-vL^5u-&CIoJQE-L$}k?uAN?b5lEB7cQ%iGm9r+>p ze9PdlY|5ybqc~q!xHw3T9BrA4qNSj3|XJy-xb*vrtrVmhr{ymSTLPOMG zkX)NR!Lw9CRWl}DkVNw2ScGyDrj7o1T{C~nHrC8Q3_y-7zAb3rU(ovT%AL7Jw@HtK zNEA3dP1WfU@3+}ZleNpu3wG0GAJ=0d=qM63uZOnM@kOg|o=3$_iwrQK37N1qk)PmX z{t#H-*^=JvEQ)AsOfq(_tx+I?o9zW(xJASm8lTz3)T7Zmyis4i>GJT6b!@FmQP#0m zx4u^!AWE*8j{Lc?Rga^P>^1p~vV)Ps^EwpJN{YF8U1H``n9Y>v$=y6@@`Ou&_!|Lx zxTJg#Cov;D+~|U4C3c5|L4w!72h7&vTCIwS#j_1+)fj~Qz@8V1lkQ)mt{mxL zb4i(hLOU#8F@{)*cD@9Ja%5|bRb!dCe zI7H^s31QVl8pLCfI!-ck^JXE#PhekA6?mNap^t>q241j#Y1@8%E^j`lxhcdw{K>U% z=2uxsYBvhN6gA2mGHk*nRTytv7)h69R`GSFsTY4CSXElG5r0nC;9K{%dQl<=(L`u6 zAEU|IKda?uFLj*;YVMU%>Lvqn429O2a!Nfv@+8cN5(WK8lw`PfD|P6&kC;;GodL8! zc20JiP#){GBeDK1F{>ptxg2rm-0_Z>`}iek+Yw*e{$Vk-VlZS%ykDrDHrF6?tK8gl481;g&kB_pJY|1N9%A%1E{bH~C;KgPGt?z-sb?izf zO^TGJN0Ew(6rR1$vyugF>U4OXyoy(7T1K0ny2sA)&s(gOK zegVOA;nV*EH!?E*SKP?K$oBtgg~!@jamFo(zH@bFcPv%qF*+)}4Kq@Lff5PvfsOEj z{vb_5`7r{B6iRRJlzMU3hf8heIiw;C8@Wq-tyS7-b#%GgbKEUSUwIoEd%wpwGxA@X z@L!K<+vIg__`aooXCdqs5;l8$wfn^HXiHq{UNjBfW+Wqa zAL9HfNak7FmQ64`Ou zhzNfOqJw+CVYcU>@Awx84B!nwmQ|Y}0feX_Rm3B(eUI}Sgw{vP+rkX1E=Ew%! z=?2tQ(K~f-6uEu{;}!q0d&8dNhc{SJ<3d2sO@J=CBCJ8oHJ`k6&RWr=n5y2PCawlI z8?1F|2ti9ozF-pFfU4;4@97~RRG!(}0Vzu)TH327KUMh3j z+2GbRqR1g_{@h zy&KVU({2_bUZ0uf0;GXTNN=@FjsBNksxL%1`K5=8gg4NX(H(}ketYXdYyRIT39j`1 z-XpsxI=H%mYz{{(1Ti2w-|CMDxQZg=`LV<8r$^ z7hcV%aHc~BzD+@2@2kQNt^7eJd=hV{(HeWS+Mw0UVr~rHF|)B3^h-QndE?0zQmtG= z`h&i0)OMAth3zjy@Pi!fN}6?}ZTcIV8n2SBa_aS1M*zVJV%0S!SYU;{IakZ4d8vyk zLLwE_^XYpdPdM(r^TN)Gj4H3KgFxe9^NLPS?=_fEy&l`+_l>-zB|$QpdCP4p<`K>m zX3s{_vqs`X1=Ym)XA4W;VrBQKaS{CaHbF&=BBzNqOfvhY$6p^!{;Q_7*utcBO%fXh zrgZ+cMX+wYE$gj*;S~f4jF4)~t#3nI^c1ZViP<46L7vpb(V~op zZSFD+-bXko1_UFG9cp@-MK=(RNlmg$UnY5f zc&4Xd?~EnX0br@`j14S-OtEw0gzm6XlR*A7z%%?Ji>Ph^&Xq9dgINKH+R^>6ud z2MtyzdpOFh*yi)9(3AqQ-^L~mbP)>J+XjJ^4|a)H%?8J=*aTV&OTjQ_<;2JOM|ZBA zO*O%>#ff`70~#u76c346dQOrys!Yz(|rVaG zaD3Q>`oZ3A8K)cbHYDt-8INl~srkqFUR|s~mHv!=_AeED6&(t?^!l;5i#m#lE7Y5zuzgpS&xB+L$lD9NAIE zHt{$kP&xPt6{{95{%ALhNU-n99#i|_h+0+3Qo#;GuPYhZfga)XezEU(>f3dIIR6GG z4!TJv8UV0-5vD*GHyC4vE2B1WoZy$8l&N?W-TI>7lj4R+`>~stH zM4e5VLR1H_2bo3)cPxy~ z=f`Z}vhs`R)}!h$+OOA~h~i;spURA?@%P7ndbcLsWsCO{d6*ACi5z;g$P6TxC@UDm ziw*hc8*B9STx6)Y1}OLVk0X0;mzc5?yTK~gU##E`s7R&@jYhB3lDs#GJ;V^;9AKrq zy1OSO4JIU02KDV%CL~hq;trMFkn-e6Gu^Y~ygD-^nwr?nz3kdRi?gd5PPu`Hs`SNx zKNc#ofyB+l?So&~_9T#kh^wAv`VpZmYz)_|B^m|v<2apOUUio*u2_{AjVGeD9DE{& zLrXcH0)bJjz}UZJtR4Sop0&0cqY!VNq8c1X_+L-=PbXo()2^gj#NOlBp^RtC-*ruc zbQI0zkFCb$1hn0CYtX0?)tuJ)Z~N1c_4UU+l{3GeODg-8Tg<-6$}%sWSGT?nO2)G< ztrA;^Ia)1m7vD%+YDyh&=-2C$m*fslMni1QHZZ6d&-esBD>#L<47@UG9fXk)FIn-2 zxi3oN&hv(3lIOj3q2jthJ^S$7eo>^yT{jT^6BIh(Bm|p2ZUi9}boX6P!=O!ga$`Jf zT{2!?(@)pUsp_RvuHGDp_Xn%Irn(`v*Sx{XPjs!Av%+O9Y-12NaL&*I>*1wqit2)s zyD4xohvyP}{xV>$utvXYl`-eE^meR&S?tifuLdd$#)SeoS94Av#nQVJx`0wB#-C82 z9KEVB;|Wh$ggTkSkii>{*`r%nZivK~_?UOWj@7q9&9lO!A5))%*}qPuR_KGaIG0px zRL1J3KWvMQqCd^<_77l_{7cIVOQab;xKl@QNQu~1lGuD3KAUz_2Q-oZ4=dTgHy!yb z4fouwbfUI)-fida3&Fs_PX`{02B6Gl|M_sbq$j^)1ktN-#VM37v63rt2fPc~Zh1^mjncdE%?4J(@yv}kfUl!l05QxOiv%Wrs4a16j|vJTDHot@n#D4@+dfeW zh4k2z8x>oghm8yx==5JG#f9|t_O?9S__ny}(RaW2!viMT1ylnYTxBnlExf71C^i~+O7Ytaz&r*c1@Ya>^H-;? zqyTq*f}lV%WQ5R?GVFblYw+d1^$1AVbxPoUqPnvZt*jfmXH-A&97IDW=)!6vYJwlH zyJ4E5%5wQ0E3d~X%3P?HYz{Q+2TqZ$&U||(@}eAX;e1h4WAWRGE~gEj zhbFeZPsE{=d73-RIPWDBm=_aEpIr-z%*Gd#?1T)+yyuruuaChZ7N_%vCz#luIVR3V zV<@X-=CU#@Nj;0`X#G*s_onQn%!Xm|#{q%^38AnW;WJZsxkT?cF+4w0~AphJ=l zMt&BJBNyBz+t+dGIMCjr!v>pH@CyuL6lW}oMzYv~BoLHfH`YWZC=PSCC`+gssGc zYi+?;{Ht#XN>`!)AN148Y!8j;hTf~~W<$6c`KDkEi6u_j^Q)|#Zhg6IIptQlcmo5h+J-YiwVM>c^p?!&lcxge znY5vIW3G||#zj`Y;i8_-!_b20*~^^bQ)(fHzXq#49nkt@T+Qp1H*`N#{M^!44dY2| zA@%SW!yayKYwf@ho*f9KCp&rhKcEqkTJ)b5aE#BL0frW9nu&#*U8c#F6Z`fNjZm`+ zLFhRChKRLh=VOte4*6D6q>evoAnDrNy0o}5=m9P!nVQ(=&~oRdxGrijeX=2GcBg}r zj1230*C*_;;6|I`YkJc2%5qqM`q9`R6EKvlcQOuMUhjcM0W;Ofu;>}bq#}Pmi%t<3 zlY*+GOzkz{S|^=D2V0mu4nC~9Ho)oGe{iBjeVUE(?GU%@t!(<%*f(=RTTG4vN3XJ? z25YEtPjPmqJQS{@lV2iaZbS5G(&6+6tq^}$poY1Sfi-!ihLqana5j8j_E&P9J7&Ko zLSbF4gDvU@u$S+4xNMxaL4;3s3se$sx2br`D01nAm$pl?zLr0`{feBlf5K)S&E`Qh zdgU*jbPGVku$xxA-e$%}!oxh2e}J|emmWi%utfN%LZaz^?)21b8(01lF8_DdS`KEW z{}-39aW-wW+wObx8m^^nFs9;}hqQ_yBm#>C^05BGgC+vB{Ck09kbt#n;0Gie;9tV*pSanGue-`+bWnp zetOm=MIPM|xa#An){jl?E6SmYt)N>^+r~J3vS6)Z8uuu`%SqLB=81>aS!BY?|N|42kn9DK%8>`j;^hKMvFS&a=A z(_rcbht#9*_0ISVZjD=rR1<7{dcQh0#QA5AB8$(0Kgmvq<#X;Rmc9N*y#4dvob9@zp>_;Kj zMND$vC`9+GN)L$bEh55&y(RAx`I3{!*n_1njrXt1&#eGhKc8ie)zno%mWtA?V8igq-Bwxm`To zwnnMK;Z&}8Tb|+t=w?vfi&h)`&_}yEr!@6!_kBH=E`?&x+lqf6>*SdJ`A(Mq=lE2I zJcVce*a2pw)I8Y`i9GW-lR1+#4JSbMMT2t_bpIx6bN7M$skHaQUD@O?DssOmwvgNnVG48hLd(Lqhkrh41a7rcm zLw6=(KTD*7PG~7wiJM>gf+9k-ZO!ZX-2Bx*(Y4Cp3-6$Pwl%r~V_jCyV|BZ>vgKcK zUjt@VwVfNjr8HR78c|;klNiE<`c>3i8BIY7{6c34DcW^Mb(!IgpdAFx#hI9_i`c>r zNEOTF1P4W>Tbnh$N8h{%JRde+CY6nz)XvkJ2@#C(pm~k0_(Ms5Gq9=k9apP(?YUTLf0UnQhoPZt|)vc&#vINug-0+}_<2 zbSHK~cOm|@if#P~hf2dQ6S7a@gcX#f$DX?9Q%+3dzG!q#x7N~LnM(p*(oDJ$ko|1n zu`_;XZOAB`0r)27O9hrR(RuWy0iaJpTgYQR<;A3^C41Fu+oHCN1~I6h(stIZp@$4~ z#gu8~oAER!L=1!(=JQ#JS3bl_aYTD3+_>SxcsJy*@`;hel0;+mZ~tXA`?h7Za$c<{ zg0_76+t9C7GT}<@5cWmv&5YpzD$evHj+*@%j_PM z(x8vto{I;37uwE{Rv~pK^`_?yBoOUI)>`nx2q#~3eva;y`WXDC|YSuB~yl;IQw+gvaIyoS$M z=gHv;q#@QJp^!UYoNJu`v|P{a-`Hqw;mXGTWH)R$PDT6ySA$Mx%8=Baf?0Pq=H1=;>Hiqx&wHd`RXf<6rZiepqtsgB}o`6yDXnpmD6My z)>Tru1^OM@V~8hmYcpU>-jYEV)E3NF8$=_fM-^jMme*LIyDV_cBFe{4&}TcGcYWeD zvf!!w(eY_6u8m1O5KPC$`Q|>S#FW4BJas4>g@SI49duTctt$(rSk#8lh;vj{*sf*P zuqjfN{`apsNeP=27N=};d=p-=45Yh>|>~1wg*35lV z)aq#3wtvM$#dO=R^|N}Kx}d{r;VJA2Eu(fd`>~<36}z#m2#08n>RhJWr(R%1tUQ~; z)Pa2uV9D-2w(4ue^RjUdl3l>G^hC^oe6>we7G7Y+hUepF2xQLRpMwb$do{Nqo|G9x z{G>EM*mr!l_2!4>8A!hQZ;5OjY|F1PDg=Fl z_~s~d>Eb?T006E@R!}e^9S-(fk(a}Myj6Y{`$Gvxw$Lw=8_3hdD~+)lm0uGrL-<1S zq*|fz?!$;=-h=jJgY;2o7p?ZF64CvF+`MN#XXU9{WOOZ%Psx#{0>xrCom9bVW`xoQ zeWEmDcM>erTE830pgx*esFPY3|Na``LS@A<;f_{%oh(ckF6?W-2z<^+V`P|Iu`8j9 zKnAh)I=IJ$o@A%TTrLV`RKeWyla;nfb6bX^jh-wjIVvgj`&@?-!sug&^q{5hj1%)t&=u?3LuMaxWwme|!mTOIlZ9v4?KM0&C&M*I0n`NmNLb+#f%| zV0u^u*UIOp0MZyb*yM4L_SpZopItATW38-;>F)&VO!jqu_RP(6Vn}hzPyH;&QpZqS zVFDpzWI>7-!OArE`jh9@@3-46g#~BPZPRqCn?;}r1Z*>7jX}$I!=UNmss`Jt7ysT_ zm<~k4iFhMKu%S1z&3Y0x`XZTAS7-z0CUpn~HJI_F8KugjOnlmk%WRNoIyMLO^SF&- zZ#Dz)WwzIbHOaeN={%$HHoE;4Sc5AU&hJyw*H>RoP41j(Uia8U0ae88+2R`lSdZo9 z@TfR3$`1SD0mVZcF9g!*)~C$@i0{1npv+mSs>dGRS-fVag%tJ#a6#Bnck_+grHO7$ z^Mywo_Y6-KBg%8kqXK;700b@pZzHT{48A>=3c5VzUa}{gCIQ*K0)B3C_PDFjg7~D~ zHUiGWK%*cZGodD8ACC*Pj+AqdBn{&pRf&I6T4dnnX%F=s*Cu+jNb@BZ{-f01Pjn}J zJ_3r){n|S+X(_*UbpCwYWB!qKe9EejXF>Zx+2pwJJziulsK_@ce^hLN?Bd=}+x`mw z`hv;?HOa_F3g2`#cSE+2F^>+^O4D@ZOQW3Vljyq{<%g zsl+3fCX>V?t_m@vc%Y3xm1D(;8`yIhfR7ZsLK04>SNE9;lAYB>R*rukV7|K|p-b zGg+l^LQLwn1}gpfe&0*TPS4w`4c0lJ`3vKeS zgI1@fs9Zb2VQ~7f>86w+z}28)xRk}Ml^PtUPri3iFoL`vc&vEGf93korD|C__BE41 zPfd7S-rL3S!9DyVE>zU`a;K-XOwfy5uF0SOv~z4#r;vmb?#3e)up=o*4>u;SognVA zL1)^0NEyMp4w|@bdG1r{IIYf3RU19FS8&p)|8%o{070Px0+%2sBGM|E!!xx@UH`ic6rb=~eVoa}KID7nKY6>ZXI zy`4n}#q2Uk3WwQoPL&i|NjT+_S@TV-<`?4;|NN<8= zzj_H9HOO>$GF1;Y8%7CLa#m%r_2f}F#=?!w4k^*=3@EQmB-JUY{9`A~hFWwbFV6CMZpzm1tsVCH{DkB~GMdLPXNe51 zx_FPu1Q-QWuXr|8ram4Wr!joJd_uu66|IVe%%+C7%%I7T|xrE#w ze$KOotV1WGcoOAVW!^=hpunsQ;!p%(J(4T07C_LB6R`cZA#yu|gad%`diUP zfRUDqZ14Sh=6CZgKsth%UaFEE8^2gpd)P3CPtr)yN6uz;fCrMlw!Z?R7Qqb878ZY@ z9K!L#&QE)Iw|)Zpc4+4hFNrtcy?QNd=jicX_B5`XL%Pl{Q2>J~eU{!vDWRhp9zVs- z)83ZP|Hu|AVI+Eef|CE7`$?ImvVPjwfO9TWa=u5C=xTv!W4YErzGe@IG2|J^CnUMXDy)mQ?3I6%#y?0qax>Ii&&3kzBcr#w>$}6vs32<85&9L zz>DiW1)idGb~FKTqb4j7C&n?;5QvUXq2iWcli8*fN6ctWfP+pMCd#8w?YLOa@?TxFAz(LFcZx0-8$i1U; z_t$aG4D;vqw3g}(=*T?a#;%!nfa)TLkEb4y(E%2LMNyYKu~EQkbV`Xolxrr&P%@}j z64pq%OgZVhtEwXEu`Ea8jhi3%X0?A7bx(R#{qU~7HWshDlNH#^M_R^F-cs65=1W;L zn;%u4g#hKsAqxn=KDAGu@Qx;Ul#LWJHle?2WRYIGr_O-|7-h-z!5q@5$y=-qJv%=j zrFm$bP0%8HBQ+GWX`=eIj!Q{HOG^zemMku$HEr(sg!PopD)rE95@FHK%V@D%8m(eJ z_DKf?W)I>+{*ty0i^|1b(?*&)2@xtV6KG2_^yz-Mxs&rMV8ZW)!)A+gp;{8foy$wk z2mVvkeYC$H>b$0&CfE)d$TnbED!knqaO~$IN*KJ59|48}g-WpUl z2h-E86E}m#bhZb)Lp#zu;5}YPYLhniv|bkveJOu8^*LTN*cPE{650qaGyn-ZEgzPE zDi47}{8W8gz2!8SoWQl!F{oIMe&&Ows>fo)m;p1eFx&y90bK)fzK^Z>(_>^0k$zMs zA9NYkmrdR!x;(OkjuXwjDda`pP!^;y+renx2Bs}v{yVs4b|C*acQ|)2Y6Y*1U83rz zy@=Ljk$`~Bq^=VAaqCsYVbe0lP`FJID zfQszSK#qKsff7T2!{FRb*6AzwXY76i44Z8@EVUp~J?B6x%^)bXO!YtNA$U^kT%iqPG`Y#Bx~yK{oZ#|FfqWo ziWpBLr_VCfEnj%1T8NsLOVY2CJZfvZDY5urHG>fPB)fLP$Lw;8K;tdY9BldPN%%#j zip6agC=%iC7!#9+=DizCLnUTdI4>I9vz+2hf7s4&)<0S5bM#HWUTwwoGUNyR6>s41 z#IcVp9c`p~$W|oLQI|s?>kR7h^g1dz1AKS?}i{7#aD- zt#ZK15o~2H)tHT8xi5g2#Q-eX{dXvz{PJx6?P4#+e=c%IT+dN_=(mUXMMqDIfSeYwBSA3Zw3i5eQRIy#Yil1k*lX#j;-DN= z@>~;M@)oWCqZJgTF$U@#92YT@+94UMDAx^6K_s)f zU_tGci^@3XEKlLS8~`WoM7loxjEIMX)}ywtZ|PJHs&&skP^C&5sg6SotwsrJ!9Vqk z_NJ2MTr7DxVIEUTxooHQThPCuY685L^R^^;oB~-9BlmUromX?}m+mr`&OCl6@Zj&C z?j{P%HUjB90;OuGGdA4uI@*f$-}d`yh)X2aFyrGi(iw_YD*(4HW?||wq24iSlUgJW zX<7zK!}ptZ@?FtH!jZk_CGim0z&|rHOQ(nLkoLN-kA(fPInwDi^k}J|KJ`0V2^z$_ z6IvcnNG3b9JgKd!z9@<_*%x_>li}5Zq~_0i%i-us=hACDb46DhHA@OlBIzv3^C z2G_83&KBF}%+i8A(zC4@_iAm;wFwQ9ABI~+hA2=^Ma%j;E*HNv zkrpm%)-!!2dl|A*BL86>+Rhu?5f677J$9&IO3+0y#IfSeXTOf}Sy|&K!t6i%-e!=z z{H`*bZX4{YNa^6P7K?@lM$1 zZ^Lrgyo96Vv-K%>U^Nvd5I4bkU&- z3Th#s^6qV@AW#1)>ycL98{sg4V}74G6e1|$w&(i5h=D43$eP=XSNFvy(>|hZpT=^` z=G@aAViACplFw@;#ID<=tFGk*GS-G;9pVKMx1`oHc#Cb$++T%hs9^C<%=H zMXOSXaZ)V*EfW32q@VlhyNmjnEzL%TUJ)4{~6ZAorouu zxSiHuZN<{cn~sh2?e|0=gdI2vTm?Zs+FiRfl%Y*-cii8I8r3jUH&c7It?kw~UF%-R zOPlfRZIIt7n3TE?I64UWUIB18{FIfw+`lh4=oj#RZf2&a%$fXl^#1g1D9MHR@)xg; z1^54WJ9R+N))^%j(g+Cn98nQO%VQr!IXtGnX>@oo(a)=1MtIHe87$5(RkN8P*hBE0 z+Ub5^-kjidrg;u_IOD`3p_^av&kLCFqz=$~TfCj<*wkUDoLi~LxOiNcA<8Ab#=srJ znwh48^F3I=dchPYNfSvt?)R1So+KdIKrll_d6yccw1F%H3jCnSiJ#inqczbL81ghL zY6dg+2+^RSfcEv!L8Y1dhC?4)nO za>9&TE1326b`;23q={MU^%xVE1A>zVvid|!H*v(0G9kSoL!HEdBX1WyKF;i0*#GQ8 zeL~j{nkrc}wFrMyzISlp-W1_t?Zp3n>~^}k%4mEI^Z=XghsuNpF~+{zd8f+FDguUV z_R#xgjF4AEgl(@ZMDf==8M-C>6>Ynor?M?dzAKy^^+B!CrYTk1k~uO!GAUD*NE5~@ z@0pu_=Rt7ikR{{~1Hp8Q?w`!1GO_=%avDZe&Iru6++1ol9X8wu3v|364W|)$Jth)1 zY4L1v^EEvw1|c$+R5o1yXnC{gU=F0}&(H6pAc4X(tQq0n)O4-Uh;rA`Po!SYDS%Uf z2}>_wqwGbtJ_i~`2~+Tj)2ggum^p-&NsQI#dSTuGG9?}cdaw~()E$3_b(2_*!%ma8 z(d>$VI7O^VBb-~A%;zT)7#_=?bS7L4`MID3d)&*orO7zCh=#H=?X`Aqn8E>;b6>+u3-7IJ}1o+SkJjh4iWqXqA zmQb8vL5CoWol>2BTe%IR)jaYnUFew}rc~ddEr2;2zets&uG|i;3r=3j>|7opwu1hkTcUVJCI@9V!d)X-vtm{Ga}q<& zt7XOxWTJ7l_yQTzoKm_Yqd>e&tFnYOpgOVXY)ImZL0e_V&dYhLfqj9>C_9$)d-oFF z9MK3XLDuucNaVHWMk5^BA@2hSLbCRc46>afWp~Q>QWivvE}aY8v}?0j-!HXGm&w;p z@4uMzy)BJinon~%^JZ?N_s{V{>GCmK6TEMU-6{SSyd$xnfnxOMsJc>So#NyP*SfK1 z$%@=s$qJF|?TqR5pv0M3!qF1wJYY)Ys7d;PRQd0PEz9*GsPZ#EU#YN8!Qagh9y+bY zwhmit5J&zPTy?P9&by%st4XRrT8!TYI&1D8*%2k3Etr(4BP|t1IbI|LHOmu`ULT|xPZ>@O6G&h$n-sAVyp1%yp}lrxLYIz~Zg832Kj0YH z({yOi`{iQZk}zmdO7C24_>IO_c^DcsVq&1QNU$6mTTbXYF71LRiP zy8(4OVKFuZBr#>&GG1LdiV?Te#GajOIRo6o%1}l~teS!hGUG>;4OYM+6ibXQ8LLbO zWZ4LQV3m_>R5=((IY~Lbw^R~i8Y+4jd?ZwLg%;t0(lf+peP~f>jLf(PAE%Rb{>t6I zyr2`*W)pH3mC z@xw)w>J3j^WbHB(2MWC+s4OhKDcPcn{+2wb8oLvb9Sk;I7r|}eJ7oKiakBitjwrS|Tho4i z*k3QBiPdpv<{43=8d^0Z`#V3?$_Xp$sUDV?H;VSE8><KFIr_7 zyei_$IDf+Q_Oe6qire*{`Z9c{S^f0OA#Ci$4usuB=K76Va%?lI3U4ek|>0Gd$QkM;~pG~e}TOLbh zWgib7wF)~0sKb5vU#9{TgVTzlKh{|Ch2Td(>m>9*zpcvi)HmWVju} zTwB66to@|tSXx!_SQ$dKkY4zmd`|>mz;oEuSg6DMGFHO~EgmBtPG`T{bbVgj^Q0P( zSn#dM(-D6@=s29U5Y2Vc$E9@;sv$aZlASTsCs}jfZ&De*bA126IF$n6iwc&`#RGn9 z*iFJR6!42nWo%UK2y@Y2n&Blb)B0gR7ONj-3-=~NeQ?Gs_kwMDwhhG*h+C1stjU9i zPd18y7b=|W4JZU)XtB42DatgEuvB$Nf8xMYFT5IbYDf-&sYwcVn*Z}kXj9otDVQ{7 z7?J&~ttO&re6KOq7&(olvjwV+ZdKK&?Ue8TlghQgbDHm_XM%5_*FXfj@ybOH z5l~YJYlaB{$OuO1c(*;n7{8=KJ~mF_kpZwdNZSUlZY~>(+ol-tpw%wdd=4=E9TX3C z0=JhlXS89m8%UlMl!F+9m6$!WW@yi#(m`hr8*Iikd&tmv+OK!VVxp@4gbUsTfCJgQ zsukgOR_M3b&MMe1$^`Hm|Tz(IQpI z`4iKWE60UkYtl@gmxvs2Qb`z!85>+uH~4`n9$wU8W)+@pi?gA zD*qLwR;eXgGPQi%7o$_>?cY!4(|1&qxspJ!jcb(W{HdTygV*18+D6zH!_)RTv57f$IZVbb87H^cpNxqoQGB2gNPHd?PBJEvXH zl*8S#LdT=EQjMi*NrQFNG@;~7@>c?9r(1Xy9}O~^8=`YsNN_?6HVhu-44o;Wj7L{t zs9OT0l6FKCgT$2>px&p}y=TZLA(tc4Y0h-jP0={tK-}2nf^9A!o(#iPsWLu44W9-c z?6<+HbfhRFmPeORrr&{^etteX3|ee5OzxoJHU1a|k#97))ILRj*YiucQ(D;#={gr^T=Zc-hS8mFv~&30aE* zVIC?go@1j19$gFdQu@(#p)z_~bTIUJX z+ei0y6|CYv1lX^g1e`3{%SR}H-t+QJ*@v0cqJ9e?FJ4nY)0lJBnT_s6s8vR5*9df( zQAv#pruLo9=N8uuTBgq!mUO(@cF)2qrOxTGfN?S5d^OHFM{MkxKg@SwcTY)0E72$! zFytj2lYjTucO<74PbSgiz^)Nc4a2KL+mcBxn_y5c}^P%$q9#BXsnnu6!pAyh)mN$c_8xw{dg*gBlhpciap*O9=b_NnZ6HeSi&(m@i);nKp zRS`n9ji|>_+1Y^Fd8%fC#%z>^B?!)JFDw4VH*;=f>Lf;mg6{=qw>46wQF4*czv+t)xVA5gtnUy0qLuv$lpg7tDV;K}ZgBMN-2+{4`f&bbn)>RHM}gjt9}#fL2NT zjZ*uImQ!&~5!q1ytFOn0KRcG0Hp-r1GupUMq8@>#uc5!ZDJ^-C%2303kWx;Wtqu61 z)1o-Uh$DP}9m_8b1yr9%xf`unWpKii@#Hd1tSjoRh^OkG*=7#rXH}$!Ig(dJNCHPM zoZxoVQOB?Q54&G?@i@zn|02Aiz_@&ng7fJp>xOBKc=$hgZ6WUD|4cm=Fb>vx}U zb#Yx0LTPxn*!bso%pRubAwBab(KT9hi zl?KV**#I=;H1GWSe}#oOzlgCyQn$YtYmINOn9*#|V^Aj*cI}Wja7IXgHO;;8Zr5Wl z)4Spb?see0o$GqK*0)>DDTV9vgfhWFLSO{kKUB>;EeL z%)$BpPh#vzTW|AgGdG(e3de}GNcZavM$fik0}###PX*i@1-~Z--@j*<1Wun<1`BrZd)|a9K%#e>IKFP4 z_JyQS(W@RKiqnOqejhtr`}0dhSx{B?@@bdur)4My{4OZsQ6A>GF8$GDmYbcv)oMK$ z-^Oo$=c2_Ic$7{2T65_56EvJ+y)?c$?%?%!Ca&okhdc=RD{uNb&B605A{{xWZZ^N( zo<=}GNqikc>u4jjM+NSQ;9kxk6e9?MfwLuvieivivF6SpwL!_6v80*^ACvqYeHQtV zF5}JPdfNuL3~WZ9_Y7nO@a>=^FV8xSa_RK{G9BrDz5VCF+?fGVYK>!a@Ra|YHF$#x zy&C`PhwwR_IjHoXEwj!IAdAHmN&N8C;Ec~itxn*6!EroMT$|Gi=4z$QS`hVEQF+Kf^*2l(`js0{N*f%0Ha1+dgS(& zZ?;w91`v-3bs-Cy5!EyMRGtdCOs!F#yA1#EC$=`*#h*?Y<2;4auU8(MmzlR4l{ph> zld?WNE| zvTZ3UVi?e+@b(Hv?`&B>%E+sGE=Im$quC;dnWSX|B~_KM7VFTIz_u*A7$Ur6nkw0R zREX{0APz0jQlUa3+geI{MYcp!vR@9FovA}0isf-f9&IDNLsudb(wc1bf7M0h!hmg0kV1fJFd&0Pf zYKTKOffs#X8_7XNfqeV0{5wDby=07JPh-!aI2$Sqpb<&C%thU^OytLnRg|XKS9z`Y zjpJ3ag$J9I-Gv=(1!dQgH~UjLXPC2l(w z5;rM*@N?YVL@*~B_xj*L6LtP4G+{ta!w8H_1D^KRWO_=lEo*mHL%CXN^x;NyO)LHudKV7ys`*!rAUE;NJXjiPMUx`v7g z5B>^XI(Gis;~Gw^M=P}#9EV0L*(16ey{Ef$CtGPfnGWgHJs(pFXer#Ld-GD;tjRGN z9t+C2`nZwYTJdkvpXXLvWs@zIWD5SuD}R}2)B`=GVK>9V*dYFPd>=+1E>+9wK2QC3 zUFO|E@%B{Q4Xh4&(P-3*41cEuK5a4d0Re_Xrbd{oS39w1lesMmb1@)&CzOwg*=Wb1 z96yo@p5m4Hufjh-9;X{i$xYqri_(bS)q?k!9bd+i4nTR6UK!`{{31a#6{A?OM*we2t8Pfeg3 zS9+CYZ?p9LGx{b$9EXv~Oq8G(#Ar71Fcn@s2NoLjF~+GY3c%DktC^V^B{ z6%?Cl3T-)H{j<<0S7h+X`*YAL!Tx=B&`~QIWKGttEX{BoG9J~&rGIFedxS4<%Cpx0 zNuD{s(O!l}ewi~qe4RKtD#H}$10+^+jUshk#{_l zE*dsSuN@lklxA8h4$=CQ$aY6Bh-*`x2UqM^cmGb@?BA{2;OB;-2i=Oe#EMG;aO#8( zsB|Rjucf+^lnF|oZu<%(*G#7DdqeBYzF=bN9JyF`^0rED-qt?vY7zoEh6=8Bm*IzFPlN&tA)Lo zJyf{Ah)@wOgm+K-3`AJ5WJR-Kl|1?-%}GNNGQ><;ieX(iwIY3+^*E zU!v*0^37UtN*fc$CvltG<0!?Hyp&@(yY?LwqdJv9v`9MtVtEf-5&`U!jr-$%DIi1D z%B@h-XG*5=hgU;h^o~UegYX?6*gkP<;MeN zCg~?udSkN-tE{Fv&NW}-xpcW+56R~bm9UQX4efGXpSgezK5kw+(n{LrgDPaTEz$c> zdECSF#kHy_VQOPs)$tEjvdI!}&NNC$%94~qXw=r3zw~^<5S&2;K-T09BH*$(j5Re8 z))g=Z58GX4qJe7AH7dv1!4#FZ&=NIxUQCR6a_^bu#+3XM^Rw+$>r(VJB{Oh`W2xdi zt&hRk7IG#smD{2G`Z1Op*GWH+xeA+SH(>ovt6!Ao3e52=pHKsZkB$bGZ@RaFL0M%$ z|KbkK>&~Sw+kt`ogoxAXnv47E+hLMoX#3|6wDt9u*k8sp z3qs05YJPGAi@gWRuN(H+T+|d{5P4mH#7FJ@^O4x?i_f?>KYZ-d=fnz#5MJGS7I52b zTaa6}mJ+>@Yd4m#O}^bP`@BwS^0WD%-Aaamlscm*H7*`C>t|jjwcUtLsRJT56M z|9v%Ug&UDcoL+f9$v1FAww+{NyMx`Zu86zH&ztE(Rm){I@ec&EI>3ojCohUnJ9c&_ zXS$(EY7YuO*LtCHb;Sa;RHk5_@APnOVT^p^xM)$M%gUL=aJMtB4 zYKFtNFoC#+lsNL!Rp8e2teW4U8zEd5;jI?C5m_K@V9SYEn@o62REW&N78*d;Szx+8 z{xBUVId_IU&Y3PXD|q)W@IzYmEH>+l=$*^hHF7pf0FJ;TSiyf+lhlq?$n*52kxgJR z`D@|rl4>oeq7};F;6Kt#xOT>%#eo~uA<@>dn!f$^C^3?9C)39K2YLZ<9;kka?K2-e zz|8=qN|2x=**a;}HTC`LS5KpxYoI9&=c`r%JTKGzV6>8#wihQe)gn8H+wISA_ktf%n+AI7j}$MecKb3`CwV!ebFmk@*D9_<#RBb~N0Wh0bUGQmTbs5E_JO|0ru(U34aWA!lGQBW@Bwrt84}ce7_}U(+pxw80N%L;#(#erj3F=6de&c;5jPSt?$OP5 zfi}PF#Y>TUi#Altk;=+hOP>oP!Azi;l6$}C2%&sPE&n-QMJ#sA1Stjpfb zINiA&@%kBcvQO@;ZjmtY%o2%=3e;P(oe;!0Khj9ltN>wNc^KfH%W2)YbP6YJ3E{qV zy5%P)!H_J#1r1oE3rlc`m~gvF#!-l|YBjRy5D7U>V-a(Bdy?UBt|m)IYkg+8+DL5} zmk)?$nPX}9#H0q*J&Us`a7WXz40tWkd@Yke-Q2Z1YlR@Qql@KLw1T5{R0kC4S+DSM zWpu*McXiiiy>B?h@+UZ+mqic~ggSITxyjaj!)3o_F))*e2m2$zgIvyTs-4>RyXG}~{;q`7g86B%m5f+z(F&68U7ZARJP1m}l8WQ)TTk}TcOK}k#jNPg zl#1ho(e!P8|b3ng8aW}Vvhfn zCT8RMA13Wf-Km7F7Np+iTF>swB2QK>mJe$V@i}6vBppNoXjZ~qB{K*ApedGxXJ#0njd$h8T3PL4JJ7Exr^USYI$<&Nq?^RIG?ZW5lEP* ze&ogOmah(7#@G?$6f48Pg-WnEP6aoAbp*A=4vs$8h`6l>}&~fH+*+c>3JT z={hGi*g8g1nSleVDgJ$07@PFAGU3irYIQNMZh7%8%g0FIDA2qE5G%X4?FM!LlD9BX zZCZYzj*vFqBxO>TG47C#HapXqh$>MO6@t4x?T&w`*pZ?g+-CpF{QF#y7U^1@&-QLo zJomaxAHd{#g>c1ks3tm@BHOGlcgwHzVN6W6xzztc-Btv_9N0_yK)5VO4D2ByQPX}xTA-4#I>&~fszPrb!am%nCv$4Uu7WoqhFAuq5d}m{F$}@My8;PN3TXL2X z=;q4uEor)rhTH))@ zK$GJVs>kM}J}}d`=0WAxCvJvN5)2rJ-{Yx&xl&{)vT29%iO8BzhzvpBZ7;P>oMc1| zTPvShuUNXoRK~T;z0Sf6QRA(;dQM0Afpwt9Z+<+x6YjB40ze`)G?qb!79VCxD}v~! zp`e3_Mn0*dhYACmK40AhL)1VK2P^De2B#u_srIA1g@uR7fpowAYe9~%BLU#nJ2UaH zzcBw6=Q~R%1Wz+6ow~nUiliOvGx9W-pA=+_(W)P5yaSQ3VP&V9h_;eI*-sThf383q zN}ufG7U`b+;!Mxd054gwF+(p9H&0o#or!{qMl7B^P8GAT`ezNpjdpI?EojkR-+Y?Z zDxtgkY}>wcMc2(MQqHJtuZ&Z|JHQJdT=hgt8f;;MMaKw%Pbcjday(6;=Sk(#1vg#D zv)Muk84CBw-otiC|CMb?o-uL=N&XDp+{(t`yfmE~=n6b4Q(6=<>AKXx@eg$4WsHr< z!RML9$-fD^{+p@Hvd8112B+4N^*^@~iaMfpSHyk=fKbsQ-8h z$mdk|GUAXvbJwnRp{7F6(n4lhehX6$DHv3WwWEqi1Qm2aAl)GX4x@(90u0=0pYHe~ zIVmrp*C}D#3r)t|EO>iDY*6aImxHm?mINqH74hTMx@;wth~f4e1B5Mph^`BzOSg1B z<1!LLN))#DV+&HlSX#M35koIyBs$< z=e0v?Mu9m>QU!MehoayUD)&>loKW)KB`y67MK>iRY1IlkUIo)H`=1t%SRj17LqFV3 z{W?MVJHtG+OLH)9TQ9xZK9&KJLABdw09}@2D3Z<`cb#jZkDk~$8{#VSV&#P5X`Cvb ze08|^IhuB~;%b10k9Y`&N9)DmAUHhC7SN>jGdfqyht<_d9+$xS#IiDH4{6qGCAKKWaSCEP7> zh*R~1!Aw9N_xdh6@_+!eB`V*#-TaS^^jiEt10!V1T#W8|mdOydc6)`{pgPO8?l?_Y zr((?Uf)7N}iL3-&)*(-Oxf(MYpU(spT)LKIMPe0hDMh_sFKWLstPJI{;NDcAlFo;A z)_B>nfgZE&a#fwZ{vms}68b6yF9@@M6x%saRN>BTRxg&fNQEjG%~jo{!ytk8VN~X^ zM8+7YJ&;4DJ3RW>r?D8*RlL&Zs%A(=KrE(U*adV;NwZ`}NSGvwaI%|TyocU2_aWq{j8 zU;U%ceQAI(;<8zdT1V459ngnwF);BwBzN$v{Y7K@9M;i-TZprn6HVzNAm=?t4>)wn zNK>ktXcB1UDYL9%EvE#<%f}q_)@8OuhuZUL^pyRx34tn^#1o6ILCrEwa61@UKPZOv zWHgMNH?0J%`PF!99HM#Sm%B=lv*6d{R+ne*->zkn2tb{3G2xdY^N^=k|l;trV-5qBzh5d@H9 z-tG>%3#t}RV3lnaD9db0$!#0+zWpgZ8E_o6jHZR!1A9Wjhp#8P*JqTfa|-mUH+-YcqHK1)gqJkTXK;v)n{!= zdXDAz(}+>;>DzzrPJ!w7T;Zc&5SMlss9F`7c22vZpUr~IR<*2{2t2T(@=V2WvbmBA z7@b4Cm`Ybzn@TcxsjQu#tlV;ZjH#YRMeW^UoPaKAcTN+lDy01%dx0mfYVn~f_TM4S z+H}UM<&fXwtMq-?Tm@%+9c#ynG@uq1+U~HD<)?a{Rs5Lj_^#NxwTOnf$v3kOltc3r zg`D85Maar8Y`8&gWZC&ji9^XOO_i93SG42dDE*b$D}Im{M5d5N%5n*OrkYC4ePiiB zzW{v6MqkRXyC|!&Ec(4&!{R`woHKDlQKAhz@`$G0RHOb7hI;USqj(2S2t5z`Ngl-` zY`KHbTiWbgY5mZ(AEeTf>Pal0{|{s55S&@KcI_k`+qP}n?$}Ppwr$(CoxHJa+qT(p z{{Cm*sXBvGwP$EcV-G@ zkl*k~@G050w7G|6{7Z)P5tPX4@^xb~EOyo$F+IUQ zbd1V|>-DSg`OE!xoE>n(p5J+tXPl<#MxH7)>mP(x~l zU0IQ;f=G(@qgw4A%*qRYi)h6cz=(!_17EA*ayE-FX~+zoMwm5b(yZw%p)G&5O34WV zMl%{*LP)E!>iHH|^38{bgG2uZ8*BtLvj%4L?4sT3Y7CxN3-F{_hgst$#lSvlQ`as& zf(P9U`w`FK<#*JiRJd8ZpMQ5{7of13x+WB^5rDYSfJunSv?vDSK z;%)$q?66F(ZvT4Qz=*|gF&;h5N0)la47ke4`X%PzVtrPrOImwFoZ*`G8zT4xA-ldx ztsIG>@N{EU*nu|ecLnx)a^z#)Jpd#_vUAZ>9R8R0Tu_kwbuE!C->p@-C0ikMa$b)z zlVbB$_L0=!ClyTjCglZmEo_*24hwmFrO#cIk1`BYKCvv@cN{}NV}eVuf)e}_Kke0! z?S|C4q}cf*mhpuJ$%ULcn-Y!s_Pkp+@AuYA{BA>MRb#VH=cg@r7O;WK0%PxLUUea} z+GW}1W7zabQIpCGu*8Q`sj`2)j`L{OhBqj5#qyR+d05M2L}l)x#WC;p_V=2gj~};F z^My^jO+lI8X?-^o^|iMi@bdv@8uLx6{Zu9#3lXYzGw|0_uyAlG!6s08$&uY&aSF=*Iprx|C;4?bJu z&bG}t2aM`$-qmY*3Pr9y0+70DE`PfnKCatiXUvz!RMGD@Wj}D!SH2R@9+0eV=XvB;C2yFP2j zZ2=MsI3IV&wky0tTQT)bxNl5Vade^rYtuQmH`gaOyIBTQwF5a7We|QCrbq^ozlS%9 zAVsp4;Hg6<23UPe@SWS(Ibg9PD_t8Kw-igP3Vva`H%{_U!03tW0xeTPJdVF2p zZ`6N&EvN+l`7Z+{3*-MXP%^Wy{Kr7KtR-Vd+KSY3sxE80P++kVg`lxQB$!Po1P|=Y zXnkwgZ1t85^!@AYnu@=YfaNM<#gk)R7<vh*O~d-G`j`9&}@{=vG=Ga4LG*P9_`eupFMt~{Ni;*Yi%JiSV70@ zUHIO;2ZAvoni8bivxl8!y*Z3cGF%s-KD*@xyR>S7c0Fmzu3QFt#Q9K-oKlKMtVHdw zxohCmW*#0xYwDqGQ(9{CX4ybVA~XDF@~+at+WD7V1{M?b)AhE~7HGK`{s&1$$)mv7Qu>Tuw}xUi zMOQ?sCaBvRUsA&~;zjX3l=1CW5?^Xl_~^BW{nL*EW(B`fL^BhWan%U6^F77|KRZ3vL`7@W2i87jFwphr^o#VOh-_JX|w1mUv$J?UHQsz{&~_m=W|DAUmmVc19V>GZDS~8JFrE zk0cq1H&FIyk(4iI2Vuf!VSzcG=!qTAk>uPF;Vlh}T2;3Qy;d-|5K@X%5}{-W#W!KF z^rXUVcZ0~aR;B5KZ11BHjC=sr@_Us!M|n7OiG1g)VPc`s{1z&x3wnkS(1O#wCl7jN{FU4+sAUF%`}F}u%tk!-Le>^XKd!z{Zd z6?Q3|wPM|U+He{_vg9?LerlgrEM-3xoM}wN>yKhF<#KdyIikLnr3tMD`G7bddk+ps z=vP4br|DnFAYCyXXf&XSxpW~qf|D^o zk`WM)1eLghe7^=dm1`QR zXN9uTOR7$sLm(O@fdXkU`#9A*)Br6tees*~09nT%++x0e$O1tma1nqwXfq3w8}V1j zcw>bQUW)be6Cv3V%<*6~Klz;vJfjCy4nHn%Y7f92YL8}ef~;<8;P}fV_DReVx?{QR zw_=mk*a}-CxQmv^JeAI{oEXPR!oT!T{4;;C37H-qNclB-EHx8h z2hDnAw>O0}|CWY7G|r5sHgC+J59#0jbAqclt_U`Lq123ELtZ~3u%=2aXJYQwUl0vW z;G`amvhy7N0E%Cs4=)!tfP-uM(ZOwHEGvElSxQ!(nGpKPj@A8TT#>;3EpKG$9f#~; zv^`_qGl6OiW$1Q=i#b8l#@^W5mYA!a)a?$u=O463){uwm>P>n(Lg+RRUh2t2IK$~| z91q<=wOg20ym)cScDIzqlBI`v+NS%iklA&e`yK%)7I{ z(Dfhs@?d+U0YmL6Ubs$7lWsKyYQ3RTP@0+xk6?gG9?Ahs-EyR(+#AjV#do;9WG&ah##15x%->nIGrXXRnQ1GJTz5XMbmX_bTte#pa?bmTj?OV28 z!>rk6X<%}+TSBOBa0E{sQhj5bPBFVxi4F_Z6>Uo88`Hb&m;_>@Ew%goI-R=OE`Igt zeb7XRYDi@FTOSZZ?x(G1zUXmxl7a)6=?-DYu`#BTDFV8ck{T`;PC~vJK_Idpfh##?4~7)<2ox{Z@yjK>3hnnC zSm<^CE2$_%ls)tdh=TGGFbv~F;%6>SYwjGnjLakzA^$A}mm?(T8(e>3gI-L--@lP+ zH{b5P$~4q#X;w(4MzS)I+2zZcQlTkhSmszJu}8ckZ?uoo`!Xc~kTOin1XOt`2(G7Y z2jiT5Nj{Y@L#{pHST)O?mN(ZS{n+y-$EqDSh~EyrNx)Woj-S6n$!5vs#`ZNwJYr|{ z|MYuCO71i54_>V44cM}=G-j4xh-;~|{*?OLrp30%CgVz_F1igk@F5(a*fA*$3CUF- zo9StOqnA*UfE}7P3cw-!(uIAj60sZLs=ceZ8gNfh(8~&@tkWiUO+7@5M3G`n+U>>p zxP_)iH>>zEoW#Irpvvi<8Pysa%Lr`=aIGrDHkSauB)&YEQMgQ9L~p6(Eb)=M9YL1{ zrD;0V+sk-seO)eGct@*UXChzvOr78%PZKZ)v_F8KL$em^DnhJiz4JN<7Wi{*b2Su8C77p$U8sluqj2qY{5=0rlstROi9_OKAJ zrb`qL1EhZmj_}`3VgFxFVP<1x`@iR0<4neqj9%x~DcG`Tlq->5wzK?`a>#^bL%Bf# z*6_J0Chh^4kc~_aZ-#uGRh?RKsUty}v@b+199hF0n#LB7w{X^^KLIgf-!vQqKf~$* z_r1N=->-nT!Mx`Y7`wUh=|#gJz{i{vTs7NFG@0AnF=ZC!&mIr z55v}FCFWr9o+`H=?{^xK5I9Pq34adYYc(Fjm?qmMGLmBD5!0?v2TEV%Yb=68_Rk7T z4)3E|$5yf`tVsB10YUy#`857PoE22cLlja&PfKI(OiIhOEiEciu9HMb&Zr#|N7^gg z5U_-VLT}lz>OaAjgw=@AA3!1de6nsZP!4ZCZSaV9>5_1WYOz?gRciq*$Ny6OQ=ru@ zx}l63E2Y%gcpH)syI{MJMFuQJvLC^G5nSF33j47$pP>{1N%jbNi_p%Pb$yqn->~?q z#tH-I)px;aj~s}4R+MV?(!G&WjlORd#y)w3u;{O%a>Sj8S-C3DV-Kz>{!;@UGnS)I zwwf~cewisoY$nS6*3?i|-W*jFH6}bNqy;xE_u_LxgrIq&;gz&`5S=iq={A&fD(H}N z!_vr)FAmkmlwMp(9>q#%$EK+L8eNw9r##BHk)`x7w0sEMRE;#*x{Y_LJvm%$v3B<)MM-d|nZ>ZzO%hCkWzq3CryzM^QQ(rnGK2{SIKcx+`}<`U zO`|B|F{p$XMIQ*iP*)+&A19bNbM2pDhm(9~#uaOC1eVef=J#A^2& z`maIVr2tsJe3j#stek{{62$(5;j@!<{Zhg@8r=4gcp|cJN}puRV+pr8qbTS$xeN7O zA1n=K&TWVRCb-d*JGt?Btv?T{!(TW)?HN*la^-e53zvlnIrC{c3j3&?($W)nu5ZA@ zt|AN?qsOMHb}Y?*BUF4AWm232Dbk()-qK}P^V-uA4;$W27%r%*YH;B-Myyq*sJ2W^ zM~l2+$a{SG{vpKdnK(~hXRoIj77Hm9*q=N(~)j*uiiLrZi z+lioJ?9)a^zi#rIrGBXw8NzF#8)H}5_(Yb(S&Lz9^PC}J2Vbx@C`i02VQ)~El)mZ2 z9%@A_KEvZu9-k^Y(=a`FP^xi(4+uR60+K++xj10F4BiL!4E$GWR3ATzPmar>uV#$9 zu16u+hfN$BOk+^gbpPz8>cODlhck@XdU(nq27o`#avWisHe|I|Z3G*}!J}guZ7AhXXmVbk zRodo4!0Iu+ZTsjU^!imM12ZwT$f2lTi|fUw^}~JsQT@k4>AgY7;rh6T{A8Dq3BsDx zhK=0ka>!Z{@frE?`Q+V%;-rap)TI?mU-<^6cx!pwap8FG%64wgca?x}1P6ikB&8_}~8Lg;{@LMlY z_ZQBZ-`9bq`zZu2{ntGzu-$Bu5sd0o^dGwVNVq#CX`UuMm&h}Q*@80V$p|70d5uC+ z*sA8!Thknm8IBYj*3gLy&;&8q6LXY%>>u-em49qt%5Cq9(|@BmjwIMt9ll$d8|rWN zd#)!&W@u!t!t?3F=36gptkcS>|vk z-#v71$osrft1_Qx)Plp;%G?}<14 zLQKdPE~C{tE?xOL;g*ZyV8Aw=t=7`zZp3vko2WVA(PH5qk3RTO`;1h!rA=M?ZR6{@ zp!fbRl1vrUWmf`~P5JA%*GE(hStVli+C-jN&A(+uS8x^Us@qilhc@DggS^HZgEoG9 z)Plgx`Fe!ZxMAGCK5bkloEt@}jI6v-2?O)${xBpFf3L%IgYH)%KT^E(F$*rn1_xZ_ zV28D(2b8Ho&1`8JoByh*=AXp_+Di(}7XcZ$Khb}`tx|P`PBe31oEn|(!A|8>Qq9Fc zzz%crNaw2HUYAkM>U>1^qFd@R1oi9w`lgE3%H&(SCWKV|djT_Z%I4vI59&G0RK(8q zB8L^z>UErM#(kmrkJI0J;a;ezkOlsnP5vUsu-r8BJXD5L*0(R|lfhjQn#bH}h&()d zXC&_x8HH2-j=njqcG_M0RSuhzZo$c&ismxDkoV5Dh6C5(75}6WuGe%|Y)k?VzVoV$ z+sr(`NuQ*r=DYn4E17Q?mh&oVX-5axPA0FEVgWxLW#yF#JQy2LCD_c5=}jrPyRh0^ zC#!h)!($bfs3sx;-5aIE)VI_A;oY;#RIE6D?|MuQeVZ*4A9rlZ-Ew1r1<cMDesF1i zA~~gl{~$(uEiRti_I?PwE_-49H{HnfzvxC5c9#FlS?Flm;g0_Qnz^;E1jd$a)#WnT zdm^E1LOY=+LPB^%#V2fJ#9!hDKi?|)i=$6hGl|J)V4-yOar~84m#-J;e4oz#K}SD( z1_?iDVSj&4+yw4=1qit z$=*KvdfqO9{e#Kox)k1b{FA9ay=IMe?!CUNs+0Sip3c9^OO6zu_@g14m=x8fu17?5wsB{BCp>y=2;f(*W29V%e2gytbOpWKM+0oB zuZ5_vkGaId!~=SC``g!buz~%6MW689<|dRj5SXU(bErz25G`*16w>j6z=7R8YR__j z)9oZpkVUEI5fkqyZ|S{ZZ32reH<{%Az%+r`kcDZ=Ulog_X*r=kDkT&DKIbM*`mK}H zXawWpA_KbSUUpkE`t(gn`2MxxQ;rFJ*W&Bb=>R;3(nH))zB@SS&xzRwGov|#MQ?*w@w zat7qW3;2r>#RnO51n$9uB}oR|vuf-l#xI?&biFb;s`u^2l^i$qxnHXlQi9K6U%KmP z)C=~r-n4Q-+MhViqX?nNC%Rq^r}HXFEvArVk&6Kpv2EYp^U~f;)6xYXz#f&5M;F68 z>#53m688wx1QP$o*h={;4ht$eP=3h)Yapj~ECraA%R;wWg#u4$L+%`%W)NlUG zoL!-9%Om46o?N2cT?h69DFvxIp*o^SE_e0Jnz34X31j>~-kg*_)}wG5(?q&qkl6W# z%*JGk8<&!CvO=$(dT ziM3(Cl7w@d$NG9Ltx&gII*m@cyQl;rzi+;@@#B&44L6SGbI;RU89Nh!++O)2T|bx27c~??hv<`ju}!|7#JK{SOgPAP=qBz;7vHO{l0Y&S-r`1LqX`Ue)*wCg@Uamf|9 z)%A1rrtRjr;wy|}f_I*%wSvyZCL&DEg;`EoiE2K=ztv!-bd25k;M**vgy88ps!%4p z=kgP6ER$WCSQPANdYpL!&ZbdH8)-`cIB+J=|0wL*#1$9e%D5qJ%h~8odD)hlb?FDj z#%18>g~?fH;Hzo3Np+DYtNCxn@2f)`)<;?p_4VZt4PcUs$me0|=(jAUbu$7?tvX^Z zFgd4QV~=ud?{b$$Gc2O{U0BOixXbF9Ak@$_A?*Q{;*H82!NMZ-976e=h!khnc+Xu# z`iF8*rmhG90UfVvX0I&c!C2=f-&bVIzIQQQOkn`v(NF3b2i_Kw05>^21*qhe!KikJ z#4BG1X${B(j@oPu67td zg8~%%S&7N_@TIjvXDB#{mPFlmN*XiC`{?4g zhX`#vYHs}SWvk$`)Bf>co&g_A)JSmWTihq-eYm^wz;40oWA1@eJo%T0fM)*=qS(e+0HkX?rADzEN<6 zz3JAfY985c+>+vjGaixD>D6ZRtYewi61STmesiyqrgIO$jE%A)vYL1_2TBJS(nk`wV zbajsspnZi*gPV`rxG4+N*nq^=+aXY@ustHC!Vh^?2}WlLWw(t~vt>KkAs8Nc;uYux zU1~+I?F->$bT>oQ(HAHz?9AN_>O1N{{U+g$J&Dge%mKxhQ|960Zpm}eTfxnW(c`7{oF3rG<;A^o*;PWy@X(O=Jgt~MJd!Ck&lXADF_W3tBH;i>Z^gFV? zY45q@7j@L{S!;RTBSi1oO#}oR$@`#L7EbU{M|Q0ZlG-H;4P&cNx|zKLD#uxnip_Y0 z)`cGEGl8qbh>YW-aQnX{N7tPs8=Snjzy!f(pY_gF%S2y6PA|Lo zAulq$b@FOg2JE-0Azr<6f}aPV2c(>R$Hf0;tdL>ZfNff1d6C$Cv&j#8r1~K6lP9hp zwpU%Kmb;PG9=Cg{%7XDUOh(>Q19=S&Vp;cK{^E-C>0_vUJQ3^6O9(K)9&Uc&K%K^&VVxzQS+|;}J~T z?2V{TNpODWbMebAHpF*A@ETDi6kt{_XF__#Oxh)F6wN79){zvk7r5!erLWr)P91!f zwCnTaQ5@(l$%1$rePt=YP8IS`r|q)Z|Gbf^&F&l05EO?k0w14OuHj`ZgSjWwcN1Pd zDcHj}A09z?g7)k=c%0;EdW%sd2rE+4X(sf5ksz^Ez=*b20b8!@8UDs1Hi90q?mG7F zlZmV$FmaatwJZB~A;u6;b^Y@xoN!9Yzizle4$#wg+12qFXD_cAek7 z8b9-6JE@fZqYB<^7Zu>)=1pADNEHBiR>59t)&icQ>r*Ddyc&WZ6Sz4BCoB#`$@ggx zA7PlMNpZ~?tB1RBx_CY#|DMbhqrng!zNez@e}xsK)yk-SJVl_R^d3~u$6F}H;%2n7 z69A}6ea;B(G#2WVSVU&`mruK&9X#{85-(Vk(t7uFLrJo9YZBURMq9 z5k!hG^yE-k^$XiO3ofbwWR#f1LSEAm ziv;bu3Xj#OedmLTbxIRZ6jH_uprF1qQavoQ?lV7*7KYxQ+Lzx|6 zDP!~;2Sp;aw&Kx`V*SJXcR`4V`py?12$-HpW}_^m+qqA%Z1(Qb$m(T{DxHU3vEJ7K3$~6IgRlnA!R|585}yn$^;ZJNZ)Gq= zcaxw_(roW5E6a-NYKfTxr{I@ijf9TXKt*jcJtbMhnO4FfgCg(#U!CZ^ubkdYmeY-> z`vzBYR;DbyuM??r{EU0|&UNF?`J?JjSsWg$D=7_uv$uoo6zvPtNN!{`-SJK>S|5S| z7M8hctHh2^XgQ=b>oN?cYxi7{B9iet9+v#CB~9!r8*69P%8uTpx`U0~)A=g3kEihx zJ>+Zl+bzE989WjPBSAk4yykC^r%Vq3i92d;oVDIqnMdy@^YT#H{6yKZcF#bWqB|kz zax=e;^4QFeVERJfeac^q2STC^$CYa0nRcxvU5-*tlS6w*0E_m+7bDr=#EA`3EjSkEY{azj$8*DY|;a~G#!9B>Ujl^zGslXmZp;w}5 zTU6e%x?$>1*XIWm6sTE91E?*iFv*v@$S+;YyLJ8N@w%OSMc7Z``5O4@v@)>c3n9sr zg45-j+WCi5?f1b;u?wJ#Q~fgrULjxMD9Z05hX?Xl^(X$W!r4FxCh$A*nUULnk%bsu zngy>+x51yv*Pdb|wd22U>K2RavYl{quFp!y{R1s|Uzcyjb^cXqh~O>VL$F&p=~f#3-GoJ{63%fFZNld-1(sQNv<0mB+{>{k~P1HKp%#rN$Uqf zZ<+HmXfrgwNc;j z#b6{mu|bh*5{w-XBKQa!CESyGw3WchZD4@eul%D+#$>x5ITy%mbMYB^xHmO)zAamv@{4%YVEY#Ssp1kXUh{{KVxXo zjEP78Y6j|3^y7VyaaG|)*B+}=wWb;AFwHb6Xqw=KdAaR%(rdu%3oVIwJ+l(0G4_8=xC^Q4BP#blfF@ga{g&rDlgA@;= z5z>*r_z{z;ibLr2YXg#bdeE5~72+|js1Nv1m9a<4pX(!>rtEI-yBo1dcbP@s-%*95{*t%HZiJU~B}6jooIivjn` zP};94F{a2J$wJytMOE2w^exFoH4O_F&RNOu_zdqXLJ7ZS7g#SB_R_lfw;iPz1Q%O?Q=Cun+H!oj5}&COCjI7m2|+nqk?q%U zDQE+Yv{nG3vr96 z%AhWi**KmfB*JWdGdJ4yWm=@7M<-)9-jKMA8-XbjgsPHx^Q$Vp->Jw0=A+K` zQXlh@`*oqBYCl@|j@E_Y`&6XFtp{`B4samR+-60@L8ic-EX|6Js)_*Xz&o>)SRwXD6pw3aycLxip`*0MoXYt=IkzSRBM^k-LD>8eaB-|u{ZV-cA z8V>95R~V!`Q65bcNki3Te^&P5KSHMu8kb?v_&oS#VKtx#8Tn&;AyDGfD#t2 zG%Lw zR6tvm1kTDemTgL^xw$qD!(DH%l8|FZ>cLDUIGMnhn|&CU?tw_7n*0Riz^c_!48L`x z?x~5qNl8DfY>-=Bx`C#zR2fMiLZO_{vUsNFBiL`hbc)z46sMy`9HG210N7MkXHhG_ zr<{lZhtjJX8Hu&1Wmx$z_v%ZdYus<0oJhD^P1mHQ=}aEbmNi0$lJb$Ts3T9J?(v}g zcC_Y{py3mLqJC&|SeHVpZr9B^%!0kV!i4R(J#cB- zh}`nj`R8;gOG|P>du&UM`n4UoRtc^?8X7I3Ga6*4vF(E9Vk+Z&mBg!Hyv{x@0r)wn zhQd=ucl<&y4SW@Y3o*vMQnj%gK7*(I`B8n7JK@Ypid=H z3AYR7K!`qZl*=xo-(>xZORY@|O*PxKIX8tk5BXfJoRp$>!1e@%eH4a8X2H|B>!x<) zJ`Qi4wY*fZpiGm#okR69t4%o;7RsVbg@sH-X=b&}am3TDZ+p)E0LZY|vY)pk9Hx2& z*-~tkTw7=$K`?V=k6-`ocGsQ+Qq8^T<*A*tvrYePmPe>mJYlC7#^=s7#qx;OGYr*h zca~WhJE1FBucgV0hNX}#t^FAtox}m~$|VB5dE`IFX7fIgjRmQhN}8$huN|aRzY`nW zv^E%H2{POCG+;&SnI872o;K17PmVZ3uIYK_;I7^e-bE2l7yK{6Hj&{CWk$Nofx>gP zO;%HM`9Cf4C2c$E;m_}Hf#HhigJl+A;0|EtLITy00%j|&NBAf&Q}1Cp1H}X6CO?pf zGg?@Bv&x!q`o(`9TjVnUc`E~Uj>(!Iu+MP;fSMrpxs64qUTq;o+;7lO`??Q`zaAxa z64Qef+T}0tBdk!$haWdByB6`y4aGb6QIt@#8vE`#&YA57e zBra2oi8zZ;aiIDVZH60WIZvfBLuHP)t6@q{B^<}t;JBLu-vp7!U5dSzyD^GM8LYZA z0I59uuo)I2Q$}Hd&iWXdH4P#6WtwySOc#s!cBk;{Naa+=r=QA{k)WSpTeh!HoN`I( zRe(}sbNqg*%$mY6Q=CRG2{}WFQ&ctgaaH^`7xiN4kGijh&mnjUQDL>AqlS<6Y%n;e zRy6UyQn5xPLQ_^TZ;;kQeLjNyfGcds=>W~qlPPJx??P5pH@>A0xnMfYqnBy+JdTt4 z2A=4If-y6Q2dd0?O|=?rjoBQP-U==XmdEus$&A_@`ZV)=fm@`QIEZ(PQZw75jf4n0 zS7f-paqNfN(j8c(J@YNlF=SD!hf?YEt--*4DeK#sbw-pvLD6~O8ywvNKwZl?b8OA z*5WbLR6Kb;qUv3R79qkA?kRLk((BRpVLHEL2HqdE8rl=&Db{r|jX5D41Pnkt@}(l{ z&rk+954P#UJ?d#lM2`Lk7!v;&W+P-jCMis<;V z5^RY;&+A}zlz`q8n^M;18{}Mo7a0@{a9iBEKW)1a)FL^v$%P*?VZeBl%=KG?w65!^xHzB*GUL51Z!9r<8csPoOJ_ct?2KxS(NG|#lFruh zR?A_fwDu$P=`>N;y{w~-NefdZ__c5^{TKO4)ZSj#e{vb{43(3Mhqk*IB%lU9za6S` z{rKD<`aX)ePR3nZ3!7GKD>x&g=1Q{#0=r9T%bG(*Mbf#sNAufNs5@Wt)*Q_BB6ySD zLNHEk+g<_Ln6rexXM5z^M-#*v^au!==0>nrB}SWVQVsSVdnd9;${fijQ_CxJd<1FU z`bdinb?R8$FqcruSowt4^l2Lw5vte08ttdv2dDU>?4|J|FYO`uqgpJwT*#j6vHEb8;AKcOSPZkYOTR>$Q#LTg$SZ`cRR60vFE#K0V#yh$Pn@ve#oDHwWn-KAGC z9lozP=#Ch(U#dMew)H5OSFyv2Z}>X*M<1FNNxiQ7W>3jDY1R|o>%ruhU2`cr>H2R{ zH6*nWVvtTCv4k?Nulk&#ak5)Xt$UG^6F~G{5?q1a7k7K3(dK z&vQiEpK&=4r=jU_VMox={wkWN)w*#?@j4L-2V&pK0dMb4F|(JAFDIJj&6^L!k@TEM zLcnSG)y-K*E-8SD5EF8Bp)Hhf?aFr2n5!y8A~-g{Y+-$R+;607A%Di)ZHpF}*=cwD zM$wl(2;8hndBSpw288CpqGa=TZg{TO*LFb za$WxhEvV+;U(Q<2thW^6N05USyw!PklR}vRfD@_n^NpP=G*MT@d?r`;F37S~4=4=H zw#&xtMEgFMgO0;sDE%G35I2fRqsIj887P*b>B%UAKaN-ZHX#johuY#3uK6^Kx6 zdDnM`G3ujd!GrOa?++O`xl`%4P&-j4?XX`*K)cv4GF2N3O3N>E@LbpZtA@F67XF}- z(>41YS@6`9vhlT*GA6Gj$A9*8O#;QtIbSXMkU4tlDRqX-gbINm2#_WT#9+Z|IaB0Fz+#lr zxv$qMZ!0aEKJ+Y2e~_xS=ef!@ZPF%P-YRu&2HhYyDZe2g!anu!^!z4!ckXuW5PE(8 znN*M(A3aLc=W zcb^nttLJu#S6cEmh4HHoD_m*{ z0N_`t@(kEHs}I@mncmjl&(pzHuKyB1xS63DMlCa;#x8`jJO7f)d}-}Lb+@G|xHa0* zZoH#Ka4=lZhQ&B^i`cw~6TgO%e$|H^A_w=aX{4kUP;ByyT65BOO^uw|rcB02HOHtX z&a?nuc>I!tvj;Z#^Bg!d^yPMor|67?>!iqn!ItsO&p674$iiSA_l?)fMNirWhO5At zP8e0I{3wvEGwS^JFfHsB9_CSI)BbfIXbadgg!XYvdO$cl%r2{HrD+WF5Z+I~+x69m z*^`e7(pAy=Ioi1&8x%gNtA|r+I*N)79RrZN3OK*qd_(L64G08leq^SIi(2U?&v|8O zV@d2`UrTse@JIi>asK}HeZu4CWMn3m2oUGZ-)Fe0u4`@NRGlI5flxy*|7fe?}pATyIl;QRGLm) zu!YucEs-wl9%;HFl|uBsykvnMtoO|%%0raS$K(m4V(zIc6Jw%TtItuqC0=`Q@x3%O z@#AANoy|zHKTYi4%In1=9_C)jWuMIT4S|Jiq%RvDp9qg;`Ch0G$^(zChdlod;K znIKYDf1}Z2y1ZFWSX?!1BN&aIcCJDv0&mvqSShxdx2>1!X)|`t1~DU~UQ23}lJgFv z{&J~!ek27@a%qNA)-Xr}e$oDj3A@if0OeYJvjo((N0p=5^>i|eVLoZtU8+KzWC|0! z2^MBto~?AvbIEoFI^5dGqbpf(t`$909?I^}FVh+By>J-EDg--?vB4e<2mce0&Ldws zPWT%fEMw@^;NT8mD}mQ@z-T>YBVs82^jyKCXaT+M^2!*Dd$(hWaToKf^?tJsQ(faY z;!P!w5%ys^thUzYTI%XRTl#Te>TM!fqFHfHwJs|0E%fh#TJDwXH6%0%PT;^DNg1|+ zzvo`#0%At5)Xz#zu3QYq#&Y;g(Y_uWW#r)_1YoE zJB#TdZWh*EHjXj(>PJ<2DV3b)?JXO7qtvG%m^{HnF;NLThT@) z-^JM`Qx|wKa@}RiAWBgPjPuuQyPC3ME?VbldTgpAm0a@yn^zq{EP;ENYDJ4sWxP|# z$_hCmz0_qIXXej_v8C$@JV4lqg+J*Q_(=g{z-pU!7#tGwOZwC1hG~JZ8NHRy@Nm9F zA=V_Nq_0k-Du>%RXz&YI5;qyixeB3udliw7Vsgjf>87{*uMTC(RiM^+j!at-#s`qb z58}ecMv<)^V-xd*_3Bl~s>A>A`n^i8@0#`Al!M`X3uctY{tven{P-B)y*=`yy%>wF z7e`~@6ppkKD!vQYnsXghtuIqQO7e5QM8`e z+2P1@8&fj{)L?@S_bl|pm-z__JaC`$vG1C(bmflD19@`jwod*QA|Y{~W$IA$`MtJ1 zq2RUV%OG2nn{*n|0d(y6CDyCx`5L@a&M^;7+bj0C4Z&S-W776x4*8~CL2$U#_r72y zn6~O`6F^>gL^~0TITISN(=;k^f|-M)`h+?53=34+$3Avgi12*uI}R;@na_wSE<1Ln ziF+EVHOsd?YhDDd-3VEy=u71mik3;$?AQc#krFa(bYThi=Sq5t$iVBJ4b}t10uDtf zWRNubf5sC^meQh6LVcArlFuy$nk;+~uWg{3j?(H3&#9eI!R=8RClWw<85+};){6`++w`t8xL#83n;!iB_}DBM z((KG5t7PpF2;Dz@$W)*#Bk&EstT}gU6c`U#FH(dq9OV-%8e&L=trONmug2<^4icZ? zRSfU}MVq$l=ehi3R&V1E*8l;`#U{IxbJ;<18p)6_FcF^|IXh8IK}};A2kWeF>rq(j z`iVSreL_a7%o2J(IZ|;XHFrhJFuc5$WmjE+S>Pjg`=#l|5bDUxAs-#*?I4sGnyzqg zrI1ZisAcjyRW^(`6P*05f=Om=(CCkD=s459GrBb<=>V-wfKZjIeNkiyJHpp-bW!Xz z5UR!69dl$;VN3{h_W6`?o^~q?mm!R1pV$p52 zHZmXZmG&&LKo*|z<20vh1J_PAWX&c*!z2!ENe9* z$f@H}G7HVY{Wi$8-_O zuaW;p+Br380&NSj%eHOXW|wUnU)i>8+jf_2ciFaW>vl}c%bhq6Cu07>j{UMS*2?U6 zLYA8`M$=rv4fScnG;6%EgLo8R`%{evQM-AsYc)+;-{hQnTEJ8$K(3!smW;QXvQY7l{882E!^!64U{<Rj;94*q)xQpyFVIJ( zY+!E4DdsOP*qQX}WGd-9yN%l->(G}N`}wE|^)cCMAdN;VxK-Pb{mn(R<$QHSX3~(n zq~xw^_5@|m>{6J=$^dFlx_}5#ai))2af2o&f9s?Msm>+ME2C6%{7jtT%Rg+aKbCq9 z1N~(sa`xg^awaSLbe8{~{Oyy4=5X8bs*5hedR89&=QJmqIsUJyYkg`Fv6s<@6g)|T z=vhnMv!NJOv}YX4_Cd58j@jpq8mGIF^l?s>8mDz)XH(YZRhqQ4B7K~XufS)rP=>}P z`CGM=g;HTTYG9hpWsgZj&8hW8LQb-H?76*Re&H@?4(%f{F?4~|!onQ|b8#~4O$8|2 z*oyIjV+~!laK~^GgnMh#`<#0}gT~X5bwBtR56Am&*-t>-kpbK=m}V*=P-uQ_ixPL94-A!}5On+LFs0$P2UJIk&1)`;>dLe- zNb^t^{-FByv$}Q_yYHhjr>Uh;l;hY{;(6vs$8w^eG zmw1ABr^J%st}*1|OiJ58eyY+%EUGyH%9%+8XMUFpmC8~{+G=UtX5HPjwJLM*ePF)& zbk-Nk%>XyJL#<_N1|!oaIV~sjjD{Lq8%oXFWaD-)$41oE>=+7oSz08Xo;Jg{LPSt*c^dEDE_8}X0`O}OvjKZ;EA8(!xLh~9<*lAR5zy7l@`jS zV9hS_7|C@S0XkH#DJ^=wlpOLyi8gD2S~j$3<8g%OU*k{!hR0MF6mGe$S-vqSN2KxJ zo?fJsaolS5x#moRYEo~ii$F3($9>?qBBb>%xvl-jES(u2{yP>m$0ZQohr<=JVd1|Cql7h1|klI^Y6NAz3%Npb6g;F)7j{+z*Ku$sJ^)#7K9V_*OM zt>R+itT>uc9cJG2spRh9`jPBP%d_wf8|B_8yEcy;5!e(#eoh#kS(if* zsva79mk=6V7}Z1Xyr3k=Z^gA4e9SrsQ?eVlk_Ix67>W&NN*7mnpMq^V&;E44$&?($S^zhJ9I!UV(Uk`n#yuc%Q%Znqk( zr`45--vW=P%GMU9f56L8O3+8B0A)T+@vRL{opOtxxI#r}Mosp0_2J@E8PAE1pS8=# z6F~wUPwPFvb6u43_e~=epq1A|dpWXXi)HhvK7vdRO|p{9DHl8|hs!LEi?N)d%ygD} zp9;K0jRG@SyNS&E>@V4Qibb1T_aXr88BhO%KH)y|-}py~6n(BKsp&x!K2=>8l9%u0 zVjNwY)1sOYi~yTWMO$qQ*?k(_8#s z&;%W0A_w*NW0{4Z_~%v#n*7s3(Zhl?Q+%ZO)L{ub&tEs_;UyJ%$Y}6`QO}I+^`~aK8(>mSCRctR_7^@!bN_Q0xf_rM_puFmmV{ye9yQe$h%w0H zw2XWaW^TCrhjCHp6OJ9>2e(zs2bic#oXM-^O!_A4u@4+1P?QFW%_t&Gn zIDt2W%AcsQ|HL~u|0~|X%Jjc3dawTR4wL`GJ6P>_5PXa}|F#xqKoBE?dI-@fA>PK1 zn;_C4LEZh3dDC=W8o$_>HNpsun|I28Xwk16RaH8@t_b0ayvpNOL;pk#zWl)MeB*!j z@PEEv?KRdF|NGzC_NVZ6`tV8{vVrmM_Mr8W1p_yBc|VTGz}blFeE7}5x3WGIpjt$S zNr+;{06Jj$aVk6Ry^S@i>q2o8B(6!pCiU z5GmtZf@gUvR(2Pa0eEH%jxUgg6z!G~3z-8?^Q>>f_k*#(Uj>I4+8i{=!pn5dA&3tP z_@;zzQ28@tOmIU@-XnOG`dicpD`h;MGC6D}nKe?r=qQ>!0Ygzs^NmO+s{vtjqkYO> zaDQ|rBDinkbcz#XXypdrtenM$ekAXV{B{3HE@-8k=BA=IY&aam`aZ=_HZeS9uDtTW zO%Y9>hqLO)NRKzk1eqY~b)>V}2D>5?_IsR!IHsH!fpl8oEq&oF${TIJjk*|Ch@Ip2$l{0+A(6Y54 zK`61h^g7Om-HpqIMZo2ZodWMPj+6n_{ffsH+NdU5r|UwIdkAGQeTElmy6n^L7=-(7 zmD?eFCJ)EWS*OA_l~&^NMMT-;y9tzCBwK}J4%x4Kj7H8xaC3k_(1$s{I zY#|HRs&Ir{MU-duT?lA9Re^Pvt!E>0zaCAiUI>F3?VT;#AIJu3{sqIVFJ_1+LM?Q$ zeS5dxJNa!npeZh$PUc^GZEtOvTg;Vu|Mt?RH&G z;b&(soe_z&v5Uk{k*V6b1zY>%_V;z)B2J^47w2IK7T4wA+P$<1&rXZF$v&n5@m@D( zH>S(SLYjPNnk!=l$+i?hXBN7)@91nSQZupCPt<{_ml2z(!DK7%CW?PF8~fG8Y((h7 z5b(yOaC(d$HV@5=@bWcBe1;v)oUn034UxYVN1!H)o+@h6qrKIuHw*%=)u!N?@WWT} zhCHSxAz0-=BN1}Ah%J-a%&W|CJrn=s4$wW4tC_zl930frnrD=^9JQC6zEZMG&!9S~ zWagO3DYh#+@D7z6059lF)Z&bBvA9LnVDAmM+V2kVr4JKD`m&L4%4lgQU%Nk|2&OiYjjPQu~hD2>`%5 z){qj=k^258$8aM384-WwGe!JJtx?^iHc%w7-$!P;a3>tSJ9$hd$PS#2H=RH5#%U~F z7-&epCkweSt>>h2)01WnsFz1b#)*}n#vgobEsdDLB}d+iwN9eA+Rkm{v+5@=?^{X> zzekwb^8=LaN>EA~8G~pR0Txfmqms<~8EULx(8RWf)se@JjDW5NC>5`VjU_k*xx%-b zE+75LD+$=?z(b7<6HXNCF>uUat8D8neOb6}!h)t|lM7!N;cxk<*==_~h;ew!%ZvTeG7sw1snv*v$xl`5O+me9=zlKvV4QTZdyL)JFUyC{1C z5a_ebdgYYwBoMZq{j|Kmm)g-ID(g=3_)tQb+EAqG>YZh9B%aqoD!?a>BE#9$%(Mu! zHZ#7VkZtXDQUxQY;+x+1dL3@y7$EH4s1dt+6QpS}D|%G4HY+kTkZH0Rh$U0*4JzZd zDRIuZP|az9YQ`Z84UdWISJZdee!@5KlgvGpj&^IV*R<6Zx*S`xQI@p!)^SAsQ`W!YCfNZAV8VfirTf^q;r%>@dcO*^57(0FWZ zq1_5~k7{V^Q*CAE1)AJoffSB3z-)*^9@N$Kz*ul(W#VhK^b^knC&ZKPb_p;mb9QG? zltsTyD|J2{$-=u0OFf$NI5(db;pvA-kwe<{e;<(xA}HpHvNS+E&!-!>LZFJWDgEG6 zR?4$1$i7@Xm6iZ`pdIWYw~-m(^3}s(z?PaY427f)Q36sADK;^O3uzL^ugrwWrw=hp zRbxtWD6!3oQ;y4U2Pa8t2|v47paDrk*GG=Z?De{+;`~GxnydAEOLy;YUsG*w&G%Hp zn4r2g6;>dQ3dawD6U?`%Uf(P4?u8b0ZhEiWej_M6Rx4iuhDh4DL%*@C~sf z4!Zkn#`MgFMF~lM6%BJcB0K9HFkqfjrY`RzSW0|M@hd3GTO2o$eb|o@yNhLJCb<6Q zVimWY)#z&yy^dTbCKN~#N`;AHj3-=lap8>EP%K=DUOHArCg%AhU8i7vLH~kv2QX{r z-YuLSGc{&RD*)T_K*G{y({@Mk5<&{_V0q54#NX-)taxuh=-3WjBq2*{fZN zlfSv87-LbGqMnwtmnSS)WjJUYV0u_( z?i;6RGxLFFU`;Pul1$9GCFfDQfwq464>?sJATTOp{|*4vkm+#*kkRU1m8VE4*+{x8 zXk!8bkscN4ZOO4*&EO8cJT9$sPE9>})M9*^w^}>703^wrxGh<;0Yt^f3NB#|%V`nN zAlzj5t-_jgQ$u@eELW1Gi+?E#O^F*j6OhR9m29!%;1=;~NE@b(JH_%-Q~q7Zj9*F` z9foy>HE*1~ZDNg_h^KV7R107~OyWio8gzyCSs^%G{x-!n(%VS!C_pwbcrK{d+7+ed zBxL=`J9)U6;+8n;e0X!oQ^3RJwK}1nLc-l7X2jbL#%?D(6_ot)J?t{#ISE3Yw_`#* z5#Uslx~1$Q zc%?WpbI(4bYMr^?HMw9^gir_mC95f02RG)vo>_bIV7V}F5$wD0qk(G6c?IHgo&U<0 z6bHm(8q=<6uOalN|8M_*2!QN$BXIkDli>|X9Kb3U=jm@L?5v@kUn~IA2Hc_8I^EZS zBmtDlrA-}*iJlG-V;jQzM5&SytAh5feMr_35}icB|Gv8}qdYuJUQ+qCUT1`wKIOpy z&bX3I7+rr`c`j|fsvG(*t%c)Xes*71G<-7c-Oqw9l3_ zx#=-G@J_7WwZ4jKfZ*(E}ZD zaSJ)9c($HiYLHVY-9)xu0?z7%)3d;~qLL$P&QE4vzRI<~Kb|+b(#yg++vutTeF81c z(|i+FP2?+M1L<2M_j)SurLTzEknSAn%MqV+e+8UPRGq4|b~NE}GPS8=)&|tn2j@|* z%-H5fH>|AR7bLjdP=H*^A-T$}iM^_ULo^0mDQy#uSTw1b?pfw$qD%YToj5;BSIH(t zG&QUQvi}jvnur^K!Xt|uVT2N=J(hoVQy7^<>x2NS#CZ@Ks(?kZ`xQ0BdZKD#T4A_WS-q3fwj8mVus4inL zDd9YPL!6r4>UIA!gVH*>c$B~(#Srv+wweqbO+fMz z8h&qv>g1%~=wm7|n7zATbnWkzdnkpkWHG5_%AfLXzPkv+s1|eBcofv@;IEY_On7iK z%19m24{>;mLujxRp9MB|%D`K#NizU`nGQJ7cE1+7ULzV?nXTGq)R_J;8_&i{8w4=W zjj%ExRYH|e@%h7%yt%&l>@maUQPc(1hq^v8L+-q9XA#|}crMy2lt>h2XuR_B4#uwd z_1|*0C6f4_mB>mp(vIrn7h*w%pV7Ib2??HuZMEv6{l=~-v}g}2`n8>&B~L;$b6t0% z^3Pw|vF1q6EuT#u##R!0vXwogVeyw`J_e?xo)o+a$4z`vCWViS}GU zcCkr$P?5=&hks~##xIu;73Z$%y)hu_`>UO%3rjD6+xR*$787G^yus_kFm~XY759(P zA8Z9IWV{!w20F7X*E>x&bYn(!W7uQBMRcJ?X!liVO|aU!9=Bndkj)0ziq)~>I!@g+ zmEdd#K7gXT*7I)q>IS?@>a4LY8TS&_tV^vv((`v!4#5t24oq&3F^(|@5rz~T)!enU zR8!Ezbujd?C?oFVt|TU&*kt{(Cb}z+7`F&LtThE7x zb$(Yft(ALXXwCS_o&qU`UQC{mRr~J5=R^~$i~3yd3GRdxk8YXU04IL}gF|wu7CCRPshucSoFJuLO%ktdnbuH*W1^c4RW^~l+J#Gx`e8UxeQrZ&>W-%1% zaPLv~>x~Vv<{M*T92jRkyjprPCkDizlE)FP*2W3z`nbvBu&MXPl!8qaCucO(ZtLkI zz;7|udcTFa7KAUC*(U5MSa|f1hog-?S%Ej;wddZw=fBj=p)X@IH5r>5P%+) z(9;ysslntfvyKDlQ*%x@Y=|YrU_2`hAN;{oOg9>Az4$2AXu$dEVtkV3 zG*6_ZT)pIc-cKiccPK}eeO;#r(!Xd*VtR1>d9JMbO`vP(G6iGxE+IaS=&8f1!L4F& zk`)Li%Pl|*#ipNAidERr;$ECEdllGT`Odi<`*3V8RmL09@2G9qd?%AL89$h#}X)Qcg zr8aRJBfgpEDH_i2vijceNX0Xc`=sgE~0M3Cb%O{ z0C8^F-Uilj4@h2WMVcjU_ zA*;Y7!OwjeLaM-gaQs2#CB*h&{iEjQ@8xzY+_r*nRNJ77ece2<2?Mj;TQDU%$Cr#V zz)ujW+?;4|pz{0SQUdjSFdH7SKh&a0$<}eY*cci2%oSKyGwE>3FRfhL>O?oSuH#G5 zh3BgQ=9DU7yH40wb?m33NB^c%nr<;;{`*H{_ih5!{UE+wUQ5af3{+bZhoS*S=OYbL z`kPGnMnBZf^&>63>YEty>_Kz6JNkBIR{u~;b#G@R&DNg%p=59Y6KO0j^OtB}&a}{e zr>9)d98HK@E76GHw#8Ub@T-P9Lp9~ckWWVQjO%k1gjd#U`W(1Dy7*l|OQI?L_&lCs z91@+mu$z7Cn=Q^gN?;4WQm6^0%EHzms2j?SL^9rAYyj202PpvG5}TyvsK;|S5wsku zI?6XjBl0#JU6y=5wExrvm=BFA0#P56_aJLEeIGkwymj;T9)M0j{P+lZ(8^ zBxbnUx+WrTq=Gxr^Rk6RFRS!)Nw4;Z z66b|W%_p!q;4%~elUim_b?7iX2F#E{Jj<2xyL6kei_mw@+!UcTAG*_h4&Dqww}LT< zgYvEw)ApfFpFacv@12vXXu@|6E!4X*A@9GM6ik{Z>-_oK{Q!(cSnPWaEL74_^nKc$qx@ z)<=Cg@U;kojvD++XMN$)7-#D)AhL!2Ku1Ccn%usU-iNA0-G>Z0)xz>?E2YGhO({fGeimwGz@uF zO+#I@lxVWMavj>Jnw0kYNvM239t-_^%a9nh)YYLh>`A_|noIK|76TlZl;Q>=F@eX( zOZKriW@B~&lOi>te(+K&^VCZn#@|vpDB~scqn9T2Yf4DW;B0W0ZW3UXNlO&sHARqc z@ESa4cnY_>JE_C-$lzL98gzdopQ%A+r+~g8k!Wg}$u6EIlTT=no(d)cpp;H24WIrX@iWHA2 z@kga2RrMSS2yfZ<_St9i$dfHJz{?a8A?L5vb=yi>gD5sWZhi6+)13E+nb)6)Uh@b< zU?Vl2JwfO63tU!CQ;$=qWK`<=?kT8HNQ|@z!ivL_B0by~xeVfC_EV(@@+%WeLWsvX zhn{gk$c}(~`3X8?)M<$~?_~FT>rxi;gT$y*>Ro{Jl6w&dVr~pG!SH3YSg8`xlKBbP ze&hLt%~(RH1I;06No*v8drB;khrFw=Etw#ft{mRhkWDLwx9i6C+f-|NOfBcLEm%JF zS=%myw86Jp=jxz3*2eBwg%YF@+Qw-MkE~Ks9N}fjn1r+*?Bp~H&>?`39HKPU26F(M zE2`lU5WD7n7`{YvQ2^tw^8BW-$o0pgFlj}M77EK0;8reI0C-~e(?+lL&Ist0u})_# zE*aGO?nXsQ*%YFMNi(q$^SU`mtdYlAcsS3ooo4^xgxvx+6n>1+8`5rn;h!Eg9BWzI zp6@0i9URum-ohEU8#W%!IM51LAcTUScnz^SbMC;cmtOP3g+aN`ioRq{bQhp(!_@4| zws?F=+!&aOG6XrRW2s`#*wQaVTc<#;Oi&f;>@2(b36?f~LW-78`9lFl(&P%)@oeHI z$GC!mzcK?O$?zNESdL4PH2&|_N2H{Bs#o`+lv71iZ}-s6m5QDE>!vh_U!0Fl3zLZM ziMO5Lmi|cXpA?OhfAfxrmz3r7l%l5o0jlgwDgD9;tYxdE^;^E_^xZz(PnYvY5<4-) zUqtCNjOz3Z=acQ1CRzpSveqbvD!@`qqz-~RqH+fbCn`8%%K zin{WdwX#Kl?J{R+UuFs=w}p~#M*)f?xvh15n6Ex^M1$?#Seew~=D30y9;LHpr}OAR z2ZzJ!Hvqkhm4i0rhyIMNi*6^v+akECgxp2PZr-|mTCI$GV`RTQukhphrI?FiN}E3C zS8v7sU*44?_UFh&(G2`?%3l$d+eJkxI+U%RX}FSKS{zoV^Es7{O0ufm9W8B2XBOeL zq0Q7yA1%bZWz6$~RL&UI^xAP*s-MAblRkc_-qw=geViYS=vpr!LY1~fn$>nwINF=4 z71>H6$skjP)>ajr)Qq~2)stAT>mjY|>#0m~*8W&XFo>Oj6tmoEQBp zo#>F1hrF>>HpHNdK*b-GH0Ke})te|RJ!g{U!h29|B-ni#5uFyl8;`3I=!#PRG`Mnn zd3j`IfGHu<^Gyv@<7Ev?^sJ;F*Q|9~N};c9FdCxv{Q;9lFKy4SCgrtsIGLEHtpf`j z?)lsiJ}1Jq9BZsHt+y;u13qewKlDJo>UDy?U&!di?qO2xem_sCR&y%qm82%ZK+)ri zmJZGVBhnA%nG58wTvny_S;7^w-sC-USK=3P33j4t_`6KsV%s}>bxtiIO+n3-yO~Zx z-JsT#*d|f&-jg}FK6fQ)Y&I1&b!?pq!Yn^qJ|SV|L89C) zd#`+DC+}fztYQHQYF{vn*v8b}GO?*W#B^e*aLjO3ZI;hAk>HB>lh%30d(pCdRtb^t zOS4l+OTz+h*$udM!X?TA^CsU}bouT(YV}YdD4#{$D0Pst@ucodW5a>5?dW*;d%Dl& ze&hKlV>u;cr7Fmqg2_s%%$VPnUYZ#q+4WDsC~d#cz{wg9MV?ld>liR4;RBwJZ!fvJIiaL8B;*;Mn}=e^0RE% zVznhspYTTRBJRu8IBg~_Wo+X%)f|EqAdG3;N{U$Ju`-GbznMZP@J#V z^N+kh-fr=s04G=S&(hgc@8Oof(N3Pcei!%Gp8PKg9uM*Ax5x7>sOT(z)bxdnMNsIY z4|TiVPSr>aszEn15Yn65W~Fs1uoo#!iJzuVlB#5uvu0nC8~q7}vK@ohA<*-`o8-4dpGzKHU1=@} zhYTx4qMZ927SFs^dRAB%0O$+MJ*)=re3w^ly0o&miJp{~^xzQ-fhfUOc5f6hhNO9) zOcJ}aAfwXhWA#hr}i$-l}6yfd{(*s{I?543ruzatfgOW`BRhBSZ!U|hiRDQl^OTtRsN5*eS|a{dRSvvsKh3JOp)ti*3Cp8C6W zzUW2yri+(j4VEdJ#dk(2naYfG(JHlbQ?AOT!Z^--xJ;;Vg_&%CO-6b)cq=jnabzk} zZ%28j7F|%HP5RGYuQK!t(H9RXM+