auto gitdoc commit
This commit is contained in:
parent
06f75cda72
commit
7dfdab1973
1 changed files with 2 additions and 22 deletions
|
@ -259,28 +259,8 @@ A ≃ B = Σ[ f ∈ (A → B) ] isequiv f
|
|||
### Theorem 2.8.1
|
||||
|
||||
```
|
||||
-- open import Function.HalfAdjointEquivalence
|
||||
-- _is-⋆ : (x : 𝟙) → x ≡ ⋆
|
||||
-- ⋆ is-⋆ = refl
|
||||
--
|
||||
-- theorem281-helper2 : {x : 𝟙} → (p : x ≡ x) → p ≡ refl
|
||||
-- theorem281-helper2 {x} p =
|
||||
-- let a = sym (x is-⋆) ∙ p ∙ (x is-⋆) in
|
||||
-- J (λ the what → p ≡ the) ? ?
|
||||
--
|
||||
-- theorem281-helper : {x y : 𝟙} → (p : x ≡ y) → (x is-⋆) ∙ sym (y is-⋆) ≡ p
|
||||
-- theorem281-helper {x} p =
|
||||
-- J (λ the what → (x is-⋆) ∙ sym (the is-⋆) ≡ what) p (theorem281-helper2 _)
|
||||
--
|
||||
-- theorem281 : (x y : 𝟙) → (x ≡ y) ≃ 𝟙
|
||||
-- theorem281 x y = record
|
||||
-- { to = λ _ → ⋆
|
||||
-- ; from = λ _ → (x is-⋆) ∙ sym (y is-⋆)
|
||||
-- ; left-inverse-of = theorem281-helper
|
||||
-- -- λ z → J (λ the what → (x is-⋆) ∙ sym (the is-⋆) ≡ what) z ?
|
||||
-- ; right-inverse-of = λ z → sym (z is-⋆)
|
||||
-- ; left-right = ?
|
||||
-- }
|
||||
theorem2∙8∙1 : (x y : 𝟙) → (x ≡ y) ≃ 𝟙
|
||||
theorem2∙8∙1 = {! !}
|
||||
```
|
||||
|
||||
## 2.9 Π-types and the function extensionality axiom
|
||||
|
|
Loading…
Reference in a new issue