From 81fb1d0c773de1473a5d860311ac2469da100e38 Mon Sep 17 00:00:00 2001 From: Michael Zhang Date: Sun, 15 Sep 2024 19:39:17 -0500 Subject: [PATCH] wtf --- .gitignore | 3 +- .ignore | 2 + src/CubicalHott/Chapter2.agda | 4 +- src/CubicalHottBook/Chapter2.lagda.md | 92 --------------------------- src/CubicalHottBook/Chapter6.lagda.md | 38 ----------- src/CubicalHottBook/Prelude.agda | 12 ---- 6 files changed, 7 insertions(+), 144 deletions(-) create mode 100644 .ignore delete mode 100644 src/CubicalHottBook/Chapter2.lagda.md delete mode 100644 src/CubicalHottBook/Chapter6.lagda.md delete mode 100644 src/CubicalHottBook/Prelude.agda diff --git a/.gitignore b/.gitignore index c7ce020..665b510 100644 --- a/.gitignore +++ b/.gitignore @@ -4,4 +4,5 @@ node_modules logseq !logseq/custom.edn -!logseq/custom.css \ No newline at end of file +!logseq/custom.css +.pijul diff --git a/.ignore b/.ignore new file mode 100644 index 0000000..0863ea9 --- /dev/null +++ b/.ignore @@ -0,0 +1,2 @@ +.git +.DS_Store diff --git a/src/CubicalHott/Chapter2.agda b/src/CubicalHott/Chapter2.agda index b9f0e97..c49714a 100644 --- a/src/CubicalHott/Chapter2.agda +++ b/src/CubicalHott/Chapter2.agda @@ -17,7 +17,9 @@ module lemma211 where module lemma212 where lemma : {A : Type l} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z - lemma {x = x} p q i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i) + lemma {x = x} p q i = hcomp + (λ j → λ { (i = i0) → x ; (i = i1) → q j }) + (p i) module lemma214 where private diff --git a/src/CubicalHottBook/Chapter2.lagda.md b/src/CubicalHottBook/Chapter2.lagda.md deleted file mode 100644 index f9b0c0d..0000000 --- a/src/CubicalHottBook/Chapter2.lagda.md +++ /dev/null @@ -1,92 +0,0 @@ -``` -{-# OPTIONS --cubical --without-K #-} -module CubicalHottBook.Chapter2 where - -open import CubicalHottBook.Prelude - -private - variable - l l2 : Level -``` - -### Lemma 2.3.5 - -``` -transportconst : {A : Type l} {x y : A} - → (B : Type l2) - → (p : x ≡ y) - → (b : B) - → subst (λ _ → B) p b ≡ b -transportconst B p b i = {! !} -``` - -### Definition 2.4.1 - -``` -_∼_ : {X : Type l} {Y : X → Type l2} → (f g : (x : X) → Y x) → Type (ℓ-max l l2) -_∼_ {X = X} f g = (x : X) → f x ≡ g x -``` - -### Definition 2.4.6 - -``` -record qinv {A B : Type} (f : A → B) : Type where - constructor mkQinv - field - g : B → A - forward : (f ∘ g) ∼ id - backward : (g ∘ f) ∼ id -``` - -### Example 2.4.7 - -``` -id-qinv : {A : Type} → qinv (id {A = A}) -id-qinv {A = A} = mkQinv id id-homotopy id-homotopy where - id-homotopy : (x : A) → (id ∘ id) x ≡ id x - id-homotopy x = refl -``` - -### Definition 2.4.10 - -``` -mkIsEquiv : {A B : Type} {f : A → B} - → (g : B → A) - → (f ∘ g) ∼ id - → (g ∘ f) ∼ id - → isEquiv f -mkIsEquiv {B = B} {f = f} g forward backward = record { equiv-proof = eqv-prf } where - postulate - helper : (y : B) → (z : fiber f y) → (g y , forward y) ≡ z - - eqv-prf : (y : B) → isContr (fiber f y) - eqv-prf y = (g y , forward y) , helper y -``` - -### Theorem 2.11.3 - -``` --- theorem2∙11∙3 : {A B : Type} {f g : A → B} {a a' : A} --- → (p : a ≡ a') --- → (q : f a ≡ g a) --- → subst (λ x → f x ≡ g x) p q ≡ sym (ap f p) ∙ q ∙ ap g p --- theorem2∙11∙3 refl q = sym (unitR q) -``` - -### Theorem 2.11.5 - -``` --- postulate --- theorem2∙11∙5 : {A : Type} {a a' : A} --- → (p : a ≡ a') --- → (q : a ≡ a) --- → (r : a' ≡ a') --- → (transport (λ x → x ≡ x) p q ≡ r) ≃ (q ∙ p ≡ p ∙ r) --- theorem2∙11∙5 {a = a} refl q r = f , mkIsEquiv g {! !} {! !} where --- f : (q ≡ r) → (q ∙ refl ≡ r) --- f refl = unitR q --- g : (q ∙ refl ≡ r) → (q ≡ r) --- g refl = sym (unitR q) --- forward : (f ∘ g) ∼ id --- forward refl = {! refl !} -``` \ No newline at end of file diff --git a/src/CubicalHottBook/Chapter6.lagda.md b/src/CubicalHottBook/Chapter6.lagda.md deleted file mode 100644 index 7309a2a..0000000 --- a/src/CubicalHottBook/Chapter6.lagda.md +++ /dev/null @@ -1,38 +0,0 @@ -``` -{-# OPTIONS --cubical --without-K #-} -module CubicalHottBook.Chapter6 where - -open import CubicalHottBook.Prelude -open import CubicalHottBook.Chapter2 -``` - -``` -dep-path : {l l2 : Level} {A : Set l} {x y : A} → (P : A → Set l2) → (p : x ≡ y) → (u : P x) → (v : P y) → Set l2 -dep-path P p u v = transport P p u ≡ v - -syntax dep-path P p u v = u ≡[ P , p ] v -``` - -## Circle - -### Lemma 6.2.5 - -``` -lemma6∙2∙5 : {A : Type} - → (a : A) - → (p : a ≡ a) - → S¹ → A -lemma6∙2∙5 a p base = a -lemma6∙2∙5 a p (S¹.loop i) = {! !} -``` - -### Lemma 6.2.8 - -``` -lemma6∙2∙8 : {A : Type} {f g : S¹ → A} - → (p : f base ≡ g base) - → (q : (ap f loop) ≡[ (λ x → x ≡ x) , p ] (ap g loop)) - → (x : S¹) → f x ≡ g x -lemma6∙2∙8 p q base = p -lemma6∙2∙8 p q (S¹.loop i) = {! !} -``` diff --git a/src/CubicalHottBook/Prelude.agda b/src/CubicalHottBook/Prelude.agda deleted file mode 100644 index 60845ab..0000000 --- a/src/CubicalHottBook/Prelude.agda +++ /dev/null @@ -1,12 +0,0 @@ -{-# OPTIONS --cubical --without-K #-} -module CubicalHottBook.Prelude where - -open import Cubical.Foundations.Function public -open import Data.Product.Properties public -open import Cubical.Foundations.Prelude public -open import Cubical.Foundations.Equiv public - -module Inductive where - open import Cubical.Data.Equality public - -open Inductive public using (id)