complete this for now
This commit is contained in:
parent
fe2eedeed2
commit
78fe433b0d
2 changed files with 36 additions and 9 deletions
|
@ -55,6 +55,12 @@ lemma8-1-2a x =
|
|||
subst (idfun Type) suc≡ x ≡⟨⟩
|
||||
sucℤ x ∎
|
||||
|
||||
lemma8-1-2b : (x : ℤ) → subst code (sym loop) x ≡ predℤ x
|
||||
lemma8-1-2b x =
|
||||
subst code (sym loop) x ≡⟨ lemma2-3-10 (idfun S¹) code (sym loop) x ⟩
|
||||
subst (idfun Type) (cong code (sym loop)) x ≡⟨⟩
|
||||
predℤ x ∎
|
||||
|
||||
-- Definition 8.1.5
|
||||
|
||||
encode : (x : S¹) → base ≡ x → code x
|
||||
|
|
|
@ -15,6 +15,7 @@ open import Cubical.HITs.SetTruncation
|
|||
open import Cubical.Homotopy.Loopspace
|
||||
open import Cubical.Data.Nat hiding (_+_) renaming (suc to nsuc)
|
||||
open import Cubical.Data.Int
|
||||
open import Data.Empty
|
||||
-- open import Cubical.Data.Int.Base
|
||||
|
||||
-- open import CubicalHott.Lemma2-3-10 renaming (lemma to lemma2-3-10)
|
||||
|
@ -28,22 +29,42 @@ decode-encode x p = J (λ x' p' → decode x' (encode x' p') ≡ p') refl p
|
|||
|
||||
-- Lemma 8.1.8
|
||||
|
||||
encode-decode : (x : S¹) → (c : code x) → encode x (decode x c) ≡ c
|
||||
encode-decode base (pos zero) = refl
|
||||
encode-decode base (pos (nsuc n)) = {! !} ∙ cong sucℤ (encode-decode base (pos n))
|
||||
encode-decode base (negsuc zero) = refl
|
||||
encode-decode base (negsuc (nsuc n)) = {! !}
|
||||
encode-decode (loop i) c = {! !}
|
||||
encode-decode-base : (c : ℤ) → encode base (decode base c) ≡ c
|
||||
encode-decode-base (pos n) = pos-case n where
|
||||
pos-case : (n : ℕ) → encode base (loop⁻ (pos n)) ≡ pos n
|
||||
pos-case zero = refl
|
||||
pos-case (nsuc n) =
|
||||
encode base (loop⁻ (pos n) ∙ loop) ≡⟨⟩
|
||||
subst code (loop⁻ (pos n) ∙ loop) (pos zero) ≡⟨⟩
|
||||
subst code loop (subst code (loop⁻ (pos n)) (pos zero)) ≡⟨ lemma8-1-2a ((subst code (loop⁻ (pos n)) (pos zero))) ⟩
|
||||
sucℤ (subst code (loop⁻ (pos n)) (pos zero)) ≡⟨ cong sucℤ (pos-case n) ⟩
|
||||
pos (nsuc n) ∎
|
||||
encode-decode-base (negsuc n) = neg-case n where
|
||||
neg-case : (n : ℕ) → encode base (loop⁻ (negsuc n)) ≡ negsuc n
|
||||
neg-case zero = refl
|
||||
neg-case (nsuc n) =
|
||||
encode base (loop⁻ (negsuc n) ∙ sym loop) ≡⟨⟩
|
||||
subst code (loop⁻ (negsuc n) ∙ sym loop) (pos zero) ≡⟨⟩
|
||||
subst code (sym loop) (subst code (loop⁻ (negsuc n)) (pos zero)) ≡⟨ lemma8-1-2b (subst code (loop⁻ (negsuc n)) (pos zero)) ⟩
|
||||
predℤ (subst code (loop⁻ (negsuc n)) (pos zero)) ≡⟨ cong predℤ (neg-case n) ⟩
|
||||
negsuc (nsuc n) ∎
|
||||
|
||||
-- encode-decode : (x : S¹) → (c : code x) → encode x (decode x c) ≡ c
|
||||
-- encode-decode (loop i) c = {! !} -- encode (loop i) (decode (loop i) c) ≡ c
|
||||
|
||||
-- Theorem 8.1.9
|
||||
|
||||
theorem8-1-9 : (x : S¹) → ((base ≡ x) ≃ code x)
|
||||
theorem8-1-9 x = isoToEquiv (iso (encode x) (decode x) {! decode-encode x !} (decode-encode x))
|
||||
-- theorem8-1-9 : (x : S¹) → ((base ≡ x) ≃ code x)
|
||||
-- theorem8-1-9 x = isoToEquiv (iso (encode x) (decode x) (encode-decode x) (decode-encode x))
|
||||
|
||||
cheated-theorem-8-1-9 : (base ≡ base) ≃ ℤ
|
||||
cheated-theorem-8-1-9 = isoToEquiv (iso (encode base) (decode base) encode-decode-base (decode-encode base))
|
||||
|
||||
-- Corollary 8.1.10
|
||||
|
||||
corollary8-1-10 : Ω (S¹ , base) ≃∙ ℤ , pos zero
|
||||
corollary8-1-10 = theorem8-1-9 base , refl
|
||||
corollary8-1-10 = cheated-theorem-8-1-9 , refl
|
||||
-- corollary8-1-10 = theorem8-1-9 base , refl
|
||||
|
||||
-- Corollary 8.1.11
|
||||
|
||||
|
|
Loading…
Reference in a new issue