This commit is contained in:
Michael Zhang 2023-04-10 13:39:17 -05:00
parent 87709447d0
commit 8466f79ecc
4 changed files with 333 additions and 101 deletions

View file

@ -1,2 +1,2 @@
include: src
depend: standard-library cubical
depend: standard-library cubical agda-unimath

View file

@ -0,0 +1,159 @@
-- {{{
open import Agda.Builtin.Equality
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) renaming (Set to Type)
open import Data.Nat
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
-- Path
-- data _≡_ {l : Level} {A : Type l} : A → A → Type l where
-- refl : (x : A) → x ≡ x
path-ind : { : Level} {A : Type}
-- Motive
(C : (x y : A) x y Type )
-- What happens in the case of refl
(c : (x : A) C x x refl)
-- Actual path to eliminate
(x y : A) (p : x y)
-- Result
C x y p
path-ind C c x x refl = c x
-- Id
id : { : Level} {A : Set } A A
id x = x
-- Transport
transport : {X : Set} (P : X Set) {x y : X}
x y
P x P y
transport P refl = id
transportconst : {A : Type} {x y : A}
(B : Set)
(p : x y)
(b : B)
transport (λ _ B) p b b
transportconst {A} {x} {y} B p b =
let
P : (x : A) Type
P = λ _ B
D : (x y : A) (p : x y) Type
D x y p = transport P p b b
d : (x : A) D x x refl
d x = refl
in path-ind D d x y p
ap : {A B : Type} (f : A B) {x y : A} (p : x y) f x f y
ap f {x} {y} p = path-ind (λ a b a≡b f a f b) (λ _ refl) x y p
-- apd
-- Lemma 2.3.4 of HoTT book
apd : {A : Type} {B : A Type}
-- The function that we want to apply
(f : (a : A) B a)
-- The path to apply it over
{x y : A} (p : x y)
-- Result
(transport B p) (f x) f y
apd {A} {B} f {x} {y} p =
let
D : (x y : A) (p : x y) Type
D x y p = (transport B p) (f x) f y
d : (x : A) D x x refl
d x = refl
in
path-ind D d x y p
-- }}}
-------------------------------------------------------------------------------
-- Exercises
lemma-212 : {A : Type} Type
lemma-212 {A} = (x y z : A) (x y) (y z) (x z)
-- Exercise 2.1: Show that the obvious proofs of Lemma 2.1.2 are pairwise equal
l212-obv-proof-1 : {A : Type} lemma-212
l212-obv-proof-1 {A} x y z p q =
let
f = path-ind
(λ a b a≡b (z : A) (r : b z) a z)
(λ a (λ x r r))
r = f x y p
in
r z q
l212-obv-proof-2 : {A : Type} lemma-212
l212-obv-proof-2 {A} x y z p q =
let
f = path-ind
(λ a b a≡b (x : A) (r : x a) x b)
(λ a (λ x r r))
r = f y z q
in
r x p
l212-obv-proof-3 : {A : Type} lemma-212
l212-obv-proof-3 {A} x y z p q =
let
f : (y z : A) (q : y z) (x : A) x y x z
f = ?
r = f y z q
g : (x y : A) (p : x y) (x z)
g = path-ind
(λ a b a≡b a z)
(λ a r a ?)
s = g x y p
in
?
-- Exercise 2.3: Give a fourth, different proof of Lemma 2.1.2, and prove it
-- equal to the others
l212-obv-proof-4 : {A : Type} lemma-212
l212-obv-proof-4 {A} x y z p q =
let
f = path-ind
(λ a b a≡b (x : A) (r : x a) x b)
(λ a (λ x r r))
r = f y z q
in
r x p
-- Exercise 2.4: Define, by induction on n, a general notion of n-dimensional
-- path in a type A, simultaneously with the type of boundaries of such paths
data nPath {A : Type} : Type where
zeroPath : (x y : A) (p : x y) nPath zero
sucPath : {n : } (nPath n)
-- Exercise 2.5: Prove that the functions (2.3.6) and (2.3.7) are
-- inverse-equivalences
-- TODO: In this implementation, should r be used in constructing the response?
-- it feels like i'm doing it wrong because r is not used
f236 : {A B : Type} {x y : A} {p : x y} {f : A B}
(r : f x f y) (transport (λ _ B) p (f x)) f y
f236 {p = p} {f = f} _ = apd f p
f237 : {A B : Type} {x y : A} {p : x y} {f : A B}
(r : (transport (λ _ B) p (f x)) f y) (f x f y)
f237 {p = p} {f = f} _ = ap f p
-- Exercise 2.6: Prove that if p : x = y, then the function (p ∙ ) : (y = z) →
-- (x = z) is an equivalence.
e26 : {A : Type} {x y : A} (p : x y) ?
-- Exercise 2.9. Prove that coproducts have the expected universal property,
-- (A + B → X) ≃ (A → X) × (B → X).

View file

@ -3,12 +3,11 @@
module CircleFundamentalGroup where
open import Agda.Builtin.Equality
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
renaming (Set to Type) public
open import Data.Nat.Base as using (; z≤n; s≤s) renaming (_+_ to _+_; _*_ to _*_)
open import Data.Nat.Properties renaming (+-comm to +-comm; +-assoc to +-assoc)
open import Data.Integer hiding (_+_)
-- open import Data.Integer.Properties
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) renaming (Set to Type)
open import Data.Nat renaming (_+_ to _N+_)
open import Data.Nat.Properties
import Data.Integer
import Data.Integer.Properties
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst)
@ -38,6 +37,9 @@ transport : {X : Set} (P : X → Set) {x y : X}
P x P y
transport P refl = id
-- Univalence
-- ua : { : Level} {A B : Set } → (equiv A B) → (A ≡ B)
-- apd
-- Lemma 2.3.4 of HoTT book
apd : {A : Type} {B : A Type}
@ -62,7 +64,7 @@ postulate
loop : base base
S¹-ind : (C : Type)
(c-base : C base)
(c-loop : c-base c-base)
(c-loop : (transport C loop c-base) c-base)
(s : ) C s
-- Groups
@ -70,115 +72,152 @@ record Group { : Level} : Set (lsuc ) where
constructor group
field
set : Set
op : set set set
_∘_ : set set set
ident : set
assoc-prop : (a b c : set) op (op a b) c op a (op b c)
inverse : set set
inverse-prop-l : (a : set) op a (inverse a) ident
inverse-prop-r : (a : set) op (inverse a) a ident
G-_ : set set
assoc-prop : (a b c : set) (a b) c a (b c)
inverse-prop-l : (a : set) a (G- a) ident
inverse-prop-r : (a : set) (G- a) a ident
open Group
-- wtf
open import Data.Bool
-- Integers
-- Not using the Agda type cus it uses with!!
data Z : Set where
pos : Z
zero : Z
neg : Z
infixl 6 _+_
_+_ :
+ 0 + b = b
+[1+ n ] + +0 = +[1+ n ]
+[1+ n ] + +[1+ n₁ ] = +[1+ n + n₁ + 1 ]
+[1+ n ] + -[1+ n₁ ] = + n - (+ n₁)
-[1+ n ] + + n₁ = + n₁ - +[1+ n ]
-[1+ n ] + -[1+ n₁ ] = -[1+ n + n₁ + 1 ]
_+_ : Z Z Z
pos x + pos y = pos (suc (x N+ y))
pos x + zero = pos x
pos zero + neg zero = zero
pos zero + neg (suc y) = neg y
pos (suc x) + neg zero = pos x
pos (suc x) + neg (suc y) = pos x + neg y
zero + b = b
neg x + zero = neg x
neg x + neg y = neg (suc (x N+ y))
neg zero + pos zero = zero
neg zero + pos (suc y) = pos y
neg (suc x) + pos zero = neg x
neg (suc x) + pos (suc y) = neg x + pos y
bruh : (a : ) a + 0 a
bruh +0 = refl
bruh +[1+ n ] = refl
bruh -[1+ n ] = refl
-_ : Z Z
- pos x = neg x
- zero = zero
- neg x = pos x
+-comm : (a b : ) a + b b + a
+-comm a +0 = bruh a
+-comm +[1+ n ] +[1+ n₁ ] = cong (λ n +[1+ n + 1 ]) (+-comm n n₁)
+-comm +[1+ n ] -[1+ n₁ ] =
+[1+ n ] + -[1+ n₁ ]
_-_ : Z Z Z
a - b = a + (- b)
Z-comm : (a b : Z) a + b b + a
Z-comm (pos a) (pos b) = cong (λ x pos (suc x)) (+-comm a b)
Z-comm (pos a) zero = refl
Z-comm (pos zero) (neg zero) = refl
Z-comm (pos zero) (neg (suc b)) = refl
Z-comm (pos (suc a)) (neg zero) = refl
Z-comm (pos (suc a)) (neg (suc b)) = Z-comm (pos a) (neg b)
Z-comm zero (pos b) = refl
Z-comm zero zero = refl
Z-comm zero (neg b) = refl
Z-comm (neg a) zero = refl
Z-comm (neg a) (neg b) = cong (λ x neg (suc x)) (+-comm a b)
Z-comm (neg zero) (pos zero) = refl
Z-comm (neg zero) (pos (suc b)) = refl
Z-comm (neg (suc a)) (pos zero) = refl
Z-comm (neg (suc a)) (pos (suc b)) = Z-comm (neg a) (pos b)
-- _+_ : Nat → Nat → Nat
-- zero + m = m
-- suc n + m = suc (n + m)
lemma-1 : (a b : ) suc (a N+ b) a N+ suc b
lemma-1 zero zero = refl
lemma-1 zero (suc b) = refl
lemma-1 (suc a) zero =
suc (suc a N+ zero)
≡⟨ cong suc (+-comm (suc a) zero)
suc (suc a)
≡⟨ refl
+ n - (+ n₁)
suc (zero N+ suc a)
≡⟨ refl
+ n + (- (+ n₁))
≡⟨ ?
(+[1+ n ]) - (+[1+ n₁ ])
≡⟨ refl
+[1+ n ] - +[1+ n₁ ]
≡⟨ refl
-[1+ n₁ ] + +[1+ n ]
suc zero N+ suc a
≡⟨ +-comm 1 (suc a)
suc a N+ suc zero
+-comm +0 +[1+ n ] = refl
+-comm +0 -[1+ n ] = refl
+-comm -[1+ n ] +[1+ n₁ ] = {! !}
+-comm -[1+ n ] -[1+ n₁ ] = cong (λ n -[1+ n + 1 ]) (+-comm n n₁)
lemma-1 (suc a) (suc b) = cong suc (lemma-1 a (suc b))
+-assoc : (a b c : ) (a + b) + c a + (b + c)
helper : Bool
helper m n true = - + (n .∸ m)
helper m n false = + (m .∸ n)
_⊖2_ :
m ⊖2 n = helper m n (m .<ᵇ n)
wtf : (n : ) n ⊖2 n 0
wtf 0 = refl
wtf (.suc n) =
(.suc n) ⊖2 (.suc n)
≡⟨ cong (helper (.suc n) (.suc n)) ?
+ (.suc n .∸ .suc n)
≡⟨ ?
0
-- -Group
-identity : (z : ) z + (- z) 0
-- -identity (+_ 0) = refl
-- -identity +[1+ n ] =
-- +[1+ n ] + -[1+ n ]
postulate
Z-assoc : (a b c : Z) (a + b) + c a + (b + c)
-- TODO: Actually formalize this (it's definitely true tho)
-- Z-assoc (pos zero) (pos zero) (pos c) = refl
-- Z-assoc (pos zero) (pos (suc b)) (pos c) = refl
-- Z-assoc (pos (suc a)) (pos zero) (pos c) =
-- (pos (suc a) + pos zero) + pos c
-- ≡⟨ refl ⟩
-- + (.suc n) + -[1+ n ]
-- pos (suc (suc a N+ zero)) + pos c
-- ≡⟨ cong (λ x → pos (suc (suc x)) + pos c) (+-comm a zero) ⟩
-- pos (suc (zero N+ suc a)) + pos c
-- ≡⟨ refl ⟩
-- (.suc n) ⊖ (.suc n)
-- ≡⟨ ? ⟩
-- + (.suc n .∸ .suc n)
-- ≡⟨ ? ⟩
-- 0
-- pos (suc (suc (zero N+ suc a)) N+ c)
-- ≡⟨ cong (λ x → pos (suc (suc x))) (lemma-1 a c) ⟩
-- pos (suc (suc a N+ suc c))
-- ≡⟨ refl ⟩
-- pos (suc a) + pos (suc c)
-- ≡⟨ refl ⟩
-- pos (suc a) + (pos (suc (zero N+ c)))
-- ≡⟨ refl ⟩
-- pos (suc a) + (pos zero + pos c)
-- ∎
-identity -[1+ n ] =
-[1+ n ] + (- -[1+ n ])
≡⟨ refl
-[1+ n ] + +[1+ n ]
≡⟨ +-comm -[1+ n ] +[1+ n ]
+[1+ n ] + -[1+ n ]
≡⟨ ?
0
-- Z-assoc (pos (suc a)) (pos (suc b)) (pos c) = ?
-- Z-assoc (pos a) (pos b) zero = refl
-- Z-assoc (pos a) (pos b) (neg c) = {! !}
-- Z-assoc (pos a) zero c = refl
-- Z-assoc (pos a) (neg b) (pos c) = {! !}
-- Z-assoc (pos a) (neg b) zero = {! !}
-- Z-assoc (pos a) (neg b) (neg c) = {! !}
-- Z-assoc zero b c = refl
-- Z-assoc (neg a) (pos b) (pos c) = {! !}
-- Z-assoc (neg a) (pos b) zero = {! !}
-- Z-assoc (neg a) (pos b) (neg c) = {! !}
-- Z-assoc (neg a) zero c = refl
-- Z-assoc (neg a) (neg b) (pos c) = {! !}
-- Z-assoc (neg a) (neg b) zero = {! !}
-- Z-assoc (neg a) (neg b) (neg c) = {! !}
-group : Group
-group .set =
-group .op = _+_
-group .ident = 0
-group .assoc-prop = +-assoc
-group .inverse z = - z
-group .inverse-prop-l = -identity
double-neg : (a : Z) - (- a) a
double-neg (pos x) = refl
double-neg zero = refl
double-neg (neg x) = refl
-- Fundamental group of a circle
Z-inverse-l : (a : Z) a + (- a) zero
Z-inverse-l (pos zero) = refl
Z-inverse-l (pos (suc a)) = Z-inverse-l (pos a)
Z-inverse-l zero = refl
Z-inverse-l (neg zero) = refl
Z-inverse-l (neg (suc a)) = Z-inverse-l (neg a)
loop-space : {A : Type} (a : A) Set
loop-space a = a a
Z-inverse-r : (a : Z) (- a) + a zero
Z-inverse-r a = trans (Z-comm (- a) a) (Z-inverse-l a)
π₁ : {A : Type} (a : A) Group
π₁ a = ?
Z-group : Group
Z-group .set = Z
Z-group ._∘_ = _+_
Z-group .ident = zero
Z-group .G-_ = -_
Z-group .assoc-prop = Z-assoc
Z-group .inverse-prop-l = Z-inverse-l
Z-group .inverse-prop-r = Z-inverse-r
-- π₁[S¹]≡ℤ : π₁ base ≡ Int
-- π₁[S¹]≡ℤ = ?
_∙_ = trans
-- References:
-- - https://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/
-- - HoTT book ch. 6.11
-- - https://en.wikipedia.org/wiki/Fundamental_group
asdf : (z : Z) base base
asdf (pos zero) = loop
asdf (pos (suc x)) = loop asdf (pos x)
asdf zero = refl
asdf (neg zero) = sym loop
asdf (neg (suc x)) = (sym loop) asdf (neg x)
uiop : base base Z
uiop = path-ind (λ x y p Z) ?
transported-function : base base

34
src/CircleThing2.agda Normal file
View file

@ -0,0 +1,34 @@
{-# OPTIONS --without-K #-}
module CircleThing2 where
open import Agda.Primitive renaming (Set to Type)
open import elementary-number-theory.integers
open import elementary-number-theory.natural-numbers
open import foundation-core.identity-types
open import foundation.univalence
open import synthetic-homotopy-theory.circle
infix 10 _≡_
_≡_ = __
loops-to- : base-𝕊¹ base-𝕊¹
loops-to- p = ?
-to-loops : base-𝕊¹ base-𝕊¹
-to-loops = ind-
(λ _ base-𝕊¹ base-𝕊¹)
(inv loop-𝕊¹)
neg-ver
refl
(loop-𝕊¹)
pos-ver
where
pos-ver : base-𝕊¹ base-𝕊¹ base-𝕊¹ base-𝕊¹
pos-ver zero- p = refl
pos-ver (succ- n) p = loop-𝕊¹ pos-ver n p
neg-ver : base-𝕊¹ base-𝕊¹ base-𝕊¹ base-𝕊¹
neg-ver zero- p = refl
neg-ver (succ- n) p = (inv loop-𝕊¹) neg-ver n p