dissertation source

This commit is contained in:
Michael Zhang 2024-05-23 21:24:38 -05:00
parent cbf61d6a96
commit 9bedfd5aaa
6 changed files with 9795 additions and 0 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,395 @@
\newcommand{\etalchar}[1]{$^{#1}$}
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
% \MRhref is called by the amsart/book/proc definition of \MR.
\providecommand{\MRhref}[2]{%
\href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
}
\providecommand{\href}[2]{#2}
\begin{thebibliography}{dMKA{\etalchar{+}}15}
\bibitem[AB04]{awodey2004Propositions}
Steve Awodey and Andrej Bauer, \emph{Propositions as [{T}ypes]}, Journal of
Logic and Computation \textbf{14} (2004), no.~4, 447--471.
\bibitem[AC10]{asperti2010itp}
Andrea Asperti and Claudio~Sacerdoti Coen, \emph{Some considerations on the
usability of interactive provers}, International Conference on Intelligent
Computer Mathematics, Springer, 2010, pp.~147--156.
\bibitem[ACD{\etalchar{+}}16]{altenkirch2016qiits}
Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik
Nordvall~Forsberg, \emph{{Quotient inductive-inductive types}}, ArXiv
e-prints (2016), \href {http://arxiv.org/abs/1612.02346}
{\path{arXiv:1612.02346}}.
\bibitem[AH61]{atiyah1961spectral}
Michael~F Atiyah and Friedrich Hirzebruch, \emph{Vector bundles and homogeneous
spaces}, Differential geometry, Proceedings of Symposia in Pure Mathematics,
no.~3, 1961, pp.~7--38.
\bibitem[AHW17]{angiuli2017computational}
Carlo Angiuli, Robert Harper, and Todd Wilson, \emph{Computational
higher-dimensional type theory}, POPL '17: Proceedings of the 44th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, 2017,
\href {http://dx.doi.org/10.1145/3009837.3009861}
{\path{doi:10.1145/3009837.3009861}}.
\bibitem[AKL15]{avigad2015limits}
Jeremy Avigad, Chris Kapulkin, and Peter~LeFanu Lumsdaine, \emph{Homotopy
limits in type theory}, Mathematical Structures in Computer Science
\textbf{25} (2015), no.~05, 1040--1070.
\bibitem[AW09]{awodey2009homotopy}
Steve Awodey and Michael~A. Warren, \emph{Homotopy theoretic models of identity
types}, Math. Proc. Camb. Phil. Soc., vol. 146, Cambridge Univ Press, 2009,
pp.~45--55.
\bibitem[BCH14]{bezem2014cubicalsets}
Marc Bezem, Thierry Coquand, and Simon Huber, \emph{A model of type theory in
cubical sets}, 19th International Conference on Types for Proofs and Programs
(TYPES 2013), vol.~26, 2014, pp.~107--128.
\bibitem[BGLL{\etalchar{+}}16]{bauer2016coqhott}
Andrej Bauer, Jason Gross, Peter~LeFanu LeFanu~Lumsdaine, Michael Shulman,
Matthieu Sozeau, and Bas Spitters, \emph{{The HoTT Library: A formalization
of homotopy type theory in Coq}}, ArXiv e-prints (2016), \href
{http://arxiv.org/abs/1610.04591} {\path{arXiv:1610.04591}}.
\bibitem[BH18]{buchholtz2018cellular}
Ulrik Buchholtz and Kuen-Bang {Hou (Favonia)}, \emph{{Cellular Cohomology in
Homotopy Type Theory}}, ArXiv e-prints (2018), \href
{http://arxiv.org/abs/1802.02191} {\path{arXiv:1802.02191}}.
\bibitem[BHC{\etalchar{+}}]{hottagda}
Guillaume Brunerie, Kuen-Bang {Hou (Favonia)}, Evan Cavallo, Eric Finster,
Jesper Cockx, Christian Sattler, Chris Jeris, Michael Shulman, et~al.,
\emph{Homotopy type theory in {A}gda},
\url{https://github.com/HoTT/HoTT-Agda}.
\bibitem[Bla79]{blass1979injectivity}
Andreas Blass, \emph{Injectivity, projectivity, and the axiom of choice},
Transactions of the American Mathematical Society \textbf{255} (1979),
31--59.
\bibitem[BR16]{buchholtz2016cayleydickson}
Ulrik Buchholtz and Egbert Rijke, \emph{The {C}ayley-{D}ickson construction in
{H}omotopy {T}ype {T}heory}, ArXiv e-prints (2016), \href
{http://arxiv.org/abs/1610.01134} {\path{arXiv:1610.01134}}.
\bibitem[Bru16]{brunerie2016spheres}
Guillaume Brunerie, \emph{On the homotopy groups of spheres in homotopy type
theory}, Ph.D. thesis, University of Nice Sophia Antipolis, 2016,
\url{https://arxiv.org/abs/1606.05916}.
\bibitem[BvDR18]{buchholtz2018groups}
Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke, \emph{{Higher Groups in
Homotopy Type Theory}}, ArXiv e-prints (2018), \href
{http://arxiv.org/abs/1802.04315} {\path{arXiv:1802.04315}}.
\bibitem[Car18]{carneiro2018leantheory}
Mario Carneiro, \emph{The type theory of {L}ean}, 2018, online,
\url{https://github.com/digama0/lean-type-theory/releases}.
\bibitem[Cav15]{cavallo2015cohomology}
Evan Cavallo, \emph{Synthetic cohomology in homotopy type theory}, Master's
thesis, Carnegie Mellon University, 2015,
\url{http://www.cs.cmu.edu/~ecavallo/works/thesis.pdf}.
\bibitem[CCHM]{cubicaltt}
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders M{\"o}rtberg,
\emph{Cubical type theory}, code library,
\url{https://github.com/mortberg/cubicaltt}.
\bibitem[CCHM16]{cohen2016cubical}
\bysame, \emph{Cubical type theory: a constructive interpretation of the
univalence axiom}, November 2016, \href {http://arxiv.org/abs/1611.02108}
{\path{arXiv:1611.02108}}.
\bibitem[CF58]{curry1958combinatorylogic}
Haskell~B. Curry and Robert Feys, \emph{Combinatory logic vol. i}.
\bibitem[Cis14]{cisinski2014models}
Denis-Charles Cisinski, \emph{Univalent universes for elegant models of
homotopy types}, ArXiv preprint arXiv:1406.0058 (2014).
\bibitem[dMKA{\etalchar{+}}15]{moura2015lean}
Leonardo de~Moura, Soonho Kong, Jeremy Avigad, Floris {van Doorn}, and Jakob
{von Raumer}, \emph{{The {Lean} Theorem Prover (system description)}},
CADE-25 (2015), 378--388.
\bibitem[Dyb94]{dybjer1994inductive}
Peter Dybjer, \emph{Inductive families}, Formal aspects of computing \textbf{6}
(1994), no.~4, 440--465.
\bibitem[EK66]{eilenberg1966closedcategories}
Samuel Eilenberg and G.~Max Kelly, \emph{Closed categories}, Proceedings of the
Conference on Categorical Algebra, Springer, 1966, pp.~421--562.
\bibitem[EM45]{eilenberg1945spaces}
Samuel Eilenberg and Saunders MacLane, \emph{Relations between homology and
homotopy groups of spaces}, Annals of mathematics (1945), 480--509.
\bibitem[EUR{\etalchar{+}}17]{ebner2017metaprogramming}
Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de~Moura, \emph{A metaprogramming framework for formal verification}, Proc.
ACM Program. Lang. \textbf{1} (2017), no.~ICFP, 34:1--34:29, \href
{http://dx.doi.org/10.1145/3110278} {\path{doi:10.1145/3110278}}.
\bibitem[G{\etalchar{+}}13]{gonthier2013oddorder}
Georges Gonthier et~al., \emph{A machine-checked proof of the odd order
theorem}, pp.~163--179, Springer, 2013, \href
{http://dx.doi.org/10.1007/978-3-642-39634-2_14}
{\path{doi:10.1007/978-3-642-39634-2_14}}.
\bibitem[Gir72]{girard1972paradox}
Jean-Yves Girard, \emph{Interpr{\'e}tation fonctionelle et {\'e}limination des
coupures de larithm{\'e}tique dordre sup{\'e}rieur}, Ph.D. thesis,
Universit{\'e} Paris Diderot, 1972.
\bibitem[GMM06]{goguen2006eliminating}
Healfdene Goguen, Conor McBride, and James McKinna, \emph{Eliminating dependent
pattern matching}, Algebra, Meaning, and Computation (2006), 521--540.
\bibitem[Gon05]{gonthier2005fourcolour}
Georges Gonthier, \emph{A computer-checked proof of the four colour theorem}.
\bibitem[Gra17]{graham2017homology}
Robert Graham, \emph{{Synthetic Homology in Homotopy Type Theory}}, ArXiv
e-print 1706.01540 (2017), \url{https://arxiv.org/abs/1706.01540}.
\bibitem[H{\etalchar{+}}]{hollight}
John Harrison et~al., \emph{The hol light theorem prover},
\url{https://github.com/jrh13/hol-light}.
\bibitem[H{\etalchar{+}}17]{hales2017kepler}
Thomas Hales et~al., \emph{A formal proof of the {K}epler conjecture}, Forum of
Mathematics, Pi \textbf{5} (2017), \href
{http://dx.doi.org/10.1017/fmp.2017.1} {\path{doi:10.1017/fmp.2017.1}}.
\bibitem[Hat04]{hatcher2004spectral}
Allen Hatcher, \emph{Spectral sequences in algebraic topology}, Unpublished
book, 2004, \url{https://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html}.
\bibitem[HFLL16]{favonia2016blakersmassey}
Kuen-Bang {Hou (Favonia)}, Eric Finster, Daniel~R. Licata, and Peter~LeFanu
Lumsdaine, \emph{A mechanization of the {Blakers-Massey} connectivity theorem
in {Homotopy Type Theory}}, Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, ACM, 2016, pp.~565--574.
\bibitem[{Hou}17]{favonia2017thesis}
Kuen-Bang {Hou (Favonia)}, \emph{Higher-dimensional types in the mechanization
of homotopy theory}, Ph.D. thesis, Carnegie Mellon University, 2017.
\bibitem[How80]{howard1980formulae}
William~A. Howard, \emph{The formulae-as-types notion of construction}, To H.B.
Curry: essays on combinatory logic, lambda calculus and formalism \textbf{44}
(1980), 479--490.
\bibitem[HP13]{holmbergperoux2014models}
Maximilien Holmberg-Péroux, \emph{The serre spectral sequence}, preprint
(2013), \url{http://homepages.math.uic.edu/~mholmb2/serre.pdf}.
\bibitem[HS98]{hofmann1998groupoid}
Martin Hofmann and Thomas Streicher, \emph{The groupoid interpretation of type
theory}, Twenty-five years of constructive type theory ({V}enice, 1995),
Oxford Logic Guides, vol.~36, Oxford Univ. Press, New York, 1998,
pp.~83--111.
\bibitem[HS16]{favonia2016seifert}
Kuen-Bang {Hou (Favonia)} and Michael Shulman, \emph{The {S}eifert-van {K}ampen
theorem in homotopy type theory}, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), Leibniz International Proceedings in Informatics
(LIPIcs), vol.~62, 2016, pp.~22:1--22:16, \href
{http://dx.doi.org/10.4230/LIPIcs.CSL.2016.22}
{\path{doi:10.4230/LIPIcs.CSL.2016.22}}.
\bibitem[KECA14]{kraus2014anonymousexistence}
Nicolai Kraus, Mart{\'\i}n Escard{\'o}, Thierry Coquand, and Thorsten
Altenkirch, \emph{Notions of anonymous existence in {Martin-L{\"o}f} type
theory}, Submitted to the special issue of TLCA'13 (2014).
\bibitem[KL12]{kapulkin2012simplicialnew}
Chris Kapulkin and Peter~LeFanu Lumsdaine, \emph{{The Simplicial Model of
Univalent Foundations (after Voevodsky)}}, ArXiv e-prints (2012), \href
{http://arxiv.org/abs/1211.2851} {\path{arXiv:1211.2851}}.
\bibitem[Kra15]{kraus2014universalproperty}
Nicolai Kraus, \emph{The general universal property of the propositional
truncation}, 20th International Conference on Types for Proofs and Programs
(TYPES 2014), Leibniz International Proceedings in Informatics (LIPIcs),
vol.~39, 2015, pp.~111--145, \href
{http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.111}
{\path{doi:10.4230/LIPIcs.TYPES.2014.111}}.
\bibitem[Kra16]{kraus2016hits}
\bysame, \emph{Constructions with non-recursive higher inductive types},
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, ACM, 2016, pp.~595--604.
\bibitem[LF14]{licata2014em}
Daniel~R. Licata and Eric Finster, \emph{{E}ilenberg-{M}ac{L}ane spaces in
homotopy type theory}, Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), ACM, 2014,
p.~66.
\bibitem[Lic11]{licata2011trick}
Daniel~R. Licata, \emph{Running circles around (in) your proof assistant; or,
quotients that compute}, blog post, April 2011,
\url{http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/}.
\bibitem[LS13]{licatashulman2013}
Daniel~R. Licata and Michael Shulman, \emph{Calculating the fundamental group
of the circle in homotopy type theory}, 2013 28th {A}nnual {ACM}/{IEEE}
{S}ymposium on {L}ogic in {C}omputer {S}cience ({LICS} 2013), IEEE Computer
Soc., Los Alamitos, CA, 2013, pp.~223--232.
\bibitem[LS17]{lumsdaine2017HITsemantics}
Peter~LeFanu Lumsdaine and Michael Shulman, \emph{{Semantics of higher
inductive types}}, ArXiv e-prints (2017), \href
{http://arxiv.org/abs/1705.07088} {\path{arXiv:1705.07088}}.
\bibitem[Lum11]{lumsdaine2011hits}
Peter~LeFanu Lumsdaine, \emph{Higher inductive types: a tour of the menagerie},
blog post, April 2011,
\url{https://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/}.
\bibitem[Luo12]{luo2012universes}
Zhaohui Luo, \emph{Notes on universes in type theory}, preprint, 2012,
\url{http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf}.
\bibitem[Mas52]{massey1952exactcouple}
William~S Massey, \emph{Exact couples in algebraic topology (parts i and ii)},
Annals of Mathematics \textbf{56} (1952), no.~2, 363--396.
\bibitem[McL06]{mclaughlin2006interpretation}
Sean McLaughlin, \emph{An interpretation of {Isabelle/HOL} in {HOL Light}},
International Joint Conference on Automated Reasoning, Springer, 2006,
pp.~192--204.
\bibitem[ML75]{martinlof1975typetheory}
Per Martin-L{\"o}f, \emph{An intuitionistic theory of types: Predicative part},
Studies in Logic and the Foundations of Mathematics, vol.~80, Elsevier, 1975,
pp.~73--118.
\bibitem[ML84]{martinlof1984typetheory}
\bysame, \emph{Intuitionistic type theory}, Bibliopolis, 1984, Notes by
Giovanni Sambin of a series of lectures given in Padova.
\bibitem[Rez14]{rezk2014blakersmassey}
Charles Rezk, \emph{Proof of the blakers-massey theorem}, 2014,
\url{http://www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf}.
\bibitem[Rij17]{rijke2017join}
Egbert Rijke, \emph{{The join construction}}, ArXiv (2017), \href
{http://arxiv.org/abs/1701.07538} {\path{arXiv:1701.07538}}.
\bibitem[RSS17]{rijke2017modalities}
Egbert Rijke, Michael Shulman, and Bas Spitters, \emph{Modalities in homotopy
type theory}, ArXiv e-prints (2017), \href {http://arxiv.org/abs/1706.07526}
{\path{arXiv:1706.07526}}.
\bibitem[S{\etalchar{+}}11]{shulman2011spectrification}
Michael Shulman et~al., \emph{{higher inductive type}}, 2011, nLab article,
\url{https://ncatlab.org/nlab/revision/higher+inductive+type/31}.
\bibitem[Ser51]{serre1951homology}
Jean-Pierre Serre, \emph{Homologie singuli{\`e}re des espaces fibr{\'e}s},
Annals of Mathematics (1951), 425--505.
\bibitem[Shu11a]{shulman2011pi1S1}
Michael Shulman, \emph{A formal proof that $\pi_1(s^1)=\mathbb{Z}$}, blog post,
April 2011,
\url{https://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/}.
\bibitem[Shu11b]{shulman2011HoTThits}
\bysame, \emph{Homotopy type theory, vi}, forum post, April 2011,
\url{https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html}.
\bibitem[Shu11c]{shulman2011intervalimpliesfunext}
\bysame, \emph{An interval type implies function extensionality}, blog post,
April 2011,
\url{https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/}.
\bibitem[Shu13]{shulman2013spectral}
\bysame, \emph{{Spectral sequences in HoTT}}, blog posts, August 2013,
\url{https://ncatlab.org/homotopytypetheory/revision/spectral+sequences/5}.
\bibitem[Shu17]{shulman2017topos}
\bysame, \emph{Elementary $(\infty,1)$-topoi}, blog post, April 2017,
\url{https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html}.
\bibitem[Sna81]{snaith1981ktheory}
Victor Snaith, \emph{Localized stable homotopy of some classifying spaces},
Mathematical Proceedings of the Cambridge Philosophical Society, vol.~89,
Cambridge University Press, 1981, pp.~325--330.
\bibitem[Str14]{streicher2014simplicial}
Thomas Streicher, \emph{A model of type theory in simplicial sets: A brief
introduction to {V}oevodsky's homotopy type theory}, Journal of Applied Logic
\textbf{12} (2014), no.~1, 45 -- 49, Logic Categories Semantics, \href
{http://dx.doi.org/https://doi.org/10.1016/j.jal.2013.04.001}
{\path{doi:https://doi.org/10.1016/j.jal.2013.04.001}}.
\bibitem[{The}18]{redprl}
{The RedPRL Development Team}, \emph{{RedPRL} -- the {P}eople's {R}efinement
{L}ogic}, 2018, \url{http://www.redprl.org/}.
\bibitem[{Uni}13]{hottbook}
The {Univalent Foundations Program}, \emph{Homotopy type theory: Univalent
foundations of mathematics}, \url{http://homotopytypetheory.org/book},
Institute for Advanced Study, 2013.
\bibitem[VAG{\etalchar{+}}]{unimath}
Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et~al., \emph{{U}ni{M}ath
--- {U}nivalent {M}athematics}, code library,
\url{https://github.com/UniMath}.
\bibitem[vD16]{vandoorn2016proptrunc}
Floris van Doorn, \emph{Constructing the propositional truncation using
non-recursive hits}, Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs, ACM, 2016, pp.~122--129.
\bibitem[vDvRB17]{vandoorn2017leanhott}
Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz, \emph{Homotopy type
theory in lean}, pp.~479--495, Springer, 2017, \href
{http://dx.doi.org/10.1007/978-3-319-66107-0_30}
{\path{doi:10.1007/978-3-319-66107-0_30}}.
\bibitem[vG12]{berg2010models}
Benno {van den Berg} and Richard Garner, \emph{{Topological and simplicial
models of identity types}}, ACM transactions on computational logic (TOCL)
\textbf{13} (2012), no.~1, 3.
\bibitem[Voe06]{voevodsky2006}
Vladimir Voevodsky, \emph{A very short note on the homotopy
{$\lambda$}-calculus}, online, 2006,
\url{http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf}.
\bibitem[Voe09]{voevodsky2009typesystems}
\bysame, \emph{Notes on type systems}, online, 2009,
\url{http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current_1.pdf}.
\bibitem[Voe14]{voevodsky2014univalence}
\bysame, \emph{{The equivalence axiom and univalent models of type theory.
(Talk at CMU on February 4, 2010)}}, \href {http://arxiv.org/abs/1402.5556}
{\path{arXiv:1402.5556}}.
\bibitem[Voe15]{voevodsky2015lecture}
\bysame, \emph{Oxford lectures on {U}ni{M}ath}, filmed by Kohei Kishida,
available at \url{https://www.math.ias.edu/vladimir/Lectures}, 2015.
\bibitem[vR16]{raumer2016doublegroupoids}
Jakob von Raumer, \emph{Formalizing double groupoids and cross modules in the
lean theorem prover}, Mathematical Software -- ICMS 2016, Springer
International Publishing, 2016, pp.~28--33.
\bibitem[Zha17]{zhan2017auto2}
Bohua Zhan, \emph{Formalization of the fundamental group in untyped set theory
using auto2}, International Conference on Interactive Theorem Proving,
Springer, Springer, 2017, pp.~514--530, \href
{http://dx.doi.org/10.1007/978-3-319-66107-0_32}
{\path{doi:10.1007/978-3-319-66107-0_32}}.
\end{thebibliography}

Binary file not shown.

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,293 @@
% Listing style definition for the Lean Theorem Prover.
% Defined by Jeremy Avigad, 2015, by modifying Assia Mahboubi's SSR style.
% Unicode replacements taken from Olivier Verdier's unixode.sty
\lstdefinelanguage{lean} {
% Anything betweeen $ becomes LaTeX math mode
mathescape=true,
% Comments may or not include Latex commands
texcl=false,
% keywords, list taken from lean-syntax.el
morekeywords=[1]{
import, prelude, tactic_hint, protected, private, noncomputable, definition, renaming,
hiding, exposing, parameter, parameters, begin, begin+, proof, qed, conjecture, constant, constants,
hypothesis, lemma, corollary, variable, variables, premise, premises, theory,
print, theorem, proposition, example, abbreviation, abstract,
open, as, export, override, axiom, axioms, inductive, with, structure, record, universe, universes,
alias, help, environment, options, precedence, reserve,
match, infix, infixl, infixr, notation, postfix, prefix,
tactic_infix, tactic_infixl, tactic_infixr, tactic_notation, tactic_postfix, tactic_prefix,
eval, check, coercion, end, reveal, this, suppose,
using, namespace, section, fields, find_decl,
attribute, local, set_option, extends, include, omit, classes,
instances, coercions, metaclasses, raw, migrate, replacing,
calc, have, obtains, show, suffices, by, by+, in, at, let, forall, Pi, fun,
exists, if, dif, then, else, assume, assert, take,
obtain, from, aliases
},
% Sorts
morekeywords=[2]{Type, Prop},
% tactics, list taken from lean-syntax.el
morekeywords=[3]{
Cond, or_else, then, try, when, assumption, eassumption, rapply,
apply, fapply, eapply, rename, intro, intros, all_goals, fold, focus, focus_at,
generalize, generalizes, clear, clears, revert, reverts, back, beta, done, exact, rexact,
refine, repeat, whnf, rotate, rotate_left, rotate_right, inversion, cases, rewrite,
xrewrite, krewrite, blast, simp, esimp, unfold, change, check_expr, contradiction,
exfalso, split, existsi, constructor, fconstructor, left, right, injection, congruence, reflexivity,
symmetry, transitivity, state, induction, induction_using, fail, append,
substvars, now, with_options, with_attributes, with_attrs, note
},
% modifiers, taken from lean-syntax.el
% note: 'otherkeywords' is needed because these use a different symbol.
% this command doesn't allow us to specify a number -- they are put with [1]
otherkeywords={
[persistent], [notation], [visible], [instance], [trans_instance],
[class], [parsing-only], [coercion], [unfold_full], [constructor],
[reducible], [irreducible], [semireducible], [quasireducible], [wf],
[whnf], [multiple_instances], [none], [decl], [declaration],
[relation], [symm], [subst], [refl], [trans], [simp], [congr],
[backward], [forward], [no_pattern], [begin_end], [tactic], [abbreviation],
[reducible], [unfold], [alias], [eqv], [intro], [intro!], [elim], [grinder],
[localrefinfo], [recursor]
},
% Various symbols
literate=
{α}{{\ensuremath{\mathrm{\alpha}}}}1
{β}{{\ensuremath{\mathrm{\beta}}}}1
{γ}{{\ensuremath{\mathrm{\gamma}}}}1
{δ}{{\ensuremath{\mathrm{\delta}}}}1
{ε}{{\ensuremath{\mathrm{\varepsilon}}}}1
{ζ}{{\ensuremath{\mathrm{\zeta}}}}1
{η}{{\ensuremath{\mathrm{\eta}}}}1
{θ}{{\ensuremath{\mathrm{\theta}}}}1
{ι}{{\ensuremath{\mathrm{\iota}}}}1
{κ}{{\ensuremath{\mathrm{\kappa}}}}1
{μ}{{\ensuremath{\mathrm{\mu}}}}1
{ν}{{\ensuremath{\mathrm{\nu}}}}1
{ξ}{{\ensuremath{\mathrm{\xi}}}}1
{π}{{\ensuremath{\mathrm{\mathnormal{\pi}}}}}1
{ρ}{{\ensuremath{\mathrm{\rho}}}}1
{σ}{{\ensuremath{\mathrm{\sigma}}}}1
{τ}{{\ensuremath{\mathrm{\tau}}}}1
{φ}{{\ensuremath{\mathrm{\varphi}}}}1
{χ}{{\ensuremath{\mathrm{\chi}}}}1
{ψ}{{\ensuremath{\mathrm{\psi}}}}1
{ω}{{\ensuremath{\mathrm{\omega}}}}1
{Γ}{{\ensuremath{\mathrm{\Gamma}}}}1
{Δ}{{\ensuremath{\mathrm{\Delta}}}}1
{Θ}{{\ensuremath{\mathrm{\Theta}}}}1
{Λ}{{\ensuremath{\mathrm{\Lambda}}}}1
{Σ}{{\ensuremath{\mathrm{\Sigma}}}}1
{Φ}{{\ensuremath{\mathrm{\Phi}}}}1
{Ξ}{{\ensuremath{\mathrm{\Xi}}}}1
{Ψ}{{\ensuremath{\mathrm{\Psi}}}}1
{Ω}{{\ensuremath{\mathrm{\Omega}}}}1
{}{{\ensuremath{\aleph}}}1
{}{{\ensuremath{\leq}}}1
{}{{\ensuremath{\geq}}}1
{}{{\ensuremath{\neq}}}1
{}{{\ensuremath{\approx}}}1
{}{{\ensuremath{\equiv}}}1
{}{{\ensuremath{\simeq}}}1
{}{{\ensuremath{\leq}}}1
{}{{\ensuremath{\geq}}}1
{}{{\ensuremath{\partial}}}1
{}{{\ensuremath{\triangle}}}1 % or \laplace?
{}{{\ensuremath{\int}}}1
{}{{\ensuremath{\mathrm{\Sigma}}}}1
{Π}{{\ensuremath{\mathrm{\Pi}}}}1
{}{{\ensuremath{\perp}}}1
{}{{\ensuremath{\infty}}}1
{}{{\ensuremath{\partial}}}1
{}{{\ensuremath{\mp}}}1
{±}{{\ensuremath{\pm}}}1
{×}{{\ensuremath{\times}}}1
{}{{\ensuremath{\oplus}}}1
{}{{\ensuremath{\otimes}}}1
{}{{\ensuremath{\boxplus}}}1
{}{{\ensuremath{\nabla}}}1
{}{{\ensuremath{\sqrt}}}1
{}{{\ensuremath{\cdot}}}1
{}{{\ensuremath{\cdot}}}1
{}{{\ensuremath{\circ}}}1
{`}{{\ensuremath{{}^\backprime}}}1
{'}{{\ensuremath{{}^\prime}}}1
%{}{{\ensuremath{^{\textup{\kern1pt\rule{2pt}{0.3pt}\kern-1pt}}}}}1
{}{{\ensuremath{^{-}}}}1
{}{{\ensuremath{\mathsmaller\blacktriangleright}}}1 %% requires package relsize
{}{{\ensuremath{\wedge}}}1
{}{{\ensuremath{\vee}}}1
{¬}{{\ensuremath{\neg}}}1
{}{{\ensuremath{\vdash}}}1
%{}{{\ensuremath{\left\langle}}}1
%{}{{\ensuremath{\right\rangle}}}1
{}{{\ensuremath{\langle}}}1
{}{{\ensuremath{\rangle}}}1
{}{{\ensuremath{\mapsto}}}1
{}{{\ensuremath{\rightarrow}}}1
{}{{\ensuremath{\leftrightarrow}}}1
{}{{\ensuremath{\Rightarrow}}}1
{}{{\ensuremath{\Longrightarrow}}}1
{}{{\ensuremath{\Leftarrow}}}1
{}{{\ensuremath{\Longleftarrow}}}1
{}{{\ensuremath{\cap}}}1
{}{{\ensuremath{\cup}}}1
{}{{\ensuremath{\subseteq}}}1
{}{{\ensuremath{\subseteq}}}1
{}{{\ensuremath{\nsubseteq}}}1
{}{{\ensuremath{\nsubseteq}}}1
{}{{\ensuremath{\supseteq}}}1
{}{{\ensuremath{\supseteq}}}1
{}{{\ensuremath{\nsupseteq}}}1
{}{{\ensuremath{\nsupseteq}}}1
{}{{\ensuremath{\in}}}1
{}{{\ensuremath{\notin}}}1
{}{{\ensuremath{\ni}}}1
{}{{\ensuremath{\notni}}}1
{}{{\ensuremath{\emptyset}}}1
{}{{\ensuremath{\setminus}}}1
{}{{\ensuremath{\dag}}}1
{}{{\ensuremath{\mathbb{N}}}}1
{}{{\ensuremath{\mathbb{Z}}}}1
{}{{\ensuremath{\mathbb{R}}}}1
{}{{\ensuremath{\mathbb{Q}}}}1
{}{{\ensuremath{\mathbb{C}}}}1
{}{{\ensuremath{\llcorner}}}1
{}{{\ensuremath{\lrcorner}}}1
{}{{\ensuremath{\{\!|}}}1
{}{{\ensuremath{|\!\}}}}1
{}{{\ensuremath{_1}}}1
{}{{\ensuremath{_2}}}1
{}{{\ensuremath{_3}}}1
{}{{\ensuremath{_4}}}1
{}{{\ensuremath{_5}}}1
{}{{\ensuremath{_6}}}1
{}{{\ensuremath{_7}}}1
{}{{\ensuremath{_8}}}1
{}{{\ensuremath{_9}}}1
{}{{\ensuremath{_0}}}1
{¹}{{\ensuremath{^1}}}1
{²}{{\ensuremath{^2}}}1
{³}{{\ensuremath{^3}}}1
{}{{\ensuremath{^4}}}1
{}{{\ensuremath{^5}}}1
{}{{\ensuremath{^6}}}1
{}{{\ensuremath{^7}}}1
{}{{\ensuremath{^8}}}1
{}{{\ensuremath{^9}}}1
{}{{\ensuremath{^0}}}1
{}{{\textsuperscript{o}}}1
{}{{\textsuperscript{p}}}1
{}{{\ensuremath{_n}}}1
{}{{\ensuremath{_m}}}1
{}{{\ensuremath{\uparrow}}}1
{}{{\ensuremath{\downarrow}}}1
% {}{{\ensuremath{\triangleright}}}1
{Σ}{{\color{symbolcolor}\ensuremath{\mathrm{\Sigma}}}}1
{Π}{{\color{symbolcolor}\ensuremath{\mathrm{\Pi}}}}1
{}{{\color{symbolcolor}\ensuremath{\forall}}}1
{}{{\color{symbolcolor}\ensuremath{\exists}}}1
{λ}{{\color{symbolcolor}\ensuremath{\mathrm{\lambda}}}}1
{Ω}{{\color{symbolcolor}\ensuremath{\mathrm{\Omega}}}}1
{:=}{{\color{symbolcolor}:=}}1
{=}{{\color{symbolcolor}=}}1
{<}{{\color{symbolcolor}<}}1
{+}{{\color{symbolcolor}+}}1
{*}{{\color{symbolcolor}\ensuremath{{}^{*}}}}1,
% Comments
%comment=[s][\itshape \color{commentcolor}]{/-}{-/},
morecomment=[s][\color{commentcolor}]{/-}{-/},
morecomment=[l][\itshape \color{commentcolor}]{--},
% Spaces are not displayed as a special character
showstringspaces=false,
% keep spaces
keepspaces=true,
% String delimiters
morestring=[b]",
morestring=[d]’,
% Size of tabulations
tabsize=3,
% Enables ASCII chars 128 to 255
extendedchars=false,
% Case sensitivity
sensitive=true,
% Automatic breaking of long lines
breaklines=true,
% Default style fors listingsred
basicstyle=\ttfamily,
% Position of captions is bottom
captionpos=b,
% Full flexible columns
columns=[l]fullflexible,
% Style for (listings') identifiers
identifierstyle={\ttfamily\color{black}},
% Note : highlighting of Coq identifiers is done through a new
% delimiter definition through an lstset at the begining of the
% document. Don't know how to do better.
% Style for declaration keywords
keywordstyle=[1]{\ttfamily\color{keywordcolor}},
% Style for sorts
keywordstyle=[2]{\ttfamily\color{sortcolor}},
% Style for tactics keywords
keywordstyle=[3]{\ttfamily\color{tacticcolor}},
% Style for attributes
keywordstyle=[4]{\ttfamily\color{attributecolor}},
% Style for strings
stringstyle=\ttfamily,
% Style for comments
% commentstyle={\ttfamily\footnotesize },
}

View file

@ -0,0 +1,783 @@
%%%% MACROS FOR NOTATION %%%%
% Use these for any notation where there are multiple options.
% Slightly modified by Floris van Doorn
%%% Notes and exercise sections
\makeatletter
\newcommand{\sectionNotes}{\phantomsection\section*{Notes}\addcontentsline{toc}{section}{Notes}\markright{\textsc{\@chapapp{} \thechapter{} Notes}}}
\newcommand{\sectionExercises}[1]{\phantomsection\section*{Exercises}\addcontentsline{toc}{section}{Exercises}\markright{\textsc{\@chapapp{} \thechapter{} Exercises}}}
\makeatother
%%% Definitional equality (used infix) %%%
\newcommand{\jdeq}{\equiv} % An equality judgment
\let\judgeq\jdeq
%\newcommand{\defeq}{\coloneqq} % An equality currently being defined
\newcommand{\defeq}{\vcentcolon\equiv} % A judgmental equality currently being defined
%%% Term being defined
\newcommand{\define}[1]{\textbf{#1}}
%%% Vec (for example)
\newcommand{\Vect}{\ensuremath{\mathsf{Vec}}}
\newcommand{\Fin}{\ensuremath{\mathsf{Fin}}}
\newcommand{\fmax}{\ensuremath{\mathsf{fmax}}}
\newcommand{\seq}[1]{\langle #1\rangle}
%%% Dependent products %%%
\def\prdsym{\textstyle\prod}
%% Call the macro like \prd{x,y:A}{p:x=y} with any number of
%% arguments. Make sure that whatever comes *after* the call doesn't
%% begin with an open-brace, or it will be parsed as another argument.
\makeatletter
% Currently the macro is configured to produce
% {\textstyle\prod}(x:A) \; {\textstyle\prod}(y:B),\
% in display-math mode, and
% \prod_{(x:A)} \prod_{y:B}
% in text-math mode.
\def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{\prd@noparens{#1}}}}
\def\prd@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\prd@parens}%
{\@ifnextchar\sm%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\@eatsm}%
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}}}
\def\@eatsm\sm{\sm@parens}
\def\prd@noparens#1{\mathchoice{\@dprd@noparens{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}
% Helper macros for three styles
\def\lprd#1{\@ifnextchar\bgroup{\@lprd{#1}\lprd}{\@@lprd{#1}}}
\def\@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1})\;}
\def\@@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1}),\ }
\def\tprd#1{\@tprd{#1}\@ifnextchar\bgroup{\tprd}{}}
\def\@tprd#1{\mathchoice{{\textstyle\prod_{(#1)}}}{\prod_{(#1)}}{\prod_{(#1)}}{\prod_{(#1)}}}
\def\dprd#1{\@dprd{#1}\@ifnextchar\bgroup{\dprd}{}}
\def\@dprd#1{\prod_{(#1)}\,}
\def\@dprd@noparens#1{\prod_{#1}\,}
%%% Lambda abstractions.
% Each variable being abstracted over is a separate argument. If
% there is more than one such argument, they *must* be enclosed in
% braces. Arguments can be untyped, as in \lam{x}{y}, or typed with a
% colon, as in \lam{x:A}{y:B}. In the latter case, the colons are
% automatically noticed and (with current implementation) the space
% around the colon is reduced. You can even give more than one variable
% the same type, as in \lam{x,y:A}.
\def\lam#1{{\lambda}\@lamarg#1:\@endlamarg\@ifnextchar\bgroup{.\,\lam}{.\,}}
\def\@lamarg#1:#2\@endlamarg{\if\relax\detokenize{#2}\relax #1\else\@lamvar{\@lameatcolon#2},#1\@endlamvar\fi}
\def\@lamvar#1,#2\@endlamvar{(#2\,{:}\,#1)}
% \def\@lamvar#1,#2{{#2}^{#1}\@ifnextchar,{.\,{\lambda}\@lamvar{#1}}{\let\@endlamvar\relax}}
\def\@lameatcolon#1:{#1}
\let\lamt\lam
% This version silently eats any typing annotation.
\def\lamu#1{{\lambda}\@lamuarg#1:\@endlamuarg\@ifnextchar\bgroup{.\,\lamu}{.\,}}
\def\@lamuarg#1:#2\@endlamuarg{#1}
%%% Dependent products written with \forall, in the same style
\def\fall#1{\forall (#1)\@ifnextchar\bgroup{.\,\fall}{.\,}}
%%% Existential quantifier %%%
\def\exis#1{\exists (#1)\@ifnextchar\bgroup{.\,\exis}{.\,}}
%%% Dependent sums %%%
\def\smsym{\textstyle\sum}
% Use in the same way as \prd
\def\sm#1{\@ifnextchar\bgroup{\sm@parens{#1}}{\@ifnextchar\prd{\sm@parens{#1}\@eatprd}{\sm@noparens{#1}}}}
\def\sm@parens#1{\@ifnextchar\bgroup%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\sm@parens}%
{\@ifnextchar\prd%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\@eatprd}%
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}}}
\def\@eatprd\prd{\prd@parens}
\def\sm@noparens#1{\mathchoice{\@dsm@noparens{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}
\def\lsm#1{\@ifnextchar\bgroup{\@lsm{#1}\lsm}{\@@lsm{#1}}}
\def\@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1})\;}
\def\@@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1}),\ }
\def\tsm#1{\@tsm{#1}\@ifnextchar\bgroup{\tsm}{}}
\def\@tsm#1{\mathchoice{{\textstyle\sum_{(#1)}}}{\sum_{(#1)}}{\sum_{(#1)}}{\sum_{(#1)}}}
\def\dsm#1{\@dsm{#1}\@ifnextchar\bgroup{\dsm}{}}
\def\@dsm#1{\sum_{(#1)}\,}
\def\@dsm@noparens#1{\sum_{#1}\,}
%%% W-types
\def\wtypesym{{\mathsf{W}}}
\def\wtype#1{\@ifnextchar\bgroup%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}\wtype}%
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}}}
\def\lwtype#1{\@ifnextchar\bgroup{\@lwtype{#1}\lwtype}{\@@lwtype{#1}}}
\def\@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1})\;}
\def\@@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1}),\ }
\def\twtype#1{\@twtype{#1}\@ifnextchar\bgroup{\twtype}{}}
\def\@twtype#1{\mathchoice{{\textstyle\mathsf{W}_{(#1)}}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}}
\def\dwtype#1{\@dwtype{#1}\@ifnextchar\bgroup{\dwtype}{}}
\def\@dwtype#1{\mathsf{W}_{(#1)}\,}
\newcommand{\suppsym}{{\mathsf{sup}}}
\newcommand{\supp}{\ensuremath\suppsym\xspace}
\def\wtypeh#1{\@ifnextchar\bgroup%
{\mathchoice{\@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}\wtypeh}%
{\mathchoice{\@@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}}}
\def\lwtypeh#1{\@ifnextchar\bgroup{\@lwtypeh{#1}\lwtypeh}{\@@lwtypeh{#1}}}
\def\@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1})\;}
\def\@@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1}),\ }
\def\twtypeh#1{\@twtypeh{#1}\@ifnextchar\bgroup{\twtypeh}{}}
\def\@twtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h_{(#1)}}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}}
\def\dwtypeh#1{\@dwtypeh{#1}\@ifnextchar\bgroup{\dwtypeh}{}}
\def\@dwtypeh#1{\mathsf{W}^h_{(#1)}\,}
\makeatother
% Other notations related to dependent sums
\let\setof\Set % from package 'braket', write \setof{ x:A | P(x) }.
% \newcommand{\pair}{\ensuremath{\mathsf{pair}}\xspace}
\newcommand{\tup}[2]{(#1,#2)}
\newcommand{\proj}[1]{\ensuremath{\mathsf{pr}_{#1}}\xspace}
\newcommand{\fst}{\ensuremath{\proj1}\xspace}
\newcommand{\snd}{\ensuremath{\proj2}\xspace}
\newcommand{\ac}{\ensuremath{\mathsf{ac}}\xspace} % not needed in symbol index
\newcommand{\un}{\ensuremath{\mathsf{upun}}\xspace} % not needed in symbol index, uniqueness principle for unit type
%%% recursor and induction
\newcommand{\rec}[1]{\mathsf{rec}_{#1}}
\newcommand{\ind}[1]{\mathsf{ind}_{#1}}
\newcommand{\indid}[1]{\ind{=_{#1}}} % (Martin-Lof) path induction principle for identity types
\newcommand{\indidb}[1]{\ind{=_{#1}}'} % (Paulin-Mohring) based path induction principle for identity types
%%% the uniqueness principle for product types, formerly called surjective pairing and named \spr:
\newcommand{\uppt}{\ensuremath{\mathsf{uppt}}\xspace}
% Paths in pairs
\newcommand{\pairpath}{\ensuremath{\mathsf{pair}^{\mathord{=}}}\xspace}
% \newcommand{\projpath}[1]{\proj{#1}^{\mathord{=}}}
\newcommand{\projpath}[1]{\ensuremath{\apfunc{\proj{#1}}}\xspace}
%%% For quotients %%%
%\newcommand{\pairr}[1]{{\langle #1\rangle}}
\newcommand{\pairr}[1]{{\mathopen{}(#1)\mathclose{}}}
\newcommand{\Pairr}[1]{{\mathopen{}\left(#1\right)\mathclose{}}}
% \newcommand{\type}{\ensuremath{\mathsf{Type}}} % this command is overridden below, so it's commented out
\newcommand{\im}{\ensuremath{\mathsf{im}}} % the image
%%% 2D path operations
\newcommand{\leftwhisker}{\mathbin{{\ct}_{\ell}}}
\newcommand{\rightwhisker}{\mathbin{{\ct}_{r}}}
\newcommand{\hct}{\star}
%%% modalities %%%
\newcommand{\modal}{\ensuremath{\ocircle}}
\let\reflect\modal
\newcommand{\modaltype}{\ensuremath{\type_\modal}}
% \newcommand{\ism}[1]{\ensuremath{\mathsf{is}_{#1}}}
% \newcommand{\ismodal}{\ism{\modal}}
% \newcommand{\existsmodal}{\ensuremath{{\exists}_{\modal}}}
% \newcommand{\existsmodalunique}{\ensuremath{{\exists!}_{\modal}}}
% \newcommand{\modalfunc}{\textsf{\modal-fun}}
% \newcommand{\Ecirc}{\ensuremath{\mathsf{E}_\modal}}
% \newcommand{\Mcirc}{\ensuremath{\mathsf{M}_\modal}}
\newcommand{\mreturn}{\ensuremath{\eta}}
\let\project\mreturn
%\newcommand{\mbind}[1]{\ensuremath{\hat{#1}}}
\newcommand{\ext}{\mathsf{ext}}
%\newcommand{\mmap}[1]{\ensuremath{\bar{#1}}}
%\newcommand{\mjoin}{\ensuremath{\mreturn^{-1}}}
% Subuniverse
\renewcommand{\P}{\ensuremath{\type_{P}}\xspace}
%%% Localizations
% \newcommand{\islocal}[1]{\ensuremath{\mathsf{islocal}_{#1}}\xspace}
% \newcommand{\loc}[1]{\ensuremath{\mathcal{L}_{#1}}\xspace}
%%% Identity types %%%
\newcommand{\idsym}{{=}}
% \newcommand{\id}[3][]{\ensuremath{#2 =_{#1} #3}\xspace}
\newcommand{\idtype}[3][]{\ensuremath{\mathsf{Id}_{#1}(#2,#3)}\xspace}
\newcommand{\idtypevar}[1]{\ensuremath{\mathsf{Id}_{#1}}\xspace}
% A propositional equality currently being defined
\newcommand{\defid}{\coloneqq}
%%% Dependent paths
\newcommand{\dpath}[4]{#3 =^{#1}_{#2} #4}
%%% singleton
% \newcommand{\sgl}{\ensuremath{\mathsf{sgl}}\xspace}
% \newcommand{\sctr}{\ensuremath{\mathsf{sctr}}\xspace}
%%% Reflexivity terms %%%
% \newcommand{\reflsym}{{\mathsf{refl}}}
% \newcommand{\refl}[1]{\ensuremath{\mathsf{refl}_{#1}}\xspace}
%%% Path concatenation (used infix, in diagrammatic order) %%%
\newcommand{\ct}{%
\mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}%
{\mathbin{\raisebox{0.5ex}{$\centerdot$}}}%
{\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}%
{\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}}
}
%%% Path reversal %%%
\newcommand{\opp}[1]{\mathord{{#1}^{-1}}}
\let\rev\opp
%%% Transport (covariant) %%%
\newcommand{\trans}[2]{\ensuremath{{#1}_{*}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Trans\trans
%\newcommand{\Trans}[2]{\ensuremath{{#1}_{*}\left({#2}\right)}\xspace}
\newcommand{\transf}[1]{\ensuremath{{#1}_{*}}\xspace} % Without argument
%\newcommand{\transport}[2]{\ensuremath{\mathsf{transport}_{*} \: {#2}\xspace}}
\newcommand{\transfib}[3]{\ensuremath{\mathsf{transport}^{#1}(#2,#3)\xspace}}
\newcommand{\Transfib}[3]{\ensuremath{\mathsf{transport}^{#1}\Big(#2,\, #3\Big)\xspace}}
\newcommand{\transfibf}[1]{\ensuremath{\mathsf{transport}^{#1}\xspace}}
%%% 2D transport
\newcommand{\transtwo}[2]{\ensuremath{\mathsf{transport}^2\mathopen{}\left({#1},{#2}\right)\mathclose{}}\xspace}
%%% Constant transport
\newcommand{\transconst}[3]{\ensuremath{\mathsf{transportconst}}^{#1}_{#2}(#3)\xspace}
\newcommand{\transconstf}{\ensuremath{\mathsf{transportconst}}\xspace}
%%% Map on paths %%%
\newcommand{\mapfunc}[1]{\ensuremath{\mathsf{ap}_{#1}}\xspace} % Without argument
\newcommand{\map}[2]{\ensuremath{{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\let\Ap\map
%\newcommand{\Ap}[2]{\ensuremath{{#1}\left({#2}\right)}\xspace}
\newcommand{\mapdepfunc}[1]{\ensuremath{\mathsf{apd}_{#1}}\xspace} % Without argument
% \newcommand{\mapdep}[2]{\ensuremath{{#1}\llparenthesis{#2}\rrparenthesis}\xspace}
\newcommand{\mapdep}[2]{\ensuremath{\mapdepfunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
\let\apfunc\mapfunc
\let\ap\map
\let\apdfunc\mapdepfunc
\let\apd\mapdep
%%% 2D map on paths
\newcommand{\aptwofunc}[1]{\ensuremath{\mathsf{ap}^2_{#1}}\xspace}
\newcommand{\aptwo}[2]{\ensuremath{\aptwofunc{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace}
\newcommand{\apdtwofunc}[1]{\ensuremath{\mathsf{apd}^2_{#1}}\xspace}
\newcommand{\apdtwo}[2]{\ensuremath{\apdtwofunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace}
%%% Identity functions %%%
\newcommand{\idfunc}[1][]{\ensuremath{\mathsf{id}_{#1}}\xspace}
%%% Homotopies (written infix) %%%
\newcommand{\htpy}{\sim}
%%% Other meanings of \sim
\newcommand{\bisim}{\sim} % bisimulation
\newcommand{\eqr}{\sim} % an equivalence relation
%%% Equivalence types %%%
\newcommand{\eqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\eqvspaced}[2]{\ensuremath{#1 \;\simeq\; #2}\xspace}
\newcommand{\eqvsym}{\simeq} % infix symbol
\newcommand{\texteqv}[2]{\ensuremath{\mathsf{Equiv}(#1,#2)}\xspace}
\newcommand{\isequiv}{\ensuremath{\mathsf{isequiv}}}
\newcommand{\qinv}{\ensuremath{\mathsf{qinv}}}
\newcommand{\ishae}{\ensuremath{\mathsf{ishae}}}
\newcommand{\linv}{\ensuremath{\mathsf{linv}}}
\newcommand{\rinv}{\ensuremath{\mathsf{rinv}}}
\newcommand{\biinv}{\ensuremath{\mathsf{biinv}}}
\newcommand{\lcoh}[3]{\mathsf{lcoh}_{#1}(#2,#3)}
\newcommand{\rcoh}[3]{\mathsf{rcoh}_{#1}(#2,#3)}
\newcommand{\hfib}[2]{{\mathsf{fib}}_{#1}(#2)}
%%% Map on total spaces %%%
\newcommand{\total}[1]{\ensuremath{\mathsf{total}(#1)}}
%%% Universe types %%%
%\newcommand{\type}{\ensuremath{\mathsf{Type}}\xspace}
\newcommand{\UU}{\ensuremath{\mathcal{U}}\xspace}
\let\bbU\UU
\let\type\UU
% Universes of truncated types
\newcommand{\typele}[1]{\ensuremath{{#1}\text-\mathsf{Type}}\xspace}
\newcommand{\typeleU}[1]{\ensuremath{{#1}\text-\mathsf{Type}_\UU}\xspace}
\newcommand{\typelep}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}}\xspace}
\newcommand{\typelepU}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}_\UU}\xspace}
\let\ntype\typele
\let\ntypeU\typeleU
\let\ntypep\typelep
\let\ntypepU\typelepU
\newcommand{\set}{\ensuremath{\mathsf{Set}}\xspace}
\newcommand{\setU}{\ensuremath{\mathsf{Set}_\UU}\xspace}
\newcommand{\prop}{\ensuremath{\mathsf{Prop}}\xspace}
\newcommand{\propU}{\ensuremath{\mathsf{Prop}_\UU}\xspace}
%Pointed types
\newcommand{\pointed}[1]{\ensuremath{#1_\bullet}}
%%% Ordinals and cardinals
\newcommand{\card}{\ensuremath{\mathsf{Card}}\xspace}
\newcommand{\ord}{\ensuremath{\mathsf{Ord}}\xspace}
\newcommand{\ordsl}[2]{{#1}_{/#2}}
%%% Univalence
\newcommand{\ua}{\ensuremath{\mathsf{ua}}\xspace} % the inverse of idtoeqv
\newcommand{\idtoeqv}{\ensuremath{\mathsf{idtoeqv}}\xspace}
\newcommand{\univalence}{\ensuremath{\mathsf{univalence}}\xspace} % the full axiom
%%% Truncation levels
\newcommand{\iscontr}{\ensuremath{\mathsf{isContr}}}
\newcommand{\contr}{\ensuremath{\mathsf{contr}}} % The path to the center of contraction
\newcommand{\isset}{\ensuremath{\mathsf{isSet}}}
\newcommand{\isprop}{\ensuremath{\mathsf{isProp}}}
% h-propositions
% \newcommand{\anhprop}{a mere proposition\xspace}
% \newcommand{\hprops}{mere propositions\xspace}
%%% Homotopy fibers %%%
%\newcommand{\hfiber}[2]{\ensuremath{\mathsf{hFiber}(#1,#2)}\xspace}
\let\hfiber\hfib
%%% Bracket/squash/truncation types %%%
% \newcommand{\brck}[1]{\textsf{mere}(#1)}
% \newcommand{\Brck}[1]{\textsf{mere}\Big(#1\Big)}
% \newcommand{\trunc}[2]{\tau_{#1}(#2)}
% \newcommand{\Trunc}[2]{\tau_{#1}\Big(#2\Big)}
% \newcommand{\truncf}[1]{\tau_{#1}}
%\newcommand{\trunc}[2]{\Vert #2\Vert_{#1}}
\newcommand{\trunc}[2]{\mathopen{}\left\Vert #2\right\Vert_{#1}\mathclose{}}
\newcommand{\ttrunc}[2]{\bigl\Vert #2\bigr\Vert_{#1}}
\newcommand{\Trunc}[2]{\Bigl\Vert #2\Bigr\Vert_{#1}}
\newcommand{\truncf}[1]{\Vert \blank \Vert_{#1}}
\newcommand{\tproj}[3][]{\mathopen{}\left|#3\right|_{#2}^{#1}\mathclose{}}
\newcommand{\tprojf}[2][]{|\blank|_{#2}^{#1}}
\def\pizero{\trunc0}
%\newcommand{\brck}[1]{\trunc{-1}{#1}}
%\newcommand{\Brck}[1]{\Trunc{-1}{#1}}
%\newcommand{\bproj}[1]{\tproj{-1}{#1}}
%\newcommand{\bprojf}{\tprojf{-1}}
\newcommand{\brck}[1]{\trunc{}{#1}}
\newcommand{\bbrck}[1]{\ttrunc{}{#1}}
\newcommand{\Brck}[1]{\Trunc{}{#1}}
\newcommand{\bproj}[1]{\tproj{}{#1}}
\newcommand{\bprojf}{\tprojf{}}
% Big parentheses
\newcommand{\Parens}[1]{\Bigl(#1\Bigr)}
% Projection and extension for truncations
\let\extendsmb\ext
\newcommand{\extend}[1]{\extendsmb(#1)}
%
%%% The empty type
\newcommand{\emptyt}{\ensuremath{\mathbf{0}}\xspace}
%%% The unit type
\newcommand{\unit}{\ensuremath{\mathbf{1}}\xspace}
\newcommand{\ttt}{\ensuremath{\star}\xspace}
%%% The two-element type
\newcommand{\bool}{\ensuremath{\mathbf{2}}\xspace}
\newcommand{\btrue}{{1_{\bool}}}
\newcommand{\bfalse}{{0_{\bool}}}
%%% Injections into binary sums and pushouts
\newcommand{\inlsym}{{\mathsf{inl}}}
\newcommand{\inrsym}{{\mathsf{inr}}}
\newcommand{\inl}{\ensuremath\inlsym\xspace}
\newcommand{\inr}{\ensuremath\inrsym\xspace}
%%% The segment of the interval
\newcommand{\seg}{\ensuremath{\mathsf{seg}}\xspace}
%%% Free groups
\newcommand{\freegroup}[1]{F(#1)}
\newcommand{\freegroupx}[1]{F'(#1)} % the "other" free group
%%% Glue of a pushout
\newcommand{\glue}{\mathsf{glue}}
%%% Circles and spheres
\newcommand{\Sn}{\mathbb{S}}
\newcommand{\base}{\ensuremath{\mathsf{base}}\xspace}
\newcommand{\lloop}{\ensuremath{\mathsf{loop}}\xspace}
\newcommand{\surf}{\ensuremath{\mathsf{surf}}\xspace}
%%% Suspension
\newcommand{\susp}{\Sigma}
\newcommand{\north}{\mathsf{N}}
\newcommand{\south}{\mathsf{S}}
\newcommand{\merid}{\mathsf{merid}}
%%% Blanks (shorthand for lambda abstractions)
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
%%% Nameless objects
\newcommand{\nameless}{\mathord{\hspace{1pt}\underline{\hspace{1ex}}\hspace{1pt}}}
%%% Some decorations
%\newcommand{\bbU}{\ensuremath{\mathbb{U}}\xspace}
% \newcommand{\bbB}{\ensuremath{\mathbb{B}}\xspace}
\newcommand{\bbP}{\ensuremath{\mathbb{P}}\xspace}
%%% Some categories
\newcommand{\uset}{\ensuremath{\mathcal{S}et}\xspace}
\newcommand{\ucat}{\ensuremath{{\mathcal{C}at}}\xspace}
\newcommand{\urel}{\ensuremath{\mathcal{R}el}\xspace}
\newcommand{\uhilb}{\ensuremath{\mathcal{H}ilb}\xspace}
\newcommand{\utype}{\ensuremath{\mathcal{T}\!ype}\xspace}
% Pullback corner
%\newbox\pbbox
%\setbox\pbbox=\hbox{\xy \POS(65,0)\ar@{-} (0,0) \ar@{-} (65,65)\endxy}
%\def\pb{\save[]+<3.5mm,-3.5mm>*{\copy\pbbox} \restore}
% Macros for the categories chapter
% \newcommand{\inv}[1]{{#1}^{-1}}
\newcommand{\idtoiso}{\ensuremath{\mathsf{idtoiso}}\xspace}
\newcommand{\isotoid}{\ensuremath{\mathsf{isotoid}}\xspace}
\newcommand{\op}{^{\mathrm{op}}}
\newcommand{\y}{\ensuremath{\mathbf{y}}\xspace}
\newcommand{\dgr}[1]{{#1}^{\dagger}}
\newcommand{\unitaryiso}{\mathrel{\cong^\dagger}}
\newcommand{\cteqv}[2]{\ensuremath{#1 \simeq #2}\xspace}
\newcommand{\cteqvsym}{\simeq} % Symbol for equivalence of categories
%%% Natural numbers
\newcommand{\N}{\ensuremath{\mathbb{N}}\xspace}
%\newcommand{\N}{\textbf{N}}
\let\nat\N
\newcommand{\natp}{\ensuremath{\nat'}\xspace} % alternative nat in induction chapter
\newcommand{\zerop}{\ensuremath{0'}\xspace} % alternative zero in induction chapter
\newcommand{\suc}{\mathsf{succ}}
\newcommand{\sucp}{\ensuremath{\suc'}\xspace} % alternative suc in induction chapter
\newcommand{\add}{\mathsf{add}}
\newcommand{\ack}{\mathsf{ack}}
\newcommand{\ite}{\mathsf{iter}}
\newcommand{\assoc}{\mathsf{assoc}}
\newcommand{\dbl}{\ensuremath{\mathsf{double}}}
\newcommand{\dblp}{\ensuremath{\dbl'}\xspace} % alternative double in induction chapter
%%% Lists
\newcommand{\lst}[1]{\mathsf{List}(#1)}
\newcommand{\nil}{\mathsf{nil}}
\newcommand{\cons}{\mathsf{cons}}
%%% Vectors of given length, used in induction chapter
\newcommand{\vect}[2]{\ensuremath{\mathsf{Vec}_{#1}(#2)}\xspace}
%%% Integers
\newcommand{\Z}{\ensuremath{\mathbb{Z}}\xspace}
\newcommand{\Zsuc}{\mathsf{succ}}
\newcommand{\Zpred}{\mathsf{pred}}
%%% Rationals
\newcommand{\Q}{\ensuremath{\mathbb{Q}}\xspace}
%%% Function extensionality
\newcommand{\funext}{\mathsf{funext}}
\newcommand{\happly}{\mathsf{happly}}
%%% A naturality lemma
\newcommand{\com}[3]{\mathsf{swap}_{#1,#2}(#3)}
%%% Code/encode/decode
\newcommand{\code}{\ensuremath{\mathsf{code}}\xspace}
\newcommand{\encode}{\ensuremath{\mathsf{encode}}\xspace}
\newcommand{\decode}{\ensuremath{\mathsf{decode}}\xspace}
% Function definition with domain and codomain
\newcommand{\function}[4]{\left\{\begin{array}{rcl}#1 &
\longrightarrow & #2 \\ #3 & \longmapsto & #4 \end{array}\right.}
%%% Cones and cocones
\newcommand{\cone}[2]{\mathsf{cone}_{#1}(#2)}
\newcommand{\cocone}[2]{\mathsf{cocone}_{#1}(#2)}
% Apply a function to a cocone
\newcommand{\composecocone}[2]{#1\circ#2}
\newcommand{\composecone}[2]{#2\circ#1}
%%% Diagrams
\newcommand{\Ddiag}{\mathscr{D}}
%%% (pointed) mapping spaces
\newcommand{\Map}{\mathsf{Map}}
%%% The interval
\newcommand{\interval}{\ensuremath{I}\xspace}
\newcommand{\izero}{\ensuremath{0_{\interval}}\xspace}
\newcommand{\ione}{\ensuremath{1_{\interval}}\xspace}
%%% Arrows
\newcommand{\epi}{\ensuremath{\twoheadrightarrow}}
\newcommand{\mono}{\ensuremath{\rightarrowtail}}
%%% Sets
\newcommand{\bin}{\ensuremath{\mathrel{\widetilde{\in}}}}
%%% Semigroup structure
\newcommand{\semigroupstrsym}{\ensuremath{\mathsf{SemigroupStr}}}
\newcommand{\semigroupstr}[1]{\ensuremath{\mathsf{SemigroupStr}}(#1)}
\newcommand{\semigroup}[0]{\ensuremath{\mathsf{Semigroup}}}
%%% Macros for the formal type theory
\newcommand{\emptyctx}{\ensuremath{\cdot}}
\newcommand{\production}{\vcentcolon\vcentcolon=}
\newcommand{\conv}{\downarrow}
\newcommand{\ctx}{\ensuremath{\mathsf{ctx}}}
\newcommand{\wfctx}[1]{#1\ \ctx}
\newcommand{\oftp}[3]{#1 \vdash #2 : #3}
\newcommand{\jdeqtp}[4]{#1 \vdash #2 \jdeq #3 : #4}
\newcommand{\judg}[2]{#1 \vdash #2}
\newcommand{\tmtp}[2]{#1 \mathord{:} #2}
% rule names
\newcommand{\form}{\textsc{form}}
\newcommand{\intro}{\textsc{intro}}
\newcommand{\elim}{\textsc{elim}}
\newcommand{\comp}{\textsc{comp}}
\newcommand{\uniq}{\textsc{uniq}}
\newcommand{\Weak}{\mathsf{Wkg}}
\newcommand{\Vble}{\mathsf{Vble}}
\newcommand{\Exch}{\mathsf{Exch}}
\newcommand{\Subst}{\mathsf{Subst}}
%%% Macros for HITs
\newcommand{\cc}{\mathsf{c}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\cct}{\widetilde{\mathsf{c}}}
\newcommand{\ppt}{\widetilde{\mathsf{p}}}
\newcommand{\Wtil}{\ensuremath{\widetilde{W}}\xspace}
%%% Macros for n-types
\newcommand{\istype}[1]{\mathsf{is}\mbox{-}{#1}\mbox{-}\mathsf{type}}
\newcommand{\nplusone}{\ensuremath{(n+1)}}
\newcommand{\nminusone}{\ensuremath{(n-1)}}
% \newcommand{\fact}{\mathsf{fact}}
%%% Macros for homotopy
\newcommand{\kbar}{\overline{k}} % Used in van Kampen's theorem
%%% Macros for induction
\newcommand{\natw}{\ensuremath{\mathbf{N^w}}\xspace}
\newcommand{\zerow}{\ensuremath{0^\mathbf{w}}\xspace}
\newcommand{\sucw}{\ensuremath{\mathbf{s^w}}\xspace}
\newcommand{\nalg}{\nat\mathsf{Alg}}
\newcommand{\nhom}{\nat\mathsf{Hom}}
\newcommand{\ishinitw}{\mathsf{isHinit}_{\mathsf{W}}}
\newcommand{\ishinitn}{\mathsf{isHinit}_\nat}
\newcommand{\w}{\mathsf{W}}
\newcommand{\walg}{\w\mathsf{Alg}}
\newcommand{\whom}{\w\mathsf{Hom}}
%%% Macros for real numbers
\newcommand{\RC}{\ensuremath{\mathbb{R}_\mathsf{c}}\xspace} % Cauchy
\newcommand{\RD}{\ensuremath{\mathbb{R}_\mathsf{d}}\xspace} % Dedekind
\newcommand{\R}{\ensuremath{\mathbb{R}}\xspace} % Either
\newcommand{\barRD}{\ensuremath{\bar{\mathbb{R}}_\mathsf{d}}\xspace} % Dedekind completion of Dedekind
\newcommand{\close}[1]{\sim_{#1}} % Relation of closeness
\newcommand{\closesym}{\mathord\sim}
\newcommand{\rclim}{\mathsf{lim}} % HIT constructor for Cauchy reals
\newcommand{\rcrat}{\mathsf{rat}} % Embedding of rationals into Cauchy reals
\newcommand{\rceq}{\mathsf{eq}_{\RC}} % HIT path constructor
\newcommand{\CAP}{\mathcal{C}} % The type of Cauchy approximations
\newcommand{\Qp}{\Q_{+}}
\newcommand{\apart}{\mathrel{\#}} % apartness
\newcommand{\dcut}{\mathsf{isCut}} % Dedekind cut
\newcommand{\cover}{\triangleleft} % inductive cover
\newcommand{\intfam}[3]{(#2, \lam{#1} #3)} % family of rational intervals
% Macros for the Cauchy reals construction
\newcommand{\bsim}{\frown}
\newcommand{\bbsim}{\smile}
\newcommand{\hapx}{\diamondsuit\approx}
\newcommand{\hapname}{\diamondsuit}
\newcommand{\hapxb}{\heartsuit\approx}
\newcommand{\hapbname}{\heartsuit}
\newcommand{\tap}[1]{\bullet\approx_{#1}\triangle}
\newcommand{\tapname}{\triangle}
\newcommand{\tapb}[1]{\bullet\approx_{#1}\square}
\newcommand{\tapbname}{\square}
%%% Macros for surreals
\newcommand{\NO}{\ensuremath{\mathsf{No}}\xspace}
\newcommand{\surr}[2]{\{\,#1\,\big|\,#2\,\}}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\RR}{\mathcal{R}}
\newcommand{\noeq}{\mathsf{eq}_{\NO}} % HIT path constructor
\newcommand{\ble}{\trianglelefteqslant}
\newcommand{\blt}{\vartriangleleft}
\newcommand{\bble}{\sqsubseteq}
\newcommand{\bblt}{\sqsubset}
\newcommand{\hle}{\diamondsuit\preceq}
\newcommand{\hlt}{\diamondsuit\prec}
\newcommand{\hlname}{\diamondsuit}
\newcommand{\hleb}{\heartsuit\preceq}
\newcommand{\hltb}{\heartsuit\prec}
\newcommand{\hlbname}{\heartsuit}
% \newcommand{\tle}{(\bullet\preceq\triangle)}
% \newcommand{\tlt}{(\bullet\prec\triangle)}
\newcommand{\tle}{\triangle\preceq}
\newcommand{\tlt}{\triangle\prec}
\newcommand{\tlname}{\triangle}
% \newcommand{\tleb}{(\bullet\preceq\square)}
% \newcommand{\tltb}{(\bullet\prec\square)}
\newcommand{\tleb}{\square\preceq}
\newcommand{\tltb}{\square\prec}
\newcommand{\tlbname}{\square}
%%% Macros for set theory
\newcommand{\vset}{\mathsf{set}} % point constructor for cummulative hierarchy V
\def\cd{\tproj0}
\newcommand{\inj}{\ensuremath{\mathsf{inj}}} % type of injections
\newcommand{\acc}{\ensuremath{\mathsf{acc}}} % accessibility
\newcommand{\atMostOne}{\mathsf{atMostOne}}
\newcommand{\power}[1]{\mathcal{P}(#1)} % power set
\newcommand{\powerp}[1]{\mathcal{P}_+(#1)} % inhabited power set
%%%% THEOREM ENVIRONMENTS %%%%
% Hyperref includes the command \autoref{...} which is like \ref{...}
% except that it automatically inserts the type of the thing you're
% referring to, e.g. it produces "Theorem 3.8" instead of just "3.8"
% (and makes the whole thing a hyperlink). This saves a slight amount
% of typing, but more importantly it means that if you decide later on
% that 3.8 should be a Lemma or a Definition instead of a Theorem, you
% don't have to change the name in all the places you referred to it.
% The following hack improves on this by using the same counter for
% all theorem-type environments, so that after Theorem 1.1 comes
% Corollary 1.2 rather than Corollary 1.1. This makes it much easier
% for the reader to find a particular theorem when flipping through
% the document.
\makeatletter
\def\defthm#1#2#3{%
%% Ensure all theorem types are numbered with the same counter
\newaliascnt{#1}{thm}
\newtheorem{#1}[#1]{#2}
\aliascntresetthe{#1}
%% This command tells cleveref's \cref what to call things
\crefname{#1}{#2}{#3}}
% Now define a bunch of theorem-type environments.
\newtheorem{thm}{Theorem}[section]
\crefname{thm}{Theorem}{Theorems}
\defthm{propn}{Proposition}{Propositions} % Probably we shouldn't use "Proposition" in this way
\defthm{cor}{Corollary}{Corollaries}
\defthm{lem}{Lemma}{Lemmas}
\defthm{ax}{Axiom}{Axioms}
\defthm{conj}{Conjecture}{Conjectures}
% Since definitions and theorems in type theory are synonymous, should
% we actually use the same theoremstyle for them?
\theoremstyle{definition}
\defthm{defn}{Definition}{Definitions}
\theoremstyle{remark}
\defthm{rmk}{Remark}{Remarks}
\defthm{ex}{Example}{Examples}
\defthm{exs}{Examples}{Examples}
\defthm{notes}{Notes}{Notes}
% Number exercises within chapters, with their own counter.
%\newtheorem{ex}{Exercise}[chapter]
%\crefname{ex}{Exercise}{Exercises}
% Display format for sections
\crefformat{section}{\S#2#1#3}
\Crefformat{section}{Section~#2#1#3}
\crefrangeformat{section}{\S\S#3#1#4--#5#2#6}
\Crefrangeformat{section}{Sections~#3#1#4--#5#2#6}
\crefmultiformat{section}{\S\S#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{section}{Sections~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{section}{\S\S#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{section}{Sections~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
% Display format for appendices
\crefformat{appendix}{Appendix~#2#1#3}
\Crefformat{appendix}{Appendix~#2#1#3}
\crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\Crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6}
\crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\Crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3}
\crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\Crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}
\crefname{part}{Part}{Parts}
% Number subsubsections
\setcounter{secnumdepth}{5}
% Display format for figures
\crefname{figure}{Figure}{Figures}
% Use cleveref instead of hyperref's \autoref
\let\autoref\cref
%%%% EQUATION NUMBERING %%%%
% The following hack uses the single theorem counter to number
% equations as well, so that we don't have both Theorem 1.1 and
% equation (1.1).
\let\c@equation\c@thm
\numberwithin{equation}{section}
%%%% ENUMERATE NUMBERING %%%%
% Number the first level of enumerates as (i), (ii), ...
\renewcommand{\theenumi}{(\roman{enumi})}
\renewcommand{\labelenumi}{\theenumi}
%%%% MARGINS %%%%
% This is a matter of personal preference, but I think the left
% margins on enumerates and itemizes are too wide.
% \setitemize[1]{leftmargin=2em}
% \setenumerate[1]{leftmargin=*}
% Likewise that they are too spaced out.
% \setitemize[1]{itemsep=-0.2em}
% \setenumerate[1]{itemsep=-0.2em}
%%% Notes %%%
\def\noteson{%
\gdef\note##1{\mbox{}\marginpar{\color{blue}\textasteriskcentered\ ##1}}}
\gdef\notesoff{\gdef\note##1{\null}}
\noteson
\newcommand{\Coq}{\textsc{Coq}\xspace}
\newcommand{\Agda}{\textsc{Agda}\xspace}
\newcommand{\NuPRL}{\textsc{NuPRL}\xspace}
%%%% CITATIONS %%%%
% \let \cite \citep
%%%% INDEX %%%%
\newcommand{\footstyle}[1]{{\hyperpage{#1}}n} % If you index something that is in a footnote
\newcommand{\defstyle}[1]{\textbf{\hyperpage{#1}}} % Style for pageref to a definition
\newcommand{\indexdef}[1]{\index{#1|defstyle}} % Index a definition
\newcommand{\indexfoot}[1]{\index{#1|footstyle}} % Index a term in a footnote
\newcommand{\indexsee}[2]{\index{#1|see{#2}}} % Index "see also"
%%%% Standard phrasing or spelling of common phrases %%%%
\newcommand{\ZF}{Zermelo--Fraenkel}
\newcommand{\CZF}{Constructive \ZF{} Set Theory}
\newcommand{\LEM}[1]{\ensuremath{\mathsf{LEM}_{#1}}\xspace}
\newcommand{\choice}[1]{\ensuremath{\mathsf{AC}_{#1}}\xspace}
%%%% MISC %%%%
\newcommand{\mentalpause}{\medskip} % Use for "mental" pause, instead of \smallskip or \medskip
%% Use \symlabel instead of \label to mark a pageref that you need in the index of symbols
\newcounter{symindex}
\newcommand{\symlabel}[1]{\refstepcounter{symindex}\label{#1}}
% Local Variables:
% mode: latex
% TeX-master: "hott-online"
% End: