auto gitdoc commit
This commit is contained in:
parent
b1c849c538
commit
9ff5bcc30b
2 changed files with 36 additions and 1 deletions
|
@ -354,3 +354,31 @@ postulate
|
|||
postulate
|
||||
ua : {A B : Set} (eqv : A ≃ B) → (A ≡ B)
|
||||
```
|
||||
|
||||
## 2.13 Natural numbers
|
||||
|
||||
```
|
||||
code : ℕ → ℕ → Set
|
||||
code zero zero = 𝟙
|
||||
code zero (suc y) = ⊥
|
||||
code (suc x) zero = ⊥
|
||||
code (suc x) (suc y) = code x y
|
||||
```
|
||||
|
||||
### Theorem 2.13.1
|
||||
|
||||
```
|
||||
theorem2∙13∙1 : (m n : ℕ) → (m ≡ n) ≃ code m n
|
||||
theorem2∙13∙1 m n = {! !}
|
||||
where
|
||||
r : (n : ℕ) → code n n
|
||||
r zero = tt
|
||||
r (suc n) = r n
|
||||
|
||||
encode : (m n : ℕ) → m ≡ n → code m n
|
||||
encode m n p = transport (λ n → code m n) p (r m)
|
||||
|
||||
decode : (m n : ℕ) → code m n → m ≡ n
|
||||
decode zero zero c = refl
|
||||
decode (suc m) (suc n) c = {! !}
|
||||
```
|
|
@ -18,7 +18,7 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
|
|||
|
||||
```
|
||||
𝟙-is-Set : isSet 𝟙
|
||||
𝟙-is-Set tt tt p q = J (λ x y p' → p' ≡ q) (λ x → {! !}) tt tt p
|
||||
𝟙-is-Set tt tt refl refl = refl
|
||||
```
|
||||
|
||||
### Example 3.1.3
|
||||
|
@ -28,6 +28,13 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
|
|||
⊥-is-Set () () p q
|
||||
```
|
||||
|
||||
### Example 3.1.4
|
||||
|
||||
```
|
||||
ℕ-is-Set : isSet ℕ
|
||||
ℕ-is-Set = {! !}
|
||||
```
|
||||
|
||||
## 3.2 Propositions as types?
|
||||
|
||||
## 3.4 Classical vs. intuitionistic logic
|
||||
|
|
Loading…
Reference in a new issue