3.8.1
This commit is contained in:
parent
95ee861349
commit
8cac88e879
1 changed files with 40 additions and 4 deletions
|
@ -315,17 +315,53 @@ example3∙6∙2 {A} {B} allProps = λ f g → funext λ x → allProps x (f x)
|
|||
```
|
||||
module section3∙7 where
|
||||
postulate
|
||||
∥_∥ : Set → Set
|
||||
∣_∣ : {A : Set} → (a : A) → ∥ A ∥
|
||||
witness : {A : Set} → (x y : ∥ A ∥) → x ≡ y → Set
|
||||
∥_∥ : Set l → Set l
|
||||
∣_∣ : {A : Set l} → (a : A) → ∥ A ∥
|
||||
witness : {A : Set l} → (x y : ∥ A ∥) → x ≡ y → Set l
|
||||
|
||||
rec-∥_∥ : (A : Set) → {B : Set} → isProp B → (f : A → B)
|
||||
rec-∥_∥ : (A : Set l) → {B : Set l} → isProp B → (f : A → B)
|
||||
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g (∣ a ∣) ≡ f a)
|
||||
open section3∙7 public
|
||||
```
|
||||
|
||||
### Definition 3.7.1
|
||||
|
||||
```
|
||||
module definition3∙7∙1 where
|
||||
⊤ = 𝟙
|
||||
_∧_ = _×_
|
||||
_⇒_ : (P Q : Set l) → Set l
|
||||
P ⇒ Q = P → Q
|
||||
_⇔_ = _≡_
|
||||
-- ¬_ : (P : Set l) → Set l
|
||||
-- ¬ P = P → ⊥
|
||||
_∨_ : (P Q : Set l) → Set l
|
||||
P ∨ Q = ∥ P + Q ∥
|
||||
forall' : (A : Set l) → (P : A → Set l) → Set l
|
||||
forall' A P = (x : A) → P x
|
||||
exists' : (A : Set l) → (P : A → Set l) → Set l
|
||||
exists' A P = ∥ Σ A P ∥
|
||||
```
|
||||
|
||||
## 3.8 The axiom of choice
|
||||
|
||||
### Definition 3.8.1
|
||||
|
||||
```
|
||||
module axiom-of-choice where
|
||||
private
|
||||
variable
|
||||
X : Set
|
||||
A : X → Set
|
||||
P : (x : X) → A x → Set
|
||||
|
||||
postulate
|
||||
axiom-of-choice : (prop : (x : X) → (a : A x) → isProp (P x a))
|
||||
→ ((x : X) → ∥ Σ (A x) (P x) ∥)
|
||||
→ ∥ Σ ((x : X) → A x) (λ g → (x : X) → P x (g x)) ∥
|
||||
```
|
||||
|
||||
|
||||
## 3.9 The principle of unique choice
|
||||
|
||||
### Lemma 3.9.1
|
||||
|
|
Loading…
Reference in a new issue